
HARDWARE ACCELERATION OF
SIMILARITY QUERIES USING GRAPHIC

PROCESSOR UNITS

a thesis

submitted to the department of computer engineering

and the institute of engineering and science

of bilkent university

in partial fulfillment of the requirements

for the degree of

master of science

By

Atilla Genc.

January, 2010



I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Asst. Prof. Dr. İbrahim Körpeoğlu(Supervisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Dr. Cengiz C. elik(Co-Supervisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Asst.Prof. Ali Aydın Selçuk

ii



I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Asst.Prof. Özcan Öztürk

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Asst.Prof. Tansel Özyer

Approved for the Institute of Engineering and Science:

Prof. Dr. Mehmet B. Baray
Director of the Institute

iii



ABSTRACT

HARDWARE ACCELERATION OF SIMILARITY
QUERIES USING GRAPHIC PROCESSOR UNITS

Atilla Genc.
M.S. in Computer Engineering

Supervisor: Asst. Prof. Dr. İbrahim Körpeoğlu

Co-Supervisor: Dr. Cengiz C. elik

January, 2010

A Graphic Processing Unit (GPU) is primarily designed for real-time render-

ing. In contrast to a Central Processing Unit (CPU) that have complex instruc-

tions and a limited number of pipelines, a GPU has simpler instructions and many

execution pipelines to process vector data in a massively parallel fashion. In ad-

dition to its regular tasks, GPU instruction set can be used for performing other

types of general-purpose computations as well. Several frameworks like Brook+,

ATI CAL, OpenCL, and Nvidia Cuda have been proposed to utilize computa-

tional power of the GPU in general computing. This has provided interest and

opportunities for accelerating different types of applications.

This thesis explores ways of taking advantage of the GPU in the field of metric

space-based similarity searching. The KVP index structure has a simple organi-

zation that lends itself to be easily processed in parallel, in contrast to tree-based

structures that requires frequent ”pointer chasing” operations. Several imple-

mentations using the general purpose GPU programming frameworks (Brook+,

ATI CAL and OpenCL) based on the ATI platform are provided. Experimental

results of these implementations show that the GPU versions presented in this

work are several times faster than the CPU versions.

Keywords: Similarity Search, General Purpose Computing on Graphic Processing

Units, GPGPU.

iv



ÖZET

GRAFİK İŞLEMCİ BİRİMLERİ KULLANILARAK
BENZERLİK SORGULARININ HIZLANDIRILMASI

Atilla Genc.
Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Asst. Prof. Dr. İbrahim Körpeoğlu

Tez Yöneticisi: Dr. Cengiz C. elik

Ocak, 2010

Grafik İşleme Birimi (GPU) birincil olarak gerçek zamanlı görüntü oluşturmak

için tasarlanmıştır. Karmaşık komut kümesi ve sınırlı ardışık düzene sahip

merkezi işlem biriminin aksine GPU daha basit bir komut kümesine ve vektör

verilerini koşut olarak çalıştırabilecek çok sayıda yürütme ardışık düzenine sahip-

tir. Olağan görevlerine ek olarak, GPU komut kümesi başka tip genel amaçlı

hesaplamalar için kullanılabilir. GPU’ların işlem gücünü genel amaçlı hesapla-

malarda değerlendirebilmek için Brook+, ATI CAL, OpenCL ve Nvidia Cuda gibi

değişik programlama çerçeve modelleri önerilmiştir. Bu durum pek çok uygula-

manın hızlandırılması için fırsat doğurmuştur.

Bu çalışmada metrik tabanlı benzerlik araması alanında grafik kartlarının

sağladığı avantajların kullanılması incelenmektedir. Sıkça ”imleç takibi” gerek-

tiren ağaç temelli yapıların aksine, KVP yapısı basit organizasyonu nedeniyle

kolayca koşut olarak işlenmeye uygundur. ATI platformunda değişik genel

amaçlı GPU programlama çerçeve modelleri kullanılarak (Brook+, ATI CAL

ve OpenCL) Brute Force Linear Scan ve KVP algoritmaları gerçekleştirilmiş,

yapılan çalışma sunulmuştur. Bu gerçekleştirimlerin deneysel sonuları GPU uygu-

lamalarının CPU sürümlerinden çok daha hızlı olduğunu göstermektedir.

Anahtar sözcükler : Benzerlik Araması, Grafik İşleme Ünitelerinde Genel Amaçlı

Hesaplama, GPGPU.

v



Acknowledgement

I would like to thank my supervisors, Asst. Prof. Dr. İbrahim Körpeoğlu and

Dr. Cengiz C. elik for their guidance throughout my study.

vi



Contents

1 Introduction 1

2 Similarity Search 3

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Survey on Related Work . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Clustering-Based Methods . . . . . . . . . . . . . . . . . . 11

2.2.2 Local Pivot-Based Methods . . . . . . . . . . . . . . . . . 12

2.2.3 Vantage-Point Methods . . . . . . . . . . . . . . . . . . . . 14

2.3 KVP Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 The KVP Structure . . . . . . . . . . . . . . . . . . . . . 16

2.3.2 Secondary Storage . . . . . . . . . . . . . . . . . . . . . . 18

2.3.3 Memory Usage . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.4 Comparison of KVP and Tree-Based Structures . . . . . . 20

3 General Purpose Computing On GPU 22

3.1 Overview Of Graphics Hardware . . . . . . . . . . . . . . . . . . . 24

vii



CONTENTS viii

3.1.1 Programmable hardware . . . . . . . . . . . . . . . . . . . 26

3.2 GPU Programming Model . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 GPU Program Flow . . . . . . . . . . . . . . . . . . . . . 29

3.2.2 GPU Programming Systems . . . . . . . . . . . . . . . . . 32

3.2.3 GPGPU languages and libraries . . . . . . . . . . . . . . . 33

3.2.4 Debugging tools . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 GPGPU Techniques . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1 Stream operations . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.2 Data Structures . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 GPGPU applications . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Implementation of Algorithms 52

4.1 Brute Force Search Implementation on GPU . . . . . . . . . . . . 57

4.2 KVP Implementation GPU . . . . . . . . . . . . . . . . . . . . . 63

4.3 Filtering Results on GPU . . . . . . . . . . . . . . . . . . . . . . 69

5 Experiment Results 75

5.1 Comparison of implementations with Result Set Filtering on CPU 77

5.2 Performance Overhead of Data Transfers from GPU to CPU . . . 81

5.3 Comparison of implementations with Result Set Filtering on GPU 86

6 Conclusion 90



List of Figures

2.1 Visualization of distance bounds. Given distances d(q, p) and

d(p, o) upper and lower bounds on d(q, o) can be established us-

ing triangle inequality (a) d(q, o) ≥ |d(q, p)− d(p, o)| (b) d(q, 0) ≤
d(q, p) + d(p, o) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Possible partitioning of a set of objects. (a)ball partitioning and

(b) generalized hyperplane partitioning. . . . . . . . . . . . . . . . 8

2.3 A sample database of 9 vectors in 2-dimensional space, and an ex-

ample of the KVP structure on this database that keeps 2 distance

values per database object. (a) The location of objects. Boxes rep-

resent objects that have been selected as pivots. (b) The distance

matrix between pivots and regular database objects. For each ob-

ject, the 2 most promising pivot distances are selected to be stored

in KVP (indicated by using gray background color). (c) The first

three object entries in the KVP. Each object entry keeps the id of

the object, and an array of pivot distances. . . . . . . . . . . . . . 18

2.4 Query performance of the KVP structure, for vectors uniformly

distributed in 20 dimensions. . . . . . . . . . . . . . . . . . . . . . 19

3.1 The modern graphics hardware pipeline. The vertex and fragment

processor stages are both programmable by the user. . . . . . . . 25

ix



LIST OF FIGURES x

4.1 Serialized representation of objects. . . . . . . . . . . . . . . . . . 58

4.2 Packed instruction execution. . . . . . . . . . . . . . . . . . . . . 61

4.3 Iteratively counting number of objects in result set. . . . . . . . . 72

5.1 Execution times in seconds for 1000 radius queries on 220 vectors,

with varying vector dimensions. Result set filtering performed on

CPU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2 Relative speeds of implementations for test set 1, when result set

filtering is performed on CPU. . . . . . . . . . . . . . . . . . . . . 78

5.3 Execution times in seconds for 1000 radius queries on vectors with

16 dimensions and varying number of vectors. Result set filtering

performed on CPU. . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.4 Relative speeds of implementations for test set 2, when result set

filtering is performed on CPU. . . . . . . . . . . . . . . . . . . . . 80

5.5 Execution times in seconds for 1000 radius queries on object set

size of 220 vectors, with varying vector dimensions, no result set

fetching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.6 Relative speeds of implementations for test set 1, no result set

fetching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.7 Execution times in seconds for 1000 radius queries on vectors with

16 dimensions and varying number of vectors, no result set fetching.. 85

5.8 Relative speeds of implementations for test set 2, no result set

fetching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.9 Execution times for 1000 radius queries on object set size of 220

vectors, with varying vector dimensions, GPU result set filtering. . 87



LIST OF FIGURES xi

5.10 Relative speeds of implementations for test set 1, GPU result set

filtering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.11 Execution times for 1000 radius queries on vectors with 16 dimen-

sions and varying number of vectors, GPU result set filtering. . . 88

5.12 Relative speeds of implementations for test set 2, GPU result set

filtering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88



List of Tables

5.1 System configuration of Test Hardware . . . . . . . . . . . . . . . 76

5.2 Number of objects and dimension sizes used in measurements. . . 76

5.3 Execution times in seconds for 1000 radius queries on object set

size of 220 vectors, with varying vector dimensions. Result set

filtering performed on CPU. . . . . . . . . . . . . . . . . . . . . . 77

5.4 Execution times in seconds for 1000 radius queries on vectors with

16 dimensions and varying number of vectors. Result set filtering

performed on CPU. . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.5 Execution times in seconds for 1000 radius queries on object set

size of 220 vectors, with varying vector dimensions, no result set

fetching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.6 Data Transfer rate and percentage of time used in data transfers. 83

5.7 Execution times in seconds for 1000 radius queries on vectors with

16 dimensions and varying number of vectors, no result set fetching.. 84

5.8 Execution times in seconds for 1000 radius queries on object set

size of 220 vectors, with varying vector dimensions, GPU result set

filtering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

xii



LIST OF TABLES xiii

5.9 Execution times in seconds for 1000 radius queries on vectors with

16 dimensions and varying number of vectors, GPU result set fil-

tering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86



Chapter 1

Introduction

A very important issue on any kind of data management is searching. Traditional

database systems efficiently search for structured records. However, the new data

types like image, video, audio, protein structures etc. are not very structured and

can not be handled efficiently. In these cases, the similarity search paradigm is a

better solution. Similarity searching consists of retrieving data that are similar

to a given query. The measure of similarity is specifically defined with respect to

the target application.

One popular approach for similarity searching is mapping database objects

into feature vectors, which introduces an undesirable element of indirection into

the process. A more direct approach is to define a distance function directly

between objects. Typically such a function is taken from a metric space, which

satisfies a number of properties, such as the triangle inequality. Index structures

that can work for metric spaces have been reported to outperform vector-based

counterparts in many applications. Metric spaces also provide a more general

framework, such as defining a distance between objects can be accomplished

more intuitively than mapping objects to feature vectors for some domains.

Downside of using metric distance functions for similarity search is that they

are usually computationally expensive. As computers find usage in new areas,

new applications with complex similarity measures comes on demand, causing an

1



CHAPTER 1. INTRODUCTION 2

urgent need to improve the efficiency of similarity queries. Index structures that

are designed for similarity search seek to reduce the number of distance compu-

tations required to process a similarity search query. Another way of increasing

speed of this expensive task is to find faster and more suitable configurations.

Recent graphics architectures provide tremendous memory bandwidth and

computational horsepower. Their arithmetic power results from a highly special-

ized architecture, evolved and tuned over years to extract maximum performance

on the highly parallel tasks of traditional computer graphics. Also early GPUs

were fixed-function pipelines whose output was limited to 8-bit-per-channel color

values, whereas modern GPUs now include fully programmable processing units

that support vectorized floating-point operations. The increasing flexibility of

GPUs, coupled with some creative uses of that flexibility by GPGPU developers,

has enabled many applications outside the original narrow tasks for which GPUs

were originally designed. Researchers and developers have become interested in

utilizing this power for general-purpose computing, an effort known collectively

as GPGPU (for General-Purpose computing on the GPU). Thus these advances

on graphic cards suggest it to be a viable and cheap opportunity for a faster

computational hardware.

Objective of this thesis is to explore ways of taking advantage of the advances

in GPU architectures in the field of similarity searching by accelerating execution

times; specifically in brute force linear scan technique and KVP algorithm.

This thesis is organized as follows. Chapter 2 gives a broad survey on similarity

searching and has a section specifically for discussions of KVP algorithm that will

be implemented. Chapter 3 gives a broad survey on general purpose computation

on graphical cards. In chapter, 4 implementation details of similarity search

algorithms are presented. Chapter 5 reports experimental results obtained by

measuring execution times of implementations in CPU and GPU environments

through a set of tests. Finally, in chapter 5 concluding remarks are presented.



Chapter 2

Similarity Search

2.1 Overview

One of the areas that computer systems had significant success is storage and

retrieval of vast amounts of information. Many applications in computer science

depend on efficient storage and retrieval of data. If data to be stored has some

predefined structure, classical database methods that are designed to handle data

objects provide quite a good performance. This predefined structure can be cap-

tured by treating the various attributes associated with the objects as records

and these records can be stored in the database using some appropriate model

like relational, object-oriented, object-relational,hierarchical, network, etc. The

retrieval process, responding to queries like exact match, range, and join applied

to some or all of the attributes, is then facilitated by building indexes on the rel-

evant attributes. As mentioned before these techniques assume some predefined

structure and more importantly, concepts like data equality and similarity are

well defined and evaluation of equality and similarity are not very costly.

As the proliferation of computer systems in data management increase, new

demands on data storage and management arise. Recent applications require

management of larger data as well as storage and retrieval of data which has

considerably less structure. A few examples of such data and applications of the

3



CHAPTER 2. SIMILARITY SEARCH 4

similarity search include: audio and image databases [21], video,audio recordings,

text documents, time series, DNA sequences, fingerprints [59], face recognition

[58] etc. Such data objects sometimes can be described via a set of features, which

is called a feature vector. Feature vectors consists of features which are scalar

values. For example, in the case of image data, the feature vector might include

color, color moments, textures, or RGB values of the image pixels etc. which

are scalar values. In the case of text documents, we might have one dimension

per word, which can lead to prohibitively high dimensions. Also there are some

cases where, even a feature vector may not be available. Sometimes we only

have a set of objects and a distance function d, which is usually quite expensive

to compute, where d specifies the degree of similarity (or dissimilarity) between

all pairs of objects. The challenge with these kind of data is that usually the

data can not be ordered and most of the time it is not meaningful to perform

equality comparisons on it. To illustrate the point, consider retrieval of songs

that are similar to a query song from a set of songs, or finding a images which

contain a certain person from a set of images. When dealing with cases where

data can not be sorted, nor a clear definition of equality or similarity can be

provided, proximity becomes more appropriate retrieval criterion and queries can

be defined as:

1. Finding objects whose feature values fall within a given range or where the

distance, using a suitably defined distance metric, from some query object

falls into a certain range (range queries).

2. Finding objects whose features have values similar to those of a given query

object or set of query objects (nearest neighbor queries). In order to reduce

the complexity of the search process, the precision of the required similarity

can be an approximation (approximate nearest neighbor queries).

3. Finding pairs of objects from the same set or different sets which are suffi-

ciently similar to each other (closest pairs queries).

The process of computing results to these queries is termed similarity search-

ing.



CHAPTER 2. SIMILARITY SEARCH 5

The main problem with processing similarity search queries is the difficulty

with dealing very large dimensions and cost of evaluating distance functions which

are usually expensive to compute. Thus a good indexing method should be

able to deal with high dimensions of data and/or reduce the number of distance

computations to evaluate query.

If data can be modeled by feature vectors one can form indexes on various

features as in the case of structured data and use point access methods (eg.,

[24, 77, 78]). These feature vectors are represented as coordinate vectors. In these

approaches, it is assumed that the objects can be decomposed into or represented

as vectors over some multi-dimensional space, and distances are measured using

geometric distance functions like standard Euclidean distance. Numerous index

structures have been created based on this approach. One of the drawbacks of

this approach is that it is not being suitable for wide range of applications, as it

may not be possible to represent data as feature vectors.

An alternative direction for research had been similarity search in the more

general setting of metric spaces. In this thesis we focus on similarity search

methods which assume similarity is defined using a metric distance function. A

metric space is defined to be a set of objects S together with a distance function

d on pairs of objects that satisfies the following properties ∀a, b, c ∈ S

1. Positivity: d(a, b) ≥ 0, d(a, a) = 0

2. Symmetry: d(a, b) = d(b, a).

3. Triangle Inequality: d(a, b) + d(b, c) ≥ d(a, c).

Positivity property ensure that distance function is defined for pair of objects

and distance is not negative. Also it ensures that distance of some object to itself

is zero, minimum possible distance, corresponding to intuitive notion object is

similar to itself. Symmetry property ensures distance between two object are

same regardless of the direction.

Of the distance metric properties, the triangle inequality is the key property

for pruning the search space when processing queries. However, in order to make



CHAPTER 2. SIMILARITY SEARCH 6

use of the triangle inequality, we often find ourselves applying the symmetry

property. Furthermore, the non-negativity property allows discarding negative

values in formulas. The triangle inequality dictates that the distance between

two objects is closely related to their distances to a third object. This relation

can be seen Figure 2.1. Given distances d(q, p) and d(p, o) upper and lower bounds

on d(q, o) can be established.

Figure 2.1: Visualization of distance bounds. Given distances d(q, p) and d(p, o)
upper and lower bounds on d(q, o) can be established using triangle inequality
(a) d(q, o) ≥ |d(q, p)− d(p, o)| (b) d(q, 0) ≤ d(q, p) + d(p, o)

Metric-space indexing structures exploit this fact by appointing a small set

of objects to represent the whole population. These objects are called pivots or

vantage points. The distances between the pivots and a set of database objects

are precomputed and stored in the index structure. At query time, the distance

between some of the pivots and the query object is computed. Using the triangle

inequality, the distance between a regular database object and the query object

can be bounded by their distances to the pivots. If the lower bound of the

distance between a database object and the query object is greater than the

query radius, it follows that the object is outside the query range, and the object

can be eliminated from consideration. In a similar fashion, if the upper bound of

the distance is less than the query radius, it follows that the object lies within

the range. We call this operation pivoting. Objects that have been classified in

this manner are said to be eliminated. Database objects that are not eliminated

must have their distances to the query object computed explicitly. The efficiency

of an index structure is directly related to the fraction of database objects that

can be eliminated through pivoting.

Distance-based indexing methods do not make any assumptions about the



CHAPTER 2. SIMILARITY SEARCH 7

internal structure about objects as long as distance function is defined over all

pair of objects in the collection. This level of abstraction enables us the capability

of capturing a large variety of similarity search applications. It provides a natural

and intuitive way to approach a problem. For example, the distance between two

character strings may easily be determined by the edit distance, which is a metric

[53]. On the other side, this level of abstraction eliminates some constraints which

could be useful in building indexes. For example, vector-based methods can

enhance efficiency by processing the dimensions of the vector one at a time. An

example of this is incremental distance computation [3], where the distance of the

query object to a bounding box is computed one dimension at a time. Another

example is the TV-tree [55]. In the TV-tree, new dimensions are introduced only

as they are needed.

The advantage of distance-based indexing methods is that once the index has

been built, similarity queries can often be performed with a significantly lower

number of distance computations than a sequential scan of the entire dataset, as

would be the case if no index exists. Another advantage over the multidimen-

sional indexing methods is that different distance metrics can be defined objects

and used to index them. Of course, in situations where we may want to apply

several different distance metrics, then distance-based indexing techniques have

the drawback of requiring that the index be rebuilt for each different distance

metric.

There are two main approaches when only distance functions are used in

similarity search. First method is to derive artificial features based on inter object

distances (e.g., methods described in [22, 42, 57, 89]). In these approaches, goal is

to find a mapping F that is defined for all elements of S and query objects which

maps original objects to points in k-dimensional space. New distance function

de defined in k-dimensional space should be as close as possible original distance

function d. The advantage of this approach is that it replaces original function

d with a new function de which is expected to be much less expensive. Another

advantage of this approach is that after mapping new points can be indexed using

multidimensional indexes. These methods are known as embedding methods and

they are also applicable if objects are represented as feature vectors. Advantage



CHAPTER 2. SIMILARITY SEARCH 8

of using embedding methods on features vectors is reduction in the number of

dimensions, if the dimensions of newly mapped space k, is smaller than original

dimensions of feature vector.

An important constraint on embedding methods is that the mapping F should

be contractive [39], which implies that it does not increase the distances between

objects. That is, de(F (o1), F (o2)) ≤ d(o1, o2)∀o1, o2 ∈ S. This property ensures

that there will be no incorrect elimination of objects when processing query using

new mapped space and new distance function. Results are later refined using d

(e.g., [48, 79]).

Another approach which is used when only distance functions are known is

to index objects with respect to their distances from a few selected objects called

pivots. Almost all existing index structures for metric similarity search are built

around the concept of pivoting. They differ in the way they select pivots, which

objects are associated with each pivot, how the pivot distances will be organized

and how pivots separate objects. These differences also affect how the querying

process will be carried out.

Deciding how pivots partition data is also a differentiating factor among sim-

ilarity search algorithms. [85] identified two basic partitioning schemes, ball par-

titioning and generalized hyperplane partitioning.

Figure 2.2: Possible partitioning of a set of objects. (a)ball partitioning and (b)
generalized hyperplane partitioning.

In ball partitioning, the data set is partitioned based on distances from one



CHAPTER 2. SIMILARITY SEARCH 9

distinguished object, sometimes called a vantage point [93], that is, into the subset

that is inside and the subset that is outside a ball around the object (e.g., Figure

2.2(a)).

In generalized hyperplane partitioning, two distinguished objects a and b are

chosen and the data set is partitioned based on which of the two distinguished

objects is the closest, that is, all the objects in subset A are closer to a than to

b, while the objects in subset B are closer to b (e.g., Figure 2.2(b)).

2.2 Survey on Related Work

Some of the earliest distance-based indexing methods are due to [14], but most

of the work in this area has taken place in the past decades. Typical of distance

based indexing structures are metric trees [85], which are binary trees that result

in recursively partitioning a data set into two subsets at each node. The VP-tree

[93] stands out as one requiring only a small amount of memory and being able

to be constructed efficiently. However it is inferior to others in terms of query

performance, including methods like the MVP-tree [9], and GNAT [10], both of

which improve performance at the cost of greater space and construction time.

The M-tree [17] and Slim-tree [44] are disk-based structures, and support

dynamic manipulations on the index while maintaining the balance of the tree.

In order to be able to efficiently handle split and merge operations, however,

they keep less precise data than the comparable GNAT structure. This results in

poorer query performance.

While most distance based indexing structures are variations on and/or exten-

sions of metric trees, there are also other approaches. Several methods based on

distance matrices have been designed [65, 87, 88]. In these methods, all or some of

the distances between the objects in the data set are precomputed. Then, when

evaluating queries, once we have computed the actual distances of some of the

objects from the query object, the distances of the other objects can be estimated

based on the precomputed distances. Clearly, these distance matrix methods do



CHAPTER 2. SIMILARITY SEARCH 10

not form a hierarchical partitioning of the data set, but combinations of such

methods and metric tree-like structures have been proposed [64]. The SA-tree

[66] is another departure from metric trees, inspired by the Voronoi diagram. In

essence, the SA-tree records a portion of the Delaunay graph of the data set, a

graph whose vertices are the Voronoi cells, with edges between adjacent cells.

Tree structures typically only allow an object to have as many pivots as the

height of the tree. This may not be satisfactory for difficult distributions and

queries. For this reason tree-based structures are not flexible enough to provide

greater elimination power when needed. In contrast, vantage point structures

like LAESA [65], Spaghettis [15] and FQA [16] represent another family of solu-

tions. They use more space and construction time, but provide greater efficiency

at query time. Although other tree structures also have some parameters that

can be adjusted, their improvements are not as pervasive or as dramatic. The

shortcomings of vantage points-based methods are the extra computational over-

head that they incur, higher construction costs, and higher space usage. If they

are allowed to use a sufficient number of pivots, these methods have been shown

to outperform other methods in terms of the number of distance computations

performed. Some of the structures in this family offer some improvements to the

common problems of high space and construction time. The Spaghettis structure

reduces computational overhead but uses more space than the common approach.

The FQA also reduces overhead, but it uses less precision in the distance informa-

tion it stores, resulting in reduced performance in terms of the number of distance

computations.

Further material on similarity search methods can be found at [66] and [38]

which are very good surveys on similarity search.

In the following sections we report similarity search methods under three broad

categories: Clustering-based methods, local pivot-based methods, and vantage

points-based methods.



CHAPTER 2. SIMILARITY SEARCH 11

2.2.1 Clustering-Based Methods

The basic theme behind clustering-based methods is the use of a hierarchical,

tree-based decomposition of the space, where the subtrees are designed to group

close objects together. We also observe that each subtree is represented by a

single object from the database that is ideally located near the center of the

group of objects stored in this subtree.

J. Uhlmann [85] defined the gh-tree, short for generalized hyperplane tree, as

one of the first examples in this category. The idea is to pick two objects from

the current subset as representatives, and partition the rest of the set into two

classes, depending on which representative is closer.

The GNAT tree, presented by S. Brin [10] is a generalization of the gh-tree,

where there are more than two representatives. A simple algorithm is given to

pick the representatives. According to the algorithm, if we are to select k repre-

sentatives, we first pick 3 · k points randomly. Then, starting with an initial set

consisting of one random representative, we incrementally grow the set by adding

the point that maximizes the minimum distance to the other representatives.

In addition to its representatives, each node can also maintain the radius of the

associated region, that is, the maximum distance of the objects inside a represen-

tatives region. This method was used in the M-tree (described below). Another

enhancement would be to include the distances between the representatives as

well. An even more precise way is used in the GNAT tree. Every representative

stores the minimum and maximum distances to the objects in every other subset.

The performance of GNAT, in the best case, has been reported to make more

than a factor of 6 fewer distance computations than the VP-tree, while requiring

about a factor of 14 more in distance computations in its construction. How-

ever, it was reported to be worse than the VP-tree in some cases. The original

study [10] also showed that GNAT was outperformed by a variant of the vantage

points structure, although no data was given about the parameters used in the

construction of this structure. Recent experiments presented by [66], [16] show



CHAPTER 2. SIMILARITY SEARCH 12

indeed that GNAT performs consistently worse than variants of vantage points

structures in terms of number of distance computations, while it consumes less

space and has less computational overhead.

The M-tree [17] is designed to be a dynamic structure, with emphasis being

paid to the structures ability to perform queries efficiently and to optimize I/O

performance after a sequence of data insertions. Similar to SS-tree [90], it keeps

the distance to the farthest object in a subtree. Maintaining the radius of the

representative objects allows it to easily reorganize disk blocks. Splitting a node

involves selecting two new representatives and redistributing objects associated

with this node among these two new nodes. The M-tree considers all possibilities

for a split and chooses the one with tightest covering radius.

The Slim-tree [44] employs a more efficient splitting method. The minimum

spanning tree of the objects is generated and the longest arcs of the spanning tree

is removed partition the set of objects into two subsets.

2.2.2 Local Pivot-Based Methods

The structures in this category are also tree-based, however, the partitions are

based on the distances of objects to either one or two selected objects called

pivots. Objects that have similar distances to the pivots are put inside the same

subtree, but that does not necessarily mean they are in close proximity of each

other. The pivots are only used within their subset, and this is why we call

them local pivots. W. Burkhard and R. Keller [14] suggested selecting a random

object in the data set and partitioning the rest such that every object having the

same distance to the preselected object is placed in the same subset. The tree

construction continues recursively on the subset of points at the same distance.

Since their application domain produced discrete distance values, it was possible

for many points to be at the same distance.

An adaptation of the same basic idea to continuous distance values is the

VP-tree, [93]. Such a tree is defined by a branching factor. In order to construct



CHAPTER 2. SIMILARITY SEARCH 13

a vp-tree with a given branching factor k, at a given node, one of the objects is

selected as the vantage point, and the distances from the other objects to this

vantage point are calculated. Then these objects are partitioned into k groups

of roughly equal size based on these distances. In this way a node can have k

branches with each subtree having roughly m/k objects, where m denotes the

number of objects for that node. The only information that needs to be stored

is the vantage point itself, and the k − 1 distance values, denoted as cutoff[1..k],

defining the ranges of distances for each subtree.

A range query of radius r centered at a query point q is answered as follows:

at any given node, the distance d between q and the nodes vantage point is

calculated. If d is smaller than r, the vantage point is added into the result set.

For every subset i of the node defined by the cutoff values, if the interval of the

subset, [cutoff [ i− 1 ], cutoff [i]] intersects the interval [d− r, d + r], then subset

i is searched recursively.

A nice feature of the VP-tree is that it is possible to divide the space into

many divisions through a single distance calculation. As a result, when doing

a search, we need only perform one distance calculation per node. However, as

the dimensionality of the data distribution grows, it is well known that for many

distributions, the objects tend to cluster around a single distance value [5]. As

a result, almost all of the objects are at the same distance to the vantage point.

Thus, the distance to the vantage point loses its discriminating power with respect

to the objects. Another common way to describe the situation is to visualize

the situation in a 3 dimensional space, where the median spheres dividing the

branches have very similar radii, subdividing space into thin spherical shells. As

a result, objects that are grouped under same subtree tend to be spread around

the space rather being close to one another.

The MVP-tree [9] uses two vantage points per node. After partitioning the

points with one primary vantage point, the partitions are further divided by using

the second vantage point. This way, if we divide the space into m different regions

by first vantage point, we will have a total of up to m2 subsets. It should be

noted that the second vantage point uses different cutoff values for each partition



CHAPTER 2. SIMILARITY SEARCH 14

of the first vantage point. This allows the tree to maintain balance by assigning

approximately the same number of points to each subset. This occurs at the cost

of more space consumption per node. The value of this partitioning approach is

that, instead of dividing the space into very thin shells, it strives to produce more

tightly clustered subsets, while still achieving the same fanout.

The MVP-tree stores distances to two vantage points at the leaf nodes, making

it a hybrid of the vantage-point structures. It is reported to perform up to 80

2.2.3 Vantage-Point Methods

In vantage-point methods the pivots are used to control processing for the entire

set of objects instead of having local scope as they do in the previously described

methods. A subset of the objects are selected as vantage points. The distance

between the pivots and the rest of the objects are computed at initialization time

and stored in the database. At query time these precomputed distances are used

to eliminate candidates in a way that is similar to local methods. If there are

k vantage points, then the basic method performs k · n distance computations

at construction and keeps k · n distance values in the index structure. A range

query accesses these distance values to determine which objects can be eliminated

based on their distances to vantage points. Finally, a pass through all objects

not eliminated by use of pivots is performed.

Note that vantage-point methods require extra processing compared to local

methods, where determination of the partition at a node is done only for the

objects covered by the node. Local methods require storage that is only linear in

the database size, whereas vantage-point methods require O(k · n) storage.

A powerful aspect of these methods is that it is possible to use as many

pivots as desired at the cost of construction time, which results in higher storage

requirements and extra preprocessing time. Nonetheless, this additional effort

and space can yield progressively better query performance in terms of the number

of distance computations.



CHAPTER 2. SIMILARITY SEARCH 15

The first vantage-point structure that appeared in literature was LAESA [65],

as a special case of AESA [87]. There have been some improvements over the

basic LAESA algorithm, such as keeping distances to the vantage points sorted

and doing binary searches to identify which objects can be eliminated from con-

sideration [67].

The TLAESA structure [64] was proposed as a hybrid method between the

LAESA and the gh-tree. The pivots are organized as in a gh-tree, but a distance

matrix is also used to provide lower bounds for the distance of the query object to

the node representatives. Their experiments were performed in low dimensions,

and although were superior to LAESA in terms of total CPU cost, it was inferior

in terms of the number of distance computations.

The Spaghettis structure [15] was introduced as a method designed to further

decrease computational overhead. Here the distances are sorted in a similar

fashion. In addition, every distance has a pointer for the same objects distance in

the next array of distances. As done in the case of sorted distances, the feasible

ranges are computed for each array using binary search. For each point, its path

starting from first array is traced using the pointers. Once the object falls out

of range in any of the arrays, we may infer that the object cannot lie within the

query region.

The Fixed Queries Array (FQA) [16] is one of the recent global pivot-based

methods. It sorts the points according to their distances to the first vantage

point, then on the second, and so on. It decreases the precision with which

distances are measured, for otherwise the points effectively would be sorted only

in their distance to the first pivot. Using this sorted structure, the query algorithm

performs binