
Received: 14 February 2022 Accepted: 20 March 2022

DOI: 10.1002/nme.6975

R E S E A R C H A R T I C L E

A nonlocal interface approach to peridynamics exemplified
by continuum-kinematics-inspired peridynamics

Marie Laurien1 Ali Javili2 Paul Steinmann1

1Institute of Applied Mechanics,
Friedrich-Alexander-Universität
Erlangen-Nürnberg, Erlangen, Germany
2Department of Mechanical Engineering,
Bilkent University, Ankara, Turkey

Correspondence
Marie Laurien, Institute of Applied
Mechanics,
Friedrich-Alexander-Universität
Erlangen-Nürnberg, Egerlandstraße 5,
91058 Erlangen, Germany.
Email: marie.laurien@fau.de

Funding information
Deutsche Forschungsgemeinschaft,
Grant/Award Number: 377472739;
Scientific and Technological Research
Council of Turkey (TÜBITAK),
Grant/Award Number: 218M700

Abstract
In this contribution, we present a novel approach on how to treat material
interfaces in nonlocal models based on peridynamics (PD) and in particular
continuum-kinematics-inspired peridynamics (CPD), a novel variationally con-
sistent peridynamic formulation. Our method relies on a nonlocal interface
where the material subdomains overlap. Within this region, a kinematic cou-
pling of the two constituents is enforced. The contact is purely geometrical as
interaction forces act only between points of the same material. We provide
a detailed description of the computational implementation within the frame-
work of CPD, that is in principle applicable to all formulations of PD. A variety
of numerical examples for modeling bimaterial interfaces illustrate the utility
of the technique for both two-dimensional and three-dimensional problems,
including examples at large deformations. Our model approaches a local model
when the nonlocality parameter, the horizon size, is decreased. The proposed
methodology offers a viable alternative to previous approaches in PD, which are
essentially imposing mixture rules for the interfacial material parameters.
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1 INTRODUCTION

Peridynamics (PD) is a nonlocal continuum formulation that was introduced by Silling in 2000.1 Providing a tool to
describe long-range forces within a continuum framework, the theory is increasingly applied to model physical phe-
nomena that are not accurately captured through the consideration of local contact forces in classical (local) continuum
models. This is achieved by incorporating integral terms into the governing equations of PD that comprise the interac-
tion forces acting across a finite distance. Thus, PD enriches a continuum model by including long-range interactions.
Conceptually speaking, PD borrows certain concepts from both classical continuum mechanics (CCM) and molecular
dynamics (MD). Due to the replacement of spatial derivatives with integral operators, PD is inherently capable of mod-
eling discontinuities, such as cracks, within a continuum framework. It is therefore widely used in fracture mechanics,2
but has expanded to a multitude of application fields, such as multiscale modeling,3-7 multiphysics,8-10 and biological sys-
tems.11-14 In the basic version of PD, that is, bond-based PD, the Poisson ratio is restricted to 𝜈 = 1∕4 in three-dimensional
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problems and 𝜈 = 1∕3 in two-dimensional problems. Consequently, Silling et al.15 later extended the theory by introducing
the so-called “state” that allows for a more sophisticated description of the interactions. Hence, in state-based PD, a point is
influenced by the collective deformation of its neighborhood. An alternative approach is continuum-kinematics-inspired
peridynamics (CPD) introduced by Javili et al.16 very recently. Here, in addition to pair-wise interactions, multi-neighbor
interactions characterize the interplay of points via a kinematically exact description. In this manner, it is possible to cap-
ture changes not only in length, but also in area and volume. This yields an intuitive description of the kinematics since
the basic kinematic ingredients are inspired by those of classical continuum kinematics. As a consequence, CPD is able
to model Poisson-like effects with Poisson’s ratio 𝜈 ranging between −1 and 0.5 (in 3D). CPD differs from state-based PD,
which faces issues when transferring local material models to peridynamic ones via a correspondence model — a concept
that state-based PD commonly relies on.17 Due to these promising benefits, CPD has been further developed by now.18-24

In most real-world problems, materials are heterogeneous. Numerous fields of applications of PD are concerned with
modeling heterogeneous media, such as micro-structured materials,6,7 functionally graded materials,25-28 or bilayers,29

to name a few. This requires methodological approaches on how to treat material interfaces that are inherently nonlocal
within a peridynamic model. In the literature, there exist very few contributions that have established a mathematical
framework for nonlocal interface models.30-32 Alali et al.30 showed that in the presence of a material interface, neither the
bond-based nor the state-based linear PD model converge to local elasticity for vanishing nonlocality. Therefore, nonlocal
interface conditions were introduced together with a new nonlocal operator that acts on points in an extended interface.
The practical implementation of PD material interfaces is, however, usually carried out in a simpler way, often based on
empirical arguments. Silling et al.15 include weighting functions into the computation of the force state that vanish for
points outside the respective material. Commonly, the focus is on introducing additional peridynamic material constants
that describe the bonds that are connecting dissimilar materials. A comparison can be drawn to MD, where intermolec-
ular forces between unlike molecules are to be computed. There, the material parameters are combined according to
mixture rules, also called combining rules, of which a multitude of variants exists.33,34 Several similar approaches are fol-
lowed in PD literature. A widespread method is to characterize an interfacial bond by simply averaging the parameters of
the constituent materials.25,26,28 Oftentimes, the parameters are weighted with the fraction of the bond length associated
with the respective material. These approaches can further be classified into arithmetic averaging6,35-37 and harmonic
averaging.6,7,9,38 Cheng et al.26 used the proportion of the material coefficients to identify a weighting factor. Meanwhile,
a couple of contributions introduced more freely selectable weighting factors.29,39,40 Recently, Ahmadi et al.41 determined
the parameters by considering both the distance to the interface and the number of neighboring points of dissimilar mate-
rial. Behera et al.37 employed a Heaviside function to assign the parameters. Kilic et al.42 consistently used the smaller
bulk modulus based on results of numerical experimentation. Recently, Nguyen et al.43 concluded from a comparison of
four different methods that the results obtained from a harmonic mean including a weighting with the bond length frac-
tion are the closest to a local interface with FEM. In summary, although PD inherently allows for material discontinuities,
there remains an uncertainty in PD literature regarding an interface mixture rule. The choice of a specific mixture rule
seems arbitrary to some extent. It might be due to the lack of extensive comparative studies that no consistent approach
for PD interfaces exists. In most works, a local model serves to validate the results, even though a nonlocal model natu-
rally behaves differently. On the other hand, it is difficult to obtain experimental data of the interfacial properties, that
could support evaluating the mixture rules. Ultimately, in existing PD interface models, the material interface remains a
two-dimensional discontinuity surface, as in a local model, while nonlocality manifests itself through interactions across
the interface. However, the opposite approach has never been considered in this context, to the best of our knowledge.
Therefore, we propose a model where nonlocality translates into a finite thickness interface region. Within this region,
the dissimilar materials are kinematically enslaved. Peridynamic interaction forces, however, are present only within the
same material. In this fashion, the question of an appropriate mixture rule is entirely by-passed. This is especially use-
ful in CPD, where the use of a mixture rule is not straightforward. Within the scope of this work, this novel approach
for nonlocal interfaces is introduced and investigated. For the first time CPD is utilized to model bimaterial interface
problems.

