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Abstract
Noisy dynamical models are employed to describe a wide range of phenomena. Since exact 
modeling of these phenomena requires access to their microscopic dynamics, whose time 
scales are typically much shorter than the observable time scales, there is often need to 
resort to effective mathematical models such as stochastic differential equations (SDEs).  
In particular, here we consider effective SDEs describing the behavior of systems in the 
limits when natural time scales become very small. In the presence of multiplicative noise 
(i.e. noise whose intensity depends upon the system’s state), an additional drift term, called  
noise-induced drift or effective drift, appears. The nature of this noise-induced drift 
has been recently the subject of a growing number of theoretical and experimental 
studies. Here, we provide an extensive review of the state of the art in this field. After an 
introduction, we discuss a minimal model of how multiplicative noise affects the evolution 
of a system. Next, we consider several case studies with a focus on recent experiments: 
the Brownian motion of a microscopic particle in thermal equilibrium with a heat bath 
in the presence of a diffusion gradient; the limiting behavior of a system driven by a 
colored noise modulated by a multiplicative feedback; and the behavior of an autonomous 
agent subject to sensorial delay in a noisy environment. This allows us to present the 
experimental results, as well as mathematical methods and numerical techniques, that can 
be employed to study a wide range of systems. At the end we give an application-oriented 
overview of future projects involving noise-induced drifts, including both theory and 
experiment.
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effective drifts
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1.  Introduction

Dynamical systems are widely employed to describe and 
predict the behavior of complex phenomena [1]. At any 
given time t, a dynamical system is characterized by a state 
xt, which evolves according to a deterministic rule. A com-
plete deterministic description requires access to the system’s 
microscopic dynamics. A classical example is the Brownian 
motion of a particle in a fluid [2]. The motion of the particle 
and fluid molecules is deterministic, as it can be described by 
a set of Newton’s equations: knowing the initial positions and 
velocities of all particles (i.e. the Brownian particle and the 
fluid molecules), it is in principle possible to determine their 
motion over time, as is done in the molecular dynamics simu-
lation shown in figure 1(a). Nevertheless, the resulting motion 
of the microscopic particle (shown in figure 1(b)) appears to 
be random, especially if one has no access to the exact posi-
tions and velocities of the fluid molecules. In fact, it is often an 
impossible task to construct a model for a dynamical system 
that accounts for its microscopic dynamics. For example, even 
though in principle it would be possible to construct a model 
of Brownian motion writing down Newton’s equation  of 
motion for the particle as well as for each fluid molecule, this 
is a practically unfeasible task due to the huge number of mol-
ecules in any realistic situation—of the order of the Avogadro 
number ⋅6.02 1023.

It is often convenient to reduce the effective number of 
degrees of freedom in order to obtain more tractable models. 
This can be achieved by introducing some randomness. For 
example, the Brownian motion of a particle can be modelled 
by the stochastic differential equation (SDE)

σ=x Wd d ,t t� (1)

where Wt is a Wiener process, i.e. a stochastic process with 
continuous paths, whose increments −W Wt s are indepen-
dent and normally distributed with mean zero and variance 
t  −  s [3], representing the stochastic driving, σ = D2 SE ,  
and DSE is the Stokes–Einstein diffusion constant [2]. The 
resulting Brownian motion is shown in figure 2(a) for the case 
of a 1 μm-radius Brownian particle in water at room temper
ature in bulk, i.e. far away from any boundaries. SDE (1) is 
arguably the simplest way to describe the properties of a free 
diffusion, as it only involves explicitly one degree of free-
dom. The term σ Wd t is thus a mathematical model for the 
noise, which permits one to implicitly account for the micro-
scopic dynamics of the system (in this case, the motion of 
the fluid molecules). We stress that SDE (1) with an initial 
condition x0 has a unique solution, σ= +x x Wt t0 , for any 
given realization of Wt. Similar models have been employed 
to describe a wide range of phenomena, from thermal fluc-
tuations in electronic circuits and evolution of stock prices,  
to heterogeneous response of biological systems, to stochas-
ticity in gene expression [4–8].

Often, the system’s state influences the intensity of the driv-
ing noise, as it is fed back on the input noise and modulates it. 
If such feedback loop is multiplicative, i.e. the intensity of the 
input noise gets multiplied by a function of the system’s state, 
as shown in figure 2(b), one says that the system is driven by 

a multiplicative noise. For example, the Brownian fluctuations 
of a microscopic particle near a wall are reduced by hydrody-
namic interactions [9], as shown in figure 2(c). The corresp
onding SDE (in the absence of other forces, see SDE (4) for a 
more complete model) is

( )σ=x x Wd d ,t t t� (2)

where ( ) ( )σ = ⊥x D x2t t  and ( )⊥D x  is the particle’s diffusion 
coefficient in the direction normal to the wall, which depends 
on the particle-wall distance x. Let us mention that SDE 
(2) with the noise coefficient σ equal to a power of | |x  was 
studied recently in detail in the context of diffusion in inho-
mogeneous media; the reader is referred to [10] and [11] 
for analytical and numerical results, concerning ergodic-
ity, anomalous diffusion and other properties of this model. 
Similar models are employed to describe, e.g. the change of 
the step size of a random walk due to inhomogeneity of the 
medium [12], the alteration of the volatility of a stock price 
depending on its actual value [13], and the regulation of the 
stochastic expression of a gene by the concentration of its 
products [14].

Unlike SDE (1), the integration of SDE (2) has to be per-
formed carefully, because a realization of the Wiener process 
Wt has infinite variation on any interval (in fact, the deriva-

tive W

t

d

d
t  does not exist anywhere) [3]. The stochastic integral 

∫ ≡ ∑ ∆α ∞ =
−�f x W f x Wd lim

T
t t N n

N
t t0 0

1
n n( ) ( )→ , where = α+t Tn

n

N
 

and α is a real number (typically, α = 0, 0.5 or 1), may have 
different values for different choices of α [3, 15]. Therefore,  
a complete model is defined by an SDE and the integration 
convention, which must be determined on the basis of the 
available experimental data or derived from another unam-
biguous model [16]. If desired, one can change the convention 
to α′, but only by adding an appropriate noise-induced drift 
term at the same time; as we will see in section 2, this noise-

induced drift term is in general proportional to ( ) ( )σ σx xt x t
d

d
 

[3]. Thus, a more precise way of writing SDE (2) is

x x
x

x
t x Wd

d

d
d d ,t t

t
t t( ) ( ) ( ) ( )α α σ

σ
σ= − +′ α′�� (3)

Figure 1.  Stochastic motion from deterministic simulations. (a) A 
microscopic particle (large circle) immersed in a fluid continuously 
undergoes collisions with the fluid molecules (dots). (b) The 
resulting motion obtained from a molecular dynamics simulation 
(dotted line), despite being deterministic, appears to be random, 
especially if one has no access to the exact positions and velocities 
of the fluid molecules.
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where the integration convention indicated by α′ and the 

noise-induced drift, i.e. ( ) ( ) ( )α α σ− ′ σxt
x

y

d

d
t , are explicitly 

shown. This shows that the equations  ( )σ= α�x x Wd dt t t are 
not equivalent for different α and it is thus clear that the 
choice of the appropriate SDE-convention pair is of critical 
importance from the modeling perspective, especially when 
the model is employed to predict the system’s behavior under 
new conditions.

Finally, let us note that until now we have only considered 
equations without a deterministic drift. If a deterministic drift 
g(xt) is present, SDE (2) becomes

( ) ( )σ= +x g x t x Wd d d .t t t t� (4)

However, the presence of ( )g x tdt  does not lead to any ambi-
guities, since this term can be integrated in a standard way.

In section 2, we introduce the fundamental concepts and 
ideas in a simple and intuitive way, making use of a mini-
mal discrete-time model. In section 3, we describe in detail 
some case studies focusing mainly on recent experiments; 
this allows us to present not only the experimental findings, 
but also some mathematical methods and numerical tech-
niques that can be employed to study a wide range of systems. 
Finally, in section  4, we give an overview of various other 
situations where noise-induced drifts in the limiting SDEs 
become relevant when describing a system driven by multi-
plicative noise. We argue that the possibility of such noise-
induced drifts and of their dramatic consequences should be 
recognized and accounted for in many cases where SDEs with 

multiplicative noise are routinely employed to predict the 
behavior and evolution of complex physical, chemical, bio-
logical, and economic phenomena.

2.  A minimal discrete-time model

In this section we introduce a minimal (discrete-time) model 
to demonstrate how multiplicative noise affects the evolution 
of a system. We will see, in particular, how the presence of 
a multiplicative noise can generate a noise-induced drift and 
alter the long-term probability distribution of the system’s 
state.

We start by considering the system without multiplicative 
noise described by SDE (1). The continuous-time solution x(t) 
of SDE (1) can be approximated by a discrete-time sequence 
xn, which is the solution of the corresponding finite-difference 
equation (FDE) evaluated at regular time steps = ∆t n tn ; for 
∆t sufficiently small, ( )≈x x tn n . The finite-difference (FD) 
terms corresponding to xd t are −+x xn n1 , while those corresp
onding to Wd t are given by a sequence of independent random 
numbers with zero mean and variance ∆t,3 such as a sequence 
of indepenendent random numbers with values ± ∆t . We 
thus obtain the discrete-time random walker FDE:

Figure 2.  Stochastic dynamical system without and with feedback. (a) A schematic representation of a stochastic dynamical system: 
the system’s state x(t) evolves as the system is driven by a noisy input r(t). (b) Same system with feedback ( ) ( ( ))σ σ=t x t : r(t) is now 
modulated by ( )σ t , and x(t) is clearly affected. The data correspond to the motion of a 1 μm-radius Brownian particle in water at room 
temperature (a) in bulk and (b) close to a boundary; the curve in (c) shows the diffusion coefficient ( )⊥D x  of the particle in the direction 
perpendicular to the boundary (normalized to the bulk diffusion coefficient ( )= ∞⊥D DSE ) as a function of its distance from the boundary x.

