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ABSTRACT

AN ANTI-WINDUP COMPENSATOR FOR SYSTEMS
WITH TIME DELAY AND INTEGRAL ACTION

Dilan Öztürk

M.S. in Electrical and Electronics Engineering

Advisor: Hitay Özbay

August 2017

Being one of the most popular saturation compensator methods, anti-windup

mechanism is commonly used in various control applications. The problems aris-

ing from the system nonlinearities are prone to change the behaviors of the system

adversely in time such as performance degradation or instability. Anti-windup

schemes including internal model structure with the robust compensator are cru-

cial in terms of preserving the system stability and minimizing the tracking error

when controller operates at the limits of the actuator.

Saturation problem is further aggravated by the dead-time that appears fre-

quently in the systems depending on processing of sensed signals or transferring

control signals to plants. Smith predictor based controllers are efficient in the

compensation of time delay, indeed the controller is designed by eliminating the

delay element from the characteristic equation of the closed-loop system. We

apply Smith predictor based controller design for the system incorporating time

delay and integral action to achieve high performance sinusoidal tracking.

This study extends an anti-windup scheme via Smith predictor based controller

approach by redesigning the transfer functions within the anti-windup structure.

We present simulation studies on the plant transfer function including time delay

and integrator to illustrate that our extended structure successfully accomplish

accurate tracking under the saturation nonlinearity.

Keywords: Anti-windup, Saturation, Time Delay Systems, Smith Predictor Based

Controller, Periodic Sinusoidal Tracking.

iii



ÖZET

ZAMAN GECİKMELİ VE İNTEGRAL EYLEMLİ
SİSTEMLER İÇİN İNTEGRAL YIĞILMASI

DÜZENLEYİCİ

Dilan Öztürk

Elektrik ve Elektronik Mühendisliği, Yüksek Lisans

Tez Danışmanı: Hitay Özbay

Ağustos 2017

En popüler satürasyon kompansatör yöntemlerinden biri olan integral

yığılması önleme mekanizması çeşitli kontrol uygulamalarında yaygın olarak kul-

lanılmaktadır. Sistemin doğrusal olmayan yönlerinden kaynaklanan sorunlar,

performans düşüşü veya istikrarsızlık gibi zaman içinde sistemin davranışlarını

olumsuz bir şekilde değiştirme eğilimindedir. Sağlam kompansatörlü dahili model

yapısını içeren integral yığılması önleme tasarımları, sistem kararlılığını korumak

ve denetleyici aktüatör sınırlarında çalışırken izleme hatasını en aza indirgemek

açısından önemlidir.

Doygunluk sorunu, algılanan sinyallerin işlenmesine veya kontrol sinyallerinin

sistemlere aktarılmasına bağlı olarak sıkça görülen zaman gecikmesi tarafından

daha kötü bir hal almaktadır. Smith kestirim tabanlı denetleyiciler zaman

gecikmesinin telafisinde etkilidir, aslında denetleyici, gecikme elemanını kapalı

döngü sisteminin karakteristik denkleminden çıkararak tasarlanmıştır. Yüksek

performanslı sinüzoidal izlemeyi elde etmek için, zaman gecikmesi ve integral

eylemi içeren sistemde Smith kestirim tabanlı denetleyici tasarımı uygulanmıştır.

Bu çalışma literatürde önerilen bir integral yığılması önleme tasarımını, Smith

kestirim tabanlı denetleyici yaklaşımı ile integral yığılması önleme yapısı içindeki

transfer fonksiyonlarını yeniden tasarlayarak genişletmektedir. Genişletilmiş

yapının doygunluk altında doğru izlemeyi başarılı bir şekilde gerçekleştirdiğini

göstermek için, zaman gecikmesi ve integratör içeren transfer fonksiyonu üzerinde

yapılan simülasyon çalışmaları sunulmaktadır.

Anahtar sözcükler : İntegral Yığılması Önleme, Satürasyon, Zaman Gecikmeli

Sistemler, Smith Kestirim Tabanlı Denetleyici, Periyodik Sinüzoidal İzleme.
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Chapter 1

Introduction

This thesis concerns the design of a novel anti-windup scheme for systems in-

volving time delay and integral action. The proposed control architecture tries

to achieve high precision asymptotic tracking under the presence of saturation

nonlinearity and to suppress the adverse effects of input saturation. We tackle

problems regarding the stability and degradation in the performance of linear sys-

tems subject to nonlinearities. An anti-windup control architecture is extended

for the dead-time system to improve the tracking performance of the feedback

system under input saturation.

1.1 Motivation and Background

Actuator saturation emerges depending on the system specifications in most of

the control approaches which causes performance degradations or even instability

and this phenomenon is called as windup [1]. Rich variety of anti-windup con-

trol mechanisms have been developed to deal with actuator saturation since the

1950’s [2, 3]. Anti-windup architecture mainly focuses on to preserve the system

stability and enforces to minimize the tracking error when controller operates at

the actuator limits. One of the primary advantages of anti-windup scheme is that
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it helps to recover from saturation type nonlinearity.

There have been novel and highly promising anti-windup solutions in litera-

ture. Campo et al. presents several anti-windup/bumpless transfer approaches

for the linear time invariant systems in the existence of plant input saturation

concerning that the system remains stable when limitations occur [4]. Internal

model control (IMC) structure, observer based compensator and Hanus’ condi-

tioned controller are some of the proposed anti-windup/bumpless schemes in [4].

Besides, the analysis of the aircraft control system with the analytic-numerical

solution for hidden oscillations is presented in [5]. Oscillations occurred at the

aircraft control system under the effect of saturation are suppressed with the

static anti-windup scheme. Another anti-windup based approach is illustrated

in [6] to control the production rate of a manufacturing machine with saturation

nonlinearities. To deal with the problem of integrator windup, which derives

from the input saturation and integral action within the controller or plant, an

anti-windup design based on convergent theory is applied on the manufacturing

system [6].

Besides saturation nonlinearities and plant uncertainties, another inevitable

problem that appears frequently in the systems is unfortunately time delay. It

may occur depending on the physical distance between the process and the con-

troller during the information flow or may occur because of the process or the

controller itself [7]. Time delay element is represented as e−hs, where h > 0 is

the dead-time which makes the system infinite dimensional [7]. In addition to

that, time delay element may cause performance degradation in the system or

even cause instability by affecting the stability margins of the closed loop feedback

system adversely. The transfer functions of time delay systems are also irrational,

hence classical stability test methods such as Routh-Hurwitz or Kharitanov and

root locus techniques can not be applied for this kind of systems directly [7].

There exist various control approaches to deal with infinite dimensional sys-

tems, in fact PID type controllers are the most preferred method in the controller

design independently of time delay [8]. However, in the existence of long dead-

time, these controllers may be inadequate to improve the system performance
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and to cope with instability. Hence, Smith predictor based type controllers are

mostly used for the stable process of control systems involving time delay since

these are very effective long dead-time compensators [9]. The most important ad-

vantage of Smith predictor approach is eliminating the time delay element from

the closed loop system characteristic equation in the design of the controller [10].

Depending on the system requirements, design of the Smith predictor controller

may vary and different applications can be found in [11–13]. In this thesis, the

Smith predictor based controller proposed in [14], which aims to achieve a set

of performance and robustness objectives, is used in the controller design of the

time delay system.

Motivated by work in this area, this thesis presents a novel anti-windup struc-

ture based on the different solutions regarding system nonlinearity and time de-

lay by combining anti-windup technique in [15] with the Smith predictor design

proposed in [14]. The robust anti-windup compensator method we use in this

study postulates an extension of the architecture in [15] to be applicable for the

dead-time systems. Smith predictor method mentioned in [14] is inserted into

the internal model units, stabilizer and compensator design of the anti-windup

approach. The objective behind this design is to provide satisfying tracking per-

formance of the reference signal under the saturation such that dead-time system

output converges to the desired sinusoidal output.

1.2 Existing Work

Existing anti-windup methods exclusively focus on eliminating the effect of sat-

uration for the stable performance of the control system without considering the

specific challenges of the tracking [16–18]. In this regard, the internal model

principle approach for the anti-windup compensator design is a significant tech-

nique for tracking and/or rejecting problems of the reference sinusoidal signal [19].

This approach is mainly based on a controller design to provide closed loop sta-

bility and to regulate the tracking error when specific system parameters are

perturbed [20]. In contrast, there also exist internal model based solutions for

3



the saturation control without aiming high performance tracking [21–23].

The ad-hoc solutions for the anti-windup compensator approach can be found

in [24,25]. Hanus proposes a conditioning technique to overcome the deterioration

existing in the closed-loop system performance due to input saturation for the

multi-input multi-output nonlinear system [25]. However, in this method, nei-

ther internal model unit nor tracking capability are taken into consideration. The

very first experimental study on the internal model control theory is presented

by Francis in [20] for the multivariable nonlinear system including uncertainties

and disturbances without tracking ability. On the other hand, Sun proposes a

saturated adaptive robust control method for the nonlinear active suspension

system to deal with the problem of vibration control in the presence of satura-

tion [26]. This method mainly focuses on how the tracking performance under

the saturation is maintained by suppressing the tracking error of the closed-loop

system using an anti-windup compensator together with a robust nonlinear feed-

back block [26]. Hence, without utilizing internal model unit, the tracking error

asymptotically converges to zero using adaptive robust control method in Sun’s

study.

Different than anti-windup approaches, the controller design for the dead-

time systems is also investigated. As mentioned in Section 1.1, Smith predictor

based controller design is a popular technique to overcome the damaging effects

of systems with integral action and time delay. Smith proposed a dead-time

compensator method first in [27] by giving a mathematical model of the process

in the closed-loop feedback loop and then this technique became known as Smith

predictor based method [12]. As an early study for the Smith predictor approach,

a process-model control aiming to achieve zero steady-state error is built for

the linear systems including time delay [12]. However, the proposed approach

cannot provide constant disturbance rejection and zero steady-state error if the

system includes integral action [12]. Moreover, the modified Smith predictor

structure is introduced in [28] to yield better desired transient responses to step

input and disturbance signals for the system with an integrator and dead-time.

The load response is improved via additional transfer function involved in the

modified structure, however the parameters of this function are adjustable which

4



require tuning to obtain optimal values [28]. There also exist other modifications

of the Smith predictor structure, see [29, 30] and the references therein, which

simplify the tuning parameters within [28] in order to achieve a clear physical

interpretation. Besides, faster disturbance suppression is reached in [30] with the

additional derivative action preserving the same response.

1.3 Methodology and Contributions

The application of anti-windup mechanisms incorporating internal model prin-

ciple and tracking capability of the desired signal for the dead-time systems is

a challenging problem as discussed in the previous sections. Extension of the

anti-windup structure with the combination of Smith predictor based controller

design to be adapted for systems subject to time delay and integral action is

proposed as a novel architecture in this study.

