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ABSTRACT

A COMPOUND GRAPH LAYOUT ALGORITHM WITH
SUPPORT FOR PORTS

Alihan Okka

M.S. in Computer Engineering

Advisor: Uğur Doğrusöz

October 2020

Information visualization is a field of study that aims to represent abstract data

in an aesthetically pleasing and easy to comprehend visual manner. Various

approaches and standards have been created to reinforce the discovery of un-

structured insights that are limited to human cognition via visual depictions.

Complex systems and processes are often modelled as graphs since it would be

difficult to describe in text. A type of visualization, graph drawing, addresses

the notion of creating geometric representations of graphs. There are plentiful

research directed to designing automatic layout algorithms for visualizing graphs.

Nevertheless, a limited number of studies utilize ports, which are dedicated con-

nection points on the locations where edge ends link to their incident nodes.

We propose a new automatic layout algorithm named CoSEP supporting port

constraints on compound nodes used for nested levels of abstractions in data.

The CoSEP algorithm is based on a force-directed algorithm, Compound Spring

Embedder (CoSE). Additional heuristics and force types are introduced on top

of existing physical model. Using CoSE’s layout structure as a baseline enables

CoSEP to handle non-uniform node sizes, arbitrary levels of nesting, and inter-

graph edges that may span multiple levels of nesting. Our experiments show that

CoSEP significantly improves the quality of the layouts for compound graphs

with port constraints with respect to commonly accepted graph drawing criteria,

while running in at most a few seconds, suitable for use in interactive applica-

tions for small to medium sized graphs. The CoSEP algorithm is implemented

in JavaScript as a Cytoscape.js extension, and the sources along with a demo are

available on the associated GitHub repository.

Keywords: Information Visualization, Graph Visualization, Graph Drawing,

Graph Layout, Force Directed Graph Layout, Compound Graphs, Graph Al-

gorithms, Port Constraints.
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ÖZET

BAĞLANTI KISITLARINI DESTEKLEYEN BİLEŞİK
ÇİZGE YERLEŞTİRME ALGORİTMASI

Alihan Okka

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Danışmanı: Uğur Doğrusöz

Ekim 2020

Bilgi görselleştirme, soyut verileri estetik açıdan hoş ve görsel açıdan anlaşılması

kolay olarak temsil etmeyi amaçlayan bir çalışma alanıdır. Görsel tasvirler ile

insan kognisyonuyla sınırlı kavranılan içerikleri keşfedip pekiştirmek için çeşitli

yaklaşımlar ve standartlar oluşturulmuştur. Karmaşık sistemler ve süreçler

metin olarak açıklamak zor olduğu için genellikle çizge olarak modellenir. Bir

görselleştirme türü olan çizge çizimi, çizgelerin geometrik temsillerini oluşturan

kavramları ele alır. Çizgeleri görselleştirmek için otomatik yerleştirme algorit-

maları tasarlamaya yönelik birçok araştırma vardır. Fakat sınırlı sayıda çalışma,

kenar uçlarının köşelere bağlandığı spesifik noktalar olan bağlantı noktalarını

kullanır. Verilerdeki iç içe soyutlama seviyeleri için kullanılan bileşik çizgeler

üzerindeki bağlantı noktası kısıtlarını destekleyen CoSEP adlı yeni bir otomatik

yerleştirme algoritması öneriyoruz. CoSEP algoritması, güce dayalı bir algoritma

olan Compound Spring Embedder’ı (CoSE) baz almaktadır. Mevcut fiziksel mod-

elin üzerine ek olarak sezgisel yöntemler ve kuvvet türleri tanıtılmıştır. CoSE’nin

yerleştirme yapısının temel olarak kullanılması, CoSEP’in tek tip olmayan köşe

boyutlarını, isteğe bağlı iç içelik seviyesi, gelişigüzel iç içe yerleştirme düzeylerini

ve birden fazla iç içe geçmiş seviyelerine yayılabilen çizgeler arası kenarların

üstünden gelmesini sağlar. Deneylerimiz CoSEP’in, genel kabul görmüş çizge

kriterlerine göre bağlantı noktası kısıtı olan bileşik çizgelerin yerleştirme kalitesini

önemli ölçüde artırdığını, aynı zamanda küçük ve orta büyüklü çizgeler için

etkileşimli uygulamalarda kullanıma uygun, en fazla birkaç saniyede çalıştığını

göstermektedir. CoSEP algoritması JavaScript’te Cytoscape.js uzantısı olarak

uygulanmıştır ve bir demo ile birlikte kaynaklar ilgili GitHub deposunda mevcut-

tur.

Anahtar sözcükler : Bilgi Görselleştirme, Çizge Görselleme, Çizge Çizimi, Çizge
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Yerleşimi, Güce-dayalı Çizge Yerleşimi, Bileşik Çizgeler, Çizge Algoritmaları,
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Chapter 1

Introduction

In recent decades, technology has revolutionized our capability to store and re-

trieve huge amounts of data. Petabytes of information are processed in just a

day. Researching, analyzing and decision making in large scale have become

much easier as a result. However, if the information is unorganized or rather

indigestible, this can cause confusion and paralysis by analysis. Thus, the main

problem nowadays is not about having sufficient data, but rather the struggle has

transformed into finding a way to turn raw data into an understandable form.

The concept of visual thinking is a phenomenon in which information can be

expressed and understood via virtual processing. Human brains are wired to

swiftly interpret and remember visual depictions. In ancient times, humans have

carved stone tablets to keep track of finance. Huge chunks of land were surveyed

and drawn as maps to guide people. Diagrams are used to explain theoretical

models. Everyday we process information in visual form such as logos, charts

and drawings. These visual representations are powerful tools that give shapes to

abstract concepts making them easier to comprehend. Visualizations can assist in

discovering “unstructured” relations or emphasize properties among data entities.

Furthermore, utilizing these visual forms have made information visualization a

compelling field of study. This field provides techniques in representing abstract

data (e.g. numerical or textual description) into intelligible visual form.
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(a) Textual representation

(b) Graphical representation

Figure 1.1: Textual vs graph drawing of an example social network

Information visualization consists of unique methods, including cartogram,

heatmaping, dendrogram and concept mapping. In this thesis, our focus is on

the branch that combines visualization with graph theory named graph drawing.

A graph is an abstract structure consisting of objects called nodes and the re-

lationship between these objects are called edges. When the data has relational

information, graph based visualizations are convenient as the overall structure can

be easily mapped to a graph. Thus, graphs are commonly used in many areas.

For instance in social networks, people can be represented as nodes and friendship

relations between them with edges. This is exemplified in Figure 1.1 where the

textual representation of a simple network is drawn as a graph. In biology, protein
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production paths and genetic maps can be characterized by graphs. In computer

science, a system along with its actors, activities, individual components, and

interactions are depicted via Unified Modeling Language diagrams.

The central issue in graph drawing is to situate nodes and edges in such a way

that the underlying information is best revealed. Thus, due to human cognition,

the limitations to graph drawing come in the form of readability. If the graph

drawing area is too large, focusing on the graph may become a problem. Size of

the represented graph is also a similar matter. Nodes or edges overlapping one

another may confuse the reader. Thus, in order to identify if a graph drawing

is “good” or “bad”, there needs to be metrics to evaluate them. There are

established aesthetic criteria that quantifies the readability of a graph. Number

of edge crossings, number of edge bends, drawing area and maximizing symmetry

are some of them.

Graphs can evidently be drawn onto the plane by hand. However, manually

placing every object is an incredibly time consuming task [1]. Especially con-

sidering the complexity of large graphs. Hence, designing good automatic graph

layout algorithms are crucial in building real-time interactive graphical tools for

visual analysis.

There has been ample research done on general graph drawing [2] but consider-

ably less on compound graph layout [3]. The majority of such work disregard node

dimensions (or assume them to be uniform) and neglect specific connection points

of edges to nodes. Both of these are common requirements in real life maps (Fig-

ure 1.2). Towards this end, this thesis presents a new layout algorithm CoSEP.

CoSEP builds on a previous compound spring embedder algorithm named CoSE,

adding support for port constraints on edges while respecting non-uniform node

dimensions and compound structures in general graphs. The CoSEP algorithm

is implemented as an Cytoscape.js extension [4] in an open source library called

cytoscape.js-cosep. The algorithm is available online on GitHub.

The following is how the rest of the theis is structured: Chapter 2 presents

basic graph theory concepts and graph visualization techniques that are used in

3
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(a)

(b)

Figure 1.2: Part of a visual scripting graph implementing character movement [5]
(a) Part of a flow graph used in representing WiFi transmission [6] (b)

this work. Also, information about the CoSE layout algorithm is given. Ports and

different types of port constraints are introduced as well. In Chapter 3 we intro-

duce layout algorithms that incorporate port constraints in their graph drawings.

Also, graph visualization library Cytoscape.js is presented. Chapter 4 explains

the novel heuristics developed in CoSEP algorithm in detail. In Chapter 5, we

analyze the results of our CoSEP implementation with respect to commonly ac-

cepted graph drawing criteria (namely: ratio of properly oriented edge ends and

number of edge-edge crossings).
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Chapter 2

Background

In this chapter, a summary of the background information regarding the basis

of this thesis is presented. Firstly, introductory material about graphs, graph

drawing and automated layout algorithms are given. Afterwards, the Compound

Spring Embedder (CoSE) algorithm which our algorithm Compound Spring Em-

bedder With Support for Ports (CoSEP) is based upon is reviewed in detail.

Finally, ports and different types of port constraints are described.

2.1 Graphs

A graph is a mathematical structure that can model relations so that humans

can make sense of the underlying data. Depending on the requirements of these

systems, graphs can have various properties. Since our work revolves around

visualizing graphs, we start with this fundamental structure.

More formally, a graph or a network G = (V,E) consists of two sets, where V

is the set of nodes (vertices) and E is the set of distinct pairs called edges. An

edge e = {u, v} is the relationship between nodes u and v, where u, v ∈ V . These

nodes u and v, are called the endpoints of edge e. For example, Figure 2.1(a)

depicts a simple graph where V = {u, v, w, z} and E = {{u, v}, {v, w}, {w, z}}.
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A pair of distinct nodes u and v are said to be adjacent if they are connected

by an edge e = {u, v}. Also, nodes u and v are incident to edge e. Likewise, a

pair of distinct edges e and f are adjacent if they have a common endpoint.

If an edge starts and ends at the same node, then that edge is called a self-loop.

Furthermore, there can be more than one edge connecting between a pair of nodes

referred to as multi-edges. Figure 2.1(b) illustrates these concepts where node z

contains a self-loop, and nodes v & w are connected by two edges. A simple graph

does not contain any self-loops or multi-edges.

(a) (b)

Figure 2.1: Some sample small graphs

Edges in a graph may represent a sense of direction. In that case, node pairs

that have an edge between them are considered ordered. If all node pairs in a

graph G are ordered, then graph G is a directed graph. On the other hand, if all

node pairs are unordered, then graph G is a undirected graph.

The number of edges incident to a node u is called the degree of node u. When

the graph is directed, the total number of incident edges of a node u, where node

u is the target endpoint is the indegree of node u. Likewise, the outdegree of a

node u is the total number of incident edges that have node u as their source

endpoint.

A subgraph G′ = (V ′, E ′) of a graph G is a graph, where each node in V ′

belongs to V and each edge in E ′ belongs to E. Subgraphs of a graph can be

obtained by removing edges and/or nodes from said graph.

A path in a graph is a chain of adjacent edges connecting a sequence of nodes.

6



A simple path is a path with non-repeating nodes. A circuit is a path that starts

and ends at the same node. A cycle is a circuit in which all nodes are distinct

except for the starting and ending nodes. A graph with no cycles is an acyclic

graph. A graph is connected if any two nodes are connected by a path. Otherwise,

the graph is called disconnected.

A tree is a graph in which all pair of nodes are connected by a single path.

A forest is a disconnected graph where each component is a tree. In a rooted

tree, one particular node is distinguished as the root. A node u is an ancestor

(descendant) or parent (child) of node v if u lies in the path to (from) the root

node from (to) v. The root has no parent and every other node is its descendant.

A compound graph C = (V,E, F ) contains a set of nodes V , a set of adjacency

edges E, and a set of inclusion edges F [3]. The inclusion graph T = (V, F ) is a

rooted tree, defined on nodes V and inclusion edges F . However, no adjacency

edge may connect a node to one of its descendants or ancestors. An example

is given in Figure 2.2, where V = {u, v, w, z, a, b}, E = {{u, v}, {v, w}, {w, z}}
and F = {(a, v), (a, w), (a, b), (b, z)}. Nodes a and b are both compound nodes.

Moreover, node b is parent node of z, but a child node of a.

Figure 2.2: Sample of a compound graph
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2.2 Graph Visualization

A drawing or layout of a graph is the visual representation of the graph’s math-

ematical structure. Graphs can be displayed in a 2D plane or 3D space. Yet, 2D

graph drawings where graphs are drawn as node-link diagrams are more frequently

used in exploring data. In general, nodes are represented by simple shapes (e.g.

point, rectangle, circle) and edges as straight or curved edges. Directed edges

can be indicated with arrows at edge ends. Visual elements of the graph are

also crucial in increasing the comprehension level of the underlying graph data.

Thickness of the edge lines, opacity of the edges or nodes, dimensions and colors

of the nodes are some of the examples that are important in graph visualiza-

tion. Ultimately, research in graph drawing focuses on both designing automated

layout algorithms and real-time interactive graphical tools.

Layout algorithms calculate the positions of nodes and edges on a 2D plane

in order to make the graph most visually appealing. Even with simple graphs,

positions of the graph objects is vital in creating readable drawings. Figure 2.3

shows an example of a graph being laid out by two different layout algorithms.

The layout algorithm in Figure 2.3(a) is much simple and easy to compute al-

gorithm. Nevertheless, the algorithm fails to properly display the edge (v1, v7)

as it overlaps edges (v1, v4) and (v4, v7). Thus, the circular AVSDF algorithm

in Figure 2.3(b) requiring additional execution time can be justified in this case.

Considering the complexity of real life systems, layout algorithms can often be

application dependent. A new complex system that is modelled by a graph can

call for a different graph structure or a different set of layout requirements. In

that case, a new layout algorithm is designed to tackle these additional problems.