3 This follows from the properties of a Wiener process Wt:  

∫ = =
+∆

∆W Wd 0
t

t t
t t  and ∫ = = ∆

+∆
∆W W td

t

t t
t t

2
2( ) . A more  

detailed discussion can be found in [87].
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σ= ± ∆+x x t ,n n1� (5)

where the symbol ‘±’ signifies that at each step the sign is 
chosen randomly. As shown in figure 3(a), at each time step 
the value of the system’s state either increases or decreases 
with the same probability (0.5) and amplitude ( )σ ∆t . In 
figure 3(b), we show a simulated trajectory for the evolution 
of such system starting at x0  =  50. Since the probability and 
amplitude of the step are equal in both directions (i.e. ‘+’ and 
‘−’), the system’s state evolves in a symmetric way. In the 
simulations presented in figure 3, in order to obtain a steady-
state probability distribution for the system’s state, we have 
restricted the system’s space to the interval between 0 and 
100, introducing reflecting boundary conditions at x  =  0 and 
x  =  100.4 As shown in figure 3(c), we obtain a steady-state 
probability distribution that is uniform, as can be expected due 
to the absence of deterministic forces acting on the system 
[12].

We will now consider the system with multiplicative noise 
described by SDE (2). Again, we can approximate the con-
tinuous-time solution by a discrete-time sequence of states, 
which solves the corresponding FDE. Now, however, we have 
to decide: Where should the value of ( )σ x  be evaluated at con-

secutive time steps? At the starting state xn? At the final state 

xn+1? At the (midpoint) intermediate state ( )+ +x xn n
1

2 1 ? At 

some other state?
Let us first consider the case when the value of ( )σ x  is eval-

uated at xn (figures 4(a)–(c)), explicitly:

( )σ= ± ∆+x x x t .n n n1� (6)

This is particularly convenient from a computational point of 
view because the value of xn is already available when the 
FDE is solved iteratively (see also appendix A). As shown in 
figure 4(a), the value of x either increases or decreases by the 
same amount, equal to ( )σ ∆x tn  ( ( )σ x  is plotted by the black 
solid line). A numerical solution is shown in figure 4(b) and 

the evolution of the probability density of the system’s state 
is shown in figure 4(c). At the beginning, the state is x0  =  50 
and evolves in a symmetric way, but, as time passes, the sys-
tem reaches an asymmetric steady-state probability distribu-
tion and is more likely found in low-noise states, i.e. states for 
which ( )σ x  is smaller.

We can also consider the case when the value of ( )σ x  is 

evaluated at the midpoint state ( )+ +x xn n
1

2 1 . A heuristic argu-

ment for applying this convention to real systems is that the 
value of ( )σ x  should be averaged over the change of the sys-
tem’s state. In this case, the corresponding FDE is

( )( )σ= ± + ∆+ +x x x x t .n n n n1
1

2 1� (7)

We will explain how to approximately solve this equa-
tion below (see equation  (10) and appendix A). Figure 4(d) 
shows that the change of the system’s state now becomes 
asymmetric because it is larger (smaller) when moving toward 
increasing (decreasing) σ. A simulated trajectory is shown in 
figure  4(e) and the evolution of the probability density of 
the system’s state is shown in figure 4(f ). At the beginning 
the probability density drifts towards higher-noise states. 
However, at long times, the system is still more likely to be 
found in low-noise states.

Furthermore, for reasons that will become clear later (sec-
tion 3.1), it can be also useful to evaluate σ at other states and, 
in particular, at the final state xn+1. In this case, the corresp
onding FDE is given by

( )σ= ± ∆+ +x x x t .n n n1 1� (8)

The change in the system’s state becomes even more 
asymmetric than in the previous case (figure 4(g)) and an 
even larger noise-induced drift can be seen at short times  
(figures 4(h) and (i)). Interestingly, the steady-state probability 
density distribution appears to be uniform, i.e. independent of 
the value of ( )σ x . We can conclude that in this case the noise-
induced drift is sufficient to compensate for the tendency of 
the system to linger in low-noise states.

Figure 3.  Evolution of the random walker without multiplicative noise described by SDE (5). (a) The intensity of the noise σ does not 
depend on the system’s state x; therefore at each time step the state increases or decreases by a fixed amount σ ∆t  (not to scale) with equal 
probability (0.5). (b) Example of a trajectory of the system in state space (σ = 1). (c) Probability density of the distributions at selected 
times (calculated from 10 000 simulated trajectories). Reflecting boundary conditions are imposed at x  =  0 and x  =  100. Note that the 
steady-state probability distribution is uniform, as can be expected from the absence of deterministic forces acting on the system.

4 In absence of boundary conditions, the state space would be unbounded 
and a steady state probability distribution would not exist.

Rep. Prog. Phys. 79 (2016) 053901
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In order to understand the origin of the noise-induced drift 
and how it is related to the way the noise term is evaluated, we 
study the following FDE:

( )σ α= ± + ∆ ∆+x x x x t ,n n n1� (9)

where ∆ = −+x x xn n1 . We expand the factor ( )σ α+ ∆x xn  as

( ) ( ) ( )
σ α σ α

σ
+ ∆ ≈ + ∆x x x

x

x
x

d

d
.n n

n

Substituting the first-order expansion of ( )σ∆ ≈± ∆x x tn , 
we obtain

( ) ( ) ( ) ( )
σ α σ α σ

σ
+ ∆ ≈ ± ∆x x x x

x

x
t

d

d
n n n

n

and we can therefore re-write equation (9) as

( ) ( ) ( )

 

α σ
σ

σ= + ∆ ± ∆+

−
� �������� ��������

x x x
x

x
t x t

d

d
.n n n

n
n1

noise induced drift

� (10)

Therefore, various values of α lead to different noise-induced 
drifts and, consequently, to different steady-state probability 
distributions, as we have seen in figure 4 for the cases α = 0, 
0.5, and 1. Importantly, we note that the presence of the noise-
iduced drift does not depend on the value of ∆t, i.e. it is pres-
ent in the limiting SDE, as we will see in the case studies 
presented in the section 3.

The parameter α determines how the stochastic integration 
is performed. Common choices are: the Itô integral with α = 0 
corresponding to the use of the initial value (equation (6)) [17]; 

Figure 4.  Evolution of the random walker with multiplicative noise described by SDE (9) for various values of α. (a) For α = 0 (equation 
(6)), the amplitude of each random step is a function of the initial state and is therefore symmetrically distributed; (b) example of a 
trajectory in state space; (c) probability density of the distributions at selected times. The corresponding results for α = 0.5 (equation (7)) 
and α = 1 (equation (8)) are shown in ((d)–(f )) and ((g)–(i)), respectively. In all cases, reflecting boundary conditions are imposed at x  =  0 
and x  =  100. Note that the steady-state probability distribution is uniform only in the α = 1 case, while in the other two cases it is peaked in 
the low-noise (small ( )σ x ) region. The steady-state probability distributions are calculated from 100 000 simulated trajectories.

Rep. Prog. Phys. 79 (2016) 053901
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the Stratonovich integral with α = 0.5 corresponding to the use 
of the midpoint value (equation (7)) [18]; and the anti-Itô or 
isothermal integral with α = 1 corresponding to the use of the 
final value (equation (8)) [19, 20]. In particular, α = 0 mod-
els are typically employed in economics [5] and biology [21] 
because of their property of ‘not looking into the future’, refer-
ring to the fact that, when the integral is approximated by a sum, 
the first point of each interval is used (see also appendix A).  
α = 0.5 naturally emerges in physical systems with noise cor-
relation time τ> 0, e.g. the SDEs describing electrical circuits 
driven by a multiplicative noise [22]; this is explained math-
ematically by the Wong–Zakai theorem, which states that, if in 
SDE (2) the Wiener process is approximated by a sequence of 
smooth processes with symmetric covariance and τ going to 0, 
the resulting limiting SDE should be interpreted according to 
Stratonovich calculus [23]. Finally, α = 1 naturally emerges in 
physical systems in equilibrium with a heat bath [12, 24–26]. 
Interestingly, in some dynamical systems, e.g. circuits with 
time delay and colored noise (see section 3.3), α can actually 
vary under changing operational conditions [27].

SDE (3) explicitly states the integration convention α′ 
and the noise-induced drift. As we have seen in section 1, if 
desired, one can change the convention (α′), but this entails 
a corresponding change in the drift coefficient (α α− ′). For 
example,

( ) ( ) ( )σ
σ

σ= +

α α
α

− =
=

′
′� ����� �����

� ���� ����x x
x

y
x Wd

d

d
d ,t t

t
t t

1
0

� (11)

is equivalent to

( ) ( ) ( )σ
σ

σ= +

α α
α

− =
=

′
′� ������� �������
�� ����� �����x x

x

y
x Wd 0.5

d

d
d ,t t

t
t t

0.5
0.5

� (12)

and to

( )σ=
α α α− = =′ ′

�� ����� �����x x Wd d ,t t t1

0, 1
� (13)

where we are using the common notations 
x W x Wd dt t t t0( ) ( )σ σ≡ �  and x W x Wd dt t t t0.5( ) ( )σ σ≡� � . In 

this review, unless otherwise stated, we will use the Itô con-
vention (α =′ 0) throughout and explicitly indicate the noise-
induced drifts to avoid misunderstandings associated with 
changing between different formalisms.