Robust anti-windup compensator based on [15] is presented in the first part

of the thesis that includes internal model units together with the robust com-

pensator. High performance sinusoidal tracking is achieved with parallel inter-

nal model control structure by designing the model units and robust stabilizer

account for the desired system requirements. The stabilizer is optimized with

H∞ mixed sensitivity problem to provide robustness condition together with the

sector bound criterion. In order to handle system nonlinearities and actuator sat-

urations, anti-windup compensator design on top of the parallel internal model

structure is introduced as discussed in [15].

Smith predictor based approach is preferred in the controller design of dead-

time system with performance and robustness objectives. Similar to [14], the

controller is designed to follow the sinusoidal reference signal assuming that the

disturbance is negligible. Controller parametrization is applied in the design of

free parameter within the Smith predictor controller based on the design criterion

and interpolation conditions.
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The extension is deployed depending on the relation between anti-windup

based and Smith predictor based approaches by deriving the transfer functions

for both techniques. The primary contribution of this thesis is the proposed

new robust anti-windup control architecture extended with the Smith predictor

method for the dead-time systems with integral term. Simulations with the pro-

posed scheme on the time delay system under the existence of input saturation

are presented. Our studies illustrate that the proposed structure can be used to

minimize the tracking error in the presence of system nonlinearities.

1.4 Organization of the Thesis

An anti-windup scheme with the related block diagrams for the delay-free systems

is given in Chapter 2. The design steps including parallel internal model structure

and robust anti-windup compensation are explained in detail. Chapter 3 covers

the basic steps of the Smith predictor-based controller design in order to extend

the anti-windup mechanism to be applicable for the dead-time systems. This

chapter presents how we achieve the relation between these two structures and

how we postulate an extension of the anti-windup design.

A brief summary of the novel structure is given in the beginning of the second

part of this thesis. We present the results of simulation studies we performed to

evaluate the performance of our structure with and without anti-windup blocks

in Chapter 4. The design steps are provided in detail on the time-delayed transfer

function by utilizing the latest definitions of the anti-windup components. Finally

in Chapter 5, we conclude the thesis with a summary of our study and propose

a longer term goal as an extension of this structure for the unstable plants with

more than one poles at the right-half complex plane and mention open research

topics.

6



Chapter 2

Robust Anti-Windup Scheme

This chapter covers the novel architecture together with a parallel internal-model

based control approach and a robust anti-windup control structure. High pre-

cision tracking is guaranteed via this control architecture while the system has

saturation nonlinearities occurring at the actuators as well as uncertainties stem-

ming from modeling the plant structure [15].

2.1 Preliminaries

Definition 2.1.1. Let G(s) denote the transfer function of a linear time invariant

system G. We say that G is stable if G(s) is analytic and bounded in the closed

right half plane (Re(s) > 0) [31], in which case we write G ∈ H∞ and

‖G‖∞ = sup
Re(s)>0

∣∣G(s)
∣∣ <∞ . (2.1)

Let P (s) be a rational function of a plant given in Fig. 2.1. There exist coprime

polynomials Np(s) and Dp(s) such that

P (s) =
Np(s)

Dp(s)

7



where Np, Dp are stable [7].

++

-
𝑪(𝒔)

𝒓(𝒕) 𝒆(𝒕)
𝑷(𝒔)

𝒚(𝒕)

𝒅(𝒕)

+
𝒖(𝒕)

Figure 2.1: Closed-loop feedback system

Theorem 2.1.1. (Controller Parametrization) Given P (s), the set of all con-

trollers, C(s), satisfying the internal stability of the closed loop feedback system

in Fig. 2.1 is characterized by the parametrization

C(s) =
X +DpQ

Y −NpQ
: Q ∈ RH∞ , Q 6= Y N−1

p

where X(s) and Y (s) are stable transfer functions obtained from the following

Bezout equation

XNp + Y Dp = 1 .

Example : Let P (s) = 1
s−a where a > 0, to obtain stable coprime polynomials,

Np(s) and Dp(s) can be determined as

Np(s) =
1

s+ a
, Dp(s) =

s− a
s+ a

.

But we also need to find X, Y ∈ H∞ such that Np(s)X(s) + Dp(s)Y (s) = 1.

Using chosen coprime polynomials, we can define

Y (s) =
1− 1

s+a
X(s)

s−a
s+a

∈ H∞ .

Giving s = a results in Dp(a) = 0, hence we have to choose 1−Np(a)X(a) = 0 to

obtain stable Y (s). While choosing X(s) = 2a ∈ H∞, we can achieve Y (s) = 1

which is stable.

8



Consequently, corresponding stabilizing controller according to Theorem 2.1.1

can be written as

C(s) =
2a+ s−a

s+a
Q(s)

1− 1
s+a

Q(s)
: Q ∈ RH∞ .

2.2 Preface to Anti-Windup Control Structures

Various control approaches have been developed to deal with actuator saturations

and anti-windup mechanisms are the most frequently used approach to recover

this problem. The most widely used controller is the PID type since in the

absence of nonlinearities, it is difficult to improve the performance with more

complex controller structures [32]. Matlab also has an anti-windup control inside

the PID block of Simulink to prevent the possible integration windup when the

actuators are saturated. As a benchmark example, a low-order plant in Matlab

with and without anti-windup control is implemented to compare the results and

observe the effect of anti-windup mechanism. The back-calculation anti-windup

method in Matlab discharges the PID controller’s internal integrator when the

controller exceeds the physical saturation limits of the system actuator [33]. At

this time, the system enters in a nonlinear region where the controller is unable to

immediately respond to the changes. When the effect of saturation is eliminated,

the integrator in the PID block will be activated.

The feedback loop shown in Fig. 2.1 is implemented while assuming that the

disturbance is negligible, i.e. d(t) is zero. The plant is chosen as a first-order

stable system with dead-time

P (s) =
1.5

40s+ 1
e−2s

and has an input saturation limits of [−10, 10]. Similarly, the controller stabilizing

the given plant is chosen as

C(s) = 0.5 +
4.5

s
.

9
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Figure 2.2: The comparison between input-output and controller output-
saturated input signals under the presence of saturation when anti-windup in
the PID block of Matlab Simulink is not activated.

In order to observe the effect of saturation, anti-windup in the PID block is

not active at first. The controller output reaches a steady-state outside the range

of the actuator as shown in Fig. 2.2b. In this case, controller is operating in a

nonlinear region where increasing the control signal has no effect on the system

output [33]. This means that the plant input is different from the controller

output which causes a situation that the output of the controller can not drive

the plant as required [34]. This condition is known as winding-up or controller

windup. System output together with the given reference signal is also illustrated

in Fig. 2.2a. There exists an overshoot at the measured output when anti-windup

is not enabled.

When we enable the anti-windup in PID block, the controller operates under

the specified saturation limits. As we can observe in Fig. 2.3b, controller output

u(t) and saturated input sat(u) coincide with each other. Note that the output

signal has no overshoot as depicted in Fig. 2.3a while we apply anti-windup

mechanism.
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Figure 2.3: The comparison between input-output and controller output-

saturated input signals under the presence of saturation when anti-windup in

the PID block of Matlab Simulink is activated.
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In order to better observe the effect of anti-windup on the saturated system,

measured outputs are compared in Fig. 2.4. The system output (blue line in

Fig. 2.4) reaches the steady-state faster when anti-windup is enabled without

any overshoot.

As it can be understood from the benchmark example, the nonlinear char-

acteristics of the actuators pose an obstacle in the tracking approaches. There

exist different methods for the tracking control since it may depend on the sys-

tem specifications, the actuator itself or specific tracking control challenges such

as nonlinearity, system uncertainties, etc. J.She et al. [35] applies a repetitive

control by using repeated learning actions of a given periodic reference signal

to improve the tracking precision. After applying this approach gradually, the

tracking error is reduced and system output tracks the desired reference signal.

Another approach given in [36] is modeling-free inversion-based iterative feed-

forward control to achieve output tracking for a single-input single-output linear

time-invariant systems by eliminating the dynamics modeling process.

Kanamaya [37] also proposed a method for a stable tracking of an autonomous

mobile robot with abundant simulations results. He defines a control rule to deter-

mine the vehicle’s linear and rotational velocities and applies Lyapunov function

to solve the nonlinearity in the system equations. The desired input is determined

as the reference posture and reference velocities. The output is observed by using

proposed tracking control method aiming that the tracking error converges to

zero [37].

Despite these different techniques, tracking performance is adversely affected

by the actuator saturation arising form the large disturbances since saturation

is the most widely encountered and most dangerous nonlinearity in control sys-

tems [38]. The saturation effects can be minimized by applying different control

approaches. Zhou proposed a parametric discrete-time periodic Lyapunov equa-

tion based method for the stabilization of discrete-time linear periodic systems

subject to actuator saturation [39]. He achieves this by generalizing the results

obtained with time-invariant systems to periodic systems.
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Hu et al. presented different controller design method for linear systems sub-

ject to input saturation and disturbance. The domain of attraction of a system

with the existence of saturated linear feedback is estimated and a condition is

derived for determining if a given ellipsoid is contractively invariant [40]. By ex-

tending this condition, linear matrix inequality based methods including all the

varying parameters are developed to construct a feedback law both for closed-loop

stability and disturbance rejection [40].

Besides these approaches, anti-windup control is a popular method for the

saturating systems. The actuator saturation is ignored at first to design the

stabilizing controller in the linear phase and then the adverse effects of the satu-

ration on system performance is minimized via anti-windup compensation. There

are various anti-windup techniques depending on the performance requirements

and saturation nonlinearities existing at the limits of the actuators. Kothare et

al. reported different anti-windup designs in [34] for the control of linear time-

invariant (LTI) systems in the presence of saturation. He basically defines the

general anti-windup problem and presents known LTI schemes listed as anti-reset

windup, conventional anti-windup, Hanus conditioned controller, observer based

anti-windup, internal model control, anti-windup design for internal model con-

trol and extended Kalman filter [34]. A general knowledge on the anti-windup

compensator designs can be obtained with the help of this study.

Before explaining the method we use, several anti-windup implementations

are provided. Wu proposed a generalized saturation control technique for the

exponentially unstable LTI systems to guarantee the stability in the absence of

input saturation [41]. The closed-loop system stability is reached by restricting

the input nonlinearity to a smaller conic sector to stabilize the control system

at certain limits. With this approach, improvement in the system performance

and stabilization of the unstable LTI systems up to a specific size is achieved by

restricting the controller input and using a dynamic anti-windup compensator.

Linear conditioning approach is implemented in [21] to suppress the effect of

nonlinearity by applying a linear transfer function during the saturation event to

ensure the stability. While operating in the linear phase, this transfer function

has no effect, however; while system is subjected to input saturation, the linear
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function modifies the system’s behavior to remain stable [21]. This method differs

from [34] because implementation of the controller and linear conditioning are

decoupled in [21].

Different than these solutions, we apply internal model-based control method

since our aim is to achieve high precision tracking of a sinusoidal reference

input. Internal model-based approach is a fundamental technique in track-

ing/rejection problems because it contains the properties of the sinusoidal ref-

erence/disturbance signal to reproduce the desired/rejected signals in the feed-

back loop [19], [42]. However, applying only internal model control method is

not effective in the tracking approaches for the systems in the presence of actua-

tor saturation. In this sense, robust anti-windup compensator as a combination

of internal model-based unit is applied both to handle the nonlinearities and to

achieve a precise tracking. The details of how this process is performed can be

found in the following sections.