Di Battista et al. [2] proclaims that there are three fundamental concepts defin-

ing the layout requirements for a “nice” drawing. These concepts are drawing

conventions, drawing aesthetics and drawing constraints. Drawing conventions

are the commonplace rules which must be fulfilled. For instance, straight line

drawings represent each edge as a straight line segment whereas orthogonal draw-

ings represent them as a chain of horizontal and vertical line segments. Drawing
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(a) (b)

Figure 2.3: A grid layout (a) and a circular AVSDF [7] layout (b) performed on
the same graph

aesthetics are visual criteria that measures the comprehensibility aspect of the

drawing. Although these criteria can be subjective, many standards have been

put in place by performing empirical studies regarding the human understanding

of drawn graphs [8]. Some of the accepted common criteria are [2]:

• Minimize the number of edge crossings

• Minimize drawing area

• Minimize node overlaps

• Maximize symmetry

• Uniform edge length

Selecting a set of aesthetic criteria is often an application dependent process as

some of them are contradictory in nature. Sometimes, a certain criterion takes

precedence over others as it best defines the quality of the drawing. Lastly,

drawing constraints are additional rules imposed on a subgraph rather than the

whole graph. For example, forcing a particular node to be left of another certain

node or forcing a specific node to be at the center of the drawing.
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Usually, one can not effectively analyze data by looking at a static image of a

graph. In order to overcome this issue, graphical tools add the ability to interact

with the graph. Thus, interaction and navigation techniques are used together

with layout algorithms in graph visualization tools. Examples of interaction in-

clude the capability to alter graph topology by adding / removing graph objects,

moving nodes around the canvas, and highlighting specific graph objects. A com-

prehensive overview can be found in [9]. As for large networks, its complexity

has to be dealt with so as to not confuse the user. Complexity management tech-

niques range from simple rendering methods like panning, zooming and ghosting,

to collapsing the compound nodes of a hierarchical network, to temporarily hiding

unwanted parts of the topology [10].

2.3 Automated Layout Algorithms

The past two decades have seen a fast growing body of research dedicated to

designing algorithms to construct aesthetically pleasing drawings of graphs [2].

There are numerous layout algorithms in the literature under various categories.

However, only two types of layout algorithms, namely force-directed layout and

Sugiyama’s framework [11] are relevant to this work. The underlying physical

model of both CoSE and CoSEP algorithm is an altered force-directed model

(see Section 2.4 for details). On the other hand, the related methods which have

different forms of port constraints are all orthogonal drawings utilizing Sugiyama’s

framework.

2.3.1 Force-directed Algorithms

Force-directed layout algorithms (aka spring embedders) are arguably the most

popular approach to automatic graph layout. One of the pioneers of the force-

directed model is the Eades algorithm [12]. Eades is the first one to introduce

physical forces of attraction and repulsion. The basic idea is to simulate a phys-

ical system in which nodes behave as electrically charged metal rings, and edges
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represented by physical springs of a specified ideal length. Springs exert forces to

their connected objects proportional to the deviation from their “natural” length.

Instead of following Hooke’s law, Eades uses his devised logarithmic springs for

the attraction force. In order to avoid node-to-node overlaps, nodes in the graph

repel each other. The equations for the attraction (spring) and repulsion forces

are the following [13]:

fspring(pu, pv) = cσ · log
‖pu − pv‖

l
· #      »pupv (2.1)

frepulsion(pu, pv) =
c%

‖pu − pv‖2
· #      »pupv (2.2)

where nodes u, v ∈ V , vectors pu = (xu, yu) and pv = (xv, yv) are of node positions,

cσ and c% are constants decided empirically, and l is the natural length of a spring.

The layout algorithm simulates this underlying physical model by moving en-

tities corresponding to nodes iteratively with respect to total forces acting upon

them, until the system of entities reach a relatively stable state, in which the

overall energy is minimal. Eades focuses on graphs with up to 30 nodes and pro-

claims that “Almost all graphs reach a minimal energy state after the simulation

step is run 100 times” [12]. Thus, time complexity of the Eades algorithm is

O(|V |2 + |E|)). However, notice that today’s graphs are much larger than those

at the time. Hence, the number of steps required typically go a lot more than a

100 with today’s real-life graphs.

Figure 2.4 illustrates a force-directed algorithm’s physical modeling of a undi-

rected graph. The physical model is “let go”, and the movement of the nodes are

simulated. After reaching an equilibrium state, the model can be reverted and

the corresponding graph can be drawn.

Fruchterman and Reingold (FR) presents an improved version of the Eades

algorithm [14]. Similar to the Eades algorithm, FR treats nodes as “atomic

particles or celestial bodies” that repel one another and adjacent nodes attract

11



Figure 2.4: A physical analogy of the force-directed algorithms [13]

each other via springs. Furthermore, FR algorithm aims to distribute nodes

evenly across the entire drawing area. The equations for the attraction (spring)

and repulsion forces that resemble Hooke’s law are as follows [14]:

fspring(pu, pv) =
d2

k
(2.3)

frepulsion(pu, pv) = −k
2

d
(2.4)
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where d is the distance between two nodes and k is a constant representing the

optimal distance between nodes. k can be calculated as:

k = C ·
√
area

|V |
(2.5)

where constant C is found experimentally and area is the size of the drawing

area.

In addition to the force scheme, FR introduces the concepts of temperature and

cooling. Temperature is a concept that directly limits the movement of nodes.

The idea is that layout starts with a high temperature value, and as nodes move

around, temperature of the system cools down. In other words, as the layout

starts to stabilize, adjustments made to the nodes gets smaller. This is done to

prevent excessive node movements that can happen when the system is close to

an equilibrium. Moreover, nodes have a maximum amount of distance they can

move in each iteration, also limiting any drastic movement.

FR’s basic algorithm still has the same time complexity as the Eades algorithm.

In each iteration, calculations of spring forces take O(|E|) time and repulsion

forces take O(|V |2) time. Thus, FR focuses on reducing the time complexity

of repulsion force calculations. The observation FR makes is that node pairs

that are far way from one another produce repulsion forces that are negligible.

In order to remove such calculations, FR presents the grid-variant algorithm. In

this algorithm, the drawing area is divided into a grid of squares in each iteration.

Every vertex belongs to a particular grid depending on its position on the canvas.

A node considers repelling only the nodes that are placed in the same grid or the

neighboring grids. For instance in Figure 2.5, node v can repel only node q

as node s is considered but rejected for being too far away, and node r is not

in a neighboring grid. Therefore, the time complexity mentioned above can be

asymptotically reduced to O(|E|+ |V |). Similar to Eades, FR focuses on graphs

with up to 40 nodes and simulation is run for 50 iterations but recent experiments

show that the algorithm scales fairly well for small to medium sized graphs (up

to several thousands nodes).
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Figure 2.5: Calculating repulsion forces using the grid-variant [14]

Due to force-directed algorithms’ simple design, there are numerous force-

directed algorithms published in recent decades. The force model approach is

utilized in many applications like visualizing clustered graphs [15] and biological

process description maps [16]. A detailed survey analyzing different adaptations

of the force-directed algorithm can be found in [17].

