
Accelerating Genome
Analysis: A Primer on
an Ongoing Journey
Mohammed Alser
ETH Z€urich

Z€ulal Bing€ol
Bilkent University

Damla Senol Cali
Carnegie Mellon University

Jeremie Kim
ETH Zurich and Carnegie Mellon University

Saugata Ghose
University of Illinois at Urbana–Champaign and

Carnegie Mellon University

Can Alkan
Bilkent University

Onur Mutlu
ETH Zurich, Carnegie Mellon University, and

Bilkent University

Abstract—Genomeanalysis fundamentally startswith aprocessknownas readmapping,

wheresequenced fragmentsof anorganism’s genomearecomparedagainst a reference

genome.Readmapping iscurrentlyamajorbottleneck in theentiregenomeanalysispipeline,

becausestate-of-the-art genomesequencing technologiesareable to sequenceagenome

much faster than thecomputational techniquesemployed toanalyze thegenome.We

describe theongoing journey in significantly improving theperformanceof readmapping.We

explain state-of-the-art algorithmicmethodsandhardware-basedaccelerationapproaches.

Algorithmicapproachesexploit thestructureof thegenomeaswell as the structureof the

underlyinghardware.Hardware-basedaccelerationapproachesexploit specialized

microarchitecturesor variousexecutionparadigms (e.g., processing insideor nearmemory).

Weconcludewith thechallengesof adopting thesehardware-accelerated readmappers.

& GENOME ANALYSIS is the foundation of many

scientific and medical discoveries, and serves as

a key enabler of personalized medicine. This

analysis is currently limited by the inability of

modern genome sequencing technologies to

read an organism’s complete genome. Instead,

sequencing machines extract smaller random

fragments of an organism’s DNA sequence,

known as reads. While the human genome con-

tains over three billion bases (i.e., A, C, G, T in

DNA), the length of a read is orders of magnitude

Digital Object Identifier 10.1109/MM.2020.3013728

Date of publication 3 August 2020; date of current version

1 September 2020.

Theme Article: Biology and Systems InterfaceTheme Article: Biology and Systems Interface

September/October 2020 Published by the IEEE Computer Society 0272-1732 � 2020 IEEE 65

smaller, ranging from a few hundred bases (for

short reads) to a few million bases (for long

reads). Computers are used to perform genome

assembly, which reassembles read fragments

back into an entire genome sequence. Genome

assembly is currently the bottleneck to quickly

and accurately determining an individual’s entire

genome, due to the complex algorithms and large

datasets used for assembly.

A widely used approach for genome assembly

is to perform sequence alignment, which com-

pares read fragments against a known reference

genome (i.e., a complete representative DNA

sequence for a particular species). A process

known as read mappingmatches each read gener-

ated from sequencing to one or more possible

locations within the reference genome, based on

the similarity between the read and the reference

sequence segment at that location. Unfortu-

nately, the bases in a read may not be identical

to the bases in the reference genome at the loca-

tion that the read actually comes from. These dif-

ferences may be due to 1) sequencing errors (up

to 0.1% in short reads and up to 20% in long

reads) during extraction; and 2) genetic muta-

tions that are specific to the individual organ-

ism’s DNA and may not exist in the reference

genome. Due to these potential differences, the

similarity between a read and a reference

sequence segment must be identified using an

approximate string matching (ASM) algorithm.

The possible genetic differences between the ref-

erence genome and the sequenced genome are

then identified using genomic variant calling

algorithms.

The ASM performed during read mapping

typically uses a computationally expensive

dynamic programming (DP) algorithm. This

time-consuming algorithm has long been a major

bottleneck in the entire genome analysis pipe-

line, accounting for over 70% of the execution

time of read mapping.1 The vast majority of read

mappers, such as the widely used minimap2,2

are implemented as software running on CPUs.

We refer readers to a comprehensive survey3 for

a discussion of state-of-the-art CPU-based read

mappers. Accelerating ASM can help bridge the

wide performance gap between sequencing

machines and CPU-based read mapping algo-

rithms, but faces three key challenges.

1) Due to the large datasets that a read mapper

operates on, it generates a large amount of

data movement between the CPU and main

memory. The CPU accesses off-chip main

memory through a pin-limited bus known as

the memory channel, and a high amount of

data movement across the memory channel

is extremely costly in terms of both execu-

tion time and energy.4,5

2) Modern sequencing machines generate read

fragments at an exponentially higher rate

than prior sequencing technologies, with

their growth far outpacing the growth in

computational power in recent years.6 For

example, the Illumina NovaSeq 6000 system

can sequence about 48 human whole

genomes at 30x genome coverage (the aver-

age number of times a genomic base is

sequenced) in about two days. However,

analyzing (performing mapping and variant

calling) the sequencing data of a single

human genome requires over 32 CPU hours

on a 48-core Intel Xeon processor, 23 of

which are spent on read mapping.7

3) The first two challenges worsen when a

metagenomic sample is profiled, where the

sample donor is unknown. This requires

matching the extracted reads to thousands

of reference genomes. Increasing the num-

ber of CPUs used for genome analysis

decreases the overall analysis time, but sig-

nificantly increases energy consumption

and hardware costs. Cloud computing plat-

forms are a potential alternative to distrib-

ute the workload at a reasonable cost, but

are disallowed due to data protection

guidelines in many countries.26

As a result, there is a dire need for new compu-

tational techniques that can quickly process and

analyze a tremendous number of extracted reads

in order to drive cutting-edge advances in the

genetic applications space.8 Many works boost

the performance of existing and new read map-

pers using new algorithms, hardware/software

co-design, and hardware accelerators. Our goal

in this work is to survey a prominent set of these

three types of acceleration efforts for guiding the

design of new highly efficient read mappers. To

this end, we 1) discuss various state-of-the-art

Biology and Systems Interface

66 IEEE Micro

mechanisms and techniques that improve the

execution time of read mapping using different

modern high-performance computing architec-

tures; and 2) highlight the challenges, in the last

section, that system architects and programmers

must address to enable the widespread adoption

of hardware-accelerated readmappers.

READ MAPPING
The main goal of read mapping is to locate

possible subsequences of the reference genome

sequence that are similar to the read sequence

while allowing at most E edits, where E is the

edit distance threshold. Commonly allowed edits

include deletion, insertion, and substitution of

characters in one or both sequences. Mapping

billions of reads to the reference genome is com-

putationally expensive.1,8,9 Therefore, most read

mapping algorithms apply two key heuristic

steps, indexing and filtering, to reduce the num-

ber of reference genome segments that need to

be compared with each read.

The three steps of read mapping are shown in

Figure 1(a). First, a read mapper indexes the

reference genome by using substrings (called

seeds) from each read to quickly identify all

potential mapping locations of each read in the

reference genome. Second, the mapper uses fil-

tering heuristics to examine the similarity for

every sequence pair (a read sequence and one

potential matching segment in the reference

genome identified during indexing). These filter-

ing heuristics aim to eliminate most of the dis-

similar sequence pairs. Third, the mapper

performs sequence alignment (using ASM) to

check whether or not the remaining sequence

pairs that are identified by filtering to be similar

are actually similar. The alignment step exam-

ines all possible prefixes of two sequences and

tracks the prefixes that provide the highest pos-

sible alignment score (known as optimal align-

ment). The alignment score is a quantitative

representation of the quality of an alignment for

a given user-defined scoring function (computed

based on the number of edits and/or matches).

Alignment algorithms typically use DP-based

approaches to avoid re-examining the same pre-

fixes many times. These DP-based algorithms

provide the most accurate alignment results

Figure 1. (a) Three steps of read mapping in genome analysis: 1) indexing, 2) pre-alignment filtering, and

3) sequence alignment. (b) Overview of the existing approaches to accelerating each step of read mapping.

September/October 2020 67

compared to other non-DP algorithms, but they

have quadratic time and space complexity [i.e.,

Oðm2Þ for a sequence length of m]. Sequence

alignment calculates information about the align-

ment such as the alignment score, edit distance,

and the type of each edit. Edit distance is defined

as the minimum number of changes needed to

convert a sequence into the other sequence.

Such information is typically output by read

mapping into a sequence alignment/map (SAM)

file. Given the time spent on read mapping, all

three steps have been targeted for acceleration.

Figure 1(b) summarizes the different accelera-

tion approaches, and we discuss a set of such

works in the following sections.

ACCELERATING INDEXING
The indexing operation generates a table that

is indexed by the contents of a seed, and identi-

fies all locations where the seed exists in the ref-

erence genome. Indexing needs to be done only

once for a reference genome, and eliminates the

need to perform ASM across the entire genome.

During read mapping, a seed from a read is

looked up in the table, and only the correspond-

ing locations are used for ASM (as only they can

match the entire read). The major challenge

with indexing is choosing the appropriate length

and number of to-be-indexed seeds, as they can

significantly impact the memory footprint and

overall performance of read mapping.2 Querying

short seeds potentially leads to a large number

of mapping locations that need to be checked

for a string match. The use of long reads requires

extracting from each read a large number of

seeds, as the sequencing error rate is much

higher in long reads. This affects 1) the number

of times we query the index structure; and 2) the

number of retrieved mapping locations. Thus,

there are two key approaches used for accelerat-

ing the indexing step [see Figure 1(b)].

Reducing the Number of Seeds

Read mapping algorithms (e.g., minimap22)

typically reduce the number of seeds that are

stored in the index structure by finding the mini-

mum representative set of seeds (calledminimiz-

ers) from a group of adjacent seeds within a

genomic region. The representative set can be

calculated by imposing an ordering (e.g., lexico-

graphically or by hash value) on a group of adja-

cent seeds and storing only the seed with the

smallest order. Read mappers also apply heuris-

tics to avoid examining the mapping locations of

a seed that occur more times than a user-defined

threshold value.2 Various data structures have

been proposed and implemented to both reduce

the storage cost of the indexing data structure

and improve the algorithmic runtime of identify-

ing the mapping locations within the indexing

data structure. One example of such data struc-

tures is FM-index (implemented by Langarita

et al.10), which provides a compressed representa-

tion of the full-text index, while allowing for query-

ing the index without the need for decompression.

This approach has twomain advantages.

1) We can query seeds of arbitrary lengths, which

helps to reduce the number of queried seeds.

2) It typically has less (by 1:5� 2�) memory

footprint compared to that of the indexing

step of minimap2.2

However, one major bottleneck of FM-indexes is

that locating the exact matches by querying the

FM-index is significantly slower than that of clas-

sical indexes.10,11 BWA-MEM211 proposes an

uncompressed version of the FM-index that is at

least 10� larger than the compressed FM-index

to speed up the querying step by 2� .

Reducing Data Movement During Indexing

RADAR12 observes that the indexing step is

memory intensive, because the large number of

random memory accesses dominates computa-

tion. The authors propose a processing-in-mem-

ory (PIM) architecture that stores the entire

index inside the memory and enables querying

the same index concurrently using a large num-

ber of ASIC compute units. The amount of data

movement is reduced from tens of gigabytes to a

few bytes for a single query task, allowing

RADAR to balance memory accesses with com-

putation, and thus provide speedups and energy

savings.

ACCELERATING PRE-ALIGNMENT
FILTERING

After finding one or more potential mapping

locations of the read in the reference genome,

Biology and Systems Interface

68 IEEE Micro

the read mapper checks the similarity between

each read and each segment extracted at these

mapping locations in the reference genome.

These segments can be similar or dissimilar to the

read, though they share common seeds. To avoid

examining dissimilar sequences using computa-

tionally expensive sequence alignment algo-

rithms, read mappers typically use filtering

heuristics that are called pre-alignment filters. The

key idea of pre-alignment filtering is to quickly

estimate the number of edits between two given

sequences and use this estimation to decide

whether or not the computationally expensive

DP-based alignment calculation is needed—if not,

a significant amount of time is saved by avoiding

DP-based alignment. If two genomic sequences

differ by more than the edit distance threshold,

then the two sequences are identified as dissimi-

lar sequences and hence DP calculation is not

needed. In practice, only genomic sequence pairs

with an edit distance less than or equal to a user-

defined threshold (i.e., E) provide useful data for

most genomic studies.1,3,13 Pre-alignment filters

use one of four major approaches to quickly filter

out the dissimilar sequence pairs: 1) the pigeon-

hole principle; 2) base counting; 3) q-gram filter-

ing; or 4) sparse DP. Long read mappers typically

use q-gram filtering or sparse DP, as their perfor-

mance scales linearly with read length and inde-

pendently of the edit distance.

Pigeonhole Principle

The pigeonhole principle states that if E

items are put into E+1 boxes, then one or more

Sidebar: RelatedWorks on Pre-alignment Filtering Using
the Pigeonhole Principle

P igeonhole-filtering-based pre-alignment filtering can
accelerate read mappers even without specialized

hardware. For example, the adjacency filter [1] accelerates
sequence alignment by up to 19�. The accuracy and
speed of pre-alignment filtering with the pigeonhole princi-
ple have been rapidly improved over the last seven years.
Shifted Hamming Distance (SHD) [2] uses SIMD-capable
CPUs to provide high filtering speed, but supports a
sequence length up to only 128 base pairs due to the SIMD
register widths. GateKeeper [3] utilizes the large amounts of
parallelism offered by FPGA architectures to accelerate SHD
and overcome such sequence length limitations. MAG-
NET [4] provides a comprehensive analysis of all sources of
filtering inaccuracy of GateKeeper and SHD. Shouji [5] lever-
ages this analysis to improve the accuracy of pre-alignment
filtering by up to two orders of magnitude compared to
both GateKeeper and SHD, using a new algorithm and a
new FPGA architecture. SneakySnake [6] achieves up to
four orders of magnitude higher filtering accuracy
compared to GateKeeper and SHD by mapping the
pre-alignment filtering problem to the single net routing
(SNR) problem in VLSI chip layout. SNR finds the shortest rout-
ing path that interconnects two terminals on the boundaries of
a VLSI chip layout in the presenceof obstacles. SneakySnake is
the only pre-alignment filter that works on CPUs, GPUs, and
FPGAs. GenCache [7] proposes to perform highly parallel pre-
alignment filtering inside theCPU cache to reduce datamove-
ment and improve energy efficiency, with about 20% cache
area overhead. GenCache shows that using different existing

pre-alignment filters together, each of which operates only for
a given edit distance threshold (e.g., using SHD only whenE is
between 1 and 5), provides a 2.5� speedup over GenCache
witha single pre-alignment filter.

& REFERENCES

1. Hongyi Xin et al. Accelerating read mapping with

FastHASH. BMC Genomics, 2013.

2. Hongyi Xin et al. Shifted Hamming Distance: A fast and

accurate SIMD friendly filter to accelerate alignment

verification in read mapping. Bioinformatics, 2015.

3. Mohammed Alser et al. GateKeeper: A new hardware

architecture for accelerating pre-alignment in dna short

read mapping. Bioinformatics, 2017.

4. Mohammed Alser et al.MAGNET: Understanding and

improving the accuracy of genome pre-alignment filtering.