Before moving to the case studies in the next section, we 
want to make an important remark. In this section we have 
considered only first-order SDEs, where the presence of 
a noise-induced drift is related to the choice of a stochastic 
integration convention. In the case studies in section  3, we 
will typically start from a microscopic model of a system 
and eliminate some of its complexity to obtain an effective 
first-order SDE. The noise-induced drift present in the effec-
tive first-order SDE will, thus, be the result of this simplifica-
tion process. For clarity, we will always write the effective 
SDEs using the Itô formalism, where the noise-induced drift 
is explicitly stated. For example, in sections 3.1 and 3.2, our 
starting point is a second-order equation, which we want to 

simplify further taking a parameter (e.g. mass of a particle) 
to zero. The resulting first-order Itô equation contains a drift 
term that combines the damping and the noise coefficients of 
the original equation. We emphasize that the source of this 
(physically measurable) additional drift is that we are taking 
a singular limit of a second-order equation  in the presence 
of noise and we thus call it again a noise-induced drift. Its 
explicit form is now much harder to derive than in the case 
of the minimal model of section 2. In the case discussed in 
section  3.1, it is possible (but not necessary) to interpret it 
in terms of a stochastic integration convention choice (α = 1) 
[28, 29], as explained in section 2, but no such interpretation 
is possible in the generality of the examples considered in 
section 3.

3.  Case studies

In section  2 we have seen how the presence of multiplica-
tive noise induces a drift in a simple discrete-time model of 
a random walker. In the present section we consider in detail 
several examples of realistic models with a particular empha-
sis on those systems that have been subject of experiments. 
Section 3.1 considers Brownian motion of a microscopic par-
ticle in thermal equilibrium with a heat bath (i.e. for which 
the fluctuation-dissipation relations holds) in the presence of 
a diffusion gradient. Section 3.2 relaxes the condition that the 
system should be in equilibrium with a heat bath and thus con-
siders systems for which a generalized fluctuation-dissipation 
relation holds. Section 3.3 considers the limiting behavior of 
a system driven by a colored noise modulated by a multiplica-
tive delayed feedback. Finally, in section 3.4 we demonstrate 
how sensorial delay can alter the behavior of an autonomous 
agent in the presence of noise and how this effect can be used 
to control complex collective behaviors. In all cases we will 
present not only experimental findings, but also the basic 
mathematical methods and/or numerical techniques that can 
be employed to study a wide range of systems, while a more 
in-depth discussion of these methods and techniques is pro-
vided in the appendices.

3.1.  Brownian motion in a diffusion gradient

Diffusion gradients emerge naturally when a Brownian par-
ticle is in a complex or crowded environment. For example, 
diffusion gets hindered when a particle is close to a wall 
due to hydrodynamic interactions: as shown in figure  2(c), 
the diffusion coefficient increases with the particle-wall 
distance approaching its bulk value at a distance of several  
particle radii away from the wall [9]. More generally, the 
study of diffusion in non-homogenous media is attracting a lot 
of attention in classical physical systems [30–35] as well as 
in biological systems [36] and in quantum systems [37]. The 
presence of a diffusion gradient introduces a multiplicative 
noise and thus leads to a noise-induced drift, often referred 
to in this context as a ‘spurious drift’. The need to account 
for such spurious drifts was realized already several decades 
ago in the context of numerical simulations [19, 24, 38, 39], 

Rep. Prog. Phys. 79 (2016) 053901



Report on Progress

7

but only very recently did it become possible to observe them 
experimentally [12, 26, 40, 41].

In order to understand how spurious drifts emerge in the 
presence of diffusion gradients, we will consider a Brownian 
particle with mass m moving in one dimension in a fluid at 
temperature T. Importantly, we assume that the particle is in 
thermal equilibrium with the heat bath provided by the fluid. 
The corresponding equation of motion is

( ) ( ) ( ) ( )γ γ η= − +mx F x x x x D x¨ ˙ 2 ,t t t t t t t� (14)

where F(x) denotes the sum of the external forces acting on the 
particle, ( )γ x  is the position-dependent friction coefficient, D(x) is 
the position-dependent diffusion coefficient, and ηt is a unit white 
noise. Since we assume that the system is in thermal equilibrium, 
the intensity of the fluctuations D(x) and the rate of energy dis-
sipation ( )γ x  satisfy the fluctuation-dissipation relation [42]

( )
( )γ

=D x
k T

x
,B

� (15)

where k TB  is the thermal energy and kB is the Boltzmann con-
stant. The equilibrium distribution of the system is given by 
the Boltzmann–Gibbs probability density

( ) ( )⎡
⎣⎢

⎤
⎦⎥

ρ = − −−x v Z
U x

k T

mv

k T
, exp

2
,1

B

2

B
� (16)

where U(x) is the potential of the (external) forces F(x) so that 

( ) ( )= −F x U x

x

d

d
, and we are assuming that the density is normal-

izable with Z denoting the normalizing factor. Furthermore, 

the Maxwellian velocity distribution ( ⎡
⎣

⎤
⎦∝ −exp mv

k T2

2

B
) implies 

energy equipartition, so that the equilibrium kinetic energy is 
on average equal to the thermal energy:

=mv k T .t
1

2
2 1

2 B� (17)

In SDE (14), inertial effects decay on a very short time 
scale, i.e. the momentum relaxation time τ γ= m/m , which 
is typically of the order of a fraction of a microsecond5. For 
example, for a silica microsphere with radius R  =  1 μm  
(  =m 11 pg) in water at room temperature (  =T 300 K), 
τ = 0.6m  μs. This time is several orders of magnitude shorter 
than the time scales of typical experiments, which are of the 
order of milliseconds or longer6. Thus, it is justified to take 
the limit →m 0 in SDE (14). This has to be done carefully and 
requires a nontrivial calculation. In particular, it is not correct 
to simply set m  =  0 and drop the inertial term. As a result of the 
calculation outlined in appendix B, we obtain the effective SDE

( ) ( ) ( ) ( )

 

= + +
� ����� �����

x
F x D x

k T
t

D x

x
t D x Wd d

d

d
d 2 d .t

t t t
t t

B

spurious drift

� (18)

Note that, if we denote the noise coefficient ( )D x2  by ( )σ x  

the noise-induced drift equals ( )( ) ( )σ= σxD x

x

x

x

d

d

d

d
.

The numerical simulations shown in figure 5 give us some 
insight into the derivation of the limiting SDE and the emer-
gence of the noise-induced drift. We simulate a Brownian par-
ticle at equilibrium with a thermal bath, so that the coefficients 

( )γ x  (figure 5(a)) and D(x) (figure 5(b)) are related by the 
Einstein fluctuation-dissipation relation (equation (15)). The 
dashed lines in figure  5(c) represent solutions of SDE (14) 
obtained for decreasing values of m, but with the same reali-
zation of the driving Wiener process. These solutions become 
rougher as m decreases and converge towards the solution of 
the limiting SDE (18) (black solid line in figure 5(c)), again 
calculated using the same realization of the Wiener process. 
We see that omitting the spurious drift leads to clear devia-
tions, which diverge as a function of time (grey solid line in 
figure 5(c)).

The noise-induced drift in SDE (18) has been directly 
observed in at least two sets of experiments. Before proceed-
ing further, we note that, in general, the diffusion D(x) and 
(total) drift C(x) of an experimental system can be obtained 
from an experimental discrete time-series { }x x, ... , N1  sam-
pling the system’s state at regular intervals ∆t as the condi-
tional averages

( ) ( ) ∣=
∆

− ≅+D x
t

x x x x
1

2
n n n1

2� (19)

Figure 5.  Limiting SDE for a system satisfying the fluctuation-
dissipation relation. For a Brownian particle in thermal equilibrium 
in a diffusion gradient (a) ( )γ x  and (b) ( )σ x  are related by the 
Einstein fluctuation-dissipation relation (equation (15)). (c) The 
solutions of the equations of motion (SDE (14)) for →m 0 (dashed 
lines) converge to the solution of the limiting SDE (18), including 
the spurious drift (black solid line). The (physically incorrect) 
solution without spurious drift (grey solid line) is given for 
comparison. All solutions are numerically calculated using the same 
realization of the Wiener process, with ( )≡F x 0.

5 In a liquid environment, furthermore, also the hydrodynamic memory of 
the fluid, i.e. the mass of the fluid displaced together with the particle, must 
be taken into account and can, in fact, significantly increase the effective 
momentum relaxation time [88, 89].
6 In fact, recent experiments have been able to resolve the inertial regime 
of Brownian particles immersed both in a gas and in a liquid. For a recent 
review see [43].
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and

( ) ∣=
∆

− ≅+C x
t

x x x x
1

.n n n1� (20)

In experiments, ∆t should be much smaller than the character-
istic relaxation time of the system, which is determined by the 
drift part of the SDE and is typically several orders of magni-
tude larger than τm. Furthermore, in the limit →∆t 0 inertial 
effects come into play [43] and, therefore, in practice equa-
tions  (19) and (20) should only be used in the overdamped 
limit, i.e. for τ∆ �t m. Similar considerations hold also for 
other microscopic dynamics determining the evolution of the 
system, i.e. ∆t should be much longer than the characteris-
tic times of the dynamics that have been homogenized in the 
effective SDE.