This article is organized as follows. Section 2 introduces the theoretical framework of continuum-kinematics-inspired
peridynamics. The conceptual idea and the computational implementation of the proposed nonlocal interface model are
presented in Section 3. Numerical experiments in Section 4 demonstrate its applicability to a variety of two-dimensional
and three-dimensional bimaterial models, including a nonlocality study with a comparison to a local interface. Section 5
concludes this work.
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3466 LAURIEN et al.

F I G U R E 1 Illustration of a continuum body 0 in the material configuration (left) and its spatial counterpart t (right). In CPD, a
point X interacts with sets of neighbors {X|

,X||
,X|||} in a finite neighborhood0 defined by the horizon size 𝛿

2 CONTINUUM-KINEMATICS-INSPIRED PERIDYNAMICS

We adopt continuum-kinematics-inspired peridynamics (CPD). This section lays down its fundamentals including the
kinematics, the governing equations, and the employed constitutive law.

2.1 Kinematics

Figure 1 depicts a continuous body occupying the material configuration0 ⊂ R3 at time t = 0. It is transformed into the
spatial configuration t ⊂ R3 via the nonlinear deformation map y as x = y(X, t)∶0 ×R+ → t. A continuum point is
described by its position vector X in the undeformed configuration and its spatial counterpart x. The main idea of PD is to
measure the interactions of a point and its neighboring points within a finite distance. This neighborhood is commonly
referred to as the peridynamic horizon 0(X) ⊂ 0 and is characterized by the horizon size 𝛿. Employing a Lagrangian
perspective, 𝛿 is commonly the radius of a sphere in the material configuration. CPD in particular considers a whole set
of neighbors

{X|
,X||

,X|||} ∀ X| ∈ 0(X), X|| ∈ 0(X), X||| ∈ 0(X) , (1)

and their spatial counterparts {x|
, x||

, x|||}. The corresponding relative position vectors in the initial and the current
configuration, respectively, are given by

𝚵| = X| − X and 𝝃| = x| − x = y(X|) − y(X) , (2)

𝚵|| = X|| − X and 𝝃|| = x|| − x = y(X||) − y(X) , (3)

𝚵||| = X||| − X and 𝝃||| = x||| − x = y(X|||) − y(X) . (4)

The theory of CPD owes its name to the representation of the kinematics that is inspired by the basic elements of classi-
cal continuum kinematics. To accurately capture the key features of a deformation, viable measures are introduced that
correspond to line, area, and volume elements in the spatial configuration. In CPD, the first relative deformation mea-
sure is 𝝃| = x| − x, as introduced above, which serves as a descriptor of the change of length, in spirit analogous to the
deformation gradient F ∶= Grad y in CCM. The change of area is captured by the second relative deformation measure
a|∕|| = 𝝃| × 𝝃||, which is related to the cofactor K ∶= Cof F in Nanson’s formula. Reminiscent of the Jacobian J ∶= Det F,
the third relative deformation measure v|∕||∕||| = [𝝃| × 𝝃||] ⋅ 𝝃||| is associated with volume. An overview of the kinematic
measures in CCM and CPD is given in Table 1. In the limit of 𝛿 → 0 the nonlocal kinematic measures can cover the
local ones. Consequently, the nonlocal kinematics of CPD are geometrically exact. At the same time, they allow us not
only to consider one-neighbor interactions associated to classical bond-based PD, but also two-neighbor interactions and
three-neighbor interactions are accounted for.
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LAURIEN et al. 3467

T A B L E 1 Local kinematic measures versus nonlocal kinematic measures of CPD

Relative length measure Relative area measure Relative volume measure

CCM Deformation gradient F Cofactor K Determinant J

F ∶= Grad y K ∶= Cof F J ∶= Det F

CPD 𝝃 = x| − x a|∕|| = 𝝃| × 𝝃|| v|∕||∕||| = [𝝃| × 𝝃||] ⋅ 𝝃|||

One-neighbor interactions Two-neighbor interactions Three-neighbor interactions

2.2 Balance equations

The motion of a body is governed by the balance of linear momentum. Here, we consider the quasi-static case which states
that the sum of the internal force density per volume bint

0 and the external force density per volume bext
0 vanishes, that is

bint
0 + bext

0 = 0 ⇒
∫
0

p| dV | + bext
0 = 0 . (5)

Based on the nonlocal nature of peridynamics, summing up the interaction forces of a point via integrating the force
density per volume squared p| over the horizon renders the internal force density per volume. The set of balance equations
that is required to describe the system is completed by the balance of angular momentum

