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The problem of discretization of Darboux integrable equations is considered. Given a Darboux
integrable continuous equation, one can obtain a Darboux integrable differential-discrete equation,
using the integrals of the continuous equation. In the present paper, the discretization of
the differential-discrete equations is done using the corresponding characteristic algebras. New
examples of integrable discrete equations are obtained.
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1. Introduction
Darboux integrability is a concept that allows to obtain a general solution of

a certain type hyperbolic equations. It was developed in works of Laplace, Darboux,
Goursat and other people. The continuous Darboux integrable equations have many
applications and are reasonably well studied, see a review paper [21]. In recent years
the problem of discretization, preserving integrability property, of such equations has
generated a lot of interest. The integrable discrete models play an important role in
many areas of physics, see [12]. Construction of such models is also important for
general classification problem of discrete integrable systems. In the present paper
we developed a new approach for discretization of Darboux integrable equations.

Let us give necessary definitions. A hyperbolic equation

𝑤𝑥𝑦 = ℎ(𝑤, 𝑤𝑥 , 𝑤𝑦) (1)

is called Darboux integrable if it admits two nontrivial functions

𝐽 (𝑤, 𝑤𝑦 , 𝑤𝑦𝑦 , . . . ) and 𝐺 (𝑤, 𝑤𝑥 , 𝑤𝑥𝑥 , . . . ),
depending on a finite number of variables, such that for all solutions of (1) we

[279]



280 K. ZHELTUKHIN and N. ZHELTUKHINA

have
𝐷𝑥𝐽 = 0 and 𝐷𝑦𝐺 = 0, (2)

where 𝐷𝑥 is the total 𝑥-derivative operator and 𝐷𝑦 is the total 𝑦-derivative operator.
The functions 𝐽 (𝑤, 𝑤𝑦 , 𝑤𝑦𝑦 , . . . ) and 𝐺 (𝑤, 𝑤𝑥 , 𝑤𝑥𝑥 , . . . ) are called 𝑥- and 𝑦-integrals,
respectively. For the detailed discussion of the Darboux integrable equations see
[1, 20, 21] and references therein.

First, one can look for a differential-discrete equation which is a discretization
of a continuous equation (1). This differential-discrete equation should also be
Darboux integrable. The notion of Darboux integrable differential-discrete equation
was introduced in [11]. Let us consider an equation

𝑡1𝑥 = 𝑔(𝑡, 𝑡1, 𝑡𝑥), (3)
where 𝑡 (𝑛, 𝑥) is a function of a continuous variable 𝑥, a discrete variable 𝑛 and
𝑡1 = 𝐷𝑡 (𝑛, 𝑥) = 𝑡 (𝑛 + 1, 𝑥) (𝐷 is the shift operator and 𝐷𝑘𝑡 (𝑛, 𝑥) = 𝑡 (𝑛 + 𝑘, 𝑥) = 𝑡𝑘 ,
𝑘 ∈ Z). Differential-discrete equation (3) is called Darboux integrable if it admits
two functions

𝐼 (𝑡, 𝑡𝑥 , 𝑡𝑥𝑥 , . . . ) and 𝐹 (. . . , 𝑡−1, 𝑡, 𝑡1, 𝑡2, 𝑡−2, . . . ),
depending on a finite number of variables, such that for all solutions of (3) we
have

𝐷𝑥𝐹 = 0 and 𝐷𝐼 = 𝐼 . (4)
Such Darboux integrable differential-discrete equations and discrete equations (the
definition of Darboux integrable discrete equation is given in the next section) are
actively studied nowadays, see [2–7].

It was proposed in [9] to use 𝑥- or 𝑦- integrals of a continuous equation (1)
to obtain its discretization. That is, one looks for a differential-discrete equation
that admits a given 𝑥- or 𝑦-integral as its 𝑛-integral. This approach allowed to
construct many differential-discrete equations, see [10–19]. Moreover, the constructed
equations turned out to admit also an 𝑥-integral, that is the equations are Darboux
integrable. Now, one can take a constructed differential-discrete equation and consider
its further discretization using the corresponding 𝑥-integral. However, if one tries to
find a discrete equation corresponding to a given integral, one obtains a complicated
functional equation to be solved, see [9] for some examples. In many cases the
discretization is not found.

