
CUDA BASED IMPLEMENTATION OF FLAME

DETECTION ALGORITHMS IN DAY AND INFRARED

CAMERA VIDEOS

a thesis

submitted to the department of electrical and

electronics engineering

and the graduate school of engineering and science

of bilkent university

in partial fulfillment of the requirements

for the degree of

master of science

By

Hasan Hamzaçebi

September 2011



I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. A. Enis Çetin (Supervisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. Sinan Gezici

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Ugur Güdükbay

Approved for the Graduate School of Engineering and Science:

Prof. Dr. Levent Onural
Director of Graduate School of Engineering and Science

ii



ABSTRACT

CUDA BASED IMPLEMENTATION OF FLAME

DETECTION ALGORITHMS IN DAY AND INFRARED

CAMERA VIDEOS

Hasan Hamzaçebi

M.S. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. A. Enis Çetin

September 2011

Automatic fire detection in videos is an important task but it is a challenging

problem. Video based high performance fire detection algorithms are important

for the detection of forest fires. The usage area of fire detection algorithms can

further be extended to the places like state and heritage buildings, in which

surveillance cameras are installed. In uncontrolled fires, early detection is crucial

to extinguish the fire immediately. However, most of the current fire detection

algorithms either suffer from high false alarm rates or low detection rates due

to the optimization constraints for real-time performance. This problem is also

aggravated by the high computational complexity in large areas, where multi-

camera surveillance is required. In this study, our aim is to speed up the existing

color video fire detection algorithms by implementing in CUDA, which uses the

parallel computational power of Graphics Processing Units (GPU). Our method

does not only speed up the existing algorithms but it can also reduce the opti-

mization constraints for real-time performance to increase detection probability

without affecting false alarm rates. In addition, we have studied several meth-

ods that detect flames in infrared video and proposed an improvement for the

iii



algorithm to decrease the false alarm rate and increase the detection rate of the

fire.

Keywords: Flame Detection, Fire Detection, Graphics Processing Unit (GPU),

Compute Unified Device Architecture (CUDA), Infrared (IR) Video, Color Video

iv



ÖZET

GÜNDÜZ VE KIZILÖTESI KAMERA VIDEOLARINDA ALEV

TESPIT ALGORITMALARININ CUDA TABANLI

GERÇEKLESTIRILMESI

Hasan Hamzaçebi

Elektrik ve Elektronik Mühendisligi Bölümü Yüksek Lisans

Tez Yöneticisi: Prof. Dr. A. Enis Çetin

Eylül 2011

Videoda otomatik ateş tespiti önemli bir görev olup aynı zamanda zorlayıcı bir

problemdir. Video tabanlı yüksek performanslı ateş tespit algoritmalarının or-

man yangını tespitindeki önemi oldukça büyüktür. Ateş tespit algoritmalarının

kullanım alanları devlet binaları ve tarihi değeri olan binalar gibi gözetleme kam-

eralarının kurulu olduğu yerleri de içerecek şekilde genişletilebilir. Kontolsüz or-

taya çıkan yangınlarda, erken tespit yangının kısa bir sürede söndürülmesine

yardımcı olur. Fakat, günümüzde kullanılan çoğu ateş tespit algoritması,

gerçek zamanlı video işleyebilmek için yapılan optimizasyonlardan dolayı yüksek

yanlış alarm oranlarına veya düşük tespit oranlarına sahiptir. Bu sorun bir-

den fazla kameranın gözetimine ihtiyaç duyulan geniş alanlarda hesaplama

karmaşıklığının yükselmesi ile daha da artar. Bu çalışmada amacımız, Grafik

İşlemci Ünitesi (GPU)’nin paralel hesaplama gücünü kullanan CUDA’yı kul-

lanarak gündüz kameraları için var olan ateş tespit algoritmalarının hızının

arttırılmasıdır. Yöntemimiz sadece var olan algoritmaları hızlandırmak ile

kalmaz, bu hızlandırmanın sağladığı faydaları kullanarak gerçek zamanlı işleme

v



için yapılmış olan optimizasyonlar kaldırılarak, yanlış alarm oranını da etk-

ilemeden, tespit oranını arttırabilir. Buna ek olarak, kızılötesi videolarda alev

tespitinde kullanılan bir çok algoritma incelenmiş ve var olan bir algoritmanın

yanlış alarm oranını azaltırken tespit oranını arttıran bir yenilik öne sürülmüştür.

Anahtar Kelimeler: Alev Tespiti, Yangın Tespiti, Grafik İşlemci Ünitesi (GPU),

Compute Unified Device Architecture (CUDA), Kızılötesi (IR) Videosu, Gündüz

Videosu

vi



ACKNOWLEDGMENTS

I would like to express my special thanks to my supervisor Prof. Dr. A. Enis

Çetin for his patience, guidance, suggestions and valuable comments throughout

this thesis.

I would like to thank to Assist. Prof. Dr. Sinan Gezici and Assoc. Prof.

Dr. Uğur Güdükbay for reading this thesis and for being a member of my thesis

committee.

I would like to thank Osman Günay, Yusuf Hakan Habiboğlu, Kıvanç Köse

and Dr. Murat Gevrekçi for their contributions during the development of this

thesis.

I would like to give my special thanks to my friends İsmail Uyanık, Veli

Tayfun Kılıç, Serkan Sarıtaş, Oğuz Özcan and Hacı Hasan Coşkun for their

support during the development of this thesis.

I would like to thank Bilkent University EE Department and especially to

faculty members for giving me this opportunity by teaching me well.

I would like to offer my sincere love to my family, for their support and

encouragement in my whole life.

Also, I would like to thank to ASELSAN Inc. for their support and encour-

agements during my M.S. study.

vii



Finally, I would like to thank The Scientific and Technological Research Coun-

cil of Turkey (TÜBİTAK) for the financial support during my M.S. study.

viii



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 GPU Implementation of Flame Detection Methods in Videos 4

2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Flame Colored Pixel Model . . . . . . . . . . . . . . . . . 8

2.1.2 Covariance Matrix Computation . . . . . . . . . . . . . . . 9

2.2 GPU Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Implementation Details of the Flame Detection Algorithm . . . . 18

2.4 Results and Summary . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Flame Detection Algorithms in IR Videos 33

3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Implementation Details of the IR Flame Detection Algorithm . . 40

ix



3.2.1 Moving Hot Object Detection . . . . . . . . . . . . . . . . 41

3.2.2 Feature Extraction from Flame Regions . . . . . . . . . . . 43

3.3 CUDA Implementation . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Results and Summary . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Conclusion and Future Work 50

Bibliography 52

x



List of Figures

2.1 True flame detection. . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Miss detection and false alarm. . . . . . . . . . . . . . . . . . . . 7

2.3 Basic structures of CPU and GPU. Here, green units represent

Arithmetic Logic Units (ALU). . . . . . . . . . . . . . . . . . . . 13

2.4 Automatic scalability property of the GPU. . . . . . . . . . . . . 13

2.5 Basic structures of grid, block and thread. . . . . . . . . . . . . . 16

2.6 Host and device execution sequence. . . . . . . . . . . . . . . . . . 17

3.1 IR image examples that contain flame . . . . . . . . . . . . . . . . 40

3.2 IR image examples that do not contain flame . . . . . . . . . . . . 40

3.3 Results of Dynamic Background Subtraction and Morphological

Opening using a disk of a radius 2 pixels. . . . . . . . . . . . . . . 42

3.4 Results of Hot Object Segmentation. . . . . . . . . . . . . . . . . 42

3.5 Results of Bounding Box Disorder. Vertical and horizontal axes

represent lengths (px) and frame numbers, respectively. . . . . . . 43

xi



3.6 Results of Principle Orientation Disorder. Vertical and horizontal

axes represent angles (◦) and frame numbers, respectively. . . . . 44

3.7 Results of Center of Mass Disorder. Vertical and horizontal axes

represent positions (px) and frame numbers, respectively. . . . . . 45

3.8 Results for Axes of Bounding Ellipse Disorder. Vertical and hori-

zontal axes represent lengths (px) and frame numbers, respectively. 46

3.9 Some IR image example results of our IR video flame detection

algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

xii



List of Tables

2.1 Execution time of kernels in Example 1 vs. the number of threads

per block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Execution time of kernel in Example 2 vs. the number of threads

per block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Execution time of kernel in Example 3 vs. the number of threads

per block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Execution time of kernel in Example 4 vs. the number of threads

per block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Execution time of kernel in Example 4 vs. the number of pixels. . 28

2.6 True detection rates of the GPU implementation sorted by T1. . . 31

2.7 False alarm rates of the GPU implementation sorted by F1. . . . . 31

2.8 Processing speeds of the GPU and CPU implementations vs. res-

olution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.9 Processing times of the GPU and CPU implementations vs. reso-

lution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1 Detection rates of the IR flame detection algorithms . . . . . . . . 49

xiii



3.2 False alarm rates of the IR flame detection algorithms . . . . . . . 49

xiv



Dedicated to my beloved family. . .



Chapter 1

Introduction

In this thesis, the video fire and flame detection (VFD) algorithms are studied

and some improvements to the existing algorithms [1, 2] are proposed. VFD

algorithms are implemented in Compute Unified Device Architecture (CUDA),

which uses the Graphics Processing Unit (GPU).

1.1 Motivation

In recent years, the number of forest fires all around the world is continuously

increasing. Accordingly, fire detection in videos has become a popular research

topic in the area of signal processing. Current research result in a large number

of different fire detection algorithms and techniques for early detection of forest

fires.

Heat sensors, smoke sensors and gas detectors are the traditional fire alarm

systems. However, these systems have some drawbacks. The most important one

is that their usage being only limited to indoors. Moreover, these systems do not

provide additional information about the fire such as the size, the direction and

1



the speed. On the other hand, video based fire detection systems can be used in

both indoor and outdoor applications.

Problems of traditional alarm systems are solved with the help of cameras.

For instance, Video Fire Detection Systems (VFDS) are used in large public areas

like auto-parks, malls and airports. In addition to that VFDS provide faster and

reliable detection results. In this thesis, we investigate VFD methods for both

ordinary color cameras and infrared cameras.

The existing algorithms in color video fire detection has been successful to

preserve natural heritage sites and environment. However, due to the high com-

putational power requirements, algorithms either process low resolution video or

produce higher false alarm rates to satisfy real-time processing issues. By using

CUDA, which works on GPU, some parts of algorithms can work in parallel to

process video faster in a regular computer. This allows the processing of high

resolution videos in real-time. Also, the time saved can be used to process addi-

tional descriptors with the aim of reducing the false alarm rates and increasing

the detection rates.

IR cameras have some advantages over color cameras in flame detection. The

first advantage is that ordinary color cameras need sufficient lighting conditions

to work properly. Thermal cameras can monitor surrounding areas in low light

conditions providing 24 hours surveillance. Lastly, IR cameras provide higher

thermal sensitivity but their visual sensitivity is lower than regular cameras. This

provides a better realization of the hot objects like flames and also it decreases

the effect of external factors such as rain. A major problem with commercially

available long wave infrared (LWIR) cameras is that they cannot detect smoke.

Obviously, when there is fire there is also smoke.

2



1.2 Thesis Outline

This thesis is organized as follows. In Chapter 2, we first examine the related

works about video flame detection that exist in the literature. We review the

GPU architecture and CUDA environment. We also give some examples of our

CUDA implementation of a flame detection algorithm and explain the tricks

and optimizations that are used to decrease the processing time. Finally, we

provide comparison results of our GPU implementation with the Habiboglu’s

CPU implementation [1] in terms of both detection time and detection rate.

In Chapter 3, we address the infrared video flame detection algorithms. We

first study the current infrared video flame detection algorithms. After that, our

contributions to the field and the improvements to the current algorithms are

proposed. In addition, we examine the GPU implementation and its necessity

for these algorithms. Finally, we provide the results of our detection algorithm.

In Chapter 4, we summarize our study and list the possible future works in

VFD.

3



Chapter 2

GPU Implementation of Flame

Detection Methods in Videos

Video forest fire detection algorithms require high computational power. With

the help of the technological advancements in the last decades, transferring data

including high-definition video in real-time is possible. This means that we can

collect and process more video data in a given time period. On the other hand,

CPU suffers from its limited computational power for these tasks.

CPU technology relies on mostly the core clock speed. Manufacturers in-

creased their clock speed almost 1,000 times in the last 30 years. However, the

clock speed cannot be increased further because of the power and heat restric-

tions of the core and physical limits of the transistor. In order to increase the

computational power of the CPU, manufacturers started to produce multi-core

processors. Today, even low-end and low-powered processors have also been

built as multi-core. Moreover, manufacturers announced their plans to produce

processors that have 16-core [3].

Recently, GPUs found application even in supercomputers. Three out of

top five supercomputers were built using GPU cores [4]. This is because of the

4



parallel processing capability of the GPU. Also, the GPU chip manufacturers

estimate very large growth in the computing capability (16-fold increase in par-

allel computing in 3 years [5]) and they continue to increase the performance of

processors by putting GPUs and CPUs in the same core like NVIDIA’s Tegra

and AMD’s Fusion. In this way, it reduces the heat dissipated and power used

by the processing units. This causes less harm to the environment.

Up to now, we mentioned that GPU is powerful than CPU but we did not

mention about its performance when sequential processing is needed. The GPUs

have poor quality at sequential processing because they are optimized for parallel

processing, thus the GPU and CPU should work in harmony to achieve the best

performance. Therefore, the manufacturers try to put CPU and GPU closer in

a single chip, which reduces the communication latency.

Data first need to be transferred to the GPU memory for being processed and

the processed data should be transferred back to the system memory. The data

transfer between memories is costly so it does not worth to process small data on

GPU. Therefore, GPU requires large amounts of data to show its computational

advantage over the CPU.

Based on all these explanations and given information, it is concluded that

there is a need to find the blocks in our algorithm that can be parallelized to

harness the power of the GPU and keep the sequential parts in the CPU side not

to slow down the GPU.

5



2.1 Related Work

With the purpose of developing flame detection systems, several methods have

been studied to date [6, 7, 8, 9, 10, 11, 12]. Besides them, some of the algo-

rithms on flame detection use different color models such as Gaussian-smoothed

histogram [13] or HSI [14] to detect flame pixels. After detecting the flame and

non-flame regions they either use temporal variation of flame to make a heuris-

tic flame analysis or use segmentation to find flame colored regions. Piecewise

difference between two consecutive frames and segmentation in videos is used to

separate flame colored objects from flames. Similarly, some researchers use some

background estimation algorithms and Gaussian mixture models to find moving

and flame colored pixels [15]. In these algorithms, quasi-periodic behavior in

flame boundaries and color variations are detected by using temporal and spatial

wavelet analysis.

In a previous work conducted in our lab, Habiboglu designed new flame de-

tection algorithm both in images and videos by using different color models

simultaneously [1]. In addition, instead of a pixel by pixel analysis of the whole

frame they divided each frame into 16x16 blocks to compensate the computa-

tional cost of using different color models and analysis. Figure 2.1 illustrates a

sample true detection result and Figure 2.2 illustrates a sample miss detection

and false alarm results of this algorithm.

6



Figure 2.1: True flame detection.

Figure 2.2: Miss detection and false alarm.

7



2.1.1 Flame Colored Pixel Model

In his study, Chen suggests a flame colored pixel model to classify flame pixels

[16]. The flame colored pixel model is used because it is low cost and easy to

implement. The analysis of the pixel values of the flame in that domain results

in following conditions:

• R ≥ G > B

• R > RT

where R, G and B are red, green and blue color values of the pixels, respectively,

and RT is a threshold for red color value. The conditions are valid for the flame

pixels because the red and yellow colors have fundamental importance in flame

regions.

Based on these information we can define flame colored pixels as:

Ψ(i, j, n) =

 1 if Ri,j,n ≥ Gi,j,n > Bi,j,n and Ri,j,n > 110,

0 if otherwise.
(2.1)

where Ri,j,n, Gi,j,n and Bi,j,n are red, green and blue color values of the pixel that

is located at position (i, j) of frame n, respectively.

8



2.1.2 Covariance Matrix Computation

In his work Habiboglu used covariance descriptors [1] and used it to detect flame.

Lower-triangle matrix is used because of its symmetry. The covariance matrix

formulation that they have used on images is as follows:

Σ̂ =
1

N − 1

∑
i

∑
j

(
Φi,j − Φ̄

) (
Φi,j − Φ̄

)T
(2.2)

where Φi,j is a vector containing some parameters of the pixel that is located at

position (i, j) of the image or video frame, Φ̄ = 1
N

∑
i

∑
j Φi,j and N =

∑
i

∑
j 1.

As described in Habiboglu [1], we use the following pixel descriptors in Φi,j

vector:

Ri,j,n = Red(i, j, n)

Gi,j,n = Green(i, j, n)

Bi,j,n = Blue(i, j, n)

Ii,j,n = Intensity(i, j, n)

Ixi,j,n =

∣∣∣∣∂Ii,j,n∂i

∣∣∣∣
Iyi,j,n =

∣∣∣∣∂Ii,j,n∂j

∣∣∣∣ (2.3)

Ixxi,j,n =

∣∣∣∣∂2Ii,j,n∂i2

∣∣∣∣
Iyyi,j,n =

∣∣∣∣∂2Ii,j,n∂j2

∣∣∣∣
Iti,j,n =

∣∣∣∣∂Ii,j,n∂n

∣∣∣∣
Itti,j,n =

∣∣∣∣∂2Ii,j,n∂n2

∣∣∣∣
where Red(i, j, n), Green(i, j, n), Blue(i, j, n) and Intensity(i, j, n) are red,

green, blue and intensity values of the pixel that located at position (i, j) and

frame n, respectively. In other words, the vector Φi,j is formed by the above

10 components. First and second derivatives in these formulation are computed

over spatial or temporal domain by using [-1 0 1] and [1 -2 1] filters respectively.