∫
0

𝝃| × p| dV | = 0 . (6)

The force density p| can be split into terms corresponding to one-, two-, and three-neighbor interactions, as will be elab-
orated in the subsequent section. A detailed discussion of the thermodynamic foundation of CPD is provided by Javili
et al.16

2.3 Constitutive law

The starting point of deriving a constitutive law for hyperelastic material behavior is the point-wise stored energy density
given by

ψ =
∫
0

1
2
𝜓

|

1 dV | +
∫
0
∫
0

1
3
𝜓

|∕||
2 dV ||dV | +

∫
0
∫
0
∫
0

1
4
𝜓

|∕||∕|||
3 dV |||dV ||dV |

, (7)

where 𝜓 |

1, 𝜓
|∕||
2 , and 𝜓 |∕||∕|||

3 denote the contributions from one-, two-, and three-neighbor interactions, respectively. The
coefficients one-half, one-third, and one-fourth are introduced to avoid double, triple, and quadruple counting, respec-
tively, since the multiple integrals lead to considering every point multiple times. If the terms are expressed with respect
to the scalar-valued line, area, and volume measures l, a, and v, the balance of angular momentum is fulfilled a priori, see
Javili et al.16 These measures are given by

l ∶= |𝝃||, a ∶= |a|∕|||, v ∶= |v|∕||∕|||| , (8)

with their material counterparts

L ∶= |𝚵||, A ∶= |A|∕|||, V ∶= |V |∕||∕|||| . (9)

In an intuitive manner, here, each energy contribution is described by a harmonic potential as follows

𝜓
|

1 =
1
2

C1L
[

l
L
− 1

]2

, 𝜓
|∕||
2 = 1

2
C2A

[ a
A
− 1

]2
, 𝜓

|∕||∕|||
3 = 1

2
C3V

[ v
V
− 1

]2
. (10)
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3468 LAURIEN et al.

In this fashion, the material constants of CPD, that is, C1,C2, and C3, can be immediately interpreted as the resistance
against the change of length of a bond between two points, the resistance against the change of area spanned by three
points and the resistance against the change of volume formed by four points, respectively. Note that three parameters
are necessary to describe isotropic elastic material behavior at finite deformations. This is similar to nonlinear CCM,
which shall be compared with CPD since CPD is inherently formulated for large deformations. The number of material
parameters for isotropic linear elasticity in CCM reduces to two due to the small deformations assumption, which of
course can also be imposed on CPD.18

With the expression for the energy densities at hand, a constitutive law can be established. In doing so, the force
density is divided into three parts associated with the three types of interactions, that is

p| = p|

1 + p|

2 + p|

3 . (11)

From the dissipation inequality and via a Coleman-Noll-like procedure for elasticity it eventually follows

p|

1 =
𝜕𝜓

|

1

𝜕𝝃|
= C1

[
l
L
− 1

]
𝝃|

|𝝃||
, (12)

p|

2 = ∫
0

2𝝃|| ×
𝜕𝜓

|∕||
2

𝜕a|∕|| dV || =
∫
0

2𝝃|| × C2

[ a
A
− 1

] a|∕||

|a|∕|||
dV ||

, (13)

p|

3 = ∫
0
∫
0

3𝝃|| × 𝝃|||
𝜕𝜓

|∕||∕|||
3

𝜕v|∕||∕|||
dV |||dV || =

∫
0
∫
0

3𝝃|| × 𝝃|||C3

[ v
V
− 1

] v|∕||∕|||

|v|∕||∕||||
dV |||dV ||

. (14)

3 KINEMATICALLY COUPLED NONLOCAL INTERFACE

In the following section, we introduce an approach on how to treat nonlocal material interfaces via a kinematic coupling.
The main concept is presented in Section 3.1, while Section 3.2 gives details about the computational implementation.

3.1 Concept

We consider a heterogeneous body that occupies the domain 0 in the material configuration. As it is depicted in
Figure 2 for a two-dimensional problem (for illustration), the body is composed of two homogeneous constituents. That is

F I G U R E 2 A heterogeneous body is composed of material A and material B, occupying the subdomains A
0 and B

0 , respectively. A
point directly interacts only with neighbors of the same material. However, the materials are kinematically coupled in an extended interfacial
region, that is, the overlap domain I

0 = 
A
0 ∩ 

B
0 . A two-dimensional illustration is given for the sake of illustration
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LAURIEN et al. 3469

material A, defined by the material constants CA
1 and CA

2 , in the subdomain A
0 and material B, with CB

1 and CB
2 , occupy-

ing the subdomain B
0 . According to local continuum mechanics, the material interface between the two components is

a distinct sharp line. In this contribution, we propose that in CPD, the two constituents are connected by an interfacial
region of finite thickness. This extended nonlocal interface spans the subdomain I

0, where the two material domains
overlap, that is,I

0 = 
A
0 ∩ 

B
0 . Within this region, the materials are perfectly bonded via a purely geometrical constraint.

This is realized through pairs of peridynamic points of different materials sharing the same degree of freedom (DOF) and
thus displacing equally. Conceptually speaking, the pairs are connected via infinitely stiff springs. The coupling is purely
kinematic in the sense that the calculation of the interaction forces is carried out only within the single homogeneous
materials. Hence, it can be described as a Dirichlet-type coupling with decoupled force computations. The nonlocal inter-
face of finite thickness is reminiscent of an interphase that shows a slightly deviating behavior compared to the primary
components, although no additional set of material parameters is assigned. Since the horizon size 𝛿 describes the degree
of nonlocality of peridynamics, it seems reasonable to choose this parameter as the size of the overlap zone*, which is
denoted as 𝓁ov and which refers to the dimension perpendicular to the interface. Consequently, in the limit of a vanish-
ing horizon, that is, 𝛿 → 0, a sharp interface is recovered. The concept of an overlap region of 𝓁ov = 𝛿 can be compared to
the application of boundary conditions in PD. To ensure a sufficient spread of the prescribed deformation into the bulk
material, it is customary to apply the boundary conditions to additional material layers of depth 𝛿 along the boundaries
of the actual geometry. This is true also for a material interface where the deformation of one material component needs
to be adequately passed on to the other.