The first direct experimental observation of the noise-
induced drift was performed by Lançon et al [12] who studied 
the Brownian motion of particles confined between two nearly 
parallel walls. The experimental sample was realized by plac-
ing a droplet of colloidal suspension between a spherical lens 
(with curvature L) and a flat disk, as shown in figure 6(a). The 
spacing h between the flat and curved walls depended on the 
distance r from the center of the cell as ( )≈h r L/ 22 . The col-
loidal solution consisted of polystyrene spheres (radius R  =  1 
μm) suspended in a mixture of H O2  and D O2  adjusted to cancel 
any sedimentation effects. The horizontal Brownian motion 
of the particles was observed using digital video microscopy. 
The experimental values of the ratio between the measured 
diffusion coefficient parallel to the walls ( )∥D h  and the bulk 
diffusion coefficient DSE were inferred from the measured 
trajectories using equation (19) and are shown in figure 6(b) 
(white squares). For the measurement of the noise-induced 
drift, the center of the observation frame was fixed at a posi-
tion with y  =  0 and x  =  300 μm (inset in figure 6(a)), corresp
onding to an average relative confinement h/(2R)  =  1.5 so that 
all particles present in the frame were outside of the excluded 
volume (i.e. ⩽h R2 ) and had a diffusion coefficient with the 
largest x-dependence, but no y-dependence (to first order). The 
drift of the Brownian particles over a period of about three 
minutes is shown in figure 6(c). Importantly, no flux and no 
concentration gradient were observed over a period of a week 
or more, which is consistent with the (uniform) Boltzmann 
distribution expected in the absence of external forces and in 
thermal equilibrium (equation (16)).

In [26] and [41], we studied the Brownian motion of a col-
loidal particle in water with a diffusion gradient imposed by the 
presence of the bottom wall of the sample cell, as shown in fig-
ure 7(a). The external forces acting on the particle were gravity 
and electrostatic repulsion from the bottom of the sample cell. 
Since both are vertical, one can separate the horizontal degrees 
of freedom and write the equation of motion for the vertical 
coordinate only, which we will call z. ( )⊥D z  decreases near the 
bottom of the sample cell and its precise form can be found in 
[9] (see also figure 2(c)). The trajectory of a particle close to 
the wall was measured with total internal reflection microscopy 
(TIRM), which is a technique that permits one to measure the 
position of a colloidal particle above a surface with nanometer 
resolution [44]. From the measured trajectories we obtained 

( )⊥D z  using equation (19) (symbols in figure 7(b)), which is in a 
very good agreement with the theoretical prediction [9] (line in 
figure 7(b)). We were then able to directly measure the spurious 
drift for particles of various sizes, as shown in figure 7(c).

We conclude this section with a brief discussion of how 
the presence of a noise-induced drift plays a crucial role in 

Figure 6.  Drift without flux. (a) Cross-section of a sample cell where 
a colloidal suspension (particle radius R  =  1 μm) is confined between 
a spherical lens and a flat disk, separated by an elastic O-ring. The 
round inset identifies the observation frame. The height of the cell 
is denoted by h. (b) Diffusion coefficient parallel to the walls ∥D  
normalized to the bulk diffusion coefficient DSE as a function of the 
relative confinement h/(2R). The open squares are the experimental 
data; the dotted line is the best fit to the black dots, which correspond 
to numerical predictions calculated by the collocation method. 
(c) Drift of the walkers as a function of time along the diffusion 
gradient (black dots) and perpendicular to the diffusion gradient 
(open squares). Adapted with permission from [12]. Copyright 2001 
EDP Sciences.
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the measurement of forces acting on Brownian particles in 
a liquid medium. The forces acting on a microscopic object 
immersed in a liquid medium can be assessed either by 
their underlying potential or by their effect on the object’s 

trajectory [26, 41]. The first approach—to which we shall 
refer as equilibrium distribution method—requires sampling 
of the equilibrium distribution ( )ρ x  of the particle’s position 
(see also equation (16)). The force can then be obtained from

( ) ( )
( )

( )
ρ

ρ
= − =F x

U x

x

k T

x

x

x

d

d

d

d
.B

� (21)

This method can only be applied under conditions where the 
investigated system is in thermodynamic equilibrium with a 
heat bath. The second method—to which we shall refer as drift 
method—does not require the object to be in (or even close 
to) thermal equilibrium. This method requires obtaining D(x) 
and C(x) from experimental trajectories (equations (19) and 
(20)) and including a correction for the presence of a spurious 
(noise-induced) force. The force can then be calculated as

( ) ( ) ( ) ( ) ( )

 

γ γ= −
� ������ ������

F x x C x x
D x

x

d

d
.

spurious force

� (22)

This method has the advantage that it can be applied also to 
systems that are intrinsically out-of-equilibrium, e.g. molecu-
lar machines, transport through pores, DNA stretching; how-
ever, it requires recording the object’s trajectory with high 
sampling rates, which can be technologically challenging, in 
particular when combined with a high spatial resolution. For 
example, the correction due to the presence of spurious forces 
has been taken into account in the experimental simultaneous 
determination of potential and diffusivity landscapes in mac-
romolecular solutions [45].

3.2.  Diffusive systems not satisfying the fluctuation- 
dissipation relation

While in section 3.1 we considered systems in thermal equi-
librium with a heat bath that satisfy the fluctuation-dissipation 
relation (equation (15)), in this section we consider the zero-
mass limiting behavior of a larger class of models for which 

( )γ x  and ( )σ x  are allowed to vary independently from each 
other. This is a very general class of noisy dynamical systems, 
with many interesting examples and applications (see, e.g.  
Ao et al [46] and [47]). Using the methods of [48], we will 
thus study the general SDE

( ) ( ) ( )γ σ η= − +mx F x x x x¨ ˙ ,t t t t t t� (23)

where the damping and diffusion terms are not necessarily 
related by the fluctuation-dissipation relation (equation (15)). 
For a wide class of such systems the effective equation in the 

→m 0 limit is

( )
( )

( )
( )

( ) ( )
( )

 

⎡

⎣

⎢
⎢
⎢
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⎤

⎦

⎥
⎥
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γ

γ σ
γ

= − +

−
� �������� ��������
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F x

x

x

x

x

x
t

x

x
Wd

2

d

d
d d .t

t

t

t

t

t t

t
t

2

3

noise induced drift

� (24)

An outline of the mathematical derivation of this equa-
tion  is provided in appendix C. An example of such a sys-
tem is illustrated in figure 8: for the case with ( )γ ≡x constant  
(figure 8(a)) and ( )σ x  state-dependent (figure 8(b)), the 

Figure 7.  Experimental measurement of spurious drifts. (a) A 
Brownian particle (drawn not to scale) diffuses above a wall in the 
presence of gravitational and electrostatic forces. Its trajectory’s 
component in the direction perpendicular to the wall is measured 
with total internal reflection microscopy (TIRM). Adapted 
with permission from [26]. Copyright 2010 American Physical 
Society. (b) Comparison of measured (symbols) and calculated 
(line) normalized vertical diffusion coefficient ( )⊥D z D/ SE for an 

 =R 400 nm particle as a function of the particle-wall separation 
z. (c) Distance dependence of the theoretically calculated spurious 

drift 
( )D z

z

d

d
 for various particle radii R (lines). Experimentally 

measured spurious drifts are shown for  =R 400 nm (circles),  
 =R 655 nm (squares) and  =R 1180 nm (triangles). Adapted with 

permission from [41]. Copyright 2011 American Physical Society.
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solutions of SDE (23) for →m 0 (dashed lines in figure 8(c)) 
converge to the solution of the approximate SDE (24) (grey 
solid line in figure  8(c)); note that in this case the noise-
induced drift is zero, differently from the system considered 
in section 3.1.

In general, there is no relation between noise and damping 
coefficients if the noise is external, as in an electrical circuit 
driven by a noise source. Such a circuit with a colored noise 
and involving a delayed response is studied in section  3.3. 
Another physical example described by an equation  of the 
form of SDE (23) is diffusion of a Brownian particle in a 
temperature gradient. This system shows more interesting 
phenomena when it is driven by a colored noise; a simple 
model of this type is studied in [49]. Brownian motion in a dif-
fusion gradient, discussed in section 3.1, is yet another special 
case of a system described by SDE (23) and the result outlined 
there is a special case of SDE (24).

SDE (23) can be generalized to multidimensional (i.e. vec-
tor) systems as

⎧
⎨
⎪

⎩
⎪

⎡
⎣⎢

⎤
⎦⎥

x v

v
F x x

v
x

W

t

m m
t

m

d d ,

d d d ,

t
m

t
m

t
m t

m
t
m

t
m t

m

t
( ) ( ) ( )γ σ

=

= − +
� (25)

where W is a vector Wiener process (i.e. the components of W 
are independent Wiener processes), and γ and σ are matrices. 
The form of the limiting equation is again:

[ ( ) ( ) ( )] ( ) ( )γ γ σ= + +− −x x F x S x x x Wtd d d ,t t t t t t t
1 1� (26)

The precise expression for S and a sketch of its deriva-
tion are provided in appendix C. The zero-mass limits of 
equations similar to SDE (25) have been studied by many 
authors beginning with Smoluchowski [50] and Kramers 
[51]. In the case where F  =  0 and γ and σ are constant, the 
solution to SDE (23) converges to the solution of SDE (24) 
almost surely [2]. Schuss [52] treated the case including an 
external force by entirely different methods. Hänggi [19] 
identified the limit with position-dependent noise and fric-
tion for the case when the fluctuation-dissipation relation is 
satisfied and Sancho et al [39] for the general one-dimen-
sional case (the multidimensional case is also discussed 
there but without complete proof ). Hottovy et al [47] used 
the homogenization techniques described in [53, 52] and 
[54] to compute the limiting backward Kolmogorov equa-
tion corresponding to equation (23) as mass is taken to zero. 
Pardoux and Veretennikov [55] proved rigorously conv
ergence in distribution for equations  of the same type as 
SDE (25), under somewhat stronger assumptions than those 
made in [48]. Freidlin [56] gave the first rigorous proof of 
strong convergence in the zero-mass limit for γ constant 
and σ position-dependent. Hottovy et al [48] provided the 
first rigorous derivation of the zero-mass limit of SDE (25) 
for a multidimensional system with general friction and 
noise coefficients.

The general form of SDE (25) allows to treat many inter-
esting physical situations, including the case when the force 
F is not conservative. In this case, there is no known explicit 
formula for the stationary measure of the dynamics defined 
by SDE (25), even when the system satisfies the fluctuation- 
dissipation relation. Nevertheless, the general theorem applies, 
giving the limiting equation for xt.

As another application of the general scheme given by 
SDE (25), suppose the white noise in SDE (23) is replaced 
by a colored (i.e. time-correlated) stationary noise process, 
which is itself a solution of a stochastic differential system. 
For example, ητ may be an Ornstein–Uhlenbeck process:

η
τ
η

τ
= − +τ τa

t Wd d
1

d .t t t� (27)

Defining ∫χ η= τ sdt
t

s0
, we introduce a new, compound space 

variable ( )χx,  and the corresponding velocity ( )ητv, . If the 
parameter τ scales linearly with m, the variables ( )χx,  and 
( )ητv,  satisfy a system of equations of the same form as SDE 
(25). The above general result applies, yielding an effective 
equation for a system in which the momentum relaxation time 
τm and the characteristic noise correlation time τ go to zero at 
the same rate. The details are given in [48]. In section 3.3 we 
will see that τ can also interact with the feedback delay time 
of the system.

The well-known Itô-to-Stratonovich correction [5] can be 
presented (using Wong–Zakai theorem [57]) as a special case 
of noise-induced drift. However, the latter is much more gen-
eral and can be nonzero even when the noise coefficient is 
constant.

Figure 8.  Limiting SDE for a system not satisfying the fluctuation-
dissipation relation. Consider a system for which (a) ( )γ ≡x constant 
and (b) ( )σ x  is state-dependent. (c) The solutions of SDE (23) for 

→m 0 (dashed lines) converge to the solution of the approximate 
SDE (24), which in this case corresponds to the Itô interpretation 

(grey solid line) of the equation 
( ) ( )
γ

σ
γ

= +x
F x

t
x

Wd d dt
t t

t, as the 

noise-induced drift equals zero (α = 0) when γ is constant. The 
solution for the anti-Itô integral (α = 1, black solid line) is given for 
comparison. All solutions are obtained for the same realization of 
the Wiener process.
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3.3.  Delayed multiplicative feedback and colored noise

White noise does not exist in real systems, since its correla-
tion time is strictly equal to zero (and even as a mathematical 
object it does not have well-defined realizations which would 
be functions of time) [5]. Colored noises are more regular 
mathematical objects, and more similar to signals that can be 
actually generated. Thus, it is natural to consider SDEs driven 
by colored noise. An SDE with colored noise can be inter-
preted as a usual ordinary differential equation for each noise 
realization. However, the very correlation effects we want to 
model make such equations harder to study. The characteristic 
time of the noise correlations, τ, becomes an important time 
scale of the model, whose properties often simplify in the limit 
when →τ 0. Such limit is studied in the classic work of Wong 
and Zakai [57], who considered a sequence of SDEs driven 
by colored noises with symmetric covariance functions and 
with correlation times →τ 0n  and showed that their solutions 
converge to the solution of the corresponding Stratonovich 
equation driven by the white noise. A more general result can 
be found in [58]; see also [59], where such limits are studied 
using homogenization methods, and [60]. We remark that all 
these results can be recovered by the methods discussed in 
section 3.2 and in appendix C.

A system obeying an SDE with a colored noise was exper
imentally realized by Smythe et al [22] as an eletrical circuit 
driven by a multiplicative noisy voltage input. Depending on 
the mean and variance of the noise, the output voltage of the 
circuit could have a probability density with either one or two 
maxima, and the precise form of the phase diagram depended 
on whether the equation describing the circuit was interpreted 
using Itô or Stratonovich integral. As shown in figure 9, the 
results of [22] were in quite good agreement with the theor
etical predictions based on the Stratonovich interpretation, 
illustrating the role of the colored noise, as mathematically 
described by the Wong–Zakai theorem.

We will now consider in detail the experiment performed 
by Pesce et al [27] using an RC electric circuit driven by a 
multiplicative colored noise (figure 10(a)), in which the output 
voltage was fed back into the system and multiplicatively cou-
pled to the noise source, after going through a nonlinear filter. 
Unlike the circuit studied by Smythe et al [22], the circuit 
studied by Pesce et al [27] involved a delay in the feedback 
cycle. The SDE describing the evolution of the voltage in the 
circuit presented in figure 10(a) is

( )σ η= − + δ
τ

−x kx t F x td d d ,t t t t� (28)

where k  =  (RC)−1, R is the resistance of the circuit, C is 
its capacitance, and F(x) represents the modulation by the  
filter. The colored noise ητ is an Ornstein–Uhlenbeck process 
with mean zero and with the characteristic time of correlation 
decay equal to τ (i.e. the stationary solution of SDE (27) with 
a  =  1). δ is the time delay resulting from the application of the 
filter and σ denotes the (constant) noise intensity.

We studied SDE (28) in the limit of small τ and δ. 
Mathematically, this meant making τ and δ proportional to a 
small parameter ε and taking the limit →ε 0, keeping the ratio 
δ τ/  constant. The limiting SDE turned out to be

( ) ( ) ( )
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noise induced drift
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The outline of the derivation is provided in appendix D. The 
second term has the same structure as the noise-induced drift 
in the Brownian motion case: it is proportional to the product 
of the original noise coefficient, ( )σF x , and its spatial deriva-
tive (see section 3.1). The proportionality constant depends on 
the time scales of the problem as

Figure 9.  Experimental observation of a noise-induced phase 
transition. Phase diagram of the electric circuit with multiplicative 
noise used by Smythe et al [22]. Depending on the input noise 
parameters, namely its mean λ and its standard deviation σ, the circuit 
could be either monostable (1 maximum) or bistable (2 maxima). The 
experimentally measured transition between the two regimes (open 
circles) agrees with the predictions obtained by integrating the SDE 
describing the circuit according to the Stratonovich convention. The 
reason for this is that the driving noise is colored. The predictions 
according to the Itô convention are shown for comparison. Adapted 
with permission from [22]. Copyright 1983 American Physical Society.
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α =
+ δ
τ

0.5

1
,� (30)

which agrees well with the experimental results, as shown 
in figure  11; see also [90] where a more precise calcul
ation yields α = − δτe1

2
. SDE (29) is written here in the Itô 

form, but it can be interpreted according to another conven-
tion, corresponding to another choice of the parameter α, as 
described in section 2. In this language, the presence of such 
delay made the SDE describing the behavior of the electric 
circuit with multiplicative noise cross over from obeying the 
Stratonovich convention (α = 0.5) to obeying the Itô conven-
tion (α = 0), as the ratio between the colored noise correla-
tion time τ and the feedback delay δ varied (equation (30)), as 
shown in figures 10(b)–(e). The fact that this transition occurs 
as τ becomes close to δ, i.e. δ τ≈/ 1 (figure 11), can be quali-
tatively explained as follows: if δ = 0, there is a correlation 
between the sign of the input noise and the time derivative of 
the feedback signal (which is the underlying reason why the 
process converges to the Stratonovich solution [57]); however, 
if δ τ� , this correlation disappears, effectively randomizing 
the time-derivative of the feedback signal with respect to the 
sign of the input noise and leading to a situation where the 
system loses its memory. While this crossover between two 
stochastic integration conventions was emphasized in [27], we 

remark here that this is just a possible way of interpreting the 
noise-induced drift.

McDaniel et al [61] study theoretically a much more gen-
eral system of delayed SDEs driven by several colored noises 
with couplings that are functions of the delayed dynami-
cal variables. The corresponding results also are outlined in 
appendix D. A more accurate results was recently derived by 
Hottovy et al [90].

3.4.  Delayed sensorial feedback

Another example in which the effective behavior of a diffu-
sive system depends on a relation between two characteristic 
time scales occurs in the motion of autonomous agents, such 
as robots [62] and active Brownian particles [63, 64], whose 
speed depends on position and whose velocity’s direction 
changes randomly. Mijalkov et al [62] performed an exper
imental, theoretical, and numerical study of such a system in 
two and (for theory and numerics) also in three dimensions. 
For simplicity, we discuss here only the planar case.