2.3 The Proposed Robust Anti-Windup Archi-

tecture

A control architecture is introduced for high precision trajectory tracking includ-

ing saturation compensation blocks, parallel internal model units as well as robust

anti-windup compensator design. This section continues with the guidelines in

the design of proposed architecture and introduces stability and robustness con-

ditions with respect to the system uncertainties.

2.3.1 Parallel Internal Model Structure

The parallel internal model control structure introduced both in [15] and [42] is

investigated in order to implement internal model-based control method for the

sinusoidal tracking. Reference signal r(t) illustrated in Fig. 2.5 is defined based
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on the exogenous dynamical system equation in the form

R(s) = Λ(s)−1R0(s) (2.2)

where R0(s) represents Laplace transform of the signal r0(t), R(s) represents

Laplace transform of the reference signal r(t) and Λ(s)−1 represents the dynamics

of the exogenous system. In the design, we are aiming to minimize the tracking

error, denoted as e(t) in Fig. 2.5, as much as possible such that the following

conditions hold:

i. Considering zero tracking signal (r(t) = 0), the unforced closed-loop system

is asymptotically stable,

ii. Considering any initial conditions of the plant, the closed-loop system satisfies

limt→∞ e(t) = 0.

++

-
𝑲(𝒔)𝚲−𝟏(𝒔)

𝒓𝟎 𝒓 𝒆

𝒚
𝒖𝒊𝒏

𝑮(𝒔)

𝑭𝟏(s)

𝒚𝒖𝒍𝒊𝒏

𝑪(𝒔)

-

𝑭𝟐(s)

Figure 2.5: The block diagram of a parallel internal model control structure.

The numerator and denominator polynomials of the nominal plant G(s) and

internal model units F1(s) and F2(s) in Fig. 2.5 are defined as A(s) and B(s),

M(s) and N(s), P (s) and Q(s) respectively:

G(s) =
B(s)

A(s)
,

F1(s) =
M(s)

N(s)
=
B(s)

A(s)
= G(s) and F2(s) =

P (s)

Q(s)
.

(2.3)

Note that stable polynomial A(s) implies the plant is stable.
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Lemma 1. [15] The controller that asymptotically stabilizes the unforced closed-

loop system achieves asymptotic tracking performance if the condition

(1 + F (s)) = A(s)−1Λ(s) (2.4)

holds, where F = F1F2.

Proof. In order to give a complete picture, we provide the proof from [15]. F (s)

can be defined based on the polynomials given in (2.3)

F (s) = F1(s)F2(s) = P (s)Q(s)−1M(s)N(s)−1.

Error transfer function can be written as

E(s) = R(s)− Y (s) = R0(s)Λ(s)−1 − U(s)G(s)

= R0(s)Λ(s)−1 − E(s)K(s)(1 + F (s))−1G(s)

which simplifies to

E(s) =
(1 + F (s))A(s)R0(s)Λ(s)−1

(1 + F (s))A(s) +K(s)B(s)
.

Hence, we have

lim
t→∞

e(t) = lim
s→0

sE(s) = lim
s→0

s(1 + F (s))A(s)R0(s)Λ(s)−1

(1 + F (s))A(s) +K(s)B(s)
.

For a stable feedback system, a sufficient condition to guarantee asymptotic track-

ing is that (1 + F (s))A(s) includes a copy of the exogenous system. This means

(1 +F (s))A(s) = Λ(s) which equals to (2.4). Also, by internal stability the term

s is not canceled so that limt→∞ e(t) = 0 and this completes the proof.

Basically, M(s), N(s) and Q(s) are chosen as

M(s) = B(s), N(s) = A(s), Q(s) = 1
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and using (2.4), P (s) can be found as

P (s) =
Λ(s)− A(s)

B(s)
. (2.5)

An augmented system GA(s) composed of internal model units (F1(s), F2(s))

and nominal plant (G(s)) is defined in order to design the stabilizer K(s) such

that

GA(s) =
G(s)

1 + F (s)
(2.6)

where F (s) = F1(s)F2(s).

Besides internal model units and augmented system, there also exist modeling

uncertainties in the system since we intuitively claim that no mathematical sys-

tem can exactly model a physical system. Hence, the performance of a control

system might be adversely affected by the plant uncertainties. Considering the

uncertainties in the system, the actual plant can be addressed as

G∆ =G+ ∆a = G(1 + ∆m) ,

(
∣∣∆a(jw)

∣∣ < ∣∣Wa(jw)
∣∣, ∣∣∆m(jw)

∣∣ < ∣∣Wm(jw)
∣∣ ∀ω ∈ R )

(2.7)

where ∆a(s) and ∆m(s) represent additive and multiplicative uncertainties. Also,

Wa(s) and Wm(s) are denoted as the additive and multiplicative uncertainty

weighting functions respectively.

The anti-windup scheme with the internal model structure is designed based

on a standard mixed sensitivity H∞ problem in order to optimize the stabilizer

design with the performance requirement and robustness against uncertainties.

Accordingly, the aim is to find a stabilizing controller K(s) for the mixed sensi-

tivity minimization problem

inf
Kstab.GA

∥∥∥∥∥∥
W1(s)S(s)

W2(s)T (s)

∥∥∥∥∥∥
∞

(2.8)

where S(s) and T (s) are denoted as the sensitivity and complementary sensitivity

transfer functions of the augmented system GA(s),

S(s) =
1

1 +GA(s)K(s)
,
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T (s) =
GA(s)K(s)

1 +GA(s)K(s)
.

The optimal H∞ index is also defined as

γopt = inf
Kstab.GA

∥∥∥∥∥∥
 W1(s)(1 +GA(s)Kopt(s))

−1

W2(s)(GA(s)Kopt(s))(1 +GA(s)Kopt(s))
−1

∥∥∥∥∥∥
∞

where Kopt(s) is the optimal stabilizing controller.

Remark 1. W1(s) is denoted as the performance weighting function and poles

of W1(s) contain the poles of Laplace transform of the reference signal to be

bounded. Besides, W2(s) is the robustness weight and defined as the upper bound

of the multiplicative plant uncertainty.

2.3.2 Robust Anti-Windup Compensation

For the systems including saturation nonlinearities and model uncertainties, the

tracking performance and system stability are mostly deteriorated due to adverse

effects of unmodeled dynamics and this causes loss of performance and limits

the applicability of existing tracking algorithms. As mentioned, there are various

control approaches have been developed to deal with this problem. In [18], Borisov

et al. redesigns the consecutive compensator approach and adds an integral loop

with the anti-windup scheme in order to avoid loss of performance in the saturated

control for quadcopters. Their aim is to stabilize the quadcopter at the specified

position with the specified orientation and they use back calculation approach

anti-windup scheme for this purpose. Application of robust output controller with

anti-windup loop including integral action removes the static error and reduces

the overshoot in the bounded input quadcopter model.

Edwards et al. also uses model-based approach to anti-windup compensation

in order to minimize the H∞-norm of the transfer function around the saturation

nonlinearities caused by actuators that limits the magnitude of the signal entering
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the plant by acting as a nonlinear saturation element between the controller and

plant [38]. The saturation element is represented as a sector/conic nonlinearity

and standard H∞ controller design is modified based on the difference between

the signal from the controller and the signal which enters the plant by applying

corrective feedback to reduce the discrepancy.

In order to handle the system uncertainties and unmodeled dynamics including

hysteresis nonlinearities, we apply robust anti-windup control architecture com-

bined with the internal-model based tracking structure proposed in [15] which is

illustrated in Fig. 2.6.
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𝒓 𝒆
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 𝒖
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Figure 2.6: Anti-windup tracking control architecture with the internal model
structure.

In the presence of saturation, the controller output u and the plant input um

diverge from each other and the saturation can be expressed by the time-invariant

relationship between u and um

sat(u) := um =


σ1, u 6 σ1

u, σ1 < u < σ2

σ2, u ≥ σ2

where sat(.) is denoted as saturation operator and the saturation limits are de-

termined based on the system specifications.
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Lemma 2. [15] The augmented systems shown in Fig. 2.5 and Fig. 2.6 are iden-

tical if and only if the following relationship is satisfied

GA(s) = G′A(s)

G

1 + F
=

θ2

1 + F + θ1

.
(2.9)

Note that GA(s) is a transfer function from ulin to y depicted in Fig. 2.5 and

G′A(s) is a transfer function from ulin to ylin where ylin equals to y+yd in Fig. 2.6.

Proof. To prove the lemma based on [15], first we define the input-output rela-

tionship in Fig. 2.6

ylin = y + yd , y = umG and yd = ũθ2

where ũ = u− um. Controller output u can be written as

u =
ulin

1 + F + θ1

+
umθ1

1 + F + θ1

.

Hence, finally we have

ylin = umG+
( ulin

1 + F + θ1

+
umθ1

1 + F + θ1

− um
)
θ2

ylin = ulin
1

1 + F + θ1

θ2 − um
(1 + F )

1 + F + θ1

θ2 + umG .

(2.10)

If the given condition (2.9) holds, then we have

G =
(1 + F )θ2

1 + F + θ1

. (2.11)

Substituting (2.11) into (2.10) gives

ylin =
θ2

1 + F + θ1

ulin . (2.12)

The augmented system finally can be written as

G′A(s) =
ylin
ulin

=
θ2

1 + F + θ1

=
G

1 + F
= GA . (2.13)
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Remember that in the definition of the augmented system shown in Fig. 2.5, we

define the input-output relationship as

y = GAulin =
G

1 + F
ulin . (2.14)

We suppose that GA(s) and G′A(s) are identical, so y and ylin should be identical

such that

G

1 + F
ulin = ulin

1

1 + F + θ1

θ2 − um
(1 + F )

1 + F + θ1

θ2 + umG . (2.15)

Therefore, to provide (2.15), we have to satisfy the conditions,
θ2

1+F+θ1
= G

1+F

(1+F )θ2
1+F+θ1

= G

Finally, the sufficient condition to satisfy the lemma can be characterized as

θ2

1 + F + θ1

=
G

1 + F

and this completes the proof.

The saturation nonlinearities based on the actuators in the system are com-

pensated via anti-windup structure by adjusting the stabilizer output ulin with

ud and the plant output y with yd. Since we define the augmented system of the

whole control structure depicted in Fig. 2.6 as G′A = ylin/ulin, to fully eliminate

the adverse effects of the saturations at the output, we have justified the ideality

of the augmented system GA(s) shown in Fig. 2.5 with the augmented system

G′A(s) shown in Fig. 2.6 via Lemma 2.

Besides the internal model units, there also exist the compensators θ1 and

θ2 illustrated in Fig. 2.6. Anti-windup compensators are designed based on the

criteria to guarantee the stability of the closed loop system with dead-zone non-

linearity. θ1 and θ2 is driven based on the equivalent representation of Fig. 2.6
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with the dead-zone operator by the difference between u and um,

ũ = u− um = u− sat(u) := dz(u) (2.16)

where dz(.) represents the dead-zone operator.