As in the presented interface approach interactions are computed only within a homogeneous material, the use of
the material parameters is straightforward and does not involve mixture rules. Since peridynamic material parameters
describe the properties of an interaction between points, rather than the properties of a point itself, interactions between
points of different materials are not characterized explicitly. If only one-neighbor interactions are present, different kinds
of mixture rules can be implemented to determine the property of a bond across the interface.29 For multi-neighbor
interactions, however, the behavior is additionally characterized by the ratio of the material parameters. For instance, in
two dimensions, Poisson-like effects are described by the ratio C2∕C1. This ratio is not unique if different material points
are parts of the interaction and thus, mixture rules are no longer applicable.

Moreover, conceptually, an interface does not necessarily imply one- or multi-neighbor interactions between the two
constituents. Depending on the types of materials and how they are joined, neither fiber connections nor chemical bonds
might exist across the interface. The bonding might be predominantly mechanical in nature. In these cases, a purely
kinematic contact is suitable. Also, note that we consider peridynamic bonds that fundamentally differ from bonds in
MD, which motivates an alternative methodology.

3.2 Computational implementation

The domainsA
0 andB

0 are discretized into a grid of peridynamic points a and b identified by Xa and Xb, respectively,
with coinciding discretizations in the overlap regionI

0. The equation to solve is the nonlocal balance of linear momentum
(5), whose left-hand side is referred to as the residual vector R and its discretized counterpart R. In the sense of collocation,
the balance of linear momentum is evaluated at each grid point and the global residual vector is constructed from the
point-wise contributions. In this work, the point-wise discretized residual vector is stated in a general form R• for a point

• with {•} = {a, b} to stress the use of differing material parameters for a and b. It can be written as

R
• = R

•
1 +R

•
2 +R

•
3 , (15)

with the contributions resulting from one-, two-, and three-neighbor interactions, respectively, as follows

R
•
1 =

#∑

i=1
i≠•

C•
1

[
1
|𝚵||

− 1
|𝝃||

]

𝝃|V1 , (16)

*The feasibility of this assumption and the significance of the overlap size is shortly assessed through numerical examples in Section 4.3.
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3470 LAURIEN et al.

R
•
2 =

#∑

i=1
i≠•

#∑

j=1
j≠i
j≠•

2C•
2

[
1

|𝚵| × 𝚵|||
− 1
|𝝃| × 𝝃|||

]
[
[𝝃|| ⋅ 𝝃||]𝝃| − [𝝃|| ⋅ 𝝃|]𝝃||

]
V2 , (17)

R
•
3 =

#∑

i=1
i≠•

#∑

j=1
j≠i
j≠•

#∑

k=1
k≠j
k≠i
k≠•

3C•
3[𝝃

|| × 𝝃|||]

[

1
|
[
𝚵| × 𝚵||

]
⋅ 𝚵||||

− 1
|
[
𝝃| × 𝝃||

]
⋅ 𝝃||||

]
[
[𝝃| × 𝝃||] ⋅ 𝝃|||

]
V3 , (18)

for a set of neighbors {i, j, k}. Here, V1,V2, and V3 refer to the volume fractions of the horizon that are associated with the
respective interaction. The process of constructing the global residual vector of size #DOFs from the individual contri-
butions is called assembly. Hence, we introduce the CPD assembly operator A. The operator ensures that the point-wise
contributions are assigned to the correct global entries according to the DOFs of the individual points. The assembly
procedure reads

R = A
∀•

R
• = A

∀•

[
R
•
1 +R

•
2 +R

•
3
]
. (19)

In this fashion, the operator likewise takes care of the interface region. A pair of points a ∈ I
0 and b ∈ I

0 with coin-
ciding position vectors Xa and Xb in the reference configuration share the DOFs and their contributions are assigned to
the same entries by the assembly operator. Thus, in the overlap region, pairs of points of dissimilar material contribute to
the same component of the global vector. The system of equations R = 0 is solved for the global discretized deformation
vector x. Since the nonlinearity of the problem necessitates an iterative scheme, we apply the Newton–Raphson method.
The method relies on a linearization of the system that results in calculating the tangent stiffness matrix Kk at every
iteration k to approximate the residual Rk+1 with

Rk+1 = Rk +
[
𝜕R

𝜕x

]

k
Δxk = Rk +KkΔxk

!
= 0 . (20)

Subsequent to solving the linear system of equations given by

Δxk = −
[
Kk

]−1
Rk , (21)

the deformation vector is updated according to

xk+1 = xk + Δxk . (22)

The iterations terminate if the norm of the residual is within a given tolerance. For large deformations, the application of
the load can be split up into N load steps. Analogous to the residual vector, the tangent stiffness matrix is first computed
point-wise. Thereafter, the assembly operator is used to construct the global stiffness matrix. For the points a

,
𝛼 ∈ A

0
and the points b

,
𝛽 ∈ B

0 , respectively, with {•◦} = {a𝛼, b𝛽}, the point-wise discretized stiffness matrix reads

K
•◦ = K

•◦
1 +K

•◦
2 +K

•◦
3 =

𝜕R
•
1

𝜕x◦
+
𝜕R

•
2

𝜕x◦
+
𝜕R

•
3

𝜕x◦
, (23)

with contributions from one-, two-, and three-neighbor interactions. The full expressions are given in Appendix A.
The individual contributions are sorted into the global stiffness matrix according to their DOFs through the assembly
procedure, that is,

K = A
∀•◦

K
•◦ = A

∀•◦

[
K
•◦
1 +K

•◦
2 +K

•◦
3
]
. (24)

This implies that, within the overlap region, an entry of the global tangent stiffness matrix is composed of contribu-
tions from points a and 𝛼 of material A as well as from points b and 𝛽 of material B. Figure 3 depicts the sparsity
pattern of an example stiffness matrix. The color code visualizes the overlap zone where the DOFs are shared by the
two material domains. The general procedure for solving a three-dimensional deformation problem involving a mate-
rial interface is sketched in a pseudo-code in Algorithm 1. All numerical examples in this work are carried out using
MATLAB.
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LAURIEN et al. 3471

overlap
region

material A

material B

F I G U R E 3 Sparsity pattern of an example global stiffness matrix (for 798 DOFs) composed of contributions from material A (yellow),
material B (blue), and mixed contributions at shared DOFs in the overlap region (green)

Algorithm 1. Outline of solving the deformation problem in the presence of a nonlocal interface following the
approach discussed above

• assign DOFs globally to 0
• neighbor search within A

0 : for every point a find neighboring points  i ∈ A
0

• neighbor search within B
0 : for every point b find neighboring points  i ∈ B

0
for load step n ∈ N do

• prescribe boundary conditions
for iteration k do

for a ∈ A
0 do

• compute R
a
k using CA

1 ,C
A
2 ,C

A
3 and neighbors  i

,
j
,

k ∈ A
0

• assemble R
a
k into global Rk according to DOFs of a

end
for b ∈ B

0 do
• compute R

b
k using CB

1 ,C
B
2 ,C

B
3 and neighbors  i

,
j
,

k ∈ B
0

• assemble R
b
k into global Rk according to DOFs of b

end
if global |Rk|>tolerance then

for a ∈ A
0 do

• compute K
a𝛼
k using CA

1 ,C
A
2 ,C

A
3 and neighbors  i

,
j
,

k ∈ A
0

• assemble K
a𝛼
k into global Kk according to DOFs of a and 𝛼

end
for b ∈ B

0 do
• compute K

b𝛽
k using CB

1 ,C
B
2 ,C

B
3 and neighbors  i

,
j
,

k ∈ B
0

• assemble K
b𝛽
k into global Kk according to DOFs of b and 𝛽

end
• solve global linear system of equations Δxk = −

[
Kk

]−1
Rk

• update xa
k+1 and xb

k+1 for every a and b using Δxk
• next iteration: k ←− k + 1

end
end
• next load step: n ←− n + 1

end

 10970207, 2022, 15, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.6975 by B
ilkent U

niversity, W
iley O

nline L
ibrary on [27/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



3472 LAURIEN et al.

4 NUMERICAL STUDY OF BIMATERIAL INTERFACES

The aim of this section is to illustrate the proposed model through a collection of numerical examples. To this end, in
Section 4.1, we carry out an extensive series of tests using different sets of material parameters, different loading con-
ditions and different two-dimensional interface geometries. A convergence study for decreasing nonlocality, including
a comparison to a local interface, is presented in Section 4.2. The influence of different sizes of the overlap region is
investigated in Section 4.3, while Section 4.4 is concerned with a CPD interface at large deformations. In Section 4.5, we
demonstrate the applicability of our approach to three-dimensional problems via a set of simulations.

4.1 Two-dimensional examples

We investigate the nonlocal interface problem by means of a bimaterial unit square. The geometry is discretized into a
peridynamic grid of points with grid spacing Δ = 0.01. Following common practice in PD, we begin with a horizon size
of 𝛿 = 3.01Δ and extend the geometry by additional material layers of size 𝛿 at the edges where boundary conditions are
to be imposed. In this way, a smooth application of the boundary conditions is ensured. Figure 4 depicts the three utilized
load cases. In each case, we prescribe the displacement to the left and right boundary regions, that is, the outmost layer
of the geometry as well as the additional material layers. The prescribed displacements result from imposing a uniform
deformation gradient. Load case I refers to a uniaxial stretch in horizontal direction. In load case II, the boundary layers
are expanded through a biaxial stretch. Shear in horizontal and vertical direction is applied to the boundary regions in
load case III. In all cases, the sample is stretched or compressed, respectively, by 0.1 %. To begin with, small deformations
as resulting from the loading are considered to ensure a meaningful comparison between parameters and energies with
linear CCM. Large deformations are studied in Section 4.4. For each load case, we study three different types of inter-
face geometries. The materials are either arranged left and right to each other (vertical interface), on top of each other
(horizontal interface) or the interface runs at a 45◦ angle, always dividing the sample into equal halves. We refer to the
left/bottom material as material A, in the following shown in blue, and the right/top one as material B, shown in red.
The size of the overlap region is set to 𝓁ov = 𝛿. Due to the two-dimensional nature of the problem, one- and two-neighbor
interactions are active, while three-neighbor interactions are not present. Note that the primary parameters of CPD in
a two-dimensional problem are C1 and C2. The level of compressibility of a material stems from the ratio of C2 to C1.
Within this manuscript, we indicate compressibility in terms of the Poisson ratio 𝜈 to make it more intuitive for the reader.
By comparing the CPD energy of a simple deformation state to that of a classical model, formulations for conversions
of the material constants can be found. For an extensive derivation of the relationships between the material param-
eters of CPD and isotropic linear elasticity, see Ekiz et al.22 For a two-dimensional problem the parameter conversion
reads

𝜈(C1,C2, 𝛿) =
C2
C1
𝛿

3 + 9
64

C2
C1
𝛿

3 + 27
64

. (25)