2.3.2 Sugiyama Framework

The most popular graph drawing method on directed graphs is the layered ap-

proach introduced by Sugiyama et al [11]. Sugiyama’s framework is supported

by almost all graph drawing libraries. This approach places nodes in a series of

layers or hierarchies such that almost all edges point in the same direction. The

classic Sugiyama algorithm’s orientation is top-to-bottom, so layers are aligned

horizontally. The algorithm has five steps as follows (Figure 2.6):

• Removing Cycles: In order to make sure that the majority of the edges point

towards the same direction, cycles of the graph are temporarily eliminated

by reversing minimal subset of edges.
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Figure 2.6: A directed graph drawn according to the Sugiyama framework [18]
with polyline edge routing
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• Layer Assignment: Nodes of the graph are assigned to subsequent horizontal

layers. A feasible assignment is one where all edges have correct orientation.

Furthermore, edges should only connect to nodes on adjacent layers. If

that’s not the case and edges span more than one layer, such edges are

replaced by a series of connected dummy nodes and edges to ensure this.

• Crossing Reduction: Edge crossings between layers are removed by rear-

ranging the nodes in each layer. Sugiyama proposes a method for this

reordering called the barrycenter heuristic. This heuristic is simply based

on placing a node at the average of the x-coordinates of its neighbors. It

only considers two layers at a time where one layer is fixed and the other

layer is reordered. In order to reorder every layers, the layer sweep algo-

rithm crosses pairs of adjacent layers repeatedly until no edge crossings can

be removed further.

• Horizontal Coordinate Assignment: Nodes in each layer are given x-

coordinates such that edges are drawn as straight as possible.

• Edge Routing: The added dummy nodes are omitted, edges that were re-

versed are restored and edge bends are added to the graph. The positioning

of the edge bends are decided depending on whether the drawing is polyline

or orthogonal.

2.4 Compound Spring Embedder (CoSE)

The CoSE algorithm is based on the Fruchterman and Reingold’s (FR) grid-

variant algorithm introduced in Section 2.3.1. The force-directed approach is

improved upon to have support for non-uniform node sizes, compound nodes,

arbitrary level of nesting and inter-graph edges [3]. Similar to FR, the idea is to

simulate a physical system obeying the laws of Newton, Hooke and Coulomb, in

which nodes behave as electrically charged physical entities, and edges represented

by physical springs of a specified ideal length.
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Figure 2.7: A sample compound graph (left), and the corresponding physical
model (right). Grey circle: barycenter, red solid line: gravitational force, zigzag:
regular spring force, black solid line: constant spring force [3]

Compound nodes are handled by representing an expanded node and its asso-

ciated nested graph as a single entity, similar to a “cart”, which can move freely

in orthogonal directions [3]. A compound node can have child compound nodes

represented as carts stacked on top of each other (Figure 2.7). There is no limit

to the number of nested compound nodes. Moreover, compound nodes adjust

their node dimensions in each iteration as the child nodes move around.

The force-directed algorithms presented in Section 2.3.1, assume that all nodes

have identical node dimensions. So, they simplify the spring concept. All springs

have the same ideal length and their length calculation is from node center to

node center. This simplified approach does not work when node dimensions are

different or when there are compound nodes. Thus, CoSE defines edge length to

be the line segment going through one end node’s center to the other, clipped on

both sides by the rectangles representing the end nodes (see equation 2.6). Edges

that span across compound nodes have different ideal lengths than normal edges.

This difference depends on the number of nesting structures it spans across.
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Repulsion forces are calculated similar to the FR’s grid-variant. Only neigh-

boring nodes that are “too close” repel each other. Evidently, compound nodes

do not repel their child nodes. In order to simplify calculations, repulsion forces

only apply to nodes that are in the same graph. If for some reason nodes over-

lap, the repulsion force between the overlapping nodes are increased substantially

depending on the overlapping area.

The spring and repulsion forces are calculated as follows [3]:

fspring(pu, pv) =
(λ− ‖pu − pv‖)2

η
#      »pupv (2.6)

frepulsion(pu, pv) =
α

‖pu − pv‖2
#      »pupv (2.7)

where vectors pu = (xu, yu) and pv = (xv, yv) are of node positions, λ is the

ideal edge length, η is the elasticity constant of the edge, and α is the repulsion

constant.

In addition to spring and repulsion forces, CoSE introduces gravitational forces

that keep graph components together. This force is relatively minor compared to

other forces. Its magnitude does not depend on node dimensions or the distance

between node and gravitation center. When the graph is disconnected, gravi-

tational forces move disconnected components towards the center of the graph.

Also, each compound node has gravitational forces that keeps its child nodes

closer to the center. This force has a great affect in keeping the overall drawing

area small.

In Section 2.3.1, both force-directed algorithms placed nodes randomly across

the canvas at the start of the layout. In contrast, CoSE algorithm has a incre-

mental layout option. If this option is picked, the current positions of the nodes

are respected and the layout algorithm starts from here. Otherwise, nodes are

distributed randomly or radially, depending on whether the graph is a forest and

flat.
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Algorithm 1 The CoSE Algorithm [3]

1: Initialize(C)
2: totalIter ← 0
3: if layoutType 6= incremental then
4: if graph is forest and flat then
5: PositionNodesRadially(C)
6: else
7: PositionNodesRandomly(C)
8: end if
9: end if
10: while totalIter < maxIterations do
11: totalIter ← totIter + 1
12: if totIter % convPeriod = 0 then
13: if converged() then
14: break
15: else
16: UpdateCoolingFactor()
17: end if
18: end if
19: UpdateBounds(C) . resize compounds
20: CalcSpringForces()
21: CalcRepulsionForces()
22: CalcGravitationalForces()
23: MoveNodes() . w.r.t. total forces
24: end while

During the layout algorithm, each node moves according to the total force of

spring, repulsion and gravitation forces acting upon it. For compound nodes, the

forces inflicted are propagated among their child nodes. There is also a maximum

limit on the movement of each node so that there are no drastic movements. The

temperature is periodically cooled down similar to the FR algorithm. The layout

stops when the total movement of nodes drops below a threshold value indicating

that the graph is in a relatively stable state. At this point, the layout is said

to converge. The main algorithm implementing the heuristics mentioned in this

section can be found in Algorithm 1.

Spring forces are calculated for each edge, whereas repulsive forces are calcu-

lated for each node pair, and gravitational forces are calculated for each node.

Thus, the run time complexity of one iteration in CoSE algorithm isO(|V |2+|E|),
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where the dominating term is from the node repulsion calculation as distances

between all node pairs are checked. In the worst case, like the FR algorithm, the

overall complexity of the layout becomes O(|V |3 + |E| · |V |). However, with the

grid-variant adapted from FR, it can be reduced to O(|V |2 + |E|).

2.5 Port Constraints

In this work, we assume that we are dealing with nodes that have rectangular

geometry. Ports or connection points are realized as discrete points along the

edges of the associated rectangle, an equal number on each side (see Figure 2.8).

A node having ports can be imagined as a logic gate or a micro controller with

a pre-configured port interface. The ports then can be indexed clock-wise as

{0, 1, 2, . . . , 4k−1} starting at the top-left where k > 0 is the number of ports on

each side, specified by the user. The incident edge endpoints of this node must

connect to these particular connection points.