Based on the definition of dead-zone operator (2.16) and Lemma 2, the equiv-

alent representation of Fig. 2.6 can be re-drawn as Fig. 2.7.
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Figure 2.7: Equivalent anti-windup scheme with the internal model structure.

Theorem 2.3.1. [15] In order to ensure the stability of the robust anti-windup

tracking control architecture illustrated in Fig. 2.7, the following conditions should

be satisfied:

i. Equation (2.9) holds,

ii. For θ̃1 := θ1(1 + F )−1, there exists an α > 0 such that

Re(1 + jαω)θ̃1(jω) + 1/k > 0 ∀ ω

where k satisfies 0 < u.dz(u) < ku2.
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Proof. Lemma 2 indicates that the augmented systems shown in Fig. 2.5 and

Fig. 2.6 are identical,

GA(s) = G′A(s) .

Hence, the robust stabilizer K(s) given in Fig. 2.7 can stabilize the augmented

system G′A(s). In (ii), we define θ̃1 := θ1(1 + F )−1 and we can claim that the

feedback structure including dead-zone operator and θ̃1 is stable if condition (ii)

is satisfied, based on the Popov criteria [43, 44]. Also, the stability of θ2(s) is

dependent on the stability of θ1(s) and (1+F )−1 considering the relationship (2.9).

Since (ii) includes θ1(s) and (1 + F )−1, which are stable transfer functions, this

condition is sufficient to imply the stability of closed loop system and completes

the proof.

Based on Theorem 2.3.1, it is easy to define that

θ1(s) = θ̃1(s)(1 + F ) , (2.17)

and based on Lemma 2, we can describe θ2(s) as

θ2(s) = G
(

1 +
θ1

1 + F

)
= G(1 + θ̃1) . (2.18)

However, in the design of anti-windup compensator and augmented system,

the system uncertainties were not considered while deriving the transfer func-

tions. Remember that we define the additive uncertainty occurring in the system

dynamics in the equation (2.7) and considering the additive uncertainty, Lemma 2

can be re-written as

G∆

1 + F
=

θ2∆

1 + F + θ1

where G∆ = G+ ∆a and ∆a represents the additive uncertainty.

Hence, we define

θ2∆ = (G+ ∆a)
(

1 +
θ1

1 + F

)
= (G+ ∆a)(1 + θ̃1) .
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The difference between the definitions of θ2 with and without system uncer-

tainty can be written as

∆θ2 = |θ2 − θ2∆| =
∣∣∣∆a(1 + θ̃1)

∣∣∣ ,
and our aim is to minimize this error by choosing (θ1, θ2) appropriately in order

to eliminate the adverse effects of system uncertainties occurred modeling the

physical system. Achieving robust stability and tracking the reference signal

with the proper choices of (θ1, θ2) are the main subjects in the design which can

be described as

inf
∥∥∥Wa(1 + θ̃1)

∥∥∥
∞

(2.19)

over all θ̃1 satisfying the Theorem 2.3.1 with the additive uncertainty weighting

function Wa(s).

2.4 Simulation Studies

Robust anti-windup compensator is used in various applications on different sys-

tems and the references therein [15,17,34,45,46]. We designed the recommended

anti-windup compensator for the stabilized antenna system which will be used in

the satellite communication. The antenna system is three dimensional including

elevation, cross-elevation and azimuth axes.

In order to derive the nominal plant representing the dynamics of this antenna,

system identification tests were applied to the hardware by using 5V amplitude

sine sweep signals between 10-200 Hz frequency range. Magnitude-phase values

were obtained with signal analyzer and symbolic model nominal transfer functions

for each axis were derived. This process is basically shown in Fig. 2.8.
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Figure 2.8: System identification structure

Elevation axis nominal transfer function is used as a plant to implement the

proposed anti-windup scheme and design the appropriate robust controller to

minimize the tracking error while following the desired trajectory. The transfer

function is modeled as

P (s) =
K
(

1 + 2ζn1
s
ωn1

+ ( s
ωn1

)2
) (

1 + 2ζn2
s
ωn2

+ ( s
ωn2

)2
)

s
(

1 + 2ζd1
s
ωd1

+ ( s
ωd1

)2
) (

1 + 2ζd2
s
ωd2

+ ( s
ωd2

)2
) e−hs (2.20)

with the parameters given in Table 2.1

Table 2.1: Elevation Axis Plant Parameters

K ζn1 ωn1 (rad/sec) ζn2 ωn2 (rad/sec)

7.1 0.08 175 0.04 930

h (ms) ζd1 ωd1 (rad/sec) ζd2 ωd2 (rad/sec)

8.1 0.02 285 0.1 960

Note that time delay is ignored in the following steps since the proposed ar-

chitecture in this chapter is applicable for the plants without dead-time. The

extension of this method for the systems including time delay will be explained

in Section 3 and the simulation results will be provided in Section 4.
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By considering the cumulative error differences between frequency response

tests (PEL, tests(s)) and nominal model (P (s)), an upper limit is calculated using

the formula in (2.21).

|Wa(s)| ≥ |P (s)− PEL(s)| ∀ P (s) ∈ PEL, tests(s) (2.21)

This bound is denoted as Wa(s) and limits the additive error as seen in Fig. 2.9.

The transfer function representing this bound is computed as

Wa(s) =
0.011 (1 + s/20)(

1 + 2 ζd (s/ωd) + (s/ωd)2
) (2.22)

where ζd = 0.01 and ωd = 280 rad/sec.
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Figure 2.9: The additive error between nominal transfer function and frequency

response test results with the upper bound Wa(s).
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The desired sinusoidal trajectory is chosen as r(t) = 50 sin(2πft + π/2) −
50 (m) with the period of 4 seconds. In order to calculate the exogenous system

dynamics, Laplace transform of the reference input is found and Λ(s) is defined

via equation (2.2).

R(s) =
s

s2 + ω2
1

⇒ Λ(s) = (s2 + ω2
1)

where ω1 = 2π(1/T ) for T equals 4 seconds.

Internal model units F1(s) and F2(s) are determined using the equation (2.3).

Note that F1(s) directly equals the plant transfer function and F2(s) is achieved

by applying the definition of the polynomial P (s) defined in (2.5).

F1(s) = G(s) =
B(s)

A(s)

F2(s) =
P (s)

Q(s)
=

Λ(s)− A(s)

B(s)

where B(s) is the numerator and A(s) is the denominator polynomial of the

nominal model transfer function defined in (2.20). Now, given the internal model

units enable us to define the augmented system GA(s) as

GA(s) =
G(s)

1 + F (s)

GA(s) =
2.68× 10−10(s2 + 2.8s+ 3.062× 104)(s2 + 74.4s+ 8.649× 105)

(s2 + ε)(s2 + 2.467)

where ε = 0.0001. Note that there exists additional term (s2+ε) in the augmented

system denominator polynomial which directly comes from the exogenous dynam-

ics. We have to add this polynomial into the Λ(s) to make augmented system

transfer function proper. Besides, the weighting functions W1(s) and W2(s) are

chosen similar with the given transfer functions in [15].

Another important subject in the design of anti-windup compensator for the

systems in the absence of input saturation is robust stabilizer K(s) illustrated in

Fig. 2.6. To compute the optimal stabilizer, H∞ mixed sensitivity minimization
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problem given in (2.8) is solved via Matlab mixsyn function and the optimal H∞
index γopt is found as 0.0684. With these results, parallel internal model structure

design is completed.

One of the central section in the implementation is the design of robust anti-

windup compensator θ1(s) and θ2(s). Based on Theorem 2.3.1, θ̃1 is determined

as

θ̃1 =
γ

(1 + αs)(1 + βs)
for (α > 0, β > 0) (2.23)

and using this definition, the inequality in the Theorem 2.3.1 is satisfied if γ > − 1
k
.

In order to solve the main problem defined in the equation (2.19), the function

f(γ) is described

f(γ) =
∥∥∥Wa(s)(1 + θ̃1)

∥∥∥
∞

where Wa(s) represents the additive upper bound given in (2.22). The aim is to

minimize f(γ) by choosing the optimal values of α, β and γ. To simplify this

optimization problem, α is chosen as 1/20 to eliminate the numerator polynomial

of additive uncertainty Wa(s). For the other unknown parameters, this function

is observed by using different β values in order to find the minimum f .

More generally, Fig. 2.10 illustrates the curves of function f with different β

values from 0 to 1. We can claim based on Fig. 2.10 that the optimal β value min-

imizing the function f(γ) is 1/40 (green line in the figure). By choosing β = 1/40,

we can determine the minimum value of this function with the corresponding γ

as seen in Fig. 2.11.
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Figure 2.10: The optimization function f(γ) versus γ for different β values. Our

aim is to determine the optimum γ minimizing the function f(γ).

The function f takes the minimum value when γ = 97 and β = 1/40 as illus-

trated in Fig. 2.11. Hence, all the parameters minimizing Wa(s)
(

1 + γ
(1+αs)(1+βs)

)
are specified.

Based on the optimal γ, α and β values, we can determine the robust anti-

windup components by using the definitions (2.17) and (2.18) to finalize the

design.

θ1(s) =
5.687× 1015 (s2 + 1.629× 10−12s+ 0.0001) (s2 − 1.02× 10−10s+ 2.467)

s (s+ 40) (s+ 20) (s2 + 11s+ 7.952× 104) (s2 + 201.6s+ 9.216× 105)

θ2(s) =
19.659 (s2 + 2.8s+ 3.062× 104) (s2 + 60s+ 7.84× 104)

s (s+ 40) (s+ 20) (s2 + 11s+ 7.952× 104)

× (s2 + 74.4s+ 8.649× 105)

(s2 + 201.6s+ 9.216× 105)
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Figure 2.11: Blown-up image of Fig. 2.10 to determine the optimal γ minimizing

the function f(γ) when β equals 1/40.

Using internal model units F1(s) and F2(s), robust stabilizer K(s), the aug-

mented system transfer functionGA(s) and robust anti-windup compensator θ1(s)

and θ2(s), the equivalent tracking structure given in Fig. 2.7 is implemented both

in the existence of anti-windup and without anti-windup schemes. Sinusoidal ref-

erence signal is described as r(t) = 50 sin(2πft+ π/2)− 50 (m) for f = 0.25Hz.

Period of the reference signal is determined based on the specifications of the

antenna system. Saturation limits of the actuator are [−10, 10], hence when

controller output is greater than the determined saturation limits, anti-windup

compensator operates to handle the damaging effects of the situation of satura-

tion.

We observe the performance of proposed anti-windup scheme in the presence

of input saturation and expect that system output gets closer to the reference

signal despite the saturation nonlinearity. As shown in Fig. 2.12, plant output
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pursues the desired reference approximately with 0.098% tracking error when

system operates in the nonlinear region. The anti-windup compensator handle

the saturation as successfully as possible taking into consideration the damag-

ing effects of nonlinearities to the system. The main goal is to overcome the

nonlinearity, and then to provide high accurate tracking while suppressing the

saturation effect. The internal model units help to achieve asymptotic tracking,

on the other hand, robust compensator parameters utilize to prevent the adverse

effects of the actuator saturation.
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Figure 2.12: Tracking performance with input saturation using the proposed anti-

windup structure. Tracking error is also given to observe the performance of the

algorithm.