Note that in the absence of C2, that is, C2 = 0, 𝜈 = 1∕3 is recovered in accordance with bond-based PD. We emphasize that
here, 𝜈 is used for the sake of brevity but refers to the Poisson ratio 𝜈2D in two-dimensional problems, where 𝜈2D = 1 is
the two-dimensional incompressibility limit, achieved if C2∕C1 → ∞. It thus differs from its counterpart in three dimen-
sions. The conversion reads 𝜈3D = 𝜈2D∕[1 + 𝜈2D]. To illustrate the presented interface approach for a variety of material
parameters, three different sets of material constants are examined. Table 2 summarizes the utilized material parameters
for all two-dimensional examples in this work. This section is concerned with Set 1 − 3. The first set comprises mate-
rials of identical Poisson’s ratios that differ in stiffness (CB

1 = 100CA
1 , 𝜈

A = 𝜈B = 0.1 ⇒ CA
2 (𝛿 = 0.0301) = −4 × 103

,CB
2 (𝛿 =

0.0301) = −4 × 105). Materials that are equally stiff but have different Poisson’s ratios are considered in the second set
(CA

1 = CB
1 , 𝜈

A = 1∕3 ⇒ CA
2 (𝛿 = 0.0301) = 0, 𝜈B = 0.7 ⇒ CB

2 (𝛿 = 0.0301) = 1.9 × 104), whereas both stiffness and Poisson’s
ratio are varied in the third set (CA

1 = 20CB
1 , 𝜈

A = 0.4 ⇒ CA
2 (𝛿 = 0.0301) = 1.7 × 103

, 𝜈
B = 0.2 ⇒ CB

2 (𝛿 = 0.0301) = −129).
Throughout this article, CA

1 is set to 1. In the remainder of this contribution, material constants are given in reference to
Table 2 for the sake of brevity.

The simulation results of the three sets of material constants are assembled in Figures 5–7. The deformed configu-
rations are depicted for the different load cases (columns) and the different material arrangements (rows). The figures
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LAURIEN et al. 3473

Load case I
(extension)

Load case II
(expansion)

Load case III
(shear)

F I G U R E 4 Three different load cases to study the applicability of the proposed model. The displacement is prescribed to the left and
right boundary regions (colored in blue)

T A B L E 2 Summary of the material parameters for all two-dimensional examples used in Sections 4.1–4.4

SET 1 SET 2 SET 3 SET 4

CB
1∕CA

1 100 1 1∕20 1

𝜈
A(CA

1 ,C
A
2 , 𝛿) 0.1 1∕3 0.4 0.6

CA
2 ∕CA

1 (𝜈
A
, 𝛿) − 7

64
1
𝛿

3 0 3
64

1
𝛿

3
9

32
1
𝛿

3

𝜈
B(CB

1 ,C
B
2 , 𝛿) 0.1 0.7 0.2 0.6

CB
2∕CB

1 (𝜈
B
, 𝛿) − 7

64
1
𝛿

3
33
64

1
𝛿

3 − 9
128

1
𝛿

3
9

32
1
𝛿

3

Note: For an intuitive interpretation, the Poisson ratio 𝜈 (under plane strain conditions) is indicated, which is converted to C2∕C1 in CPD. The conversion is
given in terms of 𝛿 as the horizon size varies throughout this article. CA

1 is always set to 1.

demonstrate the capability of our approach to handle different types of bimaterial interface problems. Throughout the
test series, we observe that the behavior of the overlap region tends to adopt the behavior of the stiffer constituent. The
high influence of the stiffer material is expected since its contributions to the shared DOFs are larger than those of the
more compliant material. In general, the plots show that the kinematic coupling within the interfacial region results in
a smooth transition between the dissimilar materials. What is particular about the example in Figure 6 is that 𝜈A = 1∕3
implies that material A is described solely by one-neighbor interactions. In the case of 𝜈 = 1∕3 in two-dimensional
problems, CPD boils down to bond-based PD and two-neighbor interactions are not present. With our approach, a
material with only one-neighbor interactions can easily be connected to a material with both one- and two-neighbor
interactions.

Lastly, we point out that the plots illustrate how different levels of compressibility can easily be modeled with CPD.
This can be observed especially for load case I (extension), where the amount of lateral contraction differs significantly
throughout the tests depending on the material parameters. Since two-neighbor interactions define the resistance against
the change of area, increasing C2∕C1, which is associated with increasing 𝜈, leads to a stronger lateral contraction. This
feature of CPD contributes to setting the stage for its wide use.

4.2 Nonlocality study and comparison to local interfaces

This section is concerned with a nonlocality study to analyze the influence of the horizon size on the material behavior
especially at the interface. Figure 8 schematically depicts the general procedure. That is, the horizon size 𝛿 is decreased
while the ratio of the horizon size to grid spacing 𝛿∕Δ is maintained. In PD literature, this approach is commonly referred
to as 𝛿-convergence44,45 and employed to study the influence of nonlocal effects and the convergence towards the local
solution. In this study, we set 𝛿∕Δ = 8.01 for increased numerical accuracy. For the sake of comparing the CPD results to
CCM results, we carry out simulations using the finite element method (FEM). There, we adopt a linear elastic material

 10970207, 2022, 15, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.6975 by B
ilkent U

niversity, W
iley O

nline L
ibrary on [27/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



3474 LAURIEN et al.

F I G U R E 5 Deformed configurations of a unit square comprising material A (blue) and material B (red) that are equal in Poisson’s
ratio but differ in stiffness (parameter set 1 of Table 2). The deformation is magnified for the sake of visualization

model as it adequately compares to our CPD model within the small-strain regime. Our used FEM meshes are sufficiently
fine. Due to surface effects, that is, differing behavior of points at the edges that do not have a full horizon, and unavoidable
numerical inaccuracies, the resulting compressible behavior of the CPD sample slightly deviates from the prescribed value
of 𝜈. For an accurate comparison, we approximate 𝜈 from the geometry changes of the CPD domain to obtain a suitable
value for the FEM simulation.

In the following, the results of the nonlocality study are illustrated for two example tests from Section 4.1 and one
additional example that includes an interface between two identical materials. Figure 9 (top) corresponds to a test case
with the first set of material parameters (see Table 2) and a horizontal interface loaded according to load case III. We plot
the horizontal displacement along a vertical line of the specimen, as indicated in the figure. Here, two effects result from
decreasing 𝛿. First, the model tends to be more local and thus, nonlocal effects diminish in general. Second, the overlap
region shrinks since its size equals the horizon size. As a result of these two effects, the nonlocal solutions converge to the
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LAURIEN et al. 3475

F I G U R E 6 Deformed configurations of a unit square comprising material A (blue) and material B (red) that are equal in stiffness but
differ in Poisson’s ratio (parameter set 2 of Table 2). The deformation is magnified for the sake of visualization

local solution. Furthermore, the diagram shows that the points in the overlap region take on the behavior of the stiffer
material, analogous to the observations in Section 4.1. In Figure 9 (center), the same conclusions can be drawn for the
third set of material parameters (see Table 2) with a vertical interface subject to load case I. Again, the FEM solution
including the sharp interface is approached with decreasing nonlocality of the CPD model. The last example is shown
in Figure 9 (bottom). This example is included to analyze the proposed approach with regard to two identical materials
(fourth parameter set, see Table 2) connected by an interface. Here, the geometry is extended by a hole in the center with
a side length of 0.4. We apply load case I to a vertical interface. Moreover, we repeat the test with a homogeneous CPD
material without interface for the sake of comparison. It can be seen in the diagram that the presence of the interface
leads to slightly deviating displacements in the proximity of the interface. Due to the contact in the overlap region, the
model “feels” the interface and the sample composed of two constituents can be distinguished from the homogeneous
one. Nonetheless, the differences reduce with decreasing horizon size as expected and convergence towards the FEM
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3476 LAURIEN et al.

F I G U R E 7 Deformed configurations of a unit square comprising material A (blue) and material B (red) that differ in stiffness and in
Poisson’s ratio (parameter set 3 of Table 2). The deformation is magnified for the sake of visualization

solution is obtained. Overall, the results consistently and coherently show that a local interface is recovered in the local
limit of the nonlocal CPD model.

4.3 Size of the overlap region

In Section 3.1, the size of the overlap region 𝓁ov was defined as the horizon size 𝛿. However, the overlap size is not a
strictly fixed parameter, but a flexible one. For example, choosing multiples of the horizon size is also conceivable. This
motivates us to include an investigation of different overlap sizes in this section. We once more study the unit square with
a horizontal interface and apply load case II. The third material parameter set is employed (see Table 2). For a constant
horizon size of 𝛿 = 0.0501 and 𝛿∕Δ = 5.01, we vary the overlap size 𝓁ov (2𝛿, 𝛿, 𝛿∕2, 𝛿∕4). Figure 10 illustrates the resulting
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LAURIEN et al. 3477

Nonlocality study

decreasing horizon size CCM

F I G U R E 8 General procedure of a nonlocality study. The nonlocality parameter 𝛿 is decreased to approach a CCM model. The ratio of
horizon size to grid spacing 𝛿∕Δ is kept constant

deformed configurations. The horizontal displacement along X = 0.1 is included in Figure 11 in comparison to the local
solution resulting from a FEM simulation. As expected, the deformation differs mainly in the proximity of the interface.
Since the bottom material is stiffer than the top material, the deformation of the interfacial layers is more similar to that
of the bottom material. A small jump in displacement can be observed at the transition from the overlap region to the top
material. With decreasing size of the overlap, the jump moves closer to the position of the sharp local interface at position
Y = 0. Note that we do not expect convergence towards the local solution for decreasing overlap sizes as the horizon
size is fixed at a nonlocal level. The results suggest that a flexible choice of the overlap size is possible. However, two
aspects should be kept in mind. First, a choice of 2𝛿 leads to a relatively far-reaching influence of the interface extending
into the whole domain. Second, in case of a small overlap size, depending on the grid spacing, the overlap region might
be discretized only into very few numerical layers. The rightmost plot in Figure 10 shows the extreme case of only one
interfacial layer. Here, the coupling is not sufficient for a smooth transition between the two materials, resulting in the
large jump in displacement in Figure 11. This aspect can be avoided using a finer discretization. Overall, it can be claimed
that the adaption of the overlap size is not ruled out. Nevertheless, setting it to the nonlocality parameter 𝛿 fits to the
idea of a nonlocal interface. We emphasize, if 𝛿 → 0 all these options coincide and converge to the local solution of the
problem.

4.4 Example at finite deformations

As a geometrically exact reformulation of peridynamics, CPD is naturally suitable for problems at finite deformations.
Thus, in this section, we study the applicability of the proposed CPD interface approach to a bimaterial interface under-
going large deformations. To this end, we revisit a set of two-dimensional examples from Section 4.1, that is, a unit square
with a vertical, a horizontal and a 45◦ interface described by the second set of material parameters (see Table 2). We set
𝛿 = 0.0301 = 3.01Δ and 𝓁ov = 𝛿. The sample is subject to load case I. This time, however, large deformations are imposed,
that is, the sample is extended by 100 %. Figure 12 depicts the resulting deformed configurations visualized in terms of
horizontal and vertical displacement, respectively. The effect of two-neighbor interactions on the resistance against the
change of area, reflected by the differences in 𝜈A and 𝜈B, is clearly visible at large deformations. Moreover, the smooth
transition at the interface due to the perfect bonding within the overlap region is maintained even at this level of stretch.
A key characteristic of CPD is the implementation via a fully implicit scheme. The nonlinear system of equations is
solved by an iterative Newton–Raphson algorithm and the full expressions of the tangent stiffness matrix can be derived
analytically in a form ready for implementation. Employing this solution method is extremely advantageous in terms of
convergence rate. Table 3 shows the convergence behavior of the vertical interface example at large deformations. For
five load steps, the normalized L2-norm of the global residual vector Rk is indicated for every iteration. The stop criterion
is defined by a tolerance of tol = 1e-11. A quadratic convergence rate, a key feature of the Newton–Raphson scheme, is
observed. The efficiency and robustness of the Newton algorithm, leading to converged solutions after only a few itera-
tions, is maintained in the presence of an interface even for large deformations. This suggests that the proposed approach
can be readily applied to problems involving finite deformations.
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3478 LAURIEN et al.

F I G U R E 9 Illustration of the nonlocality study. Left: Undeformed and deformed sample (magnified deformation) resulting from a
CPD simulation with material A (blue) and material B (red). Right: Plot of the displacement along the respective dotted lines and close-up of
the proximity of the interface. Full lines correspond to a simulation with interface, dashed lines to a simulation with a homogeneous material
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LAURIEN et al. 3479

F I G U R E 10 Magnified deformed configurations resulting from load case II and parameter set 3. Four different overlap sizes 𝓁ov are
considered at a constant horizon size 𝛿

F I G U R E 11 Horizontal displacement throughout the specimen for varying overlap sizes 𝓁ov. The right plot provides a close-up of the
interface region. The large jump in displacement for 𝓁ov = 𝛿∕4 suggests that the overlap should not be much smaller than the horizon, as this
contradicts the idea of a nonlocal interface

4.5 Three-dimensional examples

This section aims at demonstrating the potential of our proposed model also for three-dimensional problems. We
investigate two cuboids with a vertical and a horizontal interface, respectively, as depicted in their undeformed configu-
rations in Figure 13 (first column). The horizon size is set to 𝛿 = 3.01Δ with Δ = 0.035. The load is applied analogously
to the two-dimensional load cases presented in Section 4.1, again imposing small deformations of 0.1 % stretch and
compression, respectively. In this three-dimensional simulation, we activate both one-neighbor and three-neighbor inter-
actions. Accordingly, a large value of C3∕C1 implies that the material is reluctant to volume changes, which can be
converted to the classical Poisson ratio for three dimensions. The material parameters are given by CB

1 = 20CA
1 and

𝜈
A = 0.1 ⇒ CA

3 (𝛿 = 0.105) = −1.7 × 106 as well as 𝜈B = 0.4 ⇒ CB
3 (𝛿 = 0.105) = 1.4 × 108. We emphasize that, in contrast

to the parameters in Table 2, we refer to three-dimensional parameters in this section. Figure 13 (second to fourth column)
illustrates the respective deformed configurations. The results show that the proposed approach can easily handle also
three-dimensional problems. The concept of a kinematic coupling can simply be adopted to a volumetric overlap region.
Eventually, we point out that, importantly, the quadratic convergence of the Newton–Raphson algorithm is maintained
for the three-dimensional model as well.
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3480 LAURIEN et al.

F I G U R E 12 Undeformed configurations (left) and deformed configurations (right) of a unit square with different interface geometries
at 100 % extension. The color code in the deformed configurations refers to the horizontal and vertical displacement, respectively. The
deformations are not magnified

T A B L E 3 Convergence rate of the Newton–Raphson algorithm at different load steps corresponding to different levels of extension

1 % 25 % 50 % 75 % 100 %

1 1 1 1 1

4.30e-02 3.63e-02 3.78e-02 5.06e-02 7.12e-02

2.95e-04 1.41e-04 1.71e-04 7.51e-03 7.16e-03

3.07e-08 3.20e-09 9.98e-09 6.37e-06 8.13e-06

3.42e-14 4.46e-14 5.14e-14 1.18e-11 4.42e-11

Note: The L2-norm of the residual is shown for every iteration. The values are normalized to the norm of the residual at the first iteration.
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F I G U R E 13 Deformed configurations of three-dimensional domains comprising material A (blue) and material B (red) differing in
stiffness and in Poisson’s ratio. The color code refers to the displacement in vertical direction. The deformation is magnified for the sake of
visualization

5 CONCLUSION

In the literature, there is no consent on how to treat material discontinuities in PD models. A common technique is to
determine separate interfacial material parameters. However, there is no agreement on an appropriate mixture rule. In
this article, we propose a novel approach for nonlocal modeling of material interfaces that is in harmony with the spirit
of PD and offers a meaningful and unique alternative to existing methods. In an extended interface the material domains
overlap and are kinematically bonded to each other. The computation of the interaction forces in the two domains are
decoupled from each other, whereby the use of the material parameters is straightforward and introducing a mixture rule
is no longer required. In this work, due to its promising features, we employ CPD, recently established by Javili et al.16

However, we point out that the presented approach is generic and not restricted to CPD.
In the scope of this contribution, the concept of a kinematically coupled interface is elaborated on and a detailed

description of the implementation within a CPD framework is provided. The methodology is numerically tested on a
variety of two-dimensional bimaterial interfaces under different loading conditions and for different material characteris-
tics. We validate our model by carrying out a nonlocality study, which shows convergence to a local model for decreasing
horizon sizes. We illustrate that even at large deformations, the presence of an interface does not impair the excellent
convergence behavior of the solution method. Moreover, the applicability of the proposed model to three-dimensional
problems is demonstrated. Altogether, our method has shown the potential for modeling nonlocal bimaterial interfaces
in a simple manner and sets the stage for the use of CPD in application areas involving heterogeneous materials.
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APPENDIX A. TANGENT STIFFNESS MATRIX

The expressions for the discretized point-wise tangent stiffness matrix utilized in the Newton–Raphson scheme in
Section 3.2 can be derived analytically and are given below. For an extensive derivation we refer to Javili et al.18 Here, the
stiffness matrix K•◦ is written in a general form for two points • and ◦ with {•◦} = {a𝛼, b𝛽}. It reads

K
•◦ = K

•◦
1 +K

•◦
2 +K

•◦
3 (A1)

with the contributions from one-, two-, and three-neighbor interactions as follows:
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Here, i is the identity tensor.
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