9



The covariance matrix is computed in video, which is captured with FR

frames per second. To detect flames they divided video in blocks whose temporal

and spatial dimensions are FR and 16× 16, respectively. However, to use (2.2),

all the video data in the FR frames need to be accumulated to calculate the

mean value. To do the calculations as frames arrive, they used another version

of the covariance matrix formula that does not need to wait until all the data is

collected. Here is the formulation:

Σ̂(a, b) =
1

N − 1

(∑
i

∑
j

Φi,j(a)Φi,j(b)−
1

N

(∑
i

∑
j

Φi,j(a)

)(∑
i

∑
j

Φi,j(b)

))
(2.4)

Assume τC =
∑

i

∑
j

∑
n Ψ(i, j, n) is the number of flame colored pixels in

the spatiotemporal block. τ =
∑

i

∑
j

∑
n 1 is the number of pixels in the spa-

tiotemporal block which has a size of 16× 16×FR. If τC <
3
5
τ then the block is

classified as it has no flame. Otherwise, it is sent to the Support Vector Machine

(SVM) [17] classifier to detect flames.

To reduce the computational cost, 10 dimensional Φi,j vector is divided into

two parts as follows:

Φcolor(i, j, n) =


Ri,j,n

Gi,j,n

Bi,j,n

 (2.5)

ΦspatioTemporal(i, j, n) =



Ii,j,n

Ixi,j,n

Iyi,j,n

Ixxi,j,n

Iyyi,j,n

Iti,j,n

Itti,j,n


(2.6)

and two separate covariance matrices are computed for Φcolor and ΦspatioTemporal

by Habiboglu.

10



Covariance descriptor matrices generated by using Φcolor(i, j, n) and

ΦspatioTemporal(i, j, n) are 3x3 and 7x7, respectively. Since they use the lower

triangle or upper triangle parts of the matrices due to their symmetry, all the

data in the matrix does not need to be processed. We have to consider 6 and

28 elements in the matrices Φcolor(i, j, n) and ΦspatioTemporal(i, j, n), respectively.

Therefore, we have total of 34 covariance descriptors for the spatiotemporal block

of 16× 16× FR. By using these 34 descriptors the block is decided as flame or

non-flame block.

11



2.2 GPU Architecture

The first examples of the graphics processors had the ability to render 2D graphics

only. The abilities of these processors were developed by adding 3D graphics ren-

dering, pixel shading etc. By using pixel shading and OpenGL or DirectX inter-

face, some scientific calculations can be implemented on GPU. In 2005 NVIDIA

announced that they made a chip and programming interface for GPU program-

ming, which enables some complex calculations [3]. They named the cores that

can be programmable as CUDA core and the programming language interface as

CUDA C. By adding some further features to the design, the GPU can process

both graphics and custom calculations. To program the GPU, they added some

basic and minimal keywords to the C language to keep it simple and compatible.

CUDA C code is compiled by NVIDIA C Compiler (nvcc), which can use GNU

Compiler Collection (gcc), Microsoft Visual Studio Compiler (cl) or Intel C++

Compiler (icc).

The basic structures of a CPU and a GPU are presented in Figure 2.3. As it

is seen from this figure that GPU uses more transistors in calculation part of the

unit compared to the CPU. This enables the GPU to make calculations faster. In

addition, it is also seen that GPU has lots of cores inside, which enables the GPU

to do more parallel processing compared to the CPU. The GPU has hardware

accelerators named as Special Function Unit (SFU) for transcendental functions

such as sin(), cos() and log() operators and this ability also leads us to make

calculations faster.

Furthermore, the automatic scalability property of the GPU is exhibited in

Figure 2.4. It is understood that the GPU arranges the jobs that will be processed

in parallel with respect to the number of the CUDA cores. This enables the

scalability that we do not need to change anything in our programming, when

we use different processors that have different number of cores. This feature

12



Figure 2.3: Basic structures of CPU and GPU. Here, green units represent Arith-
metic Logic Units (ALU).

is only valid for the hardware implementations having same or higher compute

capability, which defines the GPU version.

Figure 2.4: Automatic scalability property of the GPU.

13



Basic job structures that run in parallel are called kernels. Existing GPU

designs allow users to run a single kernel at any given time on the GPU. A basic

kernel definition can be seen in the Listing 2.1.

Listing 2.1: A basic CUDA kernel structure.

1 global void

AddMat(float ∗∗iMat1, float ∗∗iMat2, float ∗∗oMat, int N, int M)

{

int i = blockIdx.x ∗ blockDim.x + threadIdx.x;

int j = blockIdx.y ∗ blockDim.y + threadIdx.y;

6 if ( i < N && j < M)

oMat[i ][ j ] = iMat1[i][ j ] + iMat2[i][ j ];

}

int main()

11 {

...

dim3 threadsPerBlock(16, 16);

dim3 numBlocks((N−1)/16+1, (M−1)/16+1);

AddMat<<<numBlocks, threadsPerBlock>>>(inV1, inV2, outV, N, M);

16 }

In this example it is seen that there are some additions to the C language

such as <<< ..., ... >>>, global , blockIdx, blockDim and threadIdx which

are explained below:

• <<< ..., ... >>> is used to call kernel functions. The first parameter is

the number of blocks that will run and the second parameter is the number

of threads that will run in blocks. Both of them can be three-dimensional

(3-D).

14



• global is a specifier, which implies that the function can be called by

only the host code and the code runs on the device. All kernel functions

must have it.

• blockIdx is the block number, which is assigned to the block that runs

parallel. It can be 3-D and each dimension can be accessed by the properties

x, y and z.

• blockDim is the number of threads that runs in a block. It can be 3-D and

each dimension can be accessed by the properties x, y and z.

• threadIdx is the thread number, which is assigned to the thread in a block.

It can be 3-D and each dimension can be accessed by the properties x, y

and z.

The basic structures of grid, block and thread are illustrated in Figure 2.5.

It is seen that there is a single grid for a kernel. In a grid there are blocks with

a given number up to 3-dimensions and in blocks we have threads that run in

parallel. The CUDA cores are optimized for thread context switch so they can

handle much more threads than a CPU does. The grid structure that consists

of block and thread subunits enables parallel processing across CUDA cores.

Threads in a block can communicate with each other via the shared memory of

the core. However, a thread cannot communicate with another thread, whose

block is different, by using the shared memory. They can communicate with each

other by using global memory only. Speed of accessing to the shared memory is

same with accessing to the core registers. However, same thing cannot be said

for global memory. Therefore, the programmer needs to arrange the threads such

that they do the same job and the data they process commonly can be fitted to

the shared memory of the core.

15



Figure 2.5: Basic structures of grid, block and thread.

16



In Figure 2.6 what happens when we call a kernel function is described. When

we call a kernel function the device starts to execute it and after that it gives the

control of the GPU to the CPU. The CPU can then fetch the data and process

it or call another kernel.

Figure 2.6: Host and device execution sequence.

17



2.3 Implementation Details of the Flame De-

tection Algorithm

We use C++ language to transform flame detection algorithms in CPU to our

GPU. However, parallel programming on GPU is not straightforward. You

need to carefully consider every memory transfer, memory transfer sequence of

threads, registers used in one kernel, shared memory used in one block, number

of threads per block, number of blocks per grid etc.

Our algorithm consists of the following steps: First the video is decoded from

the MJPEG or MPEG formats. Decoded video frame contains raw red, green

and blue pixel values in 8-bits unsigned integer representation. From the decoded

frame, we calculate the intensity value of every pixel and determine whether the

pixel is flame colored or not. After at least three consecutive frames are obtained,

we calculate the entries of the covariance matrix. At least three frames are needed

because we have a temporal part in our Φi,j vectors. We wait until we have FR/2

covariance descriptors then sum them up to create the covariance descriptor of

our patch block. If we have two sequential patch blocks then we sum them up

and create our final descriptors. If in one patch block the number of the flame

colored pixels is less than the 60% of all pixels then this block is considered as

non-flame region else it is fed to the SVM for final decision[17]. If the SVM

decides that there are flame regions then the neighborhood is further examined.

If it contains one neighboring flame block then this block has a confidence level

of 2. If it contains more than one flame block in the neighborhood then the

confidence level of that block is set to 3. The confidence level of the whole frame

is the maximum confidence value that the blocks have.

Video decoding is done by the property of the operating system, which is

Windows in our case. It is called Video for Windows (VFW). It can decode

videos that have the codecs installed and registered on the operating system.

18



We can select various types of color models as output and we selected raw red,

green and blue 8-bit unsigned integer representation.

Calculation of the intensity value of the pixels as

I = (299R + 587G+ 114B)/1000 (2.7)

and deciding whether the pixels are flame colored or not are done on the GPU.

The intensity value is required by spatiotemporal features array, which is repre-

sented by ΦspatioTemporal(i, j, n) in (2.6). Since only features array of the flame

colored pixels are used in the calculation of the sum of the covariance matrix, we

need to determine which pixel is flame colored and which is not by using flame

colored pixel model which is represented by Ψ(i, j, n) in (2.1). There are four

versions of the codes used in the calculations and the differences, optimizations

done and the results of them are explained in following paragraphs.

First version of the code can be seen in Listing 2.2. In this example, the

functions calculate the intensity value and decides whether the pixels are flame

colored or not in separate kernels. The functions take the raw color data and

pixel count as inputs and give the calculated value as output.

The simple example about calculating the intensity values of pixels and de-

ciding whether the pixels are flame colored or not is shown in Listing 2.2. In this

example the raw color data is copied from system memory to GPU memory first.

Then the threads per block and number of blocks are determined in accordance

with the number of pixels. After that, we have two kernels to be executed. The

first one calculates the intensity values and the other decides whether a pixel is

flame colored or not. As it can be seen there are two kernels that are executed.

Table 2.1 will give the execution times of these two kernels while the number of

threads per block change for the first version of the code.

19



Listing 2.2: Two separate kernels to calculate intensity value and deciding flame

colored pixels.

global void

IntensityCalc(const unsigned char ∗rgb, unsigned char ∗In, int N)

{
4 int i = blockDim.x ∗ blockIdx.x + threadIdx.x;

if ( i < N)

{
In[ i ] = (299∗(int)rgb[3∗i+2]

+ 587∗(int)rgb[3∗i+1]

9 + 114∗(int)rgb[3∗i ])/1000;

}
}

global void

14 isFlameColoredCalc(const unsigned char ∗rgb, unsigned char ∗isFC, int N)

{
int i = blockDim.x ∗ blockIdx.x + threadIdx.x;

if ( i < N)

{
19 isFC[i ] = rgb[3∗i+2] >= rgb[3∗i+1]

&& rgb[3∗i+1] > rgb[3∗i]
&& rgb[3∗i+2] > 110;

}
}

24

void main()

{
//Copy rgb raw data from host to GPU memory

cudaMemcpy(rgbHost, rgbGPU, pixelCount, cudaMemcpyHostToDevice);

29 //Determine number of threads per block and number of block

dim3 threadsPerBlock(256);

dim3 numBlocks( (pixelCount−1)/threadsPerBlock.x+1);

//Calculate intensity value of the pixels in the frame

IntensityCalc<<<blocksPerGrid, threadsPerBlock>>>

34 (rgbGPU, intensityGPU, pixelCount);

//Determine whether the pixel is flame colored or not

isFlameColoredCalc<<<blocksPerGrid, threadsPerBlock>>>

(rgbGPU, isFlameColoredGPU, pixelCount);

}

20



Table 2.1: Execution time of kernels in Example 1 vs. the number of threads per

block.

Number of Threads GPU Time (µs) Total CPU

Pixels per Block Intensity Flame Colored Total Time (µs)

16 983.588 1007.080 1990.668 1996.778

32 492.776 507.298 1000.074 1006.073

64 264.043 272.510 536.553 542.480

256000 96 189.473 192.242 381.715 387.616

128 150.297 161.398 311.695 317.412

256 120.423 118.288 238.711 266.530

512 124.002 125.287 249.289 255.877

768 138.597 140.051 278.648 285.042

As seen from the Table 2.1, the CPU works optimally if the threads per

block number equals to 256 or 512. To select the threads per block value, the

occupancy calculator can be used in CUDA tools. In Table 2.1, GPU Time

means the execution time of the code on the GPU. However, the CPU time

includes passing the kernel to the GPU and waiting the GPU to complete kernel

execution. It can be seen that the differences between total CPU times and total

GPU times are around 6µs.

Furthermore, second version of the code can be seen in Listing 2.3. In this ex-

ample, the function “IntensityAndIsFlameColoredCalc” calculates the intensity

value and decides whether the pixels are flame colored or not in a single kernel.

The function takes the raw color data and the pixel count as inputs and gives

the calculated values as output.

21



Listing 2.3: Two calculatios in a single kernel.

global void

2 IntensityAndIsFlameColoredCalc(const unsigned char ∗rgb, unsigned char ∗In,

unsigned char ∗isC, int N)

{

int i = blockDim.x ∗ blockIdx.x + threadIdx.x;

if ( i < N)

7 {

In[ i ] = (299∗(int)rgb[3∗i+2]

+ 587∗(int)rgb[3∗i+1]

+ 114∗(int)rgb[3∗i])/1000;

isC[ i ] = rgb[3∗i+2] >= rgb[3∗i+1]

12 && rgb[3∗i+1] > rgb[3∗i]

&& rgb[3∗i+2] > 110;

}

}

17 void main()

{

//Copy rgb raw data from host to GPU memory

cudaMemcpy(rgbHost, rgbGPU, pixelCount, cudaMemcpyHostToDevice);

//Determine number of threads per block and number of blocks

22 dim3 threadsPerBlock(256);

dim3 numBlocks( (pixelCount−1)/threadsPerBlock.x+1);

//Calculate intensity value of the pixels in the frame

//and whether the pixels are flame colored or not

IntensityAndIsFlameColoredCalc<<<blocksPerGrid, threadsPerBlock>>>

27 (rgbGPU, intensityGPU, isFlameColoredGPU, pixelCount);

}

22



This example about calculating the intensity values of pixels and deciding

whether the pixels are flame colored or not is shown in Listing 2.3. In this

example the raw color data is copied from system memory to GPU memory first.

Then the threads per block and number of blocks are determined in accordance

with the number of pixels. After that, the kernel is executed, which calculates

the intensity value and decides whether a pixel is flame colored or not. As it can

be seen there is a single kernel that calculates both of the results. The Table 2.2

tabulates the GPU processing time for different numbers of threads per block for

a constant number of pixels.

Table 2.2: Execution time of kernel in Example 2 vs. the number of threads per

block.

Number of Pixels Threads per Block GPU Time (µs) CPU Time (µs)

16 1182.440 1185.340

32 603.177 606.276

64 332.871 335.734

256000 96 243.583 246.349

128 193.506 196.400

256 165.258 168.332

512 172.048 175.019

768 190.932 193.914

As seen from Table 2.2, when threads per block is 256 or 512 the GPU works

optimally again. It can be seen that we have decreased the calculation time

compared to Example 1. Since the amount of computation in each kernel is

small and calling a kernel also requires time, we can combine them to increase

the performance. It can be seen that the differences between total CPU times

23



and total GPU times are around 3µs. This is the half of the value observed in

Example 1, because we have two kernels in it instead of one.

Third version of the code can be seen in Listing 2.4. Different than Example 2,

this code stores the color values in internal registers and uses them from there.

Since we use each color data at least twice, we expect that the execution time

will decrease. The function takes the raw color data and pixel count as inputs

and gives the calculated values as output.

This example about usage of the internal registers is shown in Listing 2.4.

In this example, internal registers are used to eliminate latency of retrieving the

data from global memory more than once. The Table 2.3 tabulates the GPU

processing time for different numbers of threads per block for a constant number

of pixels.

Table 2.3: Execution time of kernel in Example 3 vs. the number of threads per

block.

Number of Pixels Threads per Block GPU Time (µs)

32 510.346

64 276.558

96 202.176

256000 128 157.407

256 132.868

512 134.865

768 147.288

24



Listing 2.4: Using registers of the CUDA cores.

global void

2 IntensityAndIsFlameColoredCalc2(const unsigned char ∗rgb, unsigned char ∗In,

unsigned char ∗isC, int N)

{

int i = blockDim.x ∗ blockIdx.x + threadIdx.x;

if ( i < N)

7 {

int r = rgb[3∗i+2];

int g = rgb[3∗i+1];

int b = rgb[3∗i ];

In[ i ] = (299∗r + 587∗g + 114∗b)/1000;

12 isC[ i ] = r >= g && g > b && r > 110;

}

}

void main()

17 {

//Copy rgb raw data from host to GPU memory

cudaMemcpy(rgbHost, rgbGPU, pixelCount, cudaMemcpyHostToDevice);

//Determine number of threads per block and number of blocks

dim3 threadsPerBlock(256);

22 dim3 numBlocks( (pixelCount−1)/threadsPerBlock.x+1);

//Calculate intensity value of the pixels in the frame

//and whether the pixels are flame colored or not

IntensityAndIsFlameColoredCalc2<<<blocksPerGrid, threadsPerBlock>>>

(rgbGPU, intensityGPU, isFlameColoredGPU, pixelCount);

27 }

25



We can see we have decreased the calculation time compared to Example 2 by

looking at Table 2.3. Since threads have very fast access to the internal registers

compared to the other memories on the system and we read some data from

memory twice, keeping the data to be used closer is a good thing.

Finally the fourth version of the code is presented in Listing 2.5. Before

the kernel execution the data is padded with extra data to make it multiples of

threads per block. Therefore, this version does not check whether the index is

in the limits of the number of pixels or not. We seem to process more data but

we expect to gain time because branches taken because of the condition block in

the code is eliminated now.

This example which depicts how eliminating condition phrases help us is

shown in Listing 2.5. In this example, differently, the “if” condition is removed

and data is padded to complete the calculation range. Table 2.4 tabulates the

GPU processing time for different numbers of threads per block for a constant

number of pixels.

Table 2.4: Execution time of kernel in Example 4 vs. the number of threads per

block.

Number of Pixels Threads per Block GPU Time (µs)

32 491.086

64 262.994

96 193.776

256000 128 150.574

256 128.178

512 128.394

768 137.974

26



Listing 2.5: Calling kernel with padded data.

global void

IntensityAndIsFlameColoredCalc3(const unsigned char ∗rgb, unsigned char ∗In,

3 unsigned char ∗isC)

{

int i = blockDim.x ∗ blockIdx.x + threadIdx.x;

int r = rgb[3∗i+2];

int g = rgb[3∗i+1];

8 int b = rgb[3∗i ];

In[ i ] = (299∗r + 587∗g + 114∗b)/1000;

isC[ i ] = r >= g && g > b && r > 110;

}

13 void main()

{

//Determine number of threads per block and number of blocks

dim3 threadsPerBlock(256);

dim3 numBlocks( (pixelCount−1)/threadsPerBlock.x+1);

18 //Allocate memory with extra space to cover index space of the kernel

cudaMalloc(&rgbGPU, threadsPerBlock.x ∗ numBlocks.x);

//Copy rgb raw data from host to GPU memory

cudaMemcpy(rgbHost, rgbGPU, pixelCount, cudaMemcpyHostToDevice);

//Calculate intensity value of the pixels in the frame

23 //and whether the pixels are flame colored or not

IntensityAndIsFlameColoredCalc3<<<blocksPerGrid, threadsPerBlock>>>

(rgbGPU, intensityGPU, isFlameColoredGPU);

}

27



As seen from Table 2.4, the calculation time is decreased compared to Exam-

ple 3. Since the condition takes time to execute and in the last block it requires

to divide between branches, as expected the time decreases. By using these

three optimization techniques we decreased the processing time from 238.711µs

to 128.178µs thus our code in examples requires the half of the time to process

the data now.

Table 2.5 shows the GPU processing time of the code presented in Listing 2.5

for constant number of threads per block where the number of pixels changes.

Table 2.5: Execution time of kernel in Example 4 vs. the number of pixels.

Number of Pixels Threads per Block GPU Time (µs) Ratio (10−4)

256 1.970 76.953

1024 2.133 20.830

10240 5.474 5.346

102400 256 52.841 5.160

256000 128.178 5.007

512000 253.748 4.956

768000 377.944 4.921

10240000 503.577 4.918

In Table 2.5, the GPU time vs. number of pixels is presented. From the data

it can be seen that calling a kernel with a small amount of data is not optimum.

As the number of data increases the ratio of the processing time to the number

of pixels are decreasing. As we have more data to process in one kernel, the

optimality increases up to some point. Therefore, if we have low number of

data to be processed we can try processing CPU instead of the GPU first. The

28



CPU can process the data faster because the GPU did not reached its maximum

calculation throughput.

In the above examples, we tried to explain the importance of the optimization

of the kernel and the importance of the knowledge about the GPU programming.

Simple functions like in Example 1 can be optimized like in Example 4. To do

this the programmer needs to consider the kernel size and if small kernels exist

needs to combine them. If same data will be used more than once in the kernel,

the data needs to be put in the internal register. The conditions needed to be

escaped as much as possible. If with padding or aligning data the conditions

can be eliminated, even if it increases data it can lower the processing time.

And finally programmer needs to know the optimum kernel sizes of the compute

capability of the device.

After we have at least sequential three frames, we calculate the feature vector

ΦspatioTemporal(i, j, n), τC =
∑

n

∑
j

∑
j Ψ(i, j, n). After we have FrameRate/2

frames we calculate
∑

n

∑
i

∑
j Φi,j,n(a)Φi,j,n(b),

∑
n

∑
i

∑
j Φi,j for them. Then

we combine the half patch blocks to create final covariance descriptor of our

patch block. If in one patch block the number of the flame colored pixels is

less than the 60% of all pixels then this block is considered as non-flame region

else it is fed to the SVM. If SVM decides that they are flame regions then the

neighborhood is examined.

After all patch blocks are classified we give confidence to these patches. The

default confidence level of the flame region is 1. If the flame patch has exactly

one neighbor that is also a flame patch the confidence level of the flame patch

is 2. However if the neighbors that are flame regions are more than 1 then the

confidence level is set to 3 indicate the severeness of the detection. After finding

the flame regions they are drawn on the video feed to show the place of the flame

on the video and give alarm to the user watching the video.

29



2.4 Results and Summary

We use NVIDIA GeForce GTX 460 as graphics processing unit in our processing

time measurements and CUDA Toolkit for harnessing the power of the GPU. In

addition, we use AMD Phenom II X2 560 as our CPU for comparison purposes.

We compare the results of our GPU implementation with the Habiboglu’s

CPU implementation [1]. In our comparisons, we use a total of twelve videos

from the dataset of Habiboglu’s work, where six of the videos have flame in

their frames but the other six do not. The true detection and false alarm rates

are calculated in the same way as the Habiboglu’s work to be able to have

fair comparison results. The definitions of the true detection(Tx) and the false

alarm(Fx) rates are given in (2.8) and (2.9), respectively [1]:

Tx =
the number of correctly classified frames, which contain flame

number of frames which contain flame
(2.8)

Fx =
the number of miss classified frames, which do not contain flame

number of frames which do not contain flame
(2.9)

where the subindex x indicates the confidence level that is used.

Furthermore, the true detection and the false alarm results of the GPU im-

plementation are tabulated in Tables 2.6 and 2.7, respectively.

30



Table 2.6: True detection rates of the GPU implementation sorted by T1.

Video Name T1 T2 T3

posVideo5 2394/2406 (99.5%) 2394/2406 (99.5%) 2394/2406 (99.5%)

posVideo4 1643/1655 (99.3%) 1643/1655 (99.3%) 1643/1655 (99.3%)

posVideo9 651/ 663 (98.2%) 651/ 663 (98.2%) 651/ 663 (98.2%)

posVideo1 281/ 293 (95.9%) 266/ 293 (90.8%) 161/ 293 (54.9%)

posVideo11 166/ 178 (93.3%) 126/ 178 (70.8%) 35/ 178 (19.7%)

posVideo6 225/ 258 (87.2%) 110/ 258 (42.6%) 35/ 258 (13.6%)

Table 2.7: False alarm rates of the GPU implementation sorted by F1.

Video Name F1 F2 F3

negVideo3 0/ 160 ( 0.0%) 0/ 160 ( 0.0%) 0/ 160 ( 0.0%)

negVideo8 20/3761 ( 0.5%) 5/3761 ( 0.1%) 0/3761 ( 0.0%)

negVideo7 85/ 541 (15.7%) 0/ 541 ( 0.0%) 0/ 541 ( 0.0%)

negVideo5 107/ 439 (24.4%) 45/ 439 (10.3%) 10/ 439 ( 2.3%)

negVideo6 520/1142 (45.5%) 305/1142 (26.7%) 185/1142 (16.2%)

negVideo4 945/1931 (48.9%) 465/1931 (24.1%) 140/1931 ( 7.3%)

31



From Tables 2.6 and 2.7, it can be seen that the true detection and false

alarm rates of our GPU implementation are identical with the Habiboglu’s re-

sults, which shows that we have implemented the algorithm correctly. On the

other hand, the processing speeds and processing times of the CPU and GPU

implementations for different video resolutions are listed in Tables 2.8 and 2.9,

respectively.

Table 2.8: Processing speeds of the GPU and CPU implementations vs. resolu-
tion.

Video resolution (px2) GPU (fps) CPU (fps)

320x240 35.00 27.00

640x480 18.25 7.75

960x720 10.00 3.40

Table 2.9: Processing times of the GPU and CPU implementations vs. resolution.

Video resolution (px2) GPU (ms) CPU (ms) Ratio

320x240 11.90 20.37 1.71

640x480 38.12 112.36 2.94

960x720 83.33 277.45 3.32

Table 2.8 and Table 2.9 demonstrate that the GPU implementation of the

algorithm runs faster compared to the CPU implementation. Moreover, it is seen

that the ratio of the processing times of the GPU and CPU implementations

increase with the video resolution i.e., more than three-fold enhancement in the

processing time is reached in high-definition videos.

As a result, this improvement in processing time enables us to process more

camera feeds or high definition videos in real-time. Also, because of the time

saved it is possible to have additional constraints in the algorithm to increase

the detection probability without affecting the false alarm rate.

32



Chapter 3

Flame Detection Algorithms in

IR Videos

Although there is an increasing interest in developing video flame detection algo-

rithms among many researches, the IR flame detection is still not preferred except

a few exceptions. However, there is big advantage of working with IR video since

it works better in low lighting conditions compared to the color cameras. As an-

other advantage, the thermal perceptibility is higher in the IR spectrum which

results in more clear and less disturbed flames. More importantly, hot objects

(including the flame itself) obstructed by smoke can be visible in the IR spec-

trum. This is life-worthy for a fireman to determine the exact location of the

flame through smoke. However, in color camera the smoke can block the flame

and make it seem invisible to the firemen.

3.1 Related Work

Several methods have been proposed for using IR cameras for automatic flame

detection [18, 19, 2, 20]. One of the algorithms uses wavelet transform of the hot

33



object’s contour to extract necessary features [18]. Others use dynamic back-

ground subtraction and Otsu’s method [21] to detect hot moving objects. Then

these objects are used to extract necessary features with the help of some meth-

ods whose details will be given in the following paragraphs. In both methods,

these features are then used to detect flame in the video.

Toreyin and his colleagues designed and implemented a novel flame detection

algorithm based on the wavelet transform for infrared video [18]. Since IR camera

sensors measure and display the heat distribution in its field of view, hot objects

appear brighter in the IR video compared to the background. Having this in

mind they perform the following steps to detect flame in the IR video. First of

all, since flame is hot and flickering, the moving bright regions, which are the

candidate flame regions, are segmented from the background. The problematic

part here is that the images of vehicles, people and animals also appear bright in

the IR video, so these objects will be also selected as candidate flame segments

during the segmentation process. Fortunately, boundaries of all these objects

show very different behaviors such as flame has an irregular boundary which can

be easily differentiated from the others. To accomplish this, they first extract the

boundaries of these bright regions. To be able to use this boundary information,

the centers of mass of the bright objects are calculated as reference points. Then,

these reference points are used to compute the distance of the contour from the

center in predetermined angles. Additionally, they use wavelet transform to

detect irregularities in the boundary. The wavelet transform of this 1-D curve

(contour) is calculated and the energy of the high frequency wavelet coefficients

are used to classify the contour. In addition to this spatial domain analysis, they

also use several temporal analysis techniques to reach a final decision. In these

analysis, the information of the flame flickering frequency of around 10 Hz is

used. However, due to the aliasing problems, the video needs to be captured at

least 20 fps. This temporal information is used for the construction of the Hidden

34



Markov Model (HMM), which gives the final decision about the classification of

the segmented regions about whether they have a flame in them or not.

Bosch et al. [19] propose an object discrimination technique in IR videos.

They mentioned that pixel by pixel processing of the frames causes the loss of

the geometrical and spatial information and it results in higher false alarm rates.

In their work, the process is divided into three parts. First, they get the frames

from the video. Next, they extract objects of interest from the frame. Finally,

they extract some features from these objects to distinguish between them.

In the first step, to get the images from the video they chose the capturing

speed of the frames (measured in fps) according to the event to be classified. As

an example, when they consider forest fires they believe one frame per second is

enough. However, in vehicle considerations they prefer to have enough frames to

study such as frames taken in the interval of a few milliseconds. In processing

they only consider the hot regions and the rest is considered as background. The

median of the last N images is chosen as background and it is subtracted from

the last frame with the aim of making the appearance of the possible objects

clear.

In the segmentation part, to reduce the computational requirement some

parts of the video (RONI - Region of Not Interest) are ignored. Then they apply

the Otsu’s thresholding method [21] to find the object regions in the image. After

thresholding, they apply morphological opening by using a circle of radius two

pixels as the structural element to eliminate the single pixels arise due to noise.

Finally, in the feature extraction part, they calculate the descriptors such as

the mean intensity m (3.1), 1-D representation of the boundary and the orienta-

tion α (3.6) of the segmented object. The mean intensity is calculated by

35



m =
L−1∑
i=0

zi · p(zi) (3.1)

where zi is the intensity level, p(zi) is the histogram of the intensity level zi and

L is the number of intensity levels.

The moments for 2-D discrete functions are defined as in (3.2)

Mjk =
∑
x

∑
y

xjykI(x, y) (3.2)

where I(x, y) represents the intensity value of the pixel located at (x, y).

By using (3.2), the zeroth and first order moments are calculated in (3.3).

M00 =
∑
x

∑
y

I(x, y) ≡ Area

M10 =
∑
x

∑
y

xI(x, y) (3.3)

M01 =
∑
x

∑
y

yI(x, y)

Also, from (3.3) the center of mass is calculated.

cx =
M10

M00

(3.4)

cy =
M01

M00

These center of mass points are used to calculate central moment µjk given

by:

µjk =
∑
x

∑
y

(x− cx)j(y − cy)kI(x, y) (3.5)

In [19], Bosch et al. use the center of mass to represent the object boundary as

a signature. This signature is calculated by the distance between the boundary

and the center of mass for each angle θ. Also, they use µ11, µ20 and µ02 to

calculate the inclination angle α, which is calculated by (3.6).

α =
1

2
arctan

(
2µ11

µ20 − µ02

)
(3.6)

36



They use these signatures to discriminate between flame regions, people and

vehicles.

Verstockt et al. [2, 20] studied the feature-based flame detection by using

color and LWIR (long wave infrared) videos. In the infrared part they start with

segmenting the moving hot objects and then extracting some features from these

objects. For the color video part the process is same except instead of segmenting

by moving hot objects, they just look at moving objects. After having features

for both IR and color cases, they use theses features to detection of the flame.

Since we use infrared video only, we will inspect the LWIR part of the works.

In the moving hot object detection part, a dynamic background subtraction

algorithm (3.7), which determines the next background of the scene, is applied.

BGn is the calculated background and In is the intensity values of the frame

n. If the shift in the In(x, y) is bigger than the shift in BGn(x, y), the pixel is

assigned as foreground (FG), otherwise it is labeled as background (BG).

BGn+1(x, y) =

 αBGn(x, y) + (1− α)In(x, y), (x,y) is non-moving

BGn(x, y) (x,y) moving.
(3.7)

where α is chosen as 0.95 which is because the α determines the update speed of

the background, which needs to change little over time.

Later, to avoid noisy objects, a morphological opening with a structural ele-

ment 3 by 3 square is applied. After the morphological opening, Otsu’s method

[21] of thresholding is used to distinguish the hot objects by histograms. This

method assumes that the image contains two classes of objects. The optimum

threshold, which minimizes the intra-class variance (3.8) is calculated iteratively

as follows:

σ2 = ω1(t)σ
2
1(t) + ω2(t)σ

2
2(t) (3.8)

37



where ωi are the probabilities and σ2
i are the variances of the classes separated

by the threshold t.

After the objects are discriminated, the analysis begins to classify the flame

objects. In order to classify three features is proposed: Bounding Box Disorder

(BBD), Principal Orientation Disorder (POD) and Histogram Roughness (HR).

Dimensions of the bounding box of the flames varies frequently over short

periods of time. Also the variation have a lot of disorder. The BBD is calculated

by using the local maxima and minima of the width and the height of the bound-

ing box. The small differences are smoothed by filtering to increase the strength

of the feature. The bounding box of the object, which has lots of extrema, will

have the BBD value close to 1, whereas less extrema means BBD will be closed

to 0. The BBD definition is given as follows:

BBD =
|extrema(BBwidth)|+ |extrema(BBheight)|

N
(3.9)

where N is number of sample points, BBwidth and BBheight are the width and

height of the bounding box, respectively.

It is also observed that the disorder in the principle orientation of a flame is

higher than the more stationary objects like people, vehicles etc. The principle

orientation is calculated by using the ellipse whose major axis has the same

second moment with the flame region. The angle α between the major axis of

the ellipse and the x-axis is the principle orientation. The POD value is calculated

by using the number of maxima and minima as follows:

POD =
|extrema(α)|

N/2
(3.10)

where N is the number of sample points and α is the principle orientations of

the region.

Finally, it is observed that the histogram of the flame is rough. The intensity

value also varies a lot whereas the other objects localizes on some fixed points and

38



varies less. The HR (3.11) is calculated by using mean range of the histogram

and average disorder of the non-zero bins.

HR =
range(H)

N
× |extremabins 6=0(H)|

N/2
(3.11)

After all three features are calculated, the mean value (3.12) of the features

are used to classify the flame from other objects.

BBD + POD +HR

3
(3.12)

The threshold for the flame is experimentally determined as 0.7. If the mean

is over this threshold, the hot object is classified as flame.

39



3.2 Implementation Details of the IR Flame

Detection Algorithm

In this section, we describe the methods that we used to carry out flame detection

in IR video. Figures 3.1 and 3.2 contain some IR images that contain flame and

other hot objects, respectively.

Figure 3.1: IR image examples that contain flame

Figure 3.2: IR image examples that do not contain flame

To detect flame in IR video we follow the following method which is divided

into three parts. First, we used dynamic background subtraction to detect the

moving regions, Otsu’s method [21] for thresholding the hot objects and mor-

phological opening to eliminate noisy pixels as described in Verstockt et al. [2].

Later we extract some descriptors such as BBD [2], POD [2], Center of Mass

Disorder (CMD) and Axes of Bounding Ellipse Disorder (ABED). Finally, the

extracted descriptors are used in detection of the flame.

40



3.2.1 Moving Hot Object Detection

First of all, the moving hot objects are segmented. To detect the moving re-

gions, we used the work developed in Video Surveillance and Monitoring (VSAM)

Project at Carnegie Mellon University [22] for background estimation. It is like

the one described in the work of Verstockt et al. [2] but the determination of a

background pixel is different. To detect the moving pixels (3.13) is used.

|In(x, y)− In−1(x, y)| > Tn(x, y) and |In(x, y)− In−2(x, y)| > Tn(x, y) (3.13)

where In(x, y) is the intensity value and Tn(x, y) is the threshold value(3.14) of

the pixel located at (x, y) in nth frame.

The threshold Tn(x, y) is calculated by

Tn+1(x, y) =

 αTn(x, y) + 5× (1− α)× |In(x, y)−Bn(x, y)|, (x,y) is non-moving

Tn(x, y) (x,y) moving.

(3.14)

where α is a constant between zero and one and Bn(x, y) is the estimated back-

ground which is calculated in (3.7)

The T0(x, y) is initialized with some predetermined positive number for all

points and B0(x, y) is initialized with the first image. α is chosen as a constant

value close to one.

After the dynamic background subtraction algorithm is applied, we use mor-

phological opening to reduce the effects of the noise as in [2]. The structural

element of the morphological operation is chosen as a disk of radius 2.

Figure 3.3 shows an example result of the morphological opening applied on

the dynamic background subtraction algorithm.

41



Figure 3.3: Results of Dynamic Background Subtraction and Morphological

Opening using a disk of a radius 2 pixels.

To segment the hot objects, the Otsu’s method is used to find a threshold as in

[2, 19]. Some IR images that hot object segmentation is applied can be found in

Figure 3.4.

Figure 3.4: Results of Hot Object Segmentation.

42



3.2.2 Feature Extraction from Flame Regions

We extract four descriptors from the detected hot moving objects. The Bounding

Box Disorder and Principle Orientation Disorder are the descriptors used in [2].

The results of extraction of BBD and POD features are in Figures 3.5 and 3.6,

respectively.

(a) Flame width (b) Flame height

(c) Moving person width (d) Moving person height

Figure 3.5: Results of Bounding Box Disorder. Vertical and horizontal axes

represent lengths (px) and frame numbers, respectively.

As the third descriptor, we use the concept of Center of Mass Disorder (CMD)

defined in (3.15). We observed that the disorder in the center of mass of the flame

is higher than the other objects such as people and vehicle. The center of mass

of the object is calculated by using (3.4). After that, the CMD is calculated

43



(a) Fire (b) Moving person

Figure 3.6: Results of Principle Orientation Disorder. Vertical and horizontal
axes represent angles (◦) and frame numbers, respectively.

by using the extrema points in the data of center of mass points. The data is

smoothed before applying the CMD to compensate the effect of noise. The flames

have the CMD value close to 1 whereas the more static objects like people and

vehicles have the CMD value close to 0. Figure 3.7 shows example data points

of this descriptor.

CMD =
|extrema(cx)|+ |extrema(cy)|

N
(3.15)

where N is number of data points and (cx, cy) is the position of the center of

mass.

The final descriptor is based on the axes of bounding ellipse disorder defined

in (3.16). The smallest ellipse is found such that its major axis has the same

angle with the principle orientation of the object and it encloses the object. We

observed that the disorder in the length of the major and minor axes of this

ellipse is higher for flame. The ABED is calculated by using the length of the

major and minor axes of this ellipse. Figure 3.8 shows example data points of

this descriptor.

44



(a) x coordinates of flame (b) y coordinates of flame

(c) x coordinates of human (d) y coordinates of human

Figure 3.7: Results of Center of Mass Disorder. Vertical and horizontal axes

represent positions (px) and frame numbers, respectively.

ABED =
|extrema(lma)|+ |extrema(lmi)|

N
(3.16)

where N is number of data points and lma and lmi is the length of the major and

minor axes of the bounding ellipse described above.

Finally, the extracted descriptors are used in detection of the flame by using

the formula in (3.17).

FD =
BBD + POD + CMD + ABED

4
(3.17)

where FD stands for flame detection parameter.

45



(a) major-axis for flame (b) minor-axis for flame

(c) major-axis for person (d) minor-axis for person

Figure 3.8: Results for Axes of Bounding Ellipse Disorder. Vertical and horizon-
tal axes represent lengths (px) and frame numbers, respectively.

In classification, we use thresholding of the descriptors’ mean value as similar

within [2] for fair comparison. Also, we use SVM [17] for these four descriptors

to classify flames.

46



3.3 CUDA Implementation

As mentioned earlier, the GPU is favorable in speed for the algorithms that can

be implemented in a parallel way. Another point when the GPU is advantageous

is the case when there are large amount of data to be processed. These are

the two cases that make GPU a better environment for most of the algorithms.

Unfortunately, our flame detection algorithms for IR videos violate both of these

conditions. Therefore, a possible CUDA implementation of this algorithm will

bring zero benefit to the CPU implementation.

The very first reason why the CUDA implementation of this algorithm will be

slower is the low resolution of our IR videos. Although the morphological opening

operation we use is faster in GPU, the overall implementation lasts longer due to

the excessive time requirement of the data transfer between the GPU and system

memory. When the amount of data to be transferred is large, the transfer time

becomes negligible with respect to the long process time of CPU. However, it

becomes significantly important for small data since CPU processing becomes

shorter. Advantage of using GPU for this algorithm can be observed for high

resolution videos which has larger data to be processed.

Secondly, our object detection method consists of simple but many condi-

tional branches which require less computational power. When we look from the

CPU perspective, this is a plus since simple key comparisons will take less time.

However, when we look from the GPU perspective, this is a big minus since these

branches and comparisons (thresholding) brings a sequential and iterative sense

to the algorithm. This nature is the reason why the parallel processing is im-

possible for this algorithm. This is the second important reason why the CUDA

implementation of this algorithm will not be advantageous.

47



3.4 Results and Summary

There are 10 videos in our dataset used throughout this study. Five of these

videos contain flame and five of them does not. In both of the algorithms,

the flame detection threshold value is chosen as 0.7 as described in the work of

Verstock et al. for fair comparison.

Some IR video flame detection examples are illustrated in Figure 3.9. The

detected flame regions are shown by a red contour.

(a) posVideo1 (b) posVideo2

(c) negVideo2 (d) negVideo5

Figure 3.9: Some IR image example results of our IR video flame detection

algorithm.

48



Table 3.1: Detection rates of the IR flame detection algorithms

# of flame # of detected flame frames

Video Name frames SVM Thresholding Verstock et al. [2]

posVideo1 100 100(100%) 100(100%) 100(100%)

posVideo2 305 285(93%) 273(90%) 186(61%)

posVideo3 176 157(89%) 145(82%) 136(77%)

posVideo4 141 138(98%) 136(97%) 115(81%)

posVideo5 279 279(100%) 279(100%) 248(89%)

First three positive videos contain standing people and flame while the others

have moving people and flame in them. As seen in Table 3.1, our both SVM and

thresholding classifiers outperform the results of Verstock et al. [2].