The Darboux integrability can be also defined in terms of characteristic algebras,
which are Lie–Rinehart algebras, see [13–15]. We propose to use the characteristic
algebras for the discretization.

The paper is organized as follows. In Section 2 we give necessary definitions
and description of our approach to discretization. In Section 3 we give examples
of discretization for differential-discrete Darboux integrable equations.

2. Preliminaries
In what follows we always assume that 𝑡, 𝑡±1, 𝑡±2, . . . and 𝑡𝑥 , 𝑡𝑥𝑥 , 𝑡𝑥𝑥𝑥 . . . are

independent dynamical variables. Derivatives of variables 𝑡, 𝑡±1, 𝑡±2, . . . and shifts
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of variables 𝑡𝑥 , 𝑡𝑥𝑥 , 𝑡𝑥𝑥𝑥 , . . . are expressed in terms of the dynamical variables
using (3).

A criteria for the existence of 𝑛- and 𝑥-integrals of a differential discrete
equation (3) can be formulated in terms of the so-called characteristic algebras.

Let us introduce the criteria for the existence of 𝑥-integral first. Define an operator

𝑍 = 𝑡𝑥
𝜕

𝜕𝑡
+ 𝑡1𝑥

𝜕

𝜕𝑡1
+ 𝑡−1𝑥

𝜕

𝜕𝑡−1
+ . . . , (5)

which corresponds to the total derivative operator 𝐷𝑥 and an operator

𝑊 =
𝜕

𝜕𝑡𝑥
. (6)

We have that 𝑍𝐹 = 0 and 𝑊𝐹 = 0. Clearly, the function 𝐹 is also annulled by all
possible commutators of these operators. Thus we define the characteristic 𝑥-algebra,
denoted by 𝐿𝑥 , as a Lie–Rinehart algebra generated by the operators 𝑍 and 𝑊 . The
algebra 𝐿𝑥 is considered over the ring of functions depending on a finite number of
dynamical variables. In general, all algebras and linear spaces of operators introduced
in this paper are considered over the ring of functions depending on finite number
of dynamical variables.

Theorem 1 ([11]). Eq. (3) admits a nontrivial 𝑥-integral if and only if the
corresponding characteristic 𝑥-algebra 𝐿𝑥 is finite-dimensional.

Now we introduce the criteria for the existence of the 𝑛-integral of a differential-
discrete equation (3). Following [11] we define an operator

𝑌0 =
𝜕

𝜕𝑡1
(7)

and operators

𝑌𝑘 = 𝐷
−𝑘 𝜕

𝜕𝑡1
𝐷𝑘 , 𝑘 = 1, 2, 3, . . . , (8)

𝑋𝑘 =
𝜕

𝜕𝑡−𝑘
, 𝑘 = 1, 2, . . . . (9)

Theorem 2 ([11]). Eq. (3) admits a nontrivial 𝑛-integral if and only if the
following conditions are satisfied:

1. The linear space generated by the operators {𝑌𝑘}∞𝑘=0 has a finite dimension. Let
us denote the dimension by 𝑁 .

2. The Lie–Rinehart algebra generated by the operators {𝑌𝑘}𝑁𝑘=0 and {𝑋𝑘}𝑁𝑘=1 has
a finite dimension.

The characteristic 𝑛-algebra, denoted by 𝐿𝑛, is a Lie–Rinehart algebra generated
by the operators {𝑌𝑘}𝑁𝑘=0 and {𝑋𝑘}𝑁𝑘=1 from the above theorem.
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Now, we consider a discrete equation case. Assume that a function 𝑢(𝑛, 𝑚)
depends on two discrete variables 𝑛 and 𝑚. For the function 𝑢(𝑛, 𝑚) we have the
shift operator 𝐷 such that 𝐷𝑢(𝑛, 𝑚) = 𝑢(𝑛 + 1, 𝑚) = 𝑢1, the shift with respect to
the first variable, and the shift operator �̄�, �̄�𝑢(𝑛, 𝑚) = 𝑢(𝑛, 𝑚 + 1) = 𝑢1̄, the shift
with respect to the second variable. Note that 𝐷𝑘𝑢(𝑛, 𝑚) = 𝑢(𝑛 + 𝑘, 𝑚) = 𝑢𝑘 and
�̄�𝑘𝑢(𝑛, 𝑚) = 𝑢(𝑛, 𝑚 + 𝑘) = 𝑢 �̄� , 𝑘 ∈ Z. We study a discrete equation