It can be clearly seen in Fig. 2.13 that the controller output is truncated at

the limits of the saturation. As mentioned in Section 2.2, when winding-up effect

occurs, the controller can not operate properly although increasing the control

signal to overcome the input saturation. Therefore, the controller is limited by
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the anti-windup compensator to operate under the specified saturation region

and drive the plant as expected.
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Figure 2.13: Controller output while there exists input saturation.

The performance of anti-windup structure is also observed by eliminating the

anti-windup components from the loop and just applying controller and plant

under the effect of saturation. The system output in this case is illustrated in

Fig. 2.14. The negative effects of the system nonlinearities can be clearly observed

with this result since the output can not follow the desired trajectory when anti-

windup structure is not acting.

Comparing the results given in Fig. 2.12 and Fig. 2.14 demonstrates the ac-

ceptable performance of the proposed control architecture for the systems subject

to input saturation. In the result depicted in Fig. 2.12, the system stays stable

and overcomes the negative impacts of the saturation as good as possible, however

the system becomes unstable when we eliminate the anti-windup structure.
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Figure 2.14: Tracking performance in the existence of input saturation without

applying the proposed anti-windup structure.
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Chapter 3

Extended Anti-windup

Compensator via Smith

Predictor-Based Controller

Design for Plants with Time

Delay and Integral Action

This chapter concerns the design of anti-windup compensator for plants includ-

ing time delay in the face of actuator saturation. By the help of compensator

method mentioned in Chapter 2, the dead-time control algorithm together with

the robust anti-windup scheme is proposed in this chapter. The extension of

the anti-windup structure is performed based on the Smith-predictor based con-

troller design to allow high tracking performance for systems in the presence of

saturation nonlinearities.

The details behind the Smith-predictor based design are first introduced in

Section 3.1 with the essential milestones. We tackle the problem of controlling

a system incorporating time delay and apply extended anti-windup compensator

by ensuring the stability against possible nonlinear effects. The improvements on
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the anti-windup compensator based on the Smith predictor design are provided

with the necessary details in Section 3.2. Consequently, we conclude this chapter

with the summary of novel definitions of the anti-windup components.

3.1 Smith Predictor-Based Controller Design

Time delay appears frequently in the systems depending on processing of sensed

signals and/or transferring control signals to systems [47]. Time delays in the

feedback loop called as dead-time which causes inevitable problems such as loss of

performance, instability, additional phase drop, etc. Moreover, feedback systems

with dead-time in the loop generically have infinitely many poles which make the

system analysis more complicated. Many control approaches have been developed

to deal with infinite dimensional systems. In fact, PID controllers are able to

provide good control system performance when there exist negligible or small

time delay, but often are not so efficient when there is long dead-time in process

dynamics [48].

The main advantage of the Smith predictor-based design for the dead-time

systems is that time delay is effectively taken outside the characteristic equation

of the closed loop system [9]. In the existence of long time delay, it is impossible

to obtain sufficient information from output signal for the prediction. By using

estimated parameters of the plant in the feedback loop of the controller, the

prediction can be established on the control input via Smith predictor based

structures.

There has been various Smith predictor structures for the time delay systems

[10, 28, 30, 48–52]. Our purpose using Smith predictor approach is to design a

controller for the antenna system described in Chapter 2 with performance and

robustness considerations and then extend the anti-windup structure based on

Smith predictor design for the systems with time delay and integral action in the

presence of saturation.

35



The plant transfer function is in the form

P (s) =
K

s
R0(s)e−Tds (3.1)

where K is the gain of the nominal plant which is also proportional to the inertia,

Td > 0 is the time delay in the system and R0(s) represents the minimum phase

transfer function which has the form

R0(s) =
n∏
k=1

(s2/ω̃2
k) + 2ζ̃k(s/ω̃k) + 1

(s2/ω2
k) + 2ζk(s/ωk) + 1

where 0 < ω̃k < ωk are the resonant and anti-resonant frequencies, and ζ̃ , ζ

are the damping factors which take values between 0 and 1 [14]. All parameters

are estimated based on the system identification studies we performed on the

hardware structure. Note that K
s
R0(s) is defined as a nominal plant G(s) in

Chapter 2. The difference between G(s) described in (2.3) and the plant structure

given in (3.1) is the time delay factor.

++

-
𝑪𝟏(𝒔)𝑯(𝒔)𝒓(𝒕)

𝒚(𝒕)

𝑷(𝒔)
𝒚(𝒕)

𝒅(𝒕)

𝒆(𝒕)

Figure 3.1: Smith predictor-based controller structure.

Proposed Smith predictor-based model controller structure is illustrated in

Fig. 3.1 as well as the controller itself is given in Fig. 3.2.

Using the structure in Fig. 3.2, the Smith predictor-based controller can be

defined as

C1(s) =
R̂ε(s)

−1

K̂

 C0(s)

1 + C0(s)1−e−T̂ds

s

 (3.2)

where R̂ε(s)
−1 = R̂0(s)−1/(1 + εs)2 is the approximate inverse of the term due

to flexible modes. R̂0(s)−1 includes the estimated values of the parameters
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Figure 3.2: Smith predictor-based controller := C1(s)

ωi, ζi, ω̃i, ζ̃i for i = 0, 1, ..., n whereas R0(s) consists of the real values of these

parameters. We define C0(s) as the free part of the controller which is designed

based on the delay free part of the nominal plant. In the stability analysis of

the closed loop feedback system, typically H(s) is chosen as 1 since it does not

contribute to the system stability.

The aim is to achieve perfect steady-state tracking, hence in the design process

of the Smith predictor controller, we consider that the system can successfully

pursue the constant and sinusoidal reference input r(t). In order to satisfy these

requirements, C1(s) must have poles at s = 0 and at the periodic signal frequen-

cies s = ±jωd.

• Steady-state tracking of a constant r(t) :

lim
s→0

C1(s) =∞ =⇒ lim
s→0

(
1 + C0(s)

1− e−T̂ds

s

)
= 0

Applying L’Hopital Rule, we can obtain

lim
s→0

(
1 + C0(s)′ − C0(s)′e−T̂ds + C0(s)T̂de

−T̂ds
)

= 0
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which means

1 + C0(0)T̂d = 0

C0(0) = − 1

T̂d
(3.3)

• Steady-state tracking of a sinusoidal r(t) :

lim
s→jωd

C1(s) =∞ =⇒ lim
s→jωd

(
1 + C0(s)

1− e−T̂ds

s

)
= 0

Applying basic algebra, we can achieve

1 + C0(jωd)
1− e−T̂djωd

jωd
= 0

C0(jωd) = − jωd

1− e−T̂djωd

(3.4)

Besides design requirements, the stability of the closed loop system shown in

Fig. 3.1 should be satisfied with the Smith predictor-based controller structure

C1(s). Assuming that the plant is known, the characteristic equation of the closed

loop system can be written as

1 + P (s)C1(s) = 0 =⇒ 1 +

(
K

s
R0(s)e−Tds

)R0(s)−1

K̂

C0(s)

1 + C0(s)1−e−T̂ds

s

 = 0

choosing K̂ = K and T̂d = Td,

1 +
1

s

(
C0(s)e−Tds

1 + C0(s)1−e−Tds

s

)
= 0

=⇒
1 + 1

s
C0(s)

1 + C0(s)1−e−Tds

s

= 0 .
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Finally, the closed-loop system characteristic equation results as

1 +
1

s
C0(s) = 0 (3.5)

which means that C0(s) must be designed to stabilize the integrator 1
s

[14]. If

we assign P1(s) = 1
s
, then the set of all controllers stabilizing the plant P1(s)

can be determined using controller parametrization. We denote numerator and

denominator polynomial of the plant as Np(s) and Dp(s), where Np(s) = 1
s+a

and

Dp(s) = s
s+a

. The parameter a > 0 is determined based on the pole locations

of the closed loop system. The set of all stabilizing controllers for P1(s) are

parametrized as

C0(s) =
X(s) +Dp(s)Q(s)

Y (s)−Np(s)Q(s)
(3.6)

where Q 6= Y N−1
p and Q ∈ H∞. Also, X and Y are the transfer functions

satisfying the Bezout equation

Np(s)X(s) +Dp(s)Y (s) = 1 (3.7)

where X, Y ∈ H∞. Based on (3.7), we can define

Y (s) =
1−Np(s)X(s)

Dp(s)
. (3.8)

Since we have a pole at s = 0, Dp(s) = 0 results in X(0) = 1
Np(0)

. Using the

definition, Np(0) can be written as 1/s and we can denote X(s) as a, which is a

stable transfer function already. Then, Y (s) can be calculated basically

Y (s) =
1− 1

s+a
a

s
s+a

=
(s+ a)− a

s
= 1 .

Consequently, the stabilizing controller defined in (3.6) can be rewritten in the

following form

C0(s) =
a+ s

s+a
Q(s)

1− 1
s+a

Q(s)
(3.9)

39



Different designs of stable Q(s) will be explained in detail in Chapter 4. After

finding a stable Q(s), the proposed Smith predictor-based controller allowing high

tracking performance even in the presence of time delay can be calculated easily

based on the formula (3.2).

3.2 Extension of Anti-Windup Scheme via

Smith Predictor-Based Design

In Chapter 2, the design of a robust anti-windup compensation satisfying high

precision tracking under saturation nonlinearity and model uncertainties is given.

The proposed method uses an anti-windup tracking control architecture to effec-

tively eliminate the steady state tracking error in the existence of saturation. As

discussed in the simulation studies, the anti-windup block between the controller

and plant operates as expected in the case of saturation and system output ac-

curately follows the desired reference signal while minimizing the tracking error

as much as possible.

In contrast, the proposed mechanism in Chapter 2 can not be applied on the

systems including time delay in the feedback loop. Hence, we present a novel

anti-windup compensator combined with the Smith predictor based controller

design for the dead-time systems. The general idea behind this extension is to

create a relationship between these two different approaches in order to redesign

the proposed anti-windup structure in [15].

Back to the anti-windup compensator design, the controller C(s) illustrated

in Fig. 2.5 can be written as

C(s) := Caw(s) = K(s)
1

1 + F1(s)F2(s)
= K(s)

1

1 +G(s)F2(s)
(3.10)

where G(s) represents the nominal plant including integral action and time delay

in the form of

G(s) =
K

s
R0(s)e−Tds (3.11)
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and remember that the new plant structure is the same with (3.1).

Characteristic equation of the closed loop feedback system with G(s) and

Caw(s) can be described as

∆aw(s) = 1 +G(s)Caw(s) , (3.12)

adding (3.11) and (3.10) to the characteristic polynomial equation, we obtain

∆aw(s) = 1 +

(
K

s
R0(s)e−Tds

)(
K(s)

1

1 +G(s)F2(s)

)
.