Table 3.2: False alarm rates of the IR flame detection algorithms

# detected false flame frames

Video Name # of frames SVM Thresholding Verstock et al. [2]

negVideo1 145 0 0 0

negVideo2 241 4 0 3

negVideo3 261 5 3 7

negVideo4 123 0 0 0

negVideo5 111 0 1 3

First negative video contains people leaving a car. The second and third ones

contain standing people and moving cars. Finally, the last two have moving cars

in them. As seen in Table 3.2, the false alarm rates of our algorithms are lower

than the results of Verstock et al. [2]. Because of lack of training data, we could

not obtained better SVM results.

As a result of these two tests, we can conclude that our improvements to the

algorithm of Verstock et al. [2] increased the detection rate and decreased the

false alarm rates.

49



Chapter 4

Conclusion and Future Work

In this thesis, we investigated the possible CUDA implementations of flame de-

tection algorithms in day and infrared camera videos. Our Graphics Processing

Unit (GPU) implementation of an earlier flame detection method in day videos

[1] decreases run time of the algorithm as compared to its CPU implementation.

During our studies, we observed that the ratio of the processing time of GPU

and CPU implementations of the same algorithm increases with video resolution.

Our experimental results suggested that an enhancement of more than 3-fold can

be achieved in high definition videos. Such a processing is not possible in CPU

implementations due to the time constraints, however, a GPU implementation

can process even high resolution videos with its parallel processing capability. In

addition to these, GPU implementation also enables processing of high definition

multi-camera feeds which is not also likely in CPU implementations.

Our results about the GPU implementation of a flame detection algorithm

in day video showed that there are significant advantages of using CUDA imple-

mentation of these algorithms for flame detection purposes. As a future work,

we plan to add additional constrains in the original flame detection algorithm

to increase the detection rate while preserving the false alarm rate. This will be

50



feasible with the CUDA implementation since more comparisons will be possible

in a given time interval.

After showing the success of CUDA implementation in day videos, we also

investigated the possibility of implementing flame detection algorithms in IR

videos. The regular camera based flame detection method cannot be extended

to IR flame detection because IR flame regions has almost no texture. In this

part, we propose a new flame detection algorithm for IR videos based on [2] by

Verstock et al.’s work. Our improvements on this method is to add two new

descriptors to consider the disorders in center of mass of bright moving regions

and the axis of bounding ellipse of flame regions. These new features increased

the detection rate while decreasing the false alarm rate.

Afterwards, we tried to implement our flame detection algorithm for IR videos

in GPU. Our goal for the CUDA implementation of this algorithm was to decrease

the run time by utilizing the computational abilities of GPU. However, our IR

flame detection method has sequential character, which cannot be implemented

in a parallel way. Without dividing a task into parallel threads, high transfer

time between GPU and system memory dominates the benefits of using GPU.

Therefore, CUDA implementation of our flame detection algorithms for IR videos

did not speed up the algorithm. As a future work, we plan to develop new flame

detection algorithms for IR videos, which are appropriate for parallel processing.

51



Bibliography

[1] Y. H. Habiboglu, “Fire and flame detection methods in images and videos,”

Master’s thesis, Bilkent University, August 2010.

[2] S. Verstockt, A. Vanoosthuyse, S. Van Hoecke, P. Lambert, and R. Van de

Walle, “Multi-sensor fire detection by fusing visual and non-visual flame

features,” in 4th International Conference on Image and Signal Processing.

ICISP’10, pp. 333–341, 2010.

[3] J. Sanders and E. Kandrot, CUDA by Example: An Introduction to

Genearal-Purpose GPU Programming. Addison-Wesley, October 2010.

[4] H. Meuer, E. Strohmaier, J. Dongarra, and H. Simon, “Top500 supercom-

puter sites.” http://www.top500.org/lists/2011/06, June 2011.

[5] H. Hagedoorn, “NVIDIA Kepler is successor to Fermi.” http://www.

guru3d.com/news/nvidia-kepler-is-succesor-to-fermi--due-2011-

already/, September 2010.

[6] B. U. Toreyin, Y. Dedeoglu, U. Gudukbay, and A. E. Cetin, “Computer

vision based method for real-time fire and flame detection,” Pattern Recog-

nition Letters, vol. 27, no. 1, pp. 49–58, 2006.

[7] B. U. Toreyin and A. E. Cetin, “Online detection of fire in video,” in IEEE

Conference on Computer Vision and Pattern Recognition. CVPR’07, pp. 1–

5, June 2007.

52

http://www.top500.org/lists/2011/06
http://www.guru3d.com/news/nvidia-kepler-is-succesor-to-fermi--due-2011-
http://www.guru3d.com/news/nvidia-kepler-is-succesor-to-fermi--due-2011-
already/


[8] T.-F. Lu, C.-Y. Peng, W.-B. Horng, and J.-W. Peng, “Flame feature model

development and its application to flame detection,” in 1st International

Conference on Innovative Computing, Information and Control. ICICIC’06,

pp. 158–161, September 2006.

[9] O. Tuzel, F. Porikli, and P. Meer, “Region covariance: A fast descriptor

for detection and classification,” in 9th European Conference on Computer

Vision. ECCV’06, pp. 589–600, May 2006.

[10] B. U. Toreyin, Fire detection algorithms using multimodal signal and image

analysis. PhD thesis, Bilkent University, January 2009.

[11] O. Gunay, K. Tasdemir, B. U. Toreyin, and A. E. Cetin, “Video based wild-

fire detection at night,” Fire Safety Journal, vol. 44, pp. 860–868, August

2009.

[12] Y. Dedeoglu, B. U. Toreyin, U. Gudukbay, and A. E. Cetin, “Real-time fire

and flame detection in video,” in Proceedings of IEEE International Confer-

ence on Acoustics, Speech and Signal Processing. ICASSP’05, pp. 669–672,

March 2005.

[13] W. Phillips, III, M. Shah, and N. da Vitoria Lobo, “Flame recognition in

video,” Pattern Recognition Letters, vol. 23(1–3), pp. 319–327, 2002.

[14] W. B. Horng, J. W. Peng, and C. Y. Chen, “A new image-based real-

time flame detection method using color analysis,” in Proceedings of IEEE

International Conference on Networking, Sensing and Control. ICNSC’05,

pp. 100–105, March 2005.

[15] B. U. Toreyin, Y. Dedeoglu, and A. E. Cetin, “Flame detection in video

using hidden Markov models,” in IEEE International Conference on Image

Processing. ICIP ’05, vol. 2, pp. 1230–1233, September 2005.

53



[16] T.-H. Chen, P.-H. Wu, and Y.-C. Chiou, “An early fire-detection method

based on image processing,” in International Conference on Image Process-

ing. ICIP ’04, vol. 3, pp. 1707–1710, October 2004.

[17] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector ma-

chines,” ACM Transactions on Intelligent Systems and Technology, vol. 2,

pp. 1–27, 2011. Software available at http://www.csie.ntu.edu.tw/

~cjlin/libsvm.

[18] B. U. Toreyin, R. G. Cinbis, Y. Dedeoglu, and A. E. Cetin, “Fire detection

in infrared video using wavelet analysis,” Optical Engineering, vol. 46, no. 6,

067204, 9 pages, 2007.

[19] I. Bosch, S. Gomez, R. Molina, and R. Miralles, “Object discrimination by

infrared image processing,” in Bioinspired Applications in Artificial and Nat-

ural Computation, vol. 5602 of Lecture Notes in Computer Science, pp. 30–

40, Springer Berlin / Heidelberg, 2009.

[20] S. Verstockt, S. Van Hoecke, N. Tilley, B. Merci, B. Sette, P. Lambert,

C. Hollemeersch, and R. Van de Walle, Hot topics in video fire surveillance,

pp. 443–458. Video Surveillance, Intech, 2011.

[21] N. Otsu, “A threshold selection method from gray-level histograms,” IEEE

Transactions on Systems, Man and Cybernetics, vol. 9, pp. 62–66, Jan 1979.

[22] R. Collins, A. Lipton, T. Kanade, H. Fujiyoshi, D. Duggins, Y. Tsin, D. Tol-

liver, N. Enomoto, and O. Hasegawa, “A system for video surveillance and

monitoring,” Tech. Rep. CMU-RI-TR-00-12, Robotics Institute, Carnegie

Mellon University, May 2000.

54

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

	Introduction
	Motivation
	Thesis Outline

	GPU Implementation of Flame Detection Methods in Videos
	Related Work
	Flame Colored Pixel Model
	Covariance Matrix Computation

	GPU Architecture
	Implementation Details of the Flame Detection Algorithm
	Results and Summary

	Flame Detection Algorithms in IR Videos
	Related Work
	Implementation Details of the IR Flame Detection Algorithm
	Moving Hot Object Detection
	Feature Extraction from Flame Regions

	CUDA Implementation
	Results and Summary

	Conclusion and Future Work
	Bibliography