Transactions on Internet Research, 2017.

5. Mohammed Alser et al. Shouji: A fast and efficent

pre-alignment filter for sequence alignment. Bioinformatics,

2019.

6. Mohammed Alser et al. SneakySnake: A fast and accurate

universal genome pre-alignment filter for CPUs, GPUs, and

FPGAs. arXiv:1910.09020 [q-bio.GN], 2019.

7. AnirbanNag et al.GenCache: Leveraging in-cache operators

for efficient sequence alignment. inProc. 52nd Int. Symp.

Microarchitecture, 2019.

September/October 2020 69

boxes would be empty. This principle can be

applied to detect dissimilar sequences and dis-

card them from the candidate sequence pairs

used for ASM. If two sequences differ by E edits,

then they should share at least a single subse-

quence (free of edits) among E+1 nonoverlap-

ping subsequences,1 where E is the edit

distance threshold. For a read of length m, if

there are no more than E edits between the read

and the reference segment, then the read and

reference segment are considered similar if they

share at most E+1 nonoverlapping subsequen-

ces, with a total length of at least m�E. The

problem of identifying these E+1 nonoverlap-

ping subsequences is highly parallelizable, as

these subsequences are independent of each

other. Shouji1 exploits the pigeonhole principle

to reduce the search space and provide a scal-

able architecture that can be implemented for

any values of m and E, by examining common

subsequences independently and rapidly with

high parallelism. Shouji accelerates sequence

alignment by 4.2-18.8� without affecting the

alignment accuracy. We refer the reader to the

sidebar for a brief discussion of several other

related works.

Base Counting

The base counting filter compares the num-

bers of bases (A, C, G, T) in the read with the cor-

responding base counts in the reference

segment. If one sequence has, for example, three

more Ts than another sequence, then their align-

ment has at least three edits. If the difference in

count is greater than E, then the two sequences

are dissimilar and the reference segment is dis-

carded. Such a simple filtering approach rejects

a significant fraction of dissimilar sequences

(e.g., 49.8%–80.4% of sequences, as shown in

GASSST14) and thus avoids a large fraction of

expensive verification computations required by

sequence alignment algorithms.

Q-Gram Filtering Approach

The q-gram filtering approach considers all of

the sequence’s possible overlapping substrings

of length q (known as q-grams). Given a sequence

of length m, there are m� q þ 1 overlapping

q-grams that are obtained by sliding a window of

length q over the sequence. A single difference in

one of the sequences can affect at most q over-

lapping q-grams. Thus, E differences can affect

no more than q � E q-grams, where E is the edit

distance threshold. The minimum number of

shared q-grams between two similar sequences

is therefore ðm� q þ 1Þ � ðq � EÞ. This filtering

approach requires very simple operations (e.g.,

sums and comparisons), which makes it attrac-

tive for hardware acceleration, such as in GRIM-

Filter.13 GRIM-Filter exploits the high memory

bandwidth and computation capability in the

logic layer of 3-D-stacked memory to accelerate

q-gram filtering in the DRAM chip itself, using a

new representation of reference genome that is

friendly to in-memory processing. q-gram filter-

ing is generally robust in handling only a small

number of edits, as the presence of edits in any

q-gram is significantly underestimated (e.g.,

counted as a single edit).

Sparse Dynamic Programming

Sparse DP algorithms exploit the exact

matches (seeds) shared between a read and a

reference segment to reduce execution time.

These algorithms exclude the corresponding

locations of these seeds from estimating the

number of edits between the two sequences, as

they were already detected as exact matches

during indexing. Sparse DP filtering techniques

apply DP-based alignment algorithms only

between every two nonoverlapping seeds to

quickly estimate the total number of edits. This

approach is also known as chaining, and is used

in minimap2.2

ACCELERATING SEQUENCE
ALIGNMENT

After filtering out most of the mapping loca-

tions that lead to dissimilar sequence pairs, read

mapping calculates the sequence alignment infor-

mation for every read and reference segment

extracted at each mapping location. Sequence

alignment calculation is typically accelerated

using one of two approaches: 1) accelerating the

DP-based algorithms using hardware accelerators

without altering algorithmic behavior; and

2) developing heuristics that sacrifice the opti-

mality of the alignment score solution in order to

reduce alignment time. With the first approach, it

Biology and Systems Interface

70 IEEE Micro

is challenging to rapidly calculate sequence align-

ment of long reads with high parallelism. As long

reads have high sequencing error rates (up to

20% of the read length), the edit distance thresh-

old for long reads is typically higher than that for

short reads, which results in calculating more

entries in the DPmatrix compared to that of short

reads. The use of heuristics (i.e., the second

approach) helps to reduce the number of calcu-

lated entries in the DP matrix and hence allows

both the execution time and memory footprint to

grow only linearly with read length (as opposed

to quadratically with classical DP). Next, we

describe the two approaches in detail.