𝑢11̄ = 𝑓 (𝑢, 𝑢1, 𝑢1̄). (10)

In what follows we always assume that 𝑢, 𝑢±1, 𝑢±2, . . . and 𝑢±1̄, 𝑢±2̄, . . . are inde-
pendent dynamical variables. Also 𝐷𝑘 shifts the variables 𝑢1̄, 𝑢2̄, . . . and �̄�𝑘 shifts
the variables 𝑢1, 𝑢2, . . . which are expressed in terms of the dynamical variables
using (10).

A sequence of functions {𝐽𝑘 (𝑛, 𝑢− 𝑗 , . . . , 𝑢𝑟 )}∞𝑘=−∞, depending on finite number of
dynamical variables 𝑢− 𝑗 , . . . , 𝑢𝑟 , is called an 𝑚-integral for a discrete equation (10)
if �̄�𝐽𝑖 = 𝐽𝑖+1, 𝑖 ∈ Z. Note that a shift of an 𝑚-integral {𝐷 𝑝𝐽𝑘 (𝑛, 𝑢− 𝑗 , . . . , 𝑢𝑟 )}∞𝑘=−∞,
where 𝑝 is fixed, is also an 𝑚-integral. The notion of an 𝑛-integral for a discrete
equation (10) is defined in a similar way. Eq. (10) is called Darboux integrable if it
admits nontrivial 𝑚- and 𝑛-integrals. A criteria for existence of 𝑚- and 𝑛-integrals
can be formulated in terms of the so-called characteristic algebras. We consider the
existence criteria for the 𝑚-integral (for the 𝑛-integral the corresponding criteria is
formulated in a similar way). Following [21] we define operators

𝑌0 =
𝜕

𝜕𝑢1̄
(11)

and

𝑌𝑘 = �̄�
−𝑘 𝜕

𝜕𝑢1̄
�̄�𝑘 , 𝑘 = 1, 2, . . . , (12)

�̃�𝑘 =
𝜕

𝜕𝑢−𝑘
, 𝑘 = 1, 2, . . . . (13)

Theorem 3 ([21]). Eq. (10) admits a nontrivial 𝑛-integral if and only if the
following conditions are satisfied:

1. The linear space generated by the operators {𝑌𝑘}∞𝑘=0 has a finite dimension. Let
us denote the dimension by �̃� .

2. The Lie–Rinehart algebra generated by the operators {𝑌𝑘}�̃�𝑘=0 and {�̃�𝑘}�̃�𝑘=1 has
a finite dimension.

The Lie–Rinehart algebra generated by the operators {𝑌𝑘}�̃�𝑘=0 and {�̃�𝑘}�̃�𝑘=1 from
the above theorem is called the characteristic 𝑚-algebra, denoted by �̃�𝑚.

Given a Darboux integrable differential-discrete equation (3) we have an 𝑥-integral
𝐹 (𝑡, 𝑡1, . . . , 𝑡 𝑗). We would like to find a discrete equation (10) that admits same
function 𝐹 as its 𝑚-integral. In general, a function 𝐹 generates an 𝑚-integral for
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Eq. (10) if on all solutions of Eq. (10) we have

�̄�𝐹 = ℎ(𝐹), (14)

for some function ℎ, see [21]. Let us assume that �̄�𝐹 = 𝐹, for simplicity. The
equality �̄�𝐹 = 𝐹 in general gives a complicated equation for the function 𝑓 in (10),
namely