In the first part of the experiment performed by Mijalkov  
et al [62], a single robot moves in a gradient of light intensity. 
The robot reacts to the local light intensity by adjusting its speed, 
possibly with a time shift (positive or negative, as explained 
below). The robot’s orientation (and, thus, the direction of  

Figure 10.  Stochastic dynamical system driven by multiplicative noise with delayed feedback. (a) Schematic representation of a stochastic 
dynamical system (an electric circuit) with multiplicative feedback F(x): the driving colored noise η τt  (  τ = 1.1 ms) is multiplied by a 
function of the system’s state xt. (b) Average of 1000 trajectories for various initial conditions. These results are in agreement with the 
Stratonovich treatment of the circuit SDE. ((c)–(e)) Samples of input noises η τt  (top) and average of 1000 trajectories (bottom) for various 
initial conditions with τ = 0.6, 0.2 and  0.1 ms respectively for (c)–(e). From (b)–(e), one sees a shift of the equilibrium towards x  =  0, 
corresponding to a crossover from the Stratonovich solution to the Itô solution of the circuit SDE. Adapted with permission from [27]. 
Copyright 2013 Nature Publishing Group.
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its velocity) changes randomly in time. The robot’s motion 
is studied in the regime where the time shift is small and the 
orientation changes occur fast. The idealized SDEs describing 
the robot’s motion are thus

⎧
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where ( )x y,t t  represents the position of the robot, φt is its orien-
tation, ( )δ δ− −u x y,t t  is the speed of the robot, which is related to 
the local light intensity measured by the robot with a delay δ, 
and τ is the characteristic time with which the robot’s orienta-
tion changes. In order to realize the model experimentally and 
to perform numerical simulations, we linearized the first two 
SDEs (31), obtaining
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Importantly, in this form, they make sense also for negative 
δ. The stationary density (if it exists) of finding the robot at a 
position (x, y) is

( )
( )

ρ =
+ δτ

x y
Nu x y

,
1

,
.0 1� (33)

which represents a probability density if it is an integrable 
function (and in this case we choose the normalizing constant 
N so that the integral of ρ0 equals 1). An outline of the mathe-
matical derivation of equation (33) is provided in appendix E. 
The critical role of the condition δ τ= −  is clearly seen from 
this formula: as long as δ τ>− , the density is larger where 
u is smaller, but the relation reverses for δ τ<− . Therefore, 
for δ τ>−  the robot tends to spend more time in the region 
where u is smaller, in agreement with the natural intuition: 
once it gets there, it slows down, so it takes it longer to get 
out. However, the two time scales interact in a complicated 
way and the above intuition correctly predicts what is happen-
ing only when the delay is positive or when it is negative, but 
its magnitude is not too big compared to the noise correlation 
time. Beyond this value (i.e. for δ τ<− ) the behavior changes 
qualitatively. This effect is seen clearly in the experiment as 
well as in numerical calculations [62], as shown in figure 12.

The second part of the experiment studies many robots 
that influence each other’s motion through light fields each 

Figure 11.  Dependence of α on δ τ/ . α varies from 0.5 
(Stratonovich integral) to 0 (Itô integral) as δ τ/  increases. The 
solid line represents the theoretical results (equation (30)); the dots 
represent the experimental values of α for fixed δ = 0.4 μs and 
varying τ; and the squares the experimental values for fixed τ = 0.4 μs  
and varying δ. The error bars represent one standard deviation 
obtained by repeating the experimental determination of the ratio 
δ τ/  ten times. Adapted with permission from [27]. Copyright 2013 
Nature Publishing Group.

Figure 12.  Effect of sensorial delay on the behavior of an 
autonomous agent. The long-term behavior of a robot in the 
light intensity gradient generated by an infrared lamp changes 
depending on the delay with which it adjusts its speed in response 
to the sensorial input, i.e. the measured total light intensity. (a) 
For positive delays ( )δ τ= +5 , the tendency of the robot to move 
towards the high-intensity (low-speed) regions is enhanced, 
when compared to the case without delay. (b) For negative delays 
δ τ= −5( ) the robot tends to move towards the low-intensity (high-

speed) regions. In both cases, the trajectories are shown for a period 
of 5 s preceding the time indicated on the plot and the robot is at the 
final position. (c) Radial drift calculated from a 40 min trajectory 
for the cases of positive (circles) and negative (diamonds) delays. 
The solid lines correspond to the theoretically predicted radial 
drifts. Adapted with permission from [62].
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of them creates, as shown in figure 13. Each robot’s speed 
is a function of the total light intensity at its location (with 
the time delay as above). It is observed that when δ τ>− , the 
robots tend to aggregate, but for δ τ<−  they stay away from 
each other. This collective effect is a reflection of the single 
robot’s behavior studied above: for delays greater than τ−  a 
robot spends more time in the vicinity of other robots, which 
decreases its velocity by creating a stronger cumulative light 
field, and for delays smaller than τ−  a robot spends more time 
away from other robots, where its velocity is larger.

4.  Applications, future work and perspectives

As we have seen in the previous sections, there is often a need 
to derive effective and tractable mathematical models that 
reduce the number of degrees of freedom of real systems while 
still representing their complex nature. In fact, the exact mod-
eling of phenomena discussed in this review would require 
access to their microscopic dynamics, whose time scales are 
typically much shorter than the observable time scales. A fur-
ther reduction can be obtained by considering limits in which 
one or more natural time scales of the problem go to zero. We 
have also seen that the presence of multiplicative noise (in its 
multifaceted forms) leads to the appearance of noise-induced 
drifts in the effective SDEs. Importantly, recent experiments 
have been able to measure these noise-induced drifts and their 
consequences in the case of Brownian particles in thermal 

equilibrium with a heat bath [12, 26, 40, 41] and in the case of 
electric circuits [22, 27]. Even more importantly, at least one 
subsequent experiment [62] puts forward a concrete applica-
tion, by using a noise-induced drift to control the long-term 
behavior of autonomous agents.

We expect future research to focus on noise-induced drifts 
and on their dramatic consequences in many cases where 
SDEs with multiplicative noise are routinely employed to pre-
dict the behavior and evolution of complex physical, chemi-
cal, biological and economic phenomena. In particular, there 
is a need to study in more detail the nature and significance 
of noise-induced drifts in multidimensional systems. In fact, 
while several theoretical works have dealt with the multidi-
mensional case, all experiments performed until now focus on 
noise-induced drifts emerging in effectively one-dimensional 
systems, i.e. systems where the number of effective degrees of 
freedom has been reduced to one, even when they are intrinsi-
cally multidimensional. For example, in [62] the motion of the 
robots occurs in a plane, but the effective noise-induced drift 
is measured only along the radial coordinate.

Here we provide a list of topics of interest, focusing on 
effects that are important for applications and/or that can be 
verified experimentally.

	 •	More realistic experimental model systems. Electrical 
circuits are relatively easily controllable physical systems 
with damping and noise. As such, they provide a natural 
class of systems whose parameters can be manipulated to 
test the theory, e.g. to observe noise-induced bifurcations 
[22] and transitions [27]. However, they are also relatively 
simple physical systems. It will therefore be crucial to move 
towards experimentation in more relevant and realistic 
systems. For example, biological systems can be investi-
gated starting from simple bacterial colonies reacting to a 
time-varying environment in order to study whether, e.g. 
noise-induced bifurcation in the population dynamics may 
occur, and moving at a later stage towards more complex 
ecosystems. Economic systems can be analyzed by using 
available econometric data; for example, it would be fasci-
nating to study the possibility that booms and bursts in the 
stock market might be due to a noise-induced transition 
similar to the one described in section 3.3.

	 •	Effect of multiplicative noise on steady-state distribu-
tions. As we have seen in section 2 and, in particular, in 
figure 4, the presence of a noise-induced drift changes the 
stationary distribution of an SDE system (if it has one). 
While for systems satisfying the fluctuation-dissipation 
relation, e.g. in thermal equilibrium, potential landscape 
and steady-state (or, in this case, equilibrium) distribu-
tion are connected by the Boltzmann statistics [25], 
this is not necessarily the case for other systems [46]. 
Things become particularly tantalizing when considering 
multidimensional systems, where also non-conservative 
(e.g. magnetic) forces may be present. Overall, it will be 
interesting to explore the interplay between multiplicative 
noise, noise-induced drifts, non-conservative forces, and 
steady-state probability distributions both from theor
etical and experimental perspectives.

Figure 13.  Clustering and segregation in a swarm of autonomous 
agents as a function of sensorial delay. Simulation of the long-term 
behavior of an ensemble of 100 autonomous agents that emit a 
radially decaying intensity field and adjust their speed depending on 
the measured local intensity. Depending on the sensorial delay, the 
long-term behavior and large-scale organization are signifiicantly 
different. (a), (b) In the case of positive delays, the agents come 
together and form metastable clusters. (c), (d) In the case of 
negative delays, they explore the space, staying away from each 
other. Adapted with permission from [62].
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	 •	Noise-induced bifurcations. Noise-induced drifts can 
radically modify the properties of a dynamical system, 
making it undergo a bifurcation. Interestingly, one of the 
first works studying experimentally systems with multi-
plicative noise [22] addressed precisely the issue of how 
the transition from a monostable to a bistable behavior 
in a noisy electric circuit was affected by the presence 
of multiplicative noise (section 3.3 and figure 9). Also,  
a system similar to a van der Pol oscillator has been 
recently theoretically studied in this context [65]. These 
studies constitute a good starting point to explore more 
complex situations. In particular, we are planning to 
identify conditions under which the presence of noise 
and state-dependent damping induces specific types 
of bifurcations, e.g. saddle-node or Hopf bifurcations. 
Furthermore, we are planning to study models of popula-
tion dynamics, including, e.g. effects of randomness on 
Lotka-Volterra-type equations (see, e.g. Tang et al [66]). 
We emphasize that the very interesting theory of sto-
chastic bifurcations (see, e.g. [67, chapter 9]) is concerned 
with bifurcations of vector fields (or their absence) under 
adding individual realizations of the noise and thus has 
a different focus from the one proposed here. Similarly, 
Arnold [68] studies stability of equilibria of dynamical 
systems perturbed by individual noise realizations, rather 
than modified by the noise-induced drifts considered 
here.