Accurate Alignment Accelerators

From a hardware perspective, sequence align-

ment acceleration has five directions: 1) using

SIMD-capable CPUs; 2) using multicore CPUs and

GPUs; 3) using FPGAs; 4) using ASICs; and 5) using

PIM architectures. Traditional DP-based algo-

rithms are typically accelerated by computing

only the necessary regions (i.e., diagonal vectors)

of the DP matrix rather than the entire matrix, as

proposed in Ukkonen’s banded algorithm.27 This

reduces the search space of the DP-based algo-

rithm and reduces computation time. The num-

ber of diagonal bands required for computing the

DP matrix is 2E+1, where E is the edit distance

threshold. For example, the number of entries in

the banded DP matrix for a 2 Mb long read can be

1.2 trillion. Parasail15 and KSW2 (used in mini-

map22) exploit both Ukkonen’s banded algorithm

and SIMD-capable CPUs to compute banded align-

ment for a sequence pair with a configurable scor-

ing function. SIMD instructions offer significant

parallelism to the matrix computation by execut-

ing the same vector operation on multiple oper-

ands at once. KSW2 is nearly as fast as Parasail

when KSW2 does not use heuristics (explained in

the next section).

The multicore architecture of CPUs and GPUs

provides the ability to compute alignments of

many independent sequence pairs concurrently.

GASAL216 exploits the multicore architecture of

both CPUs and GPUs for highly parallel computa-

tion of sequence alignment with a user-defined

scoring function. Unlike other GPU-accelerated

tools, GASAL2 transfers the bases to the GPU,

without encoding them into binary format, and

hides the data transfer time by overlapping GPU

and CPU execution. GASAL2 is up to 20� faster

than Parasail (when executed with 56 CPU

threads). BWA-MEM211 accelerates the banded

sequence alignment of its predecessor (BWA-

MEM) by up to 11:6� , by leveraging multicore

and SIMD parallelism. However, to achieve such

levels of acceleration, BWA-MEM2 builds an index

structure that is 6� larger than that ofminimap2.

Other designs, such as FPGASW,17 exploit the

very large number of hardware execution units

in FPGAs to form a linear systolic array. Each

execution unit in the systolic array is responsi-

ble for computing the value of a single entry of

the DP matrix. The systolic array computes a sin-

gle vector of the matrix at a time. The data

dependency between the entries restricts the

systolic array to computing the vectors sequen-

tially (e.g., top-to-bottom, left-to-right, or in an

antidiagonal manner). FPGASW has a similar exe-

cution time as its GPU implementation, but is 4�
more power efficient.

Specialized hardware accelerators (i.e., ASIC

designs) provide application-specific, power- and

area-efficient solutions to accelerate sequence

alignment. For example, GenAx18 is composed of

SillaX, a sequence alignment accelerator, and a

second accelerator for finding seeds. SillaX sup-

ports both a configurable scoring function and

traceback operations. SillaX is more efficient for

short reads than for long reads, as it consists of

an automata processor whose performance

scales quadratically with the edit distance.

GenAx is 31.7� faster than the predecessor of

BWA-MEM2 (i.e., BWA-MEM) for short reads.

Recent PIM architectures such as RAPID19

exploit the ability to perform computation inside

or near the memory chip to enable efficient

sequence alignment. RAPID modifies the DP-

based alignment algorithm to make it friendly to

in-memory parallel computation by calculating

two DP matrices: one for calculating substitu-

tions and exact matches and another for calcu-

lating insertions and deletions. RAPID claims

that this approach efficiently enables higher lev-

els of parallelism compared to traditional DP

algorithms. The main two benefits of RAPID and

such PIM-based architectures are higher perfor-

mance and higher energy efficiency,4,5 as they

alleviate the need to transfer data between the

September/October 2020 71

main memory and the CPU cores through slow

and energy hungry buses, while providing high

degree of parallelism with the help of PIM. RAPID

is on average 11:8� faster and 212:7� more

power efficient than 384-GPU cluster of GPU

implementation of sequence alignment, known

as CUDAlign.20

Heuristic-Based Alignment Accelerators

The second direction is to limit the functional-

ity of the alignment algorithm or sacrifice the opti-

mality of the alignment solution in order to reduce

execution time. The

use of restrictive

functionality andheu-

ristics limits the pos-

sible applications of

the algorithms that

utilize this direction.

Examples of limiting

functionality include

limiting the scoring

function, or only tak-

ing into account accelerating the computation of

the DPmatrixwithout performing the backtracking

step.21 There are several existing algorithms and

corresponding hardware accelerators that limit

scoring function flexibility. Levenshtein distance

and Myers’s bit-vector algorithm are examples of

algorithmswhose scoring functions are fixed, such

that they penalize all types of edits equally when

calculating the total alignment score. Restrictive

scoring functions reduce the total execution time

of the alignment algorithm and reduce the bit-

width requirement of the register that accommo-

dates the value of each entry in the DP matrix.

ASAP22 accelerates Levenshtein distance calcula-

tion by up to 63:3� using FPGAs compared to its

CPU implementation. The use of a fixed scoring

function as in Edlib,23 which is the state-of-the-art

implementation of Myers’s bit-vector algorithm,

helps to outperform Parasail (which uses a flexible

scoring function) by 12–1000�. One downside of

fixed function scoring is that it may lead to the

selection of a suboptimal sequence alignment.

There are other algorithms and hardware

architectures that provide low alignment time

by trading off accuracy. Darwin8 builds a cus-

tomized hardware architecture to speed up the

alignment process, by dividing the DP matrix

into overlapping submatrices and processing

each submatrix independently using systolic

arrays. Darwin provides three orders of magni-

tude speedup compared to Edlib.23 Dividing the

DP matrix (known as the Four-Russians Method)

enables significant parallelism during DP matrix

computation, but it leads to suboptimal align-

ment calculation.14 Darwin claims that choosing

a large submatrix size (� 320� 320) and ensur-

ing sufficient overlap (�128 entries) between

adjacent submatrices may provide optimal align-

ment calculation for some datasets.

There are other proposals that limit the num-

ber of calculated entries of the DP matrix based

on one of two approaches: 1) using sparse DP; or

2) using a greedy approach to maintain a high

alignment score. Both approaches suffer from

providing suboptimal alignment calculation.24,25

The first approach uses the same sparse DP algo-

rithm used for pre-alignment filtering but as an

alignment step, as done in the exonerate tool.24

The second approach is employed in X-drop,25

which 1) avoids calculating entries (and their

neighbors) whose alignment scores are more

than X below the highest score seen so far

(where X is a user-specified parameter); and

2) stops early when a high alignment score is not

possible. The X-drop algorithm is guaranteed to

find the optimal alignment between relatively

similar sequences for only some scoring func-

tions.25 A similar algorithm (known as Z-drop)

makes KSW2 at least 2:6� faster than Parasail.

DISCUSSION AND FUTURE
OPPORTUNITIES

Despite more than two decades of attempts,

bridging the performance gap between sequenc-

ing machines and read mapping is still challeng-

ing. We summarize four main challenges below.

First, we need to accelerate the entire read

mapping process rather than its individual steps.

Accelerating only a single step of read mapping

limits the overall achieved speedup according to

Amdahl’s Law. Illumina and NVIDIA have recently

started following a more holistic approach, and

they claim to accelerate genome analysis by more

than 48� , mainly byusing specialization andhard-

ware/software codesign. Illumina has built an

FPGA-based platform, called DRAGEN (https://

Despite more than two

decades of attempts,

bridging the

performance gap

between sequencing

machines and read

mapping is still

challenging.

Biology and Systems Interface

72 IEEE Micro

https://www.illumina.com/products/by-type/informatics-products/dragen-bio-it-platform.html

www.illumina.com/products/by-type/informatics-

products/dragen-bio-it-platform.html), that accel-

erates all steps of genome analysis, including read

mapping and variant calling. DRAGEN reduces the

overall analysis time from 32 CPU hours to only

37 min.7 NVIDIA has built Parabricks, a software

suite accelerated using the company’s latest

GPUs. Parabricks (https://developer.nvidia.com/

clara-parabricks) can analyze whole human

genomes at 30� coverage in about 45min.

Second, we need to reduce the high amount of

data movement that takes place during genome

analysis. Moving data 1) between

compute units and main memory;

2) between multiple hardware acc-

elerators; and 3) between the

sequencing machine and the com-

puter performing the analysis

incurs high costs in terms of execu-

tion time and energy. These costs

are a significant barrier to enabling

efficient analysis that can keep up

with sequencing technologies, and

some recent works try to tackle

this problem.4,5,13 GenASM9 is a

framework that uses bitvector-

based ASM to accelerate multiple

steps of the genome analysis pipe-

line, and is designed to be imple-

mented inside 3-D-stacked

memory. Through a combination

of hardware–software co-design to unlock parallel-

ism, and PIM to reduce data movement, GenASM

can perform 1) pre-alignment filtering for short

reads; 2) sequence alignment for both short and

long reads; and 3) whole genome alignment,

among other use cases. For short/long read align-

ment, GenASM achieves 111�/116� speedup over

state-of-the-art software read mappers while

reducing power consumption by 33�/37�. DRA-

GEN reduces data movement between the

sequencing machine and the computer perform-

ing analysis by adding specialized hardware sup-

port inside the sequencing machine for data

compression. However, this still requires move-

ment of compressed data. Performing read map-

ping inside the sequencing machine itself can

significantly improve efficiency by eliminating

sequencer-to-computer movement, and embed-

ding a single specialized chip for read mapping

within a portable sequencing device can poten-

tially enable new applications of genome sequenc-

ing (e.g., rapid surveillance of new diseases such

as COVID-19, near-patient testing, bringing preci-

sionmedicine to remote locations). Unfortunately,

efforts in this direction remain very limited.

Third, we need to develop flexible hardware

architectures that do not conservatively limit

the range of supported parameter values at

design time. Commonly used read mappers (e.g.,

minimap2) have different input parameters, each

of which has a wide range of input values. For

example, the edit distance thresh-

old is typically user defined and can

be very high (15%–20% of the read

length) for recent long reads. A con-

figurable scoring function is

another example, as it determines

the number of bits needed to store

each entry of the DP matrix (e.g.,

DRAGEN imposes a restriction on

the maximum frequency of seed

occurrence). Due to rapid changes

in sequencing technologies (e.g.,

high sequencing error rate and lon-

ger read lengths),28 these design

restrictions can quickly make spe-

cialized hardware obsolete. Thus,

read mappers need to adapt their

algorithms and their hardware

architectures to be modular and

scalable so that they can be implemented for any

sequence length and edit distance threshold

based on the sequencing technology.