Note that K is the gain of the plant transfer function as well as K(s) is the

stabilizer in the anti-windup scheme in Fig. 2.5.

By applying basic algebra, the characteristic polynomial can be written in the

form

∆aw(s) = 1 +

(
K
s
R0(s)e−Tds

)
1 +

(
K
s
R0(s)e−Tds

)
F2(s)

K(s) = 0

and we can conclude that

1 +
G(s)

1 +G(s)F2(s)
K(s) = 0 (3.13)

which implies

K(s) stabilizes
G(s)

1 +G(s)F2(s)
. (3.14)

As previously stated, Smith predictor-based controller has a free part denoted

as C0(s) which is designed from the non-delayed part of the plant by using con-

troller parametrization. Similarly, based on (3.5), it can be observed that

C0(s) stabilizes
1

s
. (3.15)
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3.2.1 Comparison and Analysis of Anti-Windup and

Smith Predictor-Based Transfer Functions

Before analyzing the relationship between anti-windup approach and Smith

predictor-based design, sensitivity (S(s)), complementary sensitivity (T (s)) and

the product of controller and sensitivity (C(s)S(s)) functions are given. Our aim

is to find the similarity between these two different approaches in order to modify

the robust anti-windup compensation applicable for the dead-time systems.

Smith Predictor-Based Design

• Controller:

Cs(s) =
R0(s)−1

K

(
C0(s)

1 + C0(s)1−e−Tds

s

)

• Sensitivity Transfer Function:

Ss(s) = (1+PCs)
−1 =

1 +

(
K

s
R0(s)e−Tds

)(
R0(s)−1

K

C0(s)

1 + C0(s)1−e−Tds

s

)−1

Ss(s) =

(
1 + C0(s)

1

s
(1− e−Tds)

)(
1 + C0(s)

1

s

)−1

• Controller-Sensitivity Transfer Function:

Cs(s)Ss(s) =

(
R0(s)−1

K

C0(s)

1 + C0(s)1−e−Tds

s

)(
1 + C0(s)

1

s

)−1(
1 + C0(s)

1

s
(1− e−Tds)

)

Cs(s)Ss(s) = R0(s)−1K−1C0(s)

(
1 + C0(s)

1

s

)−1
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• Complementary Sensitivity Transfer Function:

P (s)Cs(s)Ss(s) = Ts(s) =

(
K

s
R0(s)e−Tds

)
R0(s)−1K−1C0(s)

(
1 + C0(s)

1

s

)−1

Ts(s) = C0(s)
1

s

(
1 + C0(s)

1

s

)−1

e−Tds

Note that the denominator of these transfer functions gives us the characteristic

equation of the closed loop feedback system and we can clearly observe that C0(s)

must be designed to stabilize 1
s
.

Anti-Windup Compensator Design

• Controller:

Caw(s) = K(s)
1

1 + P (s)F2(s)
= K(s)

1

1 +
(
K
s
R0(s)e−Tds

)
F2(s)

• Sensitivity Transfer Function:

Saw(s) = (1 + PCaw)−1 =

(
1 +

K(s)P (s)

1 + P (s)F2(s)

)−1

• Controller-Sensitivity Transfer Function:

Caw(s)Saw(s) = K(s)
1

1 + P (s)F2(s)

(
1 +

K(s)P (s)

1 + P (s)F2(s)

)−1

• Complementary Sensitivity Transfer Function:

P (s)Caw(s)Saw(s) = Taw(s) = P (s)K(s)
1

1 + P (s)F2(s)

(
1 +

K(s)P (s)

1 + P (s)F2(s)

)−1
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Similarly, following the above equations, it can be claimed based on the

characteristic polynomial that K(s) must be designed to stabilize the function
P (s)

1+P (s)F2(s)
.

After analyzing the closed loop transfer functions based on these two design

approaches, the extension of anti-windup controller is firstly taken into consider-

ation. As shown in Fig. 2.5, there is a term Λ(s)−1 representing the dynamics of

the exogenous system. In the design of the anti-windup controller, we are aiming

to eliminate this term while choosing denominator polynomial of the controller

Caw as

1 + P (s)F2(s) = Λ(s)−1 1

s
Zaw(s) (3.16)

where Zaw(s) is a polynomial. Using the definition of plant transfer function

given in (3.11) into this equation,

1 + F2(s)K
1

s
R0(s)e−Tds = Λ(s)−1 1

s
Zaw(s)

and we can easily eliminate the integrator term,

s+ F2(s)K R0(s)e−Tds = Λ(s)−1Zaw(s) .

The internal model unit F2(s) can be derived with a simple algebra,

F2(s) = K−1 R0(s)−1eTds [ Λ(s)−1Zaw(s)− s ] .

By further manipulations, the simplest form of this equation can be derived as

F2(s) = K−1 R0(s)−1Waw(s) (3.17)

where Waw(s) equals eTds [ Λ(s)−1Zaw(s)− s ] .

As stated in the Smith predictor-based approach, the controller to be designed

must have poles at s = 0 and s = ±jωd where ωd is the frequency of the reference

signal to achieve high precision tracking. With the same strategy, the anti-windup

compensator controller must also have the poles at these desired locations which

means Zaw(s) must have roots at s = ±jωd since the only unknown polynomial

at the right half part of (3.16) is Zaw(s). We can define Zaw(s) as
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Zaw(s) = Λ(s) [Waw(s)e−Tds + s ]

and to have a root at s = ±jωd, the equality

Waw(jωd) =
−jωd
e−Tdjωd

(3.18)

must be satisfied. Note that Waw(s) is a stable transfer function.

Back to the definition of complementary sensitivity transfer function of the

Smith predictor-based design :

Ts(s) =
C0(s) 1

s(
1 + C0(s)1

s

) e−Tds .
Every stable transfer function can be factored as H(s) = Hi(s)Ho(s) where

Hi(s) is all-pass inner and Ho(s) is minimum phase outer transfer functions. Also

note that

|Hi(jω)| = 1 ∀ω and Ho(s) does not contain any zeros in C+ .

By applying inner-outer factorization, we can define the closed loop transfer

function Ts(s) as

Ts(s) = Tso(s)Tsi(s) =

(
C0(s) 1

s(
1 + C0(s)1

s

))︸ ︷︷ ︸
Tso

e−Tds︸ ︷︷ ︸
Tsi

(3.19)

provided that C0(s) does not contain zeros in C+. Note that

Tso(jωd) =
C0(jωd)

1
jωd(

1 + C0(jωd)
1
jωd

) =
(e−Tdjωd − 1)−1

1 + (e−Tdjωd − 1)−1

Tso(jωd) =
1

e−Tdjωd
.

(3.20)

As mentioned, we are modifying the anti-windup compensator design to be

applicable for the dead-time systems. If pieces of information belong to these two

45



different designs correlate, we can offer an extension of the anti-windup approach.

Accordingly, we can rewrite (3.20) as

Tso(jωd) =
1

e−Tdjωd
=

(
− 1

jωd

)(
−jωd
e−Tdjωd

)
.

Note that
(
−jωd

e−Tdjωd

)
is defined as Waw(jωd) in anti-windup design and given in

(3.18). Hence, we can state the outer complementary sensitivity transfer function

in Smith predictor based design by using the stable transfer function Waw(s) of

anti-windup structure as

Tso(jω) = − 1

jω
Waw(jω) =⇒ Tso(s) = −Waw(s)

s
. (3.21)

The closed loop transfer function can be represented based on the sensitivity

transfer function in the system such that

Ts(s) = 1− Ss(s) = P (s)Cs(s)Ss(s)

which gives us also the definition of outer function in terms of the plant, controller

and sensitivity transfer functions

Tso(s) =
Ts(s)

Tsi
=
P (s)Cs(s)Ss(s)

Tsi
= P (s)Cs(s)Ss(s) e

Tds (3.22)

where Tsi defined as e−Tds in (3.19).

Meanwhile, we can define Waw(s) based on the plant, controller and sensitivity

transfer functions of the Smith predictor design using (3.21) and (3.22)

Waw(s) = −s P (s)Cs(s)Ss(s) e
Tds .

Besides this equation, we have already defined Waw(s) as given in (3.17) and

equalizing these two equations, we have

[ Λ(s)−1Zaw(s)− s ] eTds = −s P (s)Cs(s)Ss(s) e
Tds .
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Applying basic algebra on this equality results in

Λ(s)−1Zaw(s) = s
(
1− P (s)Cs(s)Ss(s)

)
and using (3.16) into this equation, we have

s
(
1 + P (s)F2(s)

)
= s

(
1− P (s)Cs(s)Ss(s)

)
.

Note that left hand part represents the anti-windup side including internal

model unit F2(s) mentioned in Chapter 2 and right hand part represents the

Smith predictor side including its controller and sensitivity transfer function.

Then the internal model unit in the anti-windup design can be redefined as

F2(s) = −Cs(s)Ss(s) (3.23)

where Cs(s) is the Smith predictor based controller and Ss(s) is the Smith pre-

dictor based sensitivity transfer function.

Back to the definition of anti-windup compensation controller :

Caw(s) = K(s)
1

1 + P (s)F2(s)

and putting (3.23) into this equation,

Caw(s) = K(s)
1

1− P (s)Cs(s)Ss(s)
.

Using the general definition of the sensitivity function we have

Caw(s) =
K(s)

1− P (s)Cs(s)
1+P (s)Cs(s)

.

Notice that P (s)Cs(s)
1+P (s)Cs(s)

equals the complementary sensitivity function Ts(s) in

the Smith predictor design. Using (3.19), we can rewrite the controller in the

form
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Caw(s) =
K(s)

1− C0(s) 1
s

(1+C0(s) 1
s)
e−Tds

(3.24)

where C0(s) is free part of the Smith predictor based controller. With this equal-

ity, we achieve the relationship between anti-windup compensator and Smith

predictor controller designs which provides us to extend the anti-windup struc-

ture considering the time delay in the system. Note that the design of C0(s) is

given in Section 3.1.

We define the sensitivity transfer function in the anti-windup design as

Saw(s) =
1(

1 + P (s)Caw(s)
)

and using the novel definition of the anti-windup controller (3.24), we can redefine

the sensitivity function in the form

Saw(s) =
1

1 + P (s) K(s)

1− C0(s)
1
s

(1+C0(s)
1
s)
e−Tds

. (3.25)

The robust stabilizer K(s) is also redesigned via Smith predictor technique.

We consider K(s) as two parts

K(s) = K0(s)K1(s) (3.26)

and K1(s) is chosen as

K1(s) = K−1R0(s)−1

where K is the gain of the plant and R0(s) represents the minimum phase transfer

function given in (3.1).

While using the definition of K(s) and the plant structure in the equation

(3.25), we have

Saw(s) =
1

1 +
K0(s) 1

s
e−Tds

1−Tso(s)e−Tds
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where Tso(s) is the outer part of the closed loop transfer function in the Smith

predictor-based designed defined as
1
s
C0(s)

1+ 1
s
C0(s)

in the equation (3.19).

Besides, the complementary sensitivity transfer function in the control theory

can be specified as

Taw(s) = 1− Saw(s)

and using the sensitivity transfer function into this equality, we achieve

Taw(s) = 1− 1

1 +
K0(s) 1

s
e−Tds

1−Tso(s)e−Tds

=
1

1− Tso(s) e−Tds

1+ 1
s
K0(s)e−Tds

.

Denominator polynomial in the definition of closed loop transfer function gives

the characteristic equation in the feedback system which can be written as

∆aw(s) = 1 + P (s)Caw(s) = 1− Tso(s)
e−Tds

1 + 1
s
K0(s)e−Tds

(3.27)

since the closed loop transfer function has the form Taw(s) = P (s)Caw(s)
1+P (s)Caw(s)

. In

order to have a stable system, roots of the characteristic polynomial should be

placed in the left half complex plane denoted as C−. Because, these roots are the

poles of closed loop transfer function of the feedback system. The only unknown

in the definition of characteristic equation is the stable polynomial K0(s) which

is the part of robust stabilizer described in (3.26). Hence, the aim is to design

K0(s) such that (1 + P (s)Caw(s))−1 is stable.

While putting the definition of Tso(s) into (3.27), the inverse of characteristic

polynomial equals

∆aw(s)−1 =


1 + 1

s
K0(s)e−Tds −

(
1
s
C0(s)

1+ 1
s
C0(s)

)
e−Tds

1 + 1
s
K0(s)e−Tds


−1

and choosing

K0(s) =
C0(s)

1 + 1
s
C0(s)

(3.28)

makes (1 + P (s)Caw(s))−1 stable.
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3.3 A Summary of the Extended Anti-windup

Structure

The algorithm behind the structure of proposed extended design is briefly de-

scribed here. The known parameters are the plant transfer function P (s), addi-

tive upper bound Wa(s), saturation limits of the actuator and desired reference

input r(t). Based on these parameters, we mainly focus on to redesign the in-

ternal model units F1(s) and F2(s), robust stabilizer K(s), augmented system

transfer function GA(s) and anti-windup compensator θ1(s) and θ2(s) given in

Fig. 2.6 via Smith predictor-based design. Consequently, we obtain the following

results

F1(s) = P (s) =
K

s
R0(s)e−Tds

F2(s) = R0(s)−1K−1Waw(s) where Waw(s) = −sTso(s)

K(s) = K0(s)K1(s) =
C0(s)

1 + 1
s
C0(s)

(K−1R0(s)−1)

GA(s) =
P (s)

1 + F (s)
where F (s) = F1(s)F2(s)

(3.29)

θ̃1 =
γ

(1 + αs)(1 + βs)
for (α > 0, β > 0)

θ1(s) = θ̃1(s) (1 + F (s))

θ2(s) = P (s)

(
1 +

θ1(s)

1 + F (s)

)
= P (s) (1 + θ̃1(s))

(3.30)

and postulate an extension of anti-windup structure which is applicable for the

dead-time systems. The new controller has the form

Caw(s) =
K(s)

1− Tso(s)e−Tds
(3.31)

where Tso(s) =
C0(s) 1

s

(1+C0(s) 1
s)

represents the outer closed-loop Smith predictor-based

transfer function. Note that C0(s) is a stabilizing controller for 1
s

and an example

for its design will be given in Section 4.
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Chapter 4

Numerical Results on the Case

Study

This chapter covers the simulation studies with the proposed new anti-windup

compensator for the time delay systems. Different design procedures behind

the stable polynomial Q(s) within the controller parametrization formula are

provided. Simulation studies conducted with and without proposed extended

structure and their results are presented. Additionally, performance of the dead-

time anti-windup compensator against saturation nonlinearities is discussed.

4.1 Design of Stable Function : Q(s)

Based on the results in (3.29) and (3.30), in order to achieve the extended internal

model units, robust stabilizer and anti-windup controller, we have to design the

free part C0(s) as mentioned in Section 3.1 equation (3.9). Since our aim is to

achieve high tracking performance of the sinusoidal reference input, the controller

or plant should include the poles at the periodic signal frequencies. Plant is

already calculated based on the system identification methods and it has an

integrator which means the pole at s = 0. Hence we have to design the controller
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including poles at s = ±jω where ω is the frequency of the reference signal. Note

that only unknown parameter in the controller formula is C0(s) representing set

of all stabilizing controllers for 1
s

which are parametrized as

C0(s) =
X(s) +Dp(s)Q(s)

Y (s)−Np(s)Q(s)
(4.1)

where Np(s) = 1
s+a

, Dp(s) = s
s+a

and Q(s) ∈ H∞ is a stable polynomial. X(s)

and Y (s) are found as a and 1 respectively using Bezout equation. The internal

controller has the form while using all these functions

C0(s) =
a+ s

s+a
Q(s)

1− 1
s+a

Q(s)
(4.2)

and the problem reduces to designing a stableQ(s) where degree of the polynomial

is determined depending on the design requirements by satisfying the condition,

Minimum degree of Q(s) = Number of interpolation conditions −1 .

In the design of C0(s), we have determined two interpolation conditions

C0(0) = − 1

Td

C0(jω) = − jω

1− e−Tdjω

(4.3)

and from (4.1), the interpolation conditions are translated to

Q0(0) = a(1 + aTd)

Q0(jω) =
(jω + a− ae−jωTd)(jω + a)

jωe−jωTd
.

(4.4)

Hence, the problem can be redefined as designing a stable Q(s) which satisfies

the interpolation conditions in (4.4) and finding the appropriate C0(s) defined in
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(4.2) using the resulted Q(s). Note that since Q(s) is a rational function, it is

sufficient to use only one interpolation condition for the complex roots.

We apply three different techniques in the design of this stable function which

are listed as Lagrange interpolation methodology, designing the poles by estimat-

ing the zeros and designing the zeros by estimating the poles. The relative degree

is changed according to the method we used, but degree of the denominator poly-

nomial is always chosen based on the minimum degree structure. By considering

all the roots (0, +jω, −jω), we postulate the minimum degree of Q(s) as two.

Lagrange Interpolation

Find a transfer function X(s) ∈ H∞ such that X(ai) = bi where ai ∈ C+ and

bi ∈ C. Let

X(s) =
α1s

n−1 + α2s
n−2 + ....+ αn

(s+ 1)n−1
,

and using the definition, we have

[
sn−1 sn−2 . . . s0

]
×


α1

α2

..

αn

 = (s+1)n−1×bi at s = ai where i = 1, 2, ..., n

which implies

an−1
1 . . . a1 1

an−1
2 . . . a2 1

.

.

an−1
n . . . an 1


×



α1

α2

.

.

αn


=



(a1 + 1)n−1 b1

(a2 + 1)n−1 b2

.

.

(an + 1)n−1 bn


.

Hence, a stable transfer function can be easily calculated in the given form by

choosing the relative degree depending on the parameter n via Lagrange interpo-

lation.
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We determine Q(s) in the form

Q(s) =
α1s

2 + α2s+ α3

(s+ 1)2
,

and apply Lagrange interpolation technique to find the unknown parameters.

Since ai’s are the roots, choose them as a1 = 0, a2 = jω, a3 = −jω. Based on

the definition, bi equals to Q(ai) for the corresponding indexes where i = 1 , 2 , 3.

Using the interpolation conditions defined in (4.4), we can calculate the unknown

parameters α1 , α2 and α3. Their values are

α1 =
Re
(

(−ω2+2jω+1)(jω+a−ae−jωTd )(jω+a)

jωe−jωTd

)
− α3

−ω2
,

α2 =
Im
(

(−ω2+2jω+1)(jω+a−ae−jωTd )(jω+a)

jωe−jωTd

)
ω

,

α3 = Q(0) = a (1 + aTd) .

In conclusion, a stable Q(s) can be written via these parameters. Now, we

achieve the internal controller C0(s) using this conceptually simple strategy.

Designing the poles of Q(s)

As mentioned in the previous sections, our aim is to achieve tracking of a given

reference signal at the output while using anti-windup compensation. To achieve

high performance tracking, we design the denominator polynomial such that Q(s)

has poles at the sinusoidal signal frequencies s = ±jω. Relative degree of stable

function Q(s) may change depending on the degree of the numerator polyno-

mial, however denominator always has order of 2 because of the minimum degree

structure. Hence, the number of unknowns in Q(s) differ by numerator degree.

When numerator is chosen as a constant,
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Q(s) =
b

ds2 + es+ f

for s = 0, we have

Q(s) =
b

f
= a (1 + aTd)

implies

f =
b

a (1 + aTd)
.

For s = jω results in

Q(jω) =
b

−dω2 + ejω + f
,

and substituting f into this equation, we can calculate the remaining unknown

parameters with the interpolation conditions

d =
Re
(

b(jω)e−jωTd

(jω+a−ae−jωTd )(jω+a)

)
− f

−ω2
,

e =
Im
(

b(jω)e−jωTd

(jω+a−ae−jωTd )(jω+a)

)
ω

.

While increasing the degree of numerator polynomial, we apply the same pro-

cedure to design the poles of Q(s) by estimating the free parameters (or constants

in the numerator) depending on the sinusoidal reference signal and try to find a

stable polynomial.

Designing the zeros of Q(s)

Another method in the design of Q(s) is to determine the roots of numerator

polynomial to guarantee the stability of Q(s). The roots of denominator poly-

nomial are chosen to place the closed loop system poles at the desired locations

based on the given input. In this approach, Q(s) has the form,

Q(s) =
bs2 + cs+ d

s2 + es+ f
. (4.5)
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Here e, f > 0 are free parameters; once these are chosen, the other parameters

are determined by employing the interpolation conditions defined in (4.4). The

free parameters are changed based on the frequency of the sinusoidal signal.

For s = 0, using the interpolation condition, the polynomial equals to

Q(s) =
d

f
= a (1 + aTd)

which gives the first unknown parameter

d = f a (1 + aTd) . (4.6)

For s = jω, we can compute the other parameters by applying the interpolation

condition again,

Q(jω) =
−bω2 + +cjω + d

−dω2 + ejω + f
,

which is concluded as

b =
Re
(

(−ω2+ejω+f)(jω+a−ae−jωTd )(jω+a)

jωe−jωTd

)
− d

−ω2
,

c =
Im
(

(−ω2+ejω+f)(jω+a−ae−jωTd )(jω+a)

jωe−jωTd

)
ω

.

(4.7)

4.2 Simulations and Results

In Chapter 2, the nominal model transfer function which is designed based on

the system identification tests conducted on the hardware structure is provided.

In the results given in Chapter 2, delay-free part of the plant model is taken into

consideration and general anti-windup compensator structure is employed with

and without saturation. Now, we simulate this plant model considering dead-

time by using the extended anti-windup scheme. Remember the nominal model

transfer function

P (s) =
7.1

(
1 + 0.016 s

175
+ ( s

175
)2
) (

1 + 0.08 s
930

+ ( s
930

)2
)

s
(
1 + 0.04 s

285
+ ( s

285
)2
) (

1 + 0.21 s
960

+ ( s
960

)2
) e−8.1×10−3s . (4.8)
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Note that the transfer function has the form described in the equation (3.1). K

is the gain of the plant model which equals 7.1, s in the denominator represents

the integral action and time delay is defined as Td = 8.1ms. Remaining part in

the definition of the plant belongs to the minimum phase transfer function R0(s).