	 •	Noise-induced drifts in thermophoresis. While it has 
already been suggested that noise-induced drifts might 
play a role in thermophoresis [30, 49], this is a subject 
that still needs to be investigated in detail both theor
etically and experimentally. In particular, in the presence 
of a colored noise, the damping term should be an integral 
of contributions with different delay times and one should 
study the noise-induced drift in the resulting stochastic 
integro-differrential equations.

	 •	Noise-induced drift in stochastic thermodynamics. 
Despite some very recent theoretical works [69–71], the 
interplay between noise-induced drifts and stochastic 
thermodynamics is still a largely unexplored and tanta-
lizing field of research.

	 •	Noise-induced drifts in noise-induced phenomena. 
Noise plays a crucial (and constructive) role in many 
phenomena such as Kramers transitions [51], stochastic 
resonance [72], and Brownian ratchets [73]. It will be 
fascinating to explore how multiplicative noises and 
noise-induced drifts can affect such phenomena.

	 •	Entropy production in the small-mass limit. Entropy 
production in stochastic systems has been a subject 
of numerous recent works (a systematic exposition is 
given in [74]). Celani et al [75] discuss the behavior of 
entropy production for the equation equivalent to SDE 
(23) with constant damping (and zero external force), 
where there is no noise-induced drift. We propose to 
study entropy production in the general SDEs (25). 
This may lead to a variational characterization of the 
noise-induced drift.

	 •	Noise-induced drifts in curved spaces. Another direc-
tion of future work is concerned with the diffusion of 
Brownian and active Brownian particles [63, 64] on sur-
faces. In addition to its intrinsic mathematical interest and 
beauty, diffusion on surfaces occurs naturally in biology 
(e.g. molecular complexes on a cell membrane, white 
blood cells on the surface of an alveolus) and in physics 
(e.g. colloids trapped on a membrane or interface). For 
example, Polettini [76, 77] has recently suggested an 
analogy between the motion of a Brownian particle 
constrained in a curved geometry (more specifically 
in one-dimensional curves embedded in a space of an 
arbitrary dimension) and in a temperature gradient. The 
techniques outlined in this review allow one to study the 
zero-mass and related limits of equations describing such 
systems. In particular, we are planning two theoretical pro-
jects. In the first one, we will present the Wiener process 
(Brownian motion) on a manifold as a zero-mass limit 
of an inertial system, justifying its use in mathematical 
modeling of overdamped systems of surface diffusion. In 
the second project, we will consider a particle moving on 
a two-dimensional surface by inertia, with rapid random 
changes of direction (as in the example discussed in 
section  3.4). Considering an active particle that rotates 
around its center, we aim to show that in the limit of 
fast rotations, the particle’s dynamics is described by 
the Wiener process in agreement with the general result 
of [78]. To complete these two projects we will couple 
the techniques presented here with those of stochastic 
differential geometry [79, 80]. Finally, we are planning a 
numerical study of diffusion on two-dimensional surfaces 
in the presence of interesting geometry, resulting in long-
term particle trapping, similarly to the results reported (in 
a different context) by Chepizhko and Peruani [81].

	 •	Quantum noise-induced drift. Another interesting 
research direction is to study noise-induced drifts in open 
quantum systems. The dynamics of such systems in the 
Markov approximation is described by quantum Langevin 
equations  (in the Heisenberg picture). We are planning 
to conduct an analysis of these equations, similar to the 
integration-by-parts technique described here. In some 
systems, the master equation (analog of the Kolmogorov 
equation of classical theory) may be more amenable to 
analysis, patterned in this case on the classical multiscale 
analysis (homogenization). Among others, we will study 
quantum Brownian particles whose coupling to the 
environment depends on position. A physical realization 
of such system is the motion of an impurity atom inter-
acting with a Bose–Einstein condensate. See also the recent 
review by Massignan et al [37] and the references therein.

In conclusion, the study of multiplicative noise and of the 
associated noise-induced drifts has recently become an active 
and fertile field of research. It opens several interesting ave-
nues towards studying new phenomena and offers exciting 
future research directions, with implications for both funda-
mental science and potential technological applications.
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Appendix A.  Finite-difference (FD) numerical 
simulations

The numerical integration of SDEs is discussed in detail in 
[4]; here we provide a primer on how to integrate SDEs with 
multiplicative noise accounting for the integration convention.

In the FD integration of an ordinary differential equa-
tion  (ODE), the continuous-time solution x(t) of the ODE 
is approximated by a discrete-time sequence xn, which is 
the solution of the corresponding FDE evaluated at regular 
time steps = ∆t n tn . If ∆t is sufficiently short, ( )≈x x tn n . For 
example, in the case of a 1st order ODE, the FDE is obtained 
by perfoming the following substitutions:

( )

( ) −
∆
+

�

�

x t x

x t
x x

t

,

˙ .

n

n n1

The solution is then obtained by solving the resulting FDE 
recursively for xn+1, using the previous value xn as the initial 
condition.

Let us now consider the SDE

x g x t x Wd d d ,t t t t( ) ( )σ= + α�� (A.1)

where the noise term is to be integrated with the convention 
α. As we have seen at the end of section 2, the SDE (A.1) is 
equivalent to

( ) ( ) ( ) ( )ασ
σ

σ= + +x g x t x
x

x
t x Wd d

d

d
d d ,t t t

t
t t� (A.2)

where the multiplicative noise term is an Itô integral. The 
numerical integration of the first two terms on the right-hand 
side of SDE (A.2) is straightforward and can be performed as 
for the case of ODEs. In the FDE, the noise term, i.e. ( )σ x Wdt t, 
is replaced by ( )σ x wn n, where wn is a Gaussian random num-
ber with zero mean and variance ∆t1/ . Thus, the resulting 
FDE corresponding to SDE (A.1) (and SDE (A.2)) is

( ) ( ) ( ) ( )ασ
σ

σ= + ∆ + ++x x g x t x
x

x
t x w

d

d
d .n n n n

n
n n1� (A.3)

This approach can be straightforwardly generalized to vecto-
rial systems.

Appendix B.  Derivation of the spurious drift of a 
Brownian particle

SDE (14) is equivalent to the system

( )
( ) ( )

=

= − +

⎧
⎨
⎪
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x v t

v
F x

m
t

k T

mD x
v t
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m D x
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d d ,

d d d
2
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t
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t
t

t
t

B B� (B.1)

where ∫ η=W sdt
t

s0
 is the time integral of the white noise7. The 

evolution of a probability density ( )ρ x v,  under the stochastic 
dynamics defined by this system is described by the Fokker–
Planck (in mathematics literature: forward Kolmogorov) 
equation

( )
( )

( )
( )

( )ρ ρ ρ ρ ρ= − − +
k T

m D x
v

F x

m

k T

mD x
v ,t

t
vv x v v

B
2

2
B

� (B.2)

where the subscripts denote partial derivatives. To find the 
steady-state probability density, we need to solve this equa-
tion with the left-hand side equal to zero. A direct calculation 
shows that it is satisfied by the Boltzmann–Gibbs probability 
distribution given by equation (16).

We now outline the derivation of the correct limiting SDE 
for →m 0 and the corresponding noise-induced drift. We start 
by rewriting the system (B.1) as

( ) ( ) ( ) ( )

=

= + −

x v t
F x D x

k T
t D x W

m
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D x v

d d
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In integral form, SDE (B.3) becomes
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where the first integral term on the right-hand side is the 
contribution due to the deterministic (external) forces and 
the next term is an Itô integral. In order to derive the noise-
induced drift, we will study the limiting behavior for →m 0 
of the last term. We start by integrating it by parts, obtaining

( ) [ ( ) ( )]

( )

∫

∫

− = −

+

m

k T
D x v

k T
mv D x mv D x
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0 B B
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2
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(B.5)

Using equation (17), the boundary terms in equation (B.5) go 

to zero with →m 0 and, replacing the kinetic energy mvs
1

2
2( ) by 

7 Note that in SDEs (B.1) there is no multiplicative noise because the noise 
term for vt is multiplied by a function of xt (not of vt).
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its average k T1

2 B( ) in the last integral, we obtain the effective 
SDE (18).

We emphasize that the averaging of the kinetic energy is 
far from trivial and needs a careful justification; a sketch of the 
argument (in a more general case) will be given in section 3.2. 
The physical picture is that the velocity vt is a fast variable that 
homogenizes in the →m 0 limit. The term adiabatic elimina-
tion is also used in literature to describe this phenomenon. 
The above result was proven rigorously by Hottovy et al [48] 
and by Herzog et al [82]. Related results were obtained ear-
lier by Hänggi [19] and by Sancho et al [39]. Interestingly, 
Marchesoni [83] has recently suggested that the spurious drift 
at zero current could possibly provide an option to design a 
Maxwell demon.