Fourth, we need to adapt existing genomic

data formats for hardware accelerators or

develop more efficient file formats. Most sequenc-

ing data is stored in the FASTQ/FASTA format,

where each base takes a single byte (8 bits) of

memory. This encoding is inefficient, as only

2 bits (3 bits when the ambiguous base, N, is

included) are needed to encode each DNA base.

The sequencing machine converts sequenced

bases into FASTQ/FASTA format, and hardware

accelerators convert the file contents into unique

(for each accelerator) compact binary representa-

tions for efficient processing. This process that

requires multiple format conversions wastes

time. For example, only 43% of the sequence align-

ment time in BWA-MEM211 is spent on calculating

The acceleration efforts

we highlight in this

article represent state-

of-the-art efforts to

reduce current

bottlenecks in the

genome analysis

pipeline. We hope that

these efforts and the

challenges we discuss

provide a foundation

for future work in

accelerating read

mappers and

developing other

genome sequence

analysis tools.

September/October 2020 73

https://www.illumina.com/products/by-type/informatics-products/dragen-bio-it-platform.html
https://www.illumina.com/products/by-type/informatics-products/dragen-bio-it-platform.html
https://developer.nvidia.com/clara-parabricks
https://developer.nvidia.com/clara-parabricks

the DP matrix, while 33% of the sequence align-

ment time is spent on preprocessing the input

sequences for loading into SIMD registers, as pro-

vided by Ahmed et al.11 To address this ineffi-

ciency, we need to widely adopt efficient

hardware friendly formats, such as UCSC’s 2bit

format (https://genome.ucsc.edu/goldenPath/

help/twoBit), to maximize the benefits of hard-

ware accelerators and reduce resource utilization.

We are not aware of any recent read mapper that

uses such formats.

The acceleration efforts we highlight in this

article represent state-of-the-art efforts to

reduce current bottlenecks in the genome analy-

sis pipeline. We hope that these efforts and the

challenges we discuss provide a foundation for

future work in accelerating read mappers and

developing other genome sequence analysis

tools.

ACKNOWLEDGMENTS
The work of Onur Mutlu’s SAFARI Research

Group was supported by funding from Intel, the

Semiconductor Research Corporation, VMware,

and the National Institutes of Health (NIH).

& REFERENCES

1. M. Alser, H. Hassan, A. Kumar, O. Mutlu, and C. Alkan,

“Shouji: A fast and efficient pre-alignment filter for

sequence alignment,” Bioinformatics, vol. 35,

pp. 4255–4263, 2019.

2. H. Li, “Minimap2: Pairwise alignment for nucleotide

sequences,” Bioinformatics, vol. 34, pp. 3094–3100,

2018.

3. M. Alser et al., “Technology dictates algorithms:

Recent developments in read alignment”, 2020,

arXiv:2003.00110.

4. O. Mutlu, S. Ghose, J. G�omez-Luna, and

R. Ausavarungnirun, “Processing data where it makes

sense: Enabling in-memory computation,”

Microprocessors Microsyst., vol. 67, pp. 28–41, 2019.

5. S. Ghose, A. Boroumand, J. S. Kim, J. G�omez-Luna, and

O.Mutlu, “Processing-in-memory: A workload-driven

perspective,” IBM J. Res. Develop., vol. 63, no. 6,

pp. 3–1, 2019.

6. Z. D. Stephens et al., “Big data: Astronomical or

genomical?,” PLoS Biol., vol. 13, 2015, Art. no.

e1002195.

7. A. Goyal et al., “Ultra-fast next generation human

genome sequencing data processing using

DRAGEN� Bio-IT processor for precision medicine,”

Open J. Genetics, vol. 7, pp. 9–19, 2017.

8. Y. Turakhia, G. Bejerano, and W. J. Dally, “Darwin: A

genomics co-processor provides up to 15,000x

acceleration on long read assembly,” in Proc.

Archit. Support Program. Lang. Oper. Syst., 2018,

pp. 199–213.

9. D. Senol Cali et al., “GenASM: A low-power, memory-

efficient approximate string matching acceleration

framework for genome sequence analysis,” in Proc.

53rd Int. Symp. Microarchitecture, 2020.

10. R. Langarita et al., “Compressed sparse FM-index:

Fast sequence alignment using large k-steps,” IEEE/

ACM Trans. Comput. Biol. Bioinformatics, to be

published, doi: 10.1109/TCBB.2020.3000253.

11. M. Vasimuddin, S. Misra, H. Li, and S. Aluru, “Efficient

architecture-aware acceleration of BWA-MEM for

multicore systems,” in Proc. IEEE Int. Parallel Distrib.

Process. Symp., 2019, pp. 314–324.

12. W. Huangfu, S. Li, X. Hu, and Y. Xie, “RADAR: A

3D-ReRAMbasedDNAalignment accelerator

architecture,” inProc. Des. Autom.Conf., 2018, pp. 1–6.

13. J. S. Kim et al., “GRIM-filter: Fast seed location filtering in

DNA readmapping using processing-in-memory

technologies,”BMCGenomics, vol. 19, 2018, Art. no. 89.

14. G. Rizk and D. Lavenier, “GASSST: Global alignment

short sequence search tool,” Bioinformatics, vol. 26,

pp. 2534–2540, 2010.

15. J. Daily, “Parasail: SIMD C library for global, semi-

global, and local pairwise sequence alignments,” BMC

Bioinformatics, vol. 17, 2016, Art. no. 81.

16. N. Ahmed, J. L�evy, S. Ren, H. Mushtaq, K. Bertels, and

Z. Al-Ars, “GASAL2: A GPU accelerated sequence

alignment library for high-throughput NGS data,” BMC

Bioinformatics, vol. 20, 2019, Art. no. 520.

17. X. Fei, Z. Dan, L. Lina, M. Xin, and Z. Chunlei,

“FPGASW: Accelerating large-scale Smith-Waterman

sequence alignment application with backtracking on

FPGA linear systolic array,” Interdisciplinary Sci.:

Comput. Life Sci., vol. 10, pp. 176–188, 2018.

18. D. Fujiki et al., “GenAx: A genome sequencing

accelerator,” in Proc. 45th Annu. Int. Symp. Comput.

Archit., 2018, pp. 69–82.

19. S. Gupta, M. Imani, B. Khaleghi, V. Kumar, and

T. Rosing, “RAPID: A ReRAM processing in-memory

architecture for DNA sequence alignment,” in Proc.

IEEE/ACM Int. Symp. Low Power Electron. Des., 2019,

pp. 1–6.

Biology and Systems Interface

74 IEEE Micro

https://genome.ucsc.edu/goldenPath/help/twoBit
https://genome.ucsc.edu/goldenPath/help/twoBit
http://dx.doi.org/10.1109/TCBB.2020.3000253

20. E. F. de Oliveira Sandes, G. Miranda, X. Martorell,

E. Ayguade, G. Teodoro, and A. C. Magalhaes Melo,

“CUDAlign 4.0: Incremental speculative traceback for

exact chromosome-wide alignment in GPU clusters,”

IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 10,

pp. 2838–2850, Oct. 2016.

21. P. Chen, C. Wang, X. Li, and X. Zhou, “Accelerating

the next generation long read mapping with the

FPGA-based system,” IEEE/ACM Trans. Comput. Biol.

Bioinformatics, vol. 11, no. 5, pp. 840–852,

Sep.–Oct. 2014.

22. S. S. Banerjee et al., “ASAP: Accelerated short-read

alignment on programmable hardware,” IEEE Trans.

Comput., vol. 68, no. 3, pp. 331–346, Mar. 2019.

23. M. �So�si�c and M. �Siki�c, “Edlib: A C/C++ library for fast,

exact sequence alignment using edit distance,”

Bioinformatics, vol. 33, pp. 1394–1395, 2017.

24. G. S. C. Slater and E. Birney, “Automated generation of

heuristics for biological sequence comparison,” BMC

Bioinformatics, vol. 6, 2005, Art. no. 31.

25. Z. Zhang, S. Schwartz, L. Wagner, and W. Miller,

“A greedy algorithm for aligning DNA sequences,”

J. Comput. Biol., vol. 7, pp. 203–214, 2000.

26. L. Ben and N. Abhinav, “Cloud computing for genomic

data analysis and collaboration,” Nature Reviews

Genetics, vol. 19, no. 4, p. 208, 2018.

27. U. Esko, “Algorithms for approximate string matching,”

Inform. control, vol. 64, no. 1–3, pp. 100–118, 1985.

28. D. Senol Cali, J. S. Kim, S. Ghose, C. Alkan, and O.

Mutlu, “Nanopore sequencing technology and tools for

genome assembly: Computational analysis of the

current state, bottlenecks and future directions,”

Briefings Bioinf., vol. 20, no. 4, pp. 1542–1559,

2019.

Mohammed Alser is currently with ETH Z€urich.

Contact him at alserm@inf.ethz.ch.

Z€ulalBing€ol is currently with Bilkent University. Con-

tact her at zulal.bingol@bilkent.edu.tr.

DamlaSenolCali is currently with CarnegieMellon

University. Contact her at dsenol@andrew.cmu.edu.

Jeremie Kim is currently with ETH Z€urich

and Carnegie Mellon University. Contact him

at jeremie.kim@inf.ethz.ch.

Saugata Ghose is currently with the University of

Illinois at Urbana–Champaign and Carnegie Mellon

University. Contact him at ghose@illinois.edu.

Can Alkan is currently with Bilkent University. Con-

tact him at calkan@cs.bilkent.edu.tr.

Onur Mutlu is currently with ETH Z€urich, Carnegie

Mellon University and Bilkent University. Contact him

at omutlu@gmail.com.

September/October 2020 75

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