Moreover, the additive uncertainty bound calculated previously again used in

the simulations where the transfer function is given as

Wa(s) =
0.011 (1 + s/20)(

1 + 0.02 (s/280) + (s/280)2
) . (4.9)

The controller parametrization method is first applied in order to design the

free part of the Smith predictor based controller C0(s) by choosing Np(s) = 1
s+a

and Dp(s) = s
s+a

as mentioned. In the design of a stable polynomial Q(s),

among all three methods, designing the zeros of Q(s) approach is determined to

be used in the simulation studies. Lagrange interpolation solution does not work

appropriately for higher frequencies, on the other hand, designing the poles of

Q(s) technique only works using high frequencies. The parameter e sometimes

becomes negative which makesQ(s) unstable while using the poles design method;

because this approach does not guarantee the stability of Q(s) since we estimate

the free parameters in the numerator.

Q(s) is chosen as given in the equation (4.5) where the free parameters a, e

and f are determined based on the sinusoidal reference signal. Note that a is

used in the design of the free controller parameter C0(s).

Table 4.1: Free Parameters for the Stable Function Q(s)

Parameter : Value

a 4

e 2

f 1
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The desired input is described as r(t) = 50sin(ωt + π/2) for ω = 1.5 rad/sec

angular frequency and the estimated free parameters are provided in Table 4.1.

The remaining parameters of stable Q(s) can be computed based on the formula-

tions in (4.6) and (4.7) which are calculated via interpolation conditions by using

the values in Table 4.1 and the identified parameters are given in Table 4.2.

Table 4.2: Designed Parameters for the Stable Function Q(s)

Parameter : Value

b 6.2496

c 6.89

d 4.1296

Finally, the free part of the controller C0(s) can be calculated using stable

Q(s) and Bezout equation polynomials X(s), Y (s), Np(s) and Dp(s) :

C0(s) =
10.25 (s+ 0.6618) (s2 + 2.352s+ 2.359)

(s− 0.06176) (s2 − 0.1879s+ 2.098)
.

After completing the Smith predictor design parameters to be used in the

calculations of extended anti-windup functions, we start with the design of novel

internal model units F1(s) and F2(s). Remember that F1(s) is directly chosen as

the plant transfer function, hence we only need to design the other internal model

unit. In order to achieve F2(s), outer closed loop transfer function of the Smith

predictor structure Tso(s) has to be calculated. Then multiplying two internal

model units, the transfer function F (s) is obtained as

F (s) = F1(s)× F2(s)

=

(
K

s
R0(s)e−Tds

)(
R0(s)−1K−1 (−s Tso(s))

)
which results in

F (s) =
−10.25 (s+ 0.6618) (s2 + 2.352s+ 2.359)

(s+ 4)2 (s+ 1)2
× e−8.1×10−3s.
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In order to design K(s), robust stabilizer, time delay in this equation is re-

placed with its rational equivalent obtained via second order Pade approximation

(tough there are direct design methods for systems with delays [53]). This tech-

nique is commonly used in many control applications to deal with irrational delay

parameter e−Tds by representing it with a stable rational transfer function [54].

The time delay element can be approximated with the function

e−Tds ∼=
1− k1s+ k2s

2 − ...± knsn

1 + k1s+ k2s+ ...+ knsn
,

where n is the approximation order. Larger n gives more accurate equivalent

of the dead-time; however, numerical problems may occur while computing the

polynomial coefficients [7]. Second order Pade approximation is used to represent

the time delay in our simulations :

e−Tds ∼=
1− Td

2
s+

T 2
d

12
s2

1 + Td
2
s+

T 2
d

12
s2
.

We continue with the design of stabilizer K(s) which has two functions denoted

as K0(s) and K1(s). Utilizing the definitions of these transfer functions given in

(3.29), the following results are obtained :

K0(s) =
10.25 s (s+ 0.6618) (s2 + 2.352s+ 2.359)

(s+ 4)2 (s+ 1)2
,

K1(s) =
0.050867 (s2 + 11s+ 7.952× 104) (s2 + 201.6s+ 9.216× 105)

(s2 + 2.8s+ 3.063× 104) (s2 + 74.4s+ 8.649× 105)
.

Moreover, the augmented transfer function GA(s) is computed by using the

result of F (s) found with the new definitions of the internal model units

GA(s) =
G(s)

1 + F (s)

GA(s) =
19.659 (s+ 4)2 (s+ 1)2 (s2 + 2.8s+ 3.063× 104)

s3 (s2 − 5.348× 10−12s+ 2.25) (s2 + 11s+ 7.952× 104)
e−8.1×10−3s

and time delay is approximated again 2nd order Pade.
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Finally, extended anti-windup controller Caw(s) is achieved based on the sta-

bilizer K(s) and product of the internal model units F (s)

Caw(s) =
0.52137 (s+ 0.6618) (s2 + 2.352s+ 2.359) (s2 + 11s+ 7.952× 104)

s (s2 + 2.25) (s2 + 2.8s+ 3.062× 104)
.

Besides, the anti-windup compensator θ1(s) and θ2(s) are also calculated by

applying their definitions provided in (3.30) via extended F (s). The parameters

α, β and γ are chosen the same with the previous simulation studies in Section 2.4.

The anti-windup scheme illustrated in Fig. 2.6 is implemented with the ex-

tended internal model units, stabilizer, augmented system and compensator in

the absence of saturation. We aim to tackle the problems of system nonlinearities

which cause instability and performance degradation in linear systems and aim

to achieve high tracking performance.
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Figure 4.1: System output under the effect of input saturation when there is no

anti-windup structure. The tracking error is also represented in the second graph.
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The results of the simulation studies are performed both using the anti-windup

structure depicted in Fig. 2.6 and using only controller and plant without anti-

windup scheme. First we examine the system behavior in the effect of input

saturation without anti-windup controller structure. System output together with

the reference sinusoidal signal is illustrated in Fig. 4.1. Note that there exist a

difference between the output and desired input which can be seen in the second

graph. Tracking error is approximately found as 8.6m from this plot.

The output of the controller is shown in Fig. 4.2 to observe the situation of

saturation. The red lines represents the saturation limits, hence until around 4

seconds, the system operates in the nonlinear region. The second graph given in

Fig. 4.2 belongs to the saturated plant input.
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Figure 4.2: Controller output and plant input under the effect of input saturation

when there is no anti-windup structure. Limits of the saturation is represented

as red dashed lines.
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Fig. 4.3 illustrates the system output when we use the proposed anti-windup

architecture. The output recovers from the nonlinearity after around 4.46 seconds

and tracking error converges to zero accurately which means that the extended

robust anti-windup compensator for the systems including time delay and integral

action works as expected. The system output depends on the design specifications

such as saturation limits, desired sinusoidal signal, dead-time in the system, etc.

Hence, in the design of anti-windup compensator, these specifications have to be

taken into account.
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Figure 4.3: System output under the effect of input saturation when extended

anti-windup structure is operating. The tracking error is also represented in the

second graph.

The output of the controller in this case is depicted in Fig. 4.4 with the cor-

responding plant input. The control signal is limited by the actuator, hence

proposed controller can not operate properly which means that there exists a

difference between the controller output and plant input. Applying the extended

62



structure into this plant, the damaging nonlinear effects are resolved.
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Figure 4.4: Controller output and plant input under the effect of input saturation

when extended anti-windup structure is operating. Limits of the saturation is

represented as red dashed lines.

By comparing the system output results depending on the anti-windup and

without anti-windup studies, the system successfully suppresses the nonlinear ef-

fects after a time and minimizes the tracking error when we apply the extended

architecture. Time delay is considered in the proposed structure, hence the delay

element may also affect recovering the nonlinearity in Fig. 4.3. However, the mea-

sured system output follows the desired sinusoidal reference with the acceptable

performance despite the saturation nonlinearity and time delay existing in the

system dynamics.
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Chapter 5

Conclusion and Future Work

One can intuitively assert that an unknown physical system can never be mod-

eled as exactly as accurate which allows crucial problems to occur in the system

dynamics. The winding-up effect causes a situation that the designed controller

can not operate as expected and can not drive the plant as required. An anti-

windup scheme is a preferred method which helps to suppress the degradations

in the system performance and to preserve the system stability. To this end, the

solution for the problem of saturation type nonlinearities in control systems based

on anti-windup scheme is presented in this thesis.

Based on aforementioned advantages of the anti-windup design, we can con-

clude that designing the controller to account for the effect of saturation and

other system uncertainties improves the performance of the controller by allow-

ing it to operate in the linear region most of the time. The proposed anti-windup

mechanism in [15] including internal model structure together with the robust

anti-windup compensator is used to allow high tracking performance, however,

this method was not applicable for the dead-time systems. The present work fills

this gap by focusing on how the adverse effects of actuator saturation can be

suppressed independently of time delay in the system.
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We also presented Smith predictor based method for the controller design of

the dead-time system with integral term. Motivated by the Smith predictor-based

design strategy of [14], we employed a new anti-windup mechanism applicable for

the dead-time systems by extending the used anti-windup architecture. Our main

goal in this extension was to improve the anti-windup control strategy to enhance

the sinusoidal tracking performance of the closed-loop feedback system under the

saturation effect.

Consequently, the applicability of extended anti-windup architecture was

shown on the time delay plant incorporating integral action with the presence

of saturation nonlinearity. Starting from the definitions of components in the ex-

tended architecture, our future work includes improvements of this extension for

the unstable dead-time systems. The controller stabilizing the saturated systems

with integral action and time delay is designed by utilizing the proposed method.

The longer term goal of this study is to design a Smith predictor-like controller

based on the extended anti-windup scheme for the plants including more than

one pole at C+.
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[8] K. J. Åström and T. Hägglund, PID controllers: theory, design, and tuning,

vol. 2. Isa Research Triangle Park, NC, 1995.

66



[9] S. Majhi and D. P. Atherton, “A new smith predictor and controller for

unstable and integrating processes with time delay,” in Proc. of the 37th

IEEE Conf. on Decision and Control, vol. 2, pp. 1341–1345, IEEE, 1998.

[10] S. Majhi and D. Atherton, “Modified smith predictor and controller for pro-

cesses with time delay,” IEE Proceedings-Control Theory and Applications,

vol. 146, no. 5, pp. 359–366, 1999.

[11] T. Furukawa and E. Shimemura, “Predictive control for systems with time

delay,” International Journal of Control, vol. 37, no. 2, pp. 399–412, 1983.

[12] K. Watanabe and M. Ito, “A process-model control for linear systems with

delay,” IEEE Transactions on Automatic Control, vol. 26, no. 6, pp. 1261–

1269, 1981.

[13] A. M. D. Paor, “A modified smith predictor and controller for unstable

processes with time delay,” International Journal of Control, vol. 41, no. 4,

pp. 1025–1036, 1985.
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