Appendix C.  Derivation of noise-induced drift for 
systems not satisfying the fluctuation-dissipation 
relation

To analyze the general SDE (23), we follow the argument in 
[48], concentrating on the main steps and leaving out techni-
cal details and estimates. The first step in the derivation of the 
limiting equation  is the same as in the special case studied 
in appendix B: introducing the velocity vt, we rewrite SDE  
(24) as

( )
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The first two terms on the right-hand side do not depend 
explicitly on m and thus remain unchanged in the limit →m 0. 
To derive the limiting contribution of the third term, we use 
the product rule:
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While the equipartition theorem no longer holds in this gen-
erality, we will show that the fast oscillations of the veloc-
ity allow to replace in the integrals the expression mvt

2 by a 
function of xt (homogenization or adiabatic elimination of the 
fast variable vt [54]). This is done by first showing that mvt 
converges to zero as →m 0 (a technical step, involving careful 
estimates [48]). It follows that in the integral form of the last 
equation, i.e.

( ) ( ) ( ) ( )
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the first term on the right-hand side vanishes in the limit. The 

integrand in the second term equals ( ) ( )γ γ−x mvt
x

x t
2 d

d
2t . To find 

its homogenization limit, we study the expression [( ) ]d mvt
2 . 

On the one hand, this quantity becomes zero when →m 0. On 
the other hand, using the Itô product formula [5], we have

( ) ( ) [ ( )]⋅ = +d mv mv mv d mv d mv2 .t t t t t
2� (C.4)

Substituting for m vd t the expression on the right-hand side of 
SDE (23), we obtain

[( ) ] [ ( ) ( ) ( ) ] ( )γ σ σ= − + +d mv mv F x t x v t x W x t2 d d d d .t t t t t t t t
2 2

� (C.5)
The first and third terms on the right-hand side converge to 
zero, since mvt does (the rigorous argument again requires 
some care [48]). Since in the limit →m 0, the whole expres-
sion converges to zero, it follows that mv tdt

2  is asymptotically 

equivalent to ( )
( )

σ
γ

tdx

x2
t

t
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. We thus obtain from equation (C.3)
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in the zero mass limit. Substituted into SDE (C.1), this gives 
the limiting SDE (24).

The method described above can be adapted to the multi-
dimensional case, i.e. to derive the limit of SDE (25) as the 
mass goes to zero. The main idea is the same as in the one-
dimensional case, but calculations become more complicated 
and the description of the noise-induced drift is more involved: 
it is expressed using a unique solution of a matrix equation (the 
Lyapunov equation). The final result becomes more implicit, 
since the solution of the Lyapunov equation  is, in general, 
expressed as an integral over an auxiliary parameter. In an 
important class of cases, the Lyapunov equation has an explicit 
solution and the limiting equation becomes explicit as well.

The precise form of the limiting equation is

[ ( ) ( ) ( )] ( ) ( )γ γ σ= + +− −x x F x S x x x Wtd d d ,t t t t t t t
1 1� (C.7)

where ( )S xt  is the noise-induced drift whose i th component 
equals

( ) [( ) ( )] ( )∑ γ=
∂
∂

−x x xS
x

J ,i
j l l

ij jl
,

1
� (C.8)

and J is the matrix solving the Lyapunov equation

γ γ σσ+ =∗ ∗J J .� (C.9)

When all eigenvalues of γ have positive real parts, the unique 
solution is given by the formula [84, chapter 11]

∫ σσ= γ γ
∞
− ∗ − ∗

yJ e e d .y y

0
� (C.10)

Note that when γ γ= ∗ commutes with σσ∗, the solution of 

the Lyapunov equation is explicitly given by γ σσ= − ∗J 1

2
1 .

Appendix D.    Derivation of the noise-induced 
drift for systems with colored noise and delayed 
feedback

To derive the limiting SDE (29), we approximate the delay 
equation  by an SDE without delay and apply the method 
based on integration by parts outlined in appendix C. First, we 
define a time-shifted process

= δ−z xt t� (D.1)

and rewrite the equation as

( )σ η= − +δ δ
τ

+ +z kz F z td d .t t t t� (D.2)

Introducing the process

Rep. Prog. Phys. 79 (2016) 053901



Report on Progress

18

=v
z

t

d

d
,t

t
� (D.3)

we use approximations

δ≈ +δ+z z vt t t� (D.4)

and, accordingly,

δ≈ +δ+z z vd d d .t t t� (D.5)

Substituting these expressions into SDE (28) and solving for 
vd t, we obtain the system
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This system can be studied using the method outlined in 
appendix C: we add the equations  describing the process 
ητ to the system and apply the general method of [48] to 
identify the limiting system which matches the experimental 
results.

In [61], the same method is applied to a much more general 
system of delayed SDE driven by several colored noises with 
couplings that are functions of the delayed dynamical variables:

( ) ( )η= + δ
τ

−x f x g xt td d d ,t t t t� (D.7)

where ( )=x x x x, ..., , ...,t t t
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tor (the superscript ‘T’ denotes transposition), 
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1 T is a vector-valued func-
tion describing the deterministic part of the dynamical system,
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is a matrix-valued function, ( )=δ δ δ δ− − − −x x x x, ..., , ...,t t t
i

t
m1 T

i m1
 

is the delayed state vector (note that each component 
is delayed by a possibly different amount δ > 0i ), and 

( )η η η η=τ τ τ τ, ..., , ...,t t t
j

t
n,1 , , T is a vector of independent noises 

ητ j, , where ητ j,  are colored noises (harmonic noises [85]) with 
characteristic correlation times τj, as described in detail in 
[27]. We study the limit of this SDE as the parameters δi and 
τj all go to zero at the same rate, i.e. δ = εci i , τ = εkj j  where 
ci and kj are constants and →ε 0. Using a modification of the 
method outlined in appendix C, we obtain the limiting system
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The noise-induced drift terms are again of the Itô-Stratonovich 
correction type, entering with coefficients that are explicit 
functions of the ci and kj. See also [90] for a more precise 

result replacing ( )+ −⎜ ⎟
⎛
⎝

⎞
⎠1 by exp

c

k

c

k
p

j

p

j

Appendix E.    Derivation of noise-induced drift for 
systems with sensorial delay

In order to derive equation  (33), we will study the approxi-
mate SDEs (32) and derive limiting SDEs for xt and yt in the 
limit when τ and δ go to zero at the same rate. It will be seen 
that, within the approximation discussed below, these equa-
tions reproduce the experimental results obtained in [62] and 
discussed in section 3.4, including a qualitative change of the 
robot’s behavior at δ τ= − .

Solving the first two SDEs (32) for ẋt and ẏt, we obtain the 
system
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which, assuming that δ τ �/ 1, we approximate further by
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As mentioned earlier, the above system is meaningful for 
both positive and negative δ; in fact, it is for ‘negative time 
delay’ (δ< 0) that we see the most interesting phenomena. 
We are going to study its limit when δ and τ go to zero at 
the same rate, which is consistent with our earlier assumption 
δ τ �/ 1.

The methods described in the previous appendices do not 
apply to the above system. Instead, we use the multiscale 
method, whose mathematical details and foundations can be 
found in [54] or in [53]. The essence of the method is to study 
a partial differential equation  (the backward Kolmogorov 
equation) associated with the system (E.2), take its limit as 
→ε 0, and recover the limiting SDE system from the result. 

The calculations are involved and we refer the reader to [62] 
for details. The limiting Kolmogorov equation is
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To obtain a meaningful limit, we scaled the velocity by τ . 
This means that to compare the result with experiment, we 
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have to substitute τ=u v and rewrite the equation in terms 
of v:
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According to diffusion theory [5], the limiting SDEs for xt and 
yt, which correspond to this Kolmogorov equation, are
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where W (1)and W (2) are independent Wiener processes. Two 
remarks are in order. First, the angular variable φ is no lon-
ger present in the limiting equations: similarly to vt in the 
Brownian motion case, it is a fast variable that gets adia-
batically eliminated in the limit. Second, the limiting SDEs 
involve two independent sources of noise, while only one was 
present in the original ones. This system correctly reproduces 
the limiting distribution (statistics) of the paths solving the 
original system whose asymptotics is, however, not studied 
here for individual realizations of the noise. Rather, for each 
value of τ and δ (with the ratio δ τ/  kept constant) we consider 
the distribution of the solutions and study the limit of this 
distribution, i.e. of the probability measure on the path space. 
This mode of convergence is called weak [86]. The pres-
ence of two independent noise sources in the limiting system 
makes it unlikely that one can prove a stronger convergence 
statement, including any information about the solutions’ 
behavior for a fixed realization of the noise. In particular, 
such a statement would require a natural definition of two 
independent Wiener processes W (1) and W (2) in terms of a 
single Wiener process W.

From SDEs (E.5) one obtains, applying the Itô formula [5] 
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Let us note that in the radially symmetric case, in which  
v(x, y)  =  v(r) we may obtain from here after some calculations  
(with an aid of the Lévy theorem [5, theorem 8.6.1]) the 
limiting equation for the evolution of the radial process
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where the Wiener process B is defined in terms of W (1) and 
W (2) by
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Going back to general case, we now use a standard method 
in diffusion theory to find the density of the stationary dis-
tribution of the stochastic evolution governed by the limiting 
SDEs (E.5). Namely, we consider the adjoint to the backward 
Kolmogorov equation  (equation (E.3)), which is called for-
ward Kolmogorov or Fokker–Planck equation:
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This equation  describes the time evolution of a probability 
density under the dynamics of the corresponding SDE system. 
The stationary density given by equation (33) was obtained by 
equating its right-hand side to zero.
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