The port constraints are mainly associated with edge ends. When an edge end

does not have a specified port constraint, it’s assumed that it connects to their

end nodes at their center, usually shown as clipped at the intersection point of

the line segment representing the edge and the rectangle representing the node.

Figure 2.8: An edge e = {a, b} is connected to its source node a via a port which
is located at index 6. The ideal position of node b, ib, is calculated to be right
across its port at location 6, an ideal edge length distance away from the port. α
is the angle that emerges between the line segment from the port location to ib
and the edge e.
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We further assume that any node, including compound nodes and those nested

inside compound ones, is allowed to have port constraints defined on its incident

edges. An edge may have a possibly different port constraint on each end, chosen

from the following types:

• Free: The specified end of the edge can be placed at any port of the

associated node. For instance, source of edge e in Figure 2.8 can be defined

as “free”, implying it may be connected to node a at any one of the 20 ports

available in a.

• Fixed Side(s): A set S of directions is assigned to each end of an edge:

S = {s | s ∈ {top, left, bottom, right}}. The specified end of the edge can

be assigned to any port on one of these sides. For instance, if source of

edge e in Figure 2.8 is defined to have “fixed sides” of {right, left}, then

the edge will only be allowed to be connected to a at ports 5 through 9 or

15 through 19.

• Fixed Position: The specified end of the edge is assigned to a fixed port

of the associated node. For instance, if edge {a, b} in Figure 2.8 is to have

a fixed port constraint of 6 on its source, then the only valid assignment of

this end of the edge is as shown in this figure.

For each port we define an ideal position (defined by the user in line with their

particular domain / application), a point in the canvas right across the port. This

location is one ideal edge length away from the corresponding port. Consequently,

an angle is formed between the edge and the line ray emanating from the port and

going towards the ideal location. These concepts are important as they show the

deviation from “ideal” placement. For instance in Figure 2.8, the edge e would

have intersected node a if angle α was an obtuse angle. Therefore, these angles

and ideal location of ports are essential in CoSEP’s heuristics.

The absolute value of α in Figure 2.8 can be found using the vectors
#    »
p6ib (port

p in node a at index 6 to the ideal position ib of node b) and
#  »

p6b (port p at

index 6 to the center of node b). If the edge end of e incident to node b was
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also positioned on a port, then vector
#  »

p6b would have pointed towards this port

instead. Subsequently, α can be calculated as:

‖α‖ = arccos

#    »
p6ib ·

#  »

p6b∥∥∥ #    »
p6ib

∥∥∥ · ∥∥∥ #  »

p6b
∥∥∥ (2.8)

Note that most of the heuristics introduced in Section 4 requires only the

absolute value of the angle. For others, the location of vector
#  »

p6b relative to

vector
#    »
p6ib is important. We indicate this by using signed angle values. A angle

is positive if vector
#  »

p6b is right (clockwise) of
#    »
p6ib and negative if vice-versa. This

positioning can be found as follows:

#  »

p6b = (ux, uy)
#    »
p6ib = (vx, vy)

λ = uxvy − uyvx

(2.9)

if λ is positive then vector
#  »

p6b is to the left of vector
#    »
p6ib, otherwise if λ is negative

then vector
#  »

p6b is to the right.
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Chapter 3

Related Methods and Libraries

In this section, various graph drawing algorithms with support for ports are

introduced. Each layout algorithm approaches to the problem of port constraints

differently since the concept of a port is defined according to the underlying

domain and graph model. Almost all of the related algorithms use the Sugiyama

framework (see Section 2.3.2 for more details). Finally, at the end of this chapter,

the graph visualization library Cytoscape.js is presented.

3.1 Related Methods

Numerous graph drawing algorithms have been proposed to visualize port con-

strained graph models such as data structure maps, data flow diagrams, schemat-

ics of digital circuits and biochemical networks. Gansner et al. [19] introduces

the concept of “node ports” in their novel technique of drawing directed graphs.

They show how node positioning can be modified so that coordinate offsets from

node ports are handled (Figure 3.1). Sander [20] presents a layout algorithm for

drawing data structures using the Sugiyama framework for the VCG tool. The

problem of side ports are handled by adding dummy nodes and later routing

edges through these dummy nodes. On the other hand, Waddle [21] is the first to
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Figure 3.1: An example of node ports in a graph [19]

propose altering the barycenter heuristic done during cross minimization in order

to handle the port problem of data structures. Figure 3.2 illustrates various ways

of modifying the barycenters.

(a) To node center (b) To edge end

(c) To node center (d) Secondary barycenters

(e) Alternate scheme

Figure 3.2: Different strategies for assigning barycenters [21]

Due to the nature of data structures, these works mentioned above do not

support multiple types of port constraints. An added port constraint can only

restrict an edge endpoint to a fixed position around a node. With techniques such

as spline curve edge routing, rotating nodes, barycenter heuristic and dummy
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Figure 3.3: A database schema making use of ports for attribute relationships [22]

nodes, these fixed edge endpoints are integrated into the layer-based approach,

especially suitable for directed graphs.

Battista et al. [22] describe a way to draw database schemas in which database

tables are depicted as rectangular boxes consisting of table attributes. Edges,

called links, connect two different table attributes together representing referen-

tial constraints or join relationships. These edges can connect to their respective

attributes only from the right or left side of the associated table row (Figure 3.3),

which is a good example of a rather special type of a domain-specific port con-

straint.

The series of published work by Schulze et al. [23] are specifically for visu-

alizing data flow diagrams, also using the layer-based approach. They develop

several extensions to the barycenter heuristic to support port constraints. They

have defined five different levels of port constraints to cover the requirements of

data flow diagrams (Figure 3.4). The level of a port constraint indicates the hier-

archical level from “flexible” to “restrictive”. These port constraints in order are:

Free, FixedSide, FixedOrder, FixedRatio, and FixedPosition. Therefore, the main
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Figure 3.4: A data flow diagram representing a stack [23]

algorithm, which has five phases, transitions port constraints down this hierarchy

in each phase. In the end, each port constraint is reduced to a definitive position

relative to its node. The algorithm produces needless edge-edge crossings of inter-

hierarchy edges as they layout compound graphs in a naive, bottom-up manner

(i.e., processing the most nested actor diagrams first) [23]. The overall solution

is focused on the nature of data flow diagrams, where nodes are hierarchical and

the main orientation of edges are left to right (or top to bottom).

Siebenhaller [24] defines port constraints in orthogonal graph drawing with

more flexibility. Similar to our approach, ports are distributed evenly around

the node, constraints are associated with edges and not every edge has to be

port constrained. In order to reduce edge crossings during crossing reduction

step, they further transform the problem to a minimum cost flow network. As

depicted in Figure 3.5, they reroute a node’s right and left side ports locally to

top or bottom with an edge bend. The algorithm is shown to work on UML

activity diagrams.