𝐹 (𝑢, 𝑢1, . . . , 𝑢 𝑗) = 𝐼 (𝑢1̄, 𝑢11̄, . . . , 𝑢 𝑗1̄) = 𝐼 (𝑢1̄, 𝑓 , 𝑓 (𝑢1, 𝑢2, 𝑓 ), . . . ), (15)

that is not easy to solve.
To find the discrete equation we propose to use characteristic algebras. Operators

of the characteristic algebra 𝐿𝑥 of a given differential-discrete equation and operators
of characteristic algebra �̃�𝑚 of the corresponding discrete equation annul the same
function 𝐹. The operator 𝑌1 ∈ �̃�𝑚 has the form (see [21])

𝑌1 =
𝜕

𝜕𝑢
+ 𝛼 𝜕

𝜕𝑢1
+ 1
𝛼−1

𝜕

𝜕𝑢−1
+ · · · , (16)

where
𝛼 = �̄�−1 𝜕

𝜕𝑢1̄
𝑓 . (17)

We assume that the operator 𝑌1 can be identified with the operator

[𝑋, 𝑍] = 𝜕

𝜕𝑡
+ 𝜕𝑡1𝑥
𝜕𝑡𝑥

𝜕

𝜕𝑡1
+ 𝜕𝑡−1𝑥

𝜕𝑡𝑥

𝜕

𝜕𝑡−1
+ · · · , (18)

[𝑋, 𝑍] ∈ 𝐿𝑥 (note that
𝜕𝑡1𝑥

𝜕𝑡𝑥
=

(
𝜕𝑡−1𝑥

𝜕𝑡𝑥

)−1

). Thus, the coefficient 𝛼 = �̄�−1 𝜕

𝜕𝑢1̄
𝑓 is

identified with the coefficient
𝜕

𝜕𝑡𝑥
𝑔. So, if we take function

𝜕

𝜕𝑡𝑥
𝑔(𝑡, 𝑡1, 𝑡𝑥) and

replace the variables as follows 𝑡 = 𝑢1̄, 𝑡1 = 𝑢11̄ and 𝑡𝑥 = 𝐴(𝑢, 𝑢1) (the function 𝐴

to be found later) we obtain an equation for
𝜕

𝜕𝑢1̄
𝑓 ,

𝜕 𝑓

𝜕𝑢1̄
=

𝜕

𝜕𝑡𝑥
𝑔(𝑡, 𝑡1, 𝑡𝑥) |𝑡=𝑢1̄ , 𝑡1=𝑢11̄ , 𝑡𝑥=𝐴(𝑢,𝑢1 ) . (19)

The above equation determines the function 𝑓 up to some unknown functions
of 𝑢, 𝑢1. The unknown functions can be found using (14).

3. Examples
In this section we consider the discretization of several differential-discrete

Darboux integrable equations. To our knowledge the obtained Darboux integrable
discrete equations (25), (36) and (45) are new.
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Example 1. Consider a differential-discrete equation

𝑡1𝑥 =
𝑡1 + 1
𝑡 + 1

𝑡1𝑡𝑥 (20)

with an 𝑥-integral 𝐹 =
(𝑡1 + 1) (𝑡 + 1)

𝑡1
(see [16]). We are looking for a discrete

equation (10) with a corresponding 𝑚-integral

�̃� =
(𝑢1 + 1) (𝑢 + 1)

𝑢1
. (21)

We assume that 𝑢11̄ = 𝑓 (𝑢, 𝑢1, 𝑢1̄) satisfies Eq. (19), so we have
𝜕𝑢11̄
𝜕𝑢1̄

=
𝑢11̄ + 1
𝑢1̄ + 1

𝑢11̄. (22)

The solution of the above equation is
(𝑢11̄ + 1) (𝑢1̄ + 1)

𝑢11̄
= 𝐴(𝑢, 𝑢1). (23)

Now we find 𝐴(𝑢, 𝑢1) using the integral (21). Assuming that the equality �̄��̃� = �̃�

holds we find 𝐴 =
(𝑢1 + 1) (𝑢 + 1)

𝑢1
. Thus we obtain a discrete equation

(𝑢11̄ + 1) (𝑢1̄ + 1)
𝑢11̄

=
(𝑢1 + 1) (𝑢 + 1)

𝑢1
, (24)

or
𝑢11̄ =

𝑢1(𝑢1̄ + 1)
1 + 𝑢 + 𝑢𝑢1 − 𝑢1𝑢1̄

(25)

with the 𝑚-integral (21). One can also find an 𝑛-integral for the given equation

�̃� =

(
1 + (𝑢1̄) (−1)𝑛

1 + 𝑢 (−1)𝑛

) (−1)𝑛

. (26)

Hence, Eq. (25) is Darboux integrable.
Remark 1. In general, for equations of the form

𝑡1𝑥 = 𝐾 (𝑡, 𝑡1)𝑡𝑥 (27)
one has an 𝑥-integral of the form 𝐹 (𝑡, 𝑡1), where the function 𝐹 satisfies the equation

𝐹𝑡 + 𝐾 (𝑡, 𝑡1)𝐹𝑡1 = 0, (28)
see [9]. For such equations our approach leads to an obvious general discrete
equation

𝐹 (𝑢, 𝑢1) = 𝐹 (𝑢1̄, 𝑢11̄) (29)
that admits an 𝑚-integral 𝐹 (𝑢, 𝑢1). The existence of 𝑛-integrals for such equations
requires further investigation. Some results on a similar classification problem can
be found in [6].
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Example 2. Consider a differential-discrete equation

𝑡1𝑥 =
𝑡1

𝑡
𝑡𝑥 + 𝑡21 + 𝑡𝑡1 (30)

with an 𝑥-integral 𝐹 =

(
1 + 𝑡1

𝑡2

) (
1 + 𝑡1

𝑡

)
(see [16]). We are looking for a discrete

equation (10) with a corresponding 𝑚-integral

�̃� =

(
1 + 𝑢1

𝑢2

) (
1 + 𝑢1

𝑢

)
. (31)

We assume that 𝑢11̄ = 𝑓 (𝑢, 𝑢1, 𝑢1̄) satisfies Eq. (19), so
𝜕𝑢11̄
𝜕𝑢1̄

=
𝑢11̄
𝑢1̄
. (32)

The solution of the above equation is

𝑢11̄ = 𝐴(𝑢, 𝑢1)𝑢1̄. (33)

Now we find 𝐴(𝑢, 𝑢1) using the integral (31). Assuming that the equality �̄��̃� = �̃�

holds, we find 𝐴 =
𝑢1

𝑢
. Thus, we obtain a discrete equation

𝑢11̄ =
𝑢1

𝑢
𝑢1̄. (34)

Eq. (34) has the 𝑚-integral (31) and an 𝑛-integral �̃� =
𝑢1̄
𝑢

. Hence, Eq. (34) is
Darboux integrable.

If we assume that the equality

�̄��̃� = �̃�−1 (35)

holds then we find

𝐴 = −
(
| − 1 + (−1)𝑛 | 𝑢 + |1 + (−1)𝑛 | 𝑢1

2(𝑢 + 𝑢1)

) (−1)𝑛

.

Thus we obtain a discrete equation

𝑢11̄ = −
(
| − 1 + (−1)𝑛 | 𝑢 + |1 + (−1)𝑛 | 𝑢1

2(𝑢 + 𝑢1)

) (−1)𝑛

𝑢1̄. (36)

Eq. (36) has the 𝑚-integral (31) and an 𝑛-integral �̃� =
𝑢2̄
𝑢

. Hence, Eq. (36) is
Darboux integrable.

Example 3. Consider a differential-discrete equation

𝑡1𝑥 = 𝑡𝑥 + 𝑡21 − 𝑡2 (37)



286 K. ZHELTUKHIN and N. ZHELTUKHINA

with an 𝑥-integral
𝐹 =

(𝑡 − 𝑡2) (𝑡1 − 𝑡3)
(𝑡 − 𝑡3) (𝑡1 − 𝑡2)

(38)

(see [2]). We are looking for a discrete equation (10) with 𝑚-integral

�̃� =
(𝑢 − 𝑢2) (𝑢1 − 𝑢3)
(𝑢 − 𝑢3) (𝑢1 − 𝑢2)

. (39)

We assume that 𝑢11̄ = 𝑓 (𝑢, 𝑢1, 𝑢1̄) satisfies Eq. (19), so
𝜕𝑢11̄
𝜕𝑢1̄

= 1. (40)

The solution of the above equation is
𝑢11̄ = 𝑢1̄ + 𝐴(𝑢, 𝑢1). (41)

We find 𝐴(𝑢, 𝑢1) using the integral (39). Assuming that the equality �̄��̃� = �̃� holds

we find 𝐴 =
1
𝑢
− 1
𝑢1

. Thus we obtain a discrete equation

𝑢11̄ = 𝑢1̄ +
1
𝑢
− 1
𝑢1

(42)

with 𝑚-integral (39). One can also find an 𝑛-integral for the given equation
�̃� = 𝑢1̄ +

1
𝑢

. Hence, Eq. (42) is Darboux integrable.

Example 4. Consider a differential-discrete equation

𝑡1𝑥 = (1 + 𝑅𝑒𝑡+𝑡1)𝑡𝑥 +
√︁
𝑅2𝑒2(𝑡+𝑡1 ) + 2𝑅𝑒𝑡+𝑡1

√︃
𝑡2𝑥 − 4 (43)

with an 𝑥-integral
𝐹1 =

√
𝑅𝑒2𝑡1 + 2𝑒𝑡1−𝑡 +

√
𝑅𝑒2𝑡1 + 2𝑒𝑡1−𝑡2 (44)

(see [9]). The corresponding discrete equation is given by

𝑒−𝑢11̄ = 𝑒−𝑢1̄

(
𝑒𝑢

√︂
𝑒−𝑢−𝑢1 + 𝑅

2
+ 𝑒𝑢

√︂
𝑅

2

)2

+
√

2𝑅

(
𝑒𝑢

√︂
𝑒−𝑢−𝑢1 + 𝑅

2
+ 𝑒𝑢

√︂
𝑅

2

)
(45)

Eq. (45) admits the 𝑚-integral

�̃�1 =
√
𝑅𝑒2𝑢1 + 2𝑒𝑢1−𝑢 +

√
𝑅𝑒2𝑢1 + 2𝑒𝑢1−𝑢2 . (46)

One can also find an 𝑛-integral for the given equation

�̃�1 =
𝑒−𝑢 + 𝑒−𝑢1̄

𝑒−𝑢1̄ + 𝑒−𝑢2̄
. (47)
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Hence, Eq. (45) is Darboux integrable. The derivation of this example is given
below.

Now, let us derive the discrete equation given in Example 4. We are looking
for a discrete equation (10) which is a discretization of (43). Since

𝜕

𝜕𝑡𝑥

(
(1 + 𝑅𝑒𝑡+𝑡1)𝑡𝑥 +

√︁
𝑅2𝑒2(𝑡+𝑡1 ) + 2𝑅𝑒𝑡+𝑡1

√︃
𝑡2𝑥 − 4

)
= (1 + 𝑅𝑒𝑡+𝑡1) +

√︁
𝑅2𝑒2(𝑡+𝑡1 ) + 2𝑅𝑒𝑡+𝑡1

𝑡𝑥√︁
𝑡2𝑥 − 4

, (48)

we assume that
𝜕 𝑓

𝜕𝑢1̄
= 1 + 𝑅𝑒𝑢1̄+ 𝑓 + 𝑇 (𝑢, 𝑢1)

√︁
𝑅2𝑒2(𝑢1̄+ 𝑓 ) + 2𝑅𝑒𝑢1̄+ 𝑓 , (49)

where 𝑇 is a function of 𝑢, 𝑢1. By solving (49) we get√︂
𝑒− 𝑓 −𝑢1̄ + 𝑅

2
= 𝑒−𝑢1̄𝐸 (𝑢, 𝑢1) + 𝐶 (𝑢, 𝑢1). (50)

Since 𝑢11̄ = 𝑓 , we have√︂
𝑒−𝑢11̄−𝑢1̄ + 𝑅

2
= 𝑒−𝑢1̄𝐸 (𝑢, 𝑢1) + 𝐶 (𝑢, 𝑢1), (51)

or
𝑒−𝑢11̄ = 𝑒−𝑢1̄𝐸2(𝑢, 𝑢1) + 𝑒𝑢1̄

(
𝐶2(𝑢, 𝑢1) −

𝑅

2

)
+ 2𝐸 (𝑢, 𝑢1)𝐶 (𝑢, 𝑢1). (52)

To find the functions 𝐸 , 𝐶 we use the equality �̄�𝐹1 = 𝐹1. We have

𝑒𝑢11̄

√︂
𝑒−𝑢11̄−𝑢1̄ + 𝑅

2
+ 𝑒𝑢11̄

√︂
𝑒−𝑢11̄−𝑢21̄ + 𝑅

2

= 𝑒𝑢1

√︂
𝑒−𝑢1−𝑢 + 𝑅

2
+ 𝑒𝑢1

√︂
𝑒−𝑢1−𝑢2 + 𝑅

2
. (53)

Using (51) we can write√︂
𝑒−𝑢21̄−𝑢11̄ + 𝑅

2
= 𝑒−𝑢11̄𝐸 (𝑢1, 𝑢2) + 𝐶 (𝑢1, 𝑢2) (54)

and rewrite (53) as

𝑒𝑢11̄ (𝑒−𝑢1̄𝐸 (𝑢, 𝑢1) + 𝐶 (𝑢, 𝑢1)) + 𝑒𝑢11̄ (𝑒−𝑢11̄𝐸 (𝑢1, 𝑢2) + 𝐶 (𝑢1, 𝑢2))

= 𝑒𝑢1

√︂
𝑒−𝑢1−𝑢 + 𝑅

2
+ 𝑒𝑢1

√︂
𝑒−𝑢1−𝑢2 + 𝑅

2
. (55)
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By differentiating (55) with respect to 𝑢1̄ we get
𝜕𝑢11̄
𝜕𝑢1̄

=
𝑒−𝑢1̄𝐸 (𝑢, 𝑢1)

𝑒−𝑢1̄𝐸 (𝑢, 𝑢1) + 𝐶 (𝑢, 𝑢1) + 𝐶 (𝑢1, 𝑢2)
, (56)

which implies that
𝑢11̄ = − ln(𝑒−𝑢1̄𝐸 (𝑢, 𝑢1) + 𝐶 (𝑢, 𝑢1) + 𝐶 (𝑢1, 𝑢2)) + �̂� (𝑢, 𝑢1) (57)

or
𝑒−𝑢11̄ = 𝐾 (𝑢, 𝑢1) (𝑒−𝑢1̄𝐸 (𝑢, 𝑢1) + 𝐶 (𝑢, 𝑢1) + 𝐶 (𝑢1, 𝑢2)). (58)

Now comparing (58) with (52) we get 𝐶 (𝑢, 𝑢1) = ±
√︃

𝑅
2 and 𝐾 (𝑢, 𝑢1) = 𝐸 (𝑢, 𝑢1).

Thus,
𝑒−𝑢11̄ = 𝐸2(𝑢, 𝑢1)𝑒−𝑢1̄ ±

√
2𝑅𝐸 (𝑢, 𝑢1). (59)

By substituting the above expression for 𝑒−𝑢11̄ into (55) and differentiating (55) with
respect to 𝑢2 we get

𝜕𝐸 (𝑢1, 𝑢2)
𝜕𝑢2

=
𝜕

𝜕𝑢2

(
𝑒𝑢1

√︂
𝑒−𝑢1−𝑢2 + 𝑅

2

)
, (60)

that is

𝐸 (𝑢1, 𝑢2) = 𝑒𝑢1

√︂
𝑒−𝑢1−𝑢2 + 𝑅

2
+ 𝑀 (𝑢1). (61)

So, we rewrite (59) as

𝑒−𝑢11̄ = 𝑒−𝑢1̄ (𝑒𝑢
√︂
𝑒−𝑢−𝑢1 + 𝑅

2
+ 𝑀 (𝑢))2 ±

√
2𝑅𝑒𝑢

√︂
𝑒−𝑢−𝑢1 + 𝑅

2
+ 𝑀 (𝑢). (62)

We use (53) and have 𝑀 (𝑢) = 𝑒𝑢
√︃

𝑅
2 . Thus, we obtain (45).
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