The graph drawing algorithms presented in this section center around visu-

alizing simple graphs with edges routed orthogonally. On the other hand, the

CoSEP algorithm proposes a novel approach to draw port constrained compound

graphs with straight line drawings and non-uniform node dimensions. With the

help of our coverage for varying port constraints, our algorithm is applicable to

most domains. Since CoSEP differs too much from previous related work as the

main objectives are dissimilar, its performance is compared with its predecessor

in Section 5, CoSE algorithm.
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Figure 3.5: An example of Siebenhaller’s technique of rerouting right and left
side ports to top or bottom [24]

3.2 Cytoscape.js

Cytoscape.js is an open-source JavaScript-based graph library that provides a JS

application programming interface (API) to enable software developers to inte-

grate graphs into their data models and web user interfaces [4]. The API supports

drawing and editing undirected / directed compound graphs. The graph elements

can be interactively added and removed. Various graph drawing algorithms like

grid layout, circular layout, concentric layout, breadth-first layout, and CoSE lay-

out are available (Figure 3.6). Several well-known graph theory algorithms—such

as connectivity search, shortest path, minimum spanning tree, minimum cut,

ranking and centrality measures—are included [4]. The API provides a variety

of styling options for graph elements. Labels, different types of edges / nodes,

different edge arrow types, coloring and opacity of graph elements are some of the

customization options. Interactive functions are also included in the API. The

viewport can be zoomed or panned, graph elements can be selected and dragged.

Animations can be used to increase the salience of particular elements in the

graph and to provide visual continuity to the user when programmatic changes

to the graph are made [4].

Cytoscape.js API allows developers to build extensions on top of the core li-

brary. For instance, cytoscape.js-expand-collapse extension provides an in-

terface to expand / collapse nodes and edges for better management of complexity
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Figure 3.6: A GeneMANIA gene–gene interaction network automatically laid out
and visualized with Cytoscape.js [4]

of compound graphs [10]. The cytoscape-cose-bilkent extension implements

the CoSE algorithm explained in Section 2.4. The CoSEP algorithm is also im-

plemented as an extension called cytoscape.js-cosep.

The visualizations in this thesis are mostly produced using the Cytoscape.js

library.
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Chapter 4

CoSEP Layout Algorithm

In this chapter, we present the new heuristics and force types that were added

on top of the CoSE layout structure in detail. All of the following sections apart

from the last one, explain an addition that was made to the basic model. The

final section explains the flow of the main algorithm and how the heuristics were

integrated to the overall structure.

4.1 Underlying Physical Model

The CoSEP algorithm is a basic force-directed layout that employs spring, repul-

sion and gravitation forces from the CoSE algorithm. In fact, everything that was

presented about the CoSE algorithm in Section 2.4 also applies to the CoSEP

algorithm. However, the spring calculation method from CoSE is modified to

consider ports. If an edge does not have a port constraint on both its edge end-

points, the calculation is still the same. In that case, the edge is a line segment

that connects to the center of both source and target node, clipped with respect

to their node dimensions. However, if an edge endpoint is port constrained, the

line segment ends at the associated port location (without being clipped).

The heuristics presented in this chapter, utilizes an abstract type of force
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(a) (b)

Figure 4.1: A node a is connected to nodes b and c via port constrained edges e and
f . With respect to ideal edge length, the edge e is too long in (a) and too short in
(b), whereas edge f is too long in both. The horizontal or vertical components of
spring forces that are considered as rotational force are indicated. Consequently,

the rotational force of node a is
#            »

|Fx(e)| −
#            »

|Fy(f)| in (a) and −
#            »

|Fx(e)| −
#            »

|Fy(f)| in
(b)

called rotational forces. This force does not move nodes around like the forces

presented before. It is used purely to measure the state of the nodes and edge

ends. The heuristics makes decisions according to the direction and magnitude

of rotational forces (to be detailed in the section on the relevant heuristic). This

force is actually the rotational component of a spring force that emerges because

of an edge. In other words, we take the horizontal or vertical component of the

exerted spring force depending on which node side the port is located at and

whether the spring is pulling or pushing. The sign of this force is positive if its

direction around the node is clockwise, and negative otherwise. The rotational

force of a node is the sum of all the incident edge endpoints’ rotational forces.

Figure 4.1 gives an example from a graph with two different states.

4.2 Shifting Edge Endpoints

A node can connect to many other nodes without any problem in the CoSE

algorithm. However, since ports are defined in a discrete manner, introduction of

port constraints can easily introduce edge to edge crossings in the drawing. While

not much can be done for edge ends with Fixed Position constraints, edge ends
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Figure 4.2: An example, where a simple edge crossing emerges with introduction
of ports. Even if springs e and f were at ideal edge length, the node repulsion
forces between b and c should cause enough tension on the springs causing edge
ends to shift. Thereby, the edge crossing should be resolved

with Free and Fixed Side port constraints can be re-arranged to reduce such edge

crossings (Figure 4.2). Thus, we introduce the ability for edge ends to shift from

port to port. There is no limitation to the amount of incident edge ends a port

can have. So, edge ends should be able to freely shift as the layout progresses,

and yield a better graph drawing.

Edge end shifting is decided using rotational forces described in the previous

section. An edge end is considered for a shift depending on the direction and

magnitude of the related force. If the magnitude is bigger than a pre-defined,

empirically determined, threshold, then the edge end is shifted towards the ro-

tational force’s direction. Instead of shifting edge ends at every iteration, it is

applied once in every fixed number of iterations in order to prevent possible os-

cillations. Thus, the rotational forces are averaged over this fixed number of

iterations.

Edge ends with Free port constraints can potentially shift to any one of the

ports around a node. On the other hand, Fixed Sided port constrained edge ends

can only shift to ports that are on the allowed node sides. But, this allowed

range is not circular. Meaning, edge ends can not jump over node sides. They

can only change node sides if they are directly adjacent to it. Nevertheless, we

have noticed that some Fixed Sided port constraints like {top, bottom} or {right,

left} are actually common in certain domains. For such port constrained edge

ends, they are allowed to jump to the port at the opposite node side.

With the intention to further prevent oscillations, additional limitation has
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been added to edge ends that wish to change node sides. This is done on top

of the rotational force threshold. The other edge end of the edge (center of the

incident node if unconstrained), has to be in an acceptable relative position. This

respective location is based on a diagonal line that goes through the center of the

node and the corner of the node residing between associated sides. In cases where

an edge end considers jumping to the opposite node side, the mentioned line goes

through the center of the node, and is parallel to the two sides of the node. These

cases are depicted in Figure 4.3.

(a) (b)

(c) (d)

Figure 4.3: Four different cases of edge end shifting are presented. The blue
dashed line indicates the other edge end’s position requirement for edge end
shifting. The edge end at port x can shift to port y in (a) and (c), but (b) and
(d) fail the location requirement and should not be allowed to do so.
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4.3 Rotating Nodes

When port constraints are too restrictive (i.e., there are too many Fixed Position

or strict Fixed Sided port constraints), the initial layout of the graph becomes

especially important. Since the system is fairly limited, shifting edge ends heuris-

tic either fails to resolve edge crossings or the slow shifting becomes a bottleneck

on the algorithm’s run time. On the other hand, the user might define port con-

straints according to a particular node orientation. Certain domains only care

about the relative positioning of the edge ends, and there is no restriction on the

node orientation. Thus, we introduce the ability for nodes to rotate. An option is

given to the user per node to decide so they can turn the rotation off for certain

nodes or globally.

The rotational forces described in Section 4.1 is also utilized for this heuristic.

The reason for using rotational forces is that incident port constrained edge ends

can repeatedly pull or push the node towards a certain direction. If this force is

consistent over a period of iterations, then there is local instability in the system.

Rotating the node 90◦ accordingly can make the system more stable.

In certain instances, the rotational forces are not enough to detect a needed

rotation (Figure 4.4). In such cases, rotating the node 180◦ would be more appro-

priate. Thus, we defined two types of 180◦ rotations: top-bottom and left-right.

In fact, it can be defined more as a swap operation between opposite node sides.

For instance in a top-bottom rotation, the edge ends on the top are shifted to

bottom with respect to port index ordering, and vice-versa. But, the ports on

left and right node sides are left intact. A 180◦ node rotation can be determined

by checking if the majority of incident edges have obtuse angles. Evidently, top-

bottom and left-right rotations are checked separately. Edges that are connected

to degree one nodes are to be handled separately. Hence, they are not taken into

account in the mentioned heuristic.

When a node rotation, either 90◦ or 180◦, occurs, edge end port constraints are

modified to accommodate for these new changes. For instance, a Fixed Sided edge
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(a) (b)

Figure 4.4: An example, where the rotational force of node a does not exceed the
threshold in (a). Performing a 180◦ rotation on node a, however, creates a more
stable system (b)

end with {top, bottom} port constraint, will turn into {right, left} port constraint

after a 90◦ clockwise rotation, and back into {top, bottom} port constraint after

another clockwise rotation. Thus, we intend for this heuristic to be intertwined

with edge end shifting heuristic. One should take place after the other. Since

rotation of nodes is a heuristic chancing the drawing more drastically, it should

be applied less frequently than others. However, node rotation is given priority

when two heuristic periods coincide.

4.4 Moving Nodes to Their Ideal Positions

In order to provide an aesthetically pleasing graph drawing, we believe that nodes

should be near, if not exactly at, their ideal positions (as defined in Section 4.1).

Thus, we present another kind of force called polishing force for this purpose

(Figure 4.5). Here in order to comply with Newton’s third law (i.e., forces always

come in action-reaction pairs with equal magnitude in opposite directions), we

add a reaction force to the other end node with the associated port as well.

Notice, however, that polishing forces only apply to edges with exactly one edge

end being port constrained.

34



Figure 4.5: A node a is connected to nodes b and c. The ideal positions of b and c
are ib and ic, respectively. Fb and Fc are the introduced polishing forces pushing
nodes b and c to their ideal positions. Forces −Fb and −Fc are also added as
reaction pairs.

Polishing forces are calculated similarly to the gravitational forces. The di-

rection of the force is orthogonal to the edge and towards the ideal location. Its

magnitude is calculated to be the distance (to the ideal position) times some

constant decided empirically. Similar to gravitational forces, these forces are

comparatively weaker than spring and repulsion forces.

4.5 Further Handling of Degree One Nodes

Generally, the polishing forces specified above are adequate on their own to min-

imize edge crossings. But polishing forces struggle to minimize edge crossings

when port restrictions are too strict or when a node is incident to too many

edges. For cases such as the one in Figure 4.6, the spring and repulsive forces

result in a standstill and can not be resolved by polishing forces. Therefore, we

introduce a procedure that places one degree nodes directly at their ideal position.

Like the previous heuristics described above, this heuristic is also done periodi-

cally. Although it is a drastic action, we do this to ensure that the neighboring
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(a) (b)

Figure 4.6: An example where a node a is connected to nodes b, c and d via Fixed
position port constrained edges. Since repulsion and spring forces are stronger
than polishing forces, the edge crossing in (a) will not be removed. The proposed
heuristic resolves these edge crossings by placing the degree one nodes (b, c and
d) directly to their ideal location (b). The node overlaps are eliminated in the
later iterations through repulsion.

nodes scatter and do not reverse the improvement done by this heuristic.

4.6 Algorithm

The new algorithm expands the CoSE algorithm to five phases, including the

initialization stage, in order to better incorporate port constraints. Three of these

stages (Phase II , III and IV) involve the recently presented heuristic techniques.

Hence, the major steps of CoSEP are as follows:

• Initialization: The necessary arrangements such as for the CoSE algorithm

are done in this phase. Structures for a compound graph manager are

constructed. Threshold for convergence and ideal edge lengths for inter-

graph edges are calculated. Assuming incremental option is not chosen,

nodes are distributed randomly across the drawing area. Otherwise, the

algorithm skips to Phase II.

• Phase I: The initial positions of nodes are rather important for the success

of the CoSEP algorithm. Thus, we use the CoSE algorithm with reduced
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number of iterations to construct us a starting graph drawing. CoSE al-

gorithm has a “draft” layout option which has a relatively faster cooling

schedule. This gives CoSEP a nice “rough” drawing which can reach a

stable state much easier than a randomly laid out graph.

• Phase II (initializing ports): Port constraints are realized in this phase.

Evidently, Fixed Position port constrained edge ends are easily assigned to

their pre-defined ports. As for others, they are assigned to “corner ports”

that are closest to the other end node’s center. Corner ports are ports that

are directly adjacent to a node corner (Figure 4.7). Note that for Fixed

Sided port constraints, the corner ports have to be valid (i.e., in line with

the constraints).

• Phase III: The spring embedder starts again with a lower cooling factor.

Rotational forces and angles of edge endpoints, necessary for various heuris-

tics, are calculated together with spring, repulsion and gravity forces. The

heuristic procedures of shifting endpoints, rotating nodes and handling de-

gree one nodes are performed in this phase.

• Phase IV (polishing phase): This phase is considered as the polishing phase.

In contrast to Phase III, only the heuristics related to handling of degree

one nodes are applied. Furthermore, initial cooling factor is even lower

than Phase III as this phase is expected to minimally alter the previously

established layout.

(a) (b) (c)

Figure 4.7: Nodes with ports per side k = 1 (a), k = 3 (b), and k = 5 (c) are
drawn such that corner ports are indicated in red.
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The CoSEP algorithm described above can be integrated to CoSE’s main

method in Algorithm 1 by extending it as presented in Algorithm 2. The visual-

ization of the CoSE algorithm using a simple graph can be found in Figure 4.8.

The important thing to consider is that heuristics mentioned in this chapter are

distributed to phases described above. Each heuristic and the convergence check

is performed at certain periods instead of every iteration. The length of these

periods are unique parameters that were determined empirically.

The main and only goal of Phase II is to realize ports and port constraints

on the compound graph structure C. On the other hand, phases following Phase

II all have a separate spring embedder that calculates forces, move nodes with

respect to the compound node structure, and implement the relevant heuristics.

Thereby, the necessary parameters such as the cooling schedule are initialized

before the respective phase.
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Algorithm 2 The CoSEP Algorithm

1: function RunSpringEmbedder(C)
2: phase← 1
3: while phase ≤ 4 do
4: if phase = 2 then
5: InitializePorts(C)
6: continue
7: else
8: initialize(C, phase)
9: end if
10: totIter ← 0
11: while totIter < maxIter do
12: totIter ← totIter + 1
13: if totIter % convPeriod = 0 then
14: if converged() then
15: break
16: else
17: UpdateCoolingFactor()
18: end if
19: end if
20: UpdateBounds() . resize compounds
21: CalcSpringForces()
22: CalcRepulsionForces()
23: CalcGravitationalForces()
24: if phase = 4 then
25: calcPolishingForces()
26: end if
27: MoveNodes() . w.r.t. total forces
28: if phase = 3 then
29: if totIter % nodeRotPeriod = 0 then
30: CheckForNodeRotations()
31: end if
32: if totIter % shiftPeriod = 0 then
33: checkForEdgeEndShifting()
34: end if
35: end if
36: if totIter % FurtHandDegOnePeriod = 0 then
37: FurtherHandleDegOneNodes()
38: end if
39: end while
40: end while
41: end function
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(a) Initialization

(b) Phase I (c) Phase II

(d) Phase III (e) Phase IV

Figure 4.8: A simple graph is laid out using CoSEP algorithm while demonstrat-
ing the different phases of the algorithm. Nodes n0, n1, n2 and n3 have Fixed
Sided port constraints connecting them to left of node n4. Similarly, nodes n5
and n6 are connecting to node n4 from the right side. Whereas, node n7 should
connect to node n4 from top or bottom
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Chapter 5

Evaluation

For reasons specified earlier, the CoSEP algorithm is compared with the CoSE

algorithm using graph layout quality metrics and run time. The prioritized qual-

ity criteria are the number of edge crossings and the ratio of properly oriented

port constrained edge ends to the overall number of port constrained edge ends.

An edge end is deemed as “properly oriented” if its edge does not intersect with

its end node. An example is given in Figure 5.1. Improper edge ends make it

very difficult to understand the underlying data and relations. Therefore, this

ratio is considered to be the foremost criterion for determining the success of a

layout algorithm supporting port constraints.

The experimentation is done with a test suite1 of randomly generated bicon-

nected, undirected and 4-planar graphs, which has been widely used in graph

drawing studies [25, 26]. In total, there are 531 graphs in the suite with varying

characteristics. Our algorithm focuses on small to medium sized graphs for in-

teractive visualization purposes. Thus, we created a set of 150 graphs such that

it has the flowing properties:

|V | ∈ {10, 20, 30, 40, 50, . . . , 470, 480, 490, 500}

1 ≤ |E|/|V | ≤ 1.5

1http://www.dia.uniroma3.it/~gdt/gdt4/test_suite.php
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Figure 5.1: Nodes a, b, c, d, and e are connected to each other via port constrained
edges. Among the nine port constrained edge ends, five of them (connected
to green ports) are considered properly oriented whereas the rest are improper
(blue). Thus, the ratio in this layout is %55.56.

In this set, there are three random graphs for each node size category. We tested

the CoSEP or CoSE implementation on a particular graph with five executions.

The average values of the criteria are taken.

We have performed experiments to see the behavior of our algorithm as the

size of the graph increases. We also wanted to see how quality varies as the type

and number of port constraints change.

Since CoSE does not have a way to handle port constraints, there needs to

be a method for realizing ports in order for us to compare its performance with

CoSEP. Instead of randomly assigning ports to edge ends, we figured it would be

more fair to use Phase II (initializing ports) of CoSEP procedure after the CoSE

algorithm is performed.

The experimentation results of CoSE and CoSEP algorithms with respect to

above mentioned criteria are shown in Figures 5.2 to 5.8. Sample graph drawings

of both algorithms can be found in Appendix A. With both algorithms, there is

almost no node on node overlaps in any of the graph drawings. The force-directed

algorithms are effective in distributing nodes across the canvas when the graph

density is not that high. Therefore, we exclude this criterion from the criteria for

brevity.

42



Naturally, CoSE algorithm struggles to provide a satisfactory graph draw-

ing with above mentioned criteria since it can not properly handle port con-

straints. It still can yield a somewhat good layout when port constraints are

scarcely distributed among edge ends. However, as edge ends get increasingly

port constrained, there is a notable difference between the performance of the

two algorithms. CoSE algorithm produces an excessive amount of edge-edge and

node-edge intersections. In experiments where all the edge ends are port con-

strained, CoSE can not produce an “aesthetically pleasing” drawing. Thus, we

deduct that our novel heuristics are up to the task.

The run time of CoSEP algorithm has the same asymptotic computational

complexity as the CoSE algorithm, since the new heuristics presented in Sec-

tion 4 have computations that are linear in the number of graph objects. Shifting

edge endpoints and calculation of polishing forces are linear in the number of

edges. Similarly, rotating nodes and handling degree one nodes are linear in

the number of nodes. Thus, CoSEP, likewise to CoSE algorithm, is expected to

have quadratic run time behavior. Practically however, CoSEP is expected to be

slower than CoSE as the overall layout requires more iterations to find a stable

system and each iteration still takes a constant time but a little longer. Our

test results confirm this statement (Figure 5.8). However, the overall run time is

acceptable for interactive visual analysis components, assuming the component

deals with graphs up to several hundred nodes, and for larger graphs complexity

management techniques [10] are employed to reduce the graph size.
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Chapter 6

Conclusion

In this work, our motivation was to introduce port constraint support to com-

pound graphs with non-uniform node dimensions and straight edges. We ad-

dressed different types of port constraints that were introduced in many studies,

and have defined a flexible set of port constraints that can be applied to various

domains.

We have used the CoSE algorithm, a modified force-directed layout algorithm,

as a baseline. We proposed to add ports in a discrete manner around nodes,

and novel heuristics to handle the port constraints that we have defined. These

additions to CoSE do come with additional cost to run time performance. Nev-

ertheless, as shown in our experiments, we have found CoSEP to be suitable for

interactive visualization. Overall, our algorithm, yields graph drawings that are

satisfactory with respect to aesthetics criteria and execution time.

A JavaScript implementation of CoSEP can be found in the open source

cytoscape.js-cosep GitHub library as an extension to the graph visualization li-

brary Cytoscape.js.
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Appendix A

Sample Graph Drawings
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(a)

(b)

Figure A.1: A visual scripting graph [5] is laid out with CoSE (a) and CoSEP
(b) using Fixed Sided constraints. Respective metrics (CoSE - CoSEP): ratio of
properly oriented edge ends: 35.29% - 91.17%, number of edge-edge crossings: 4
- 1, running time 9.65ms - 23.81ms

56



(a)

(b)

Figure A.2: An SBGN PD map illustrating neuronal muscle signaling is laid out
with CoSE (top) and CoSEP (bottom) using Fixed Sided and Fixed Position
constraints. Respective metrics (CoSE - CoSEP): ratio of properly oriented edge
ends: 51.35% - 97.29%, number of edge-edge crossings: 4 - 0, running time:
45.04ms - 101.87ms
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(a)

(b)

Figure A.4: An SBGN PD map illustrating insulin-like growth factor (IGF) sig-
naling is laid out with CoSE (a) and CoSEP (b) using Fixed Sided and Fixed
Position constraints. Respective metrics (CoSE - CoSEP): ratio of properly ori-
ented edge ends: 48.27% - 100%, number of edge-edge crossings: 10 - 0, running
time 38.7ms - 96.44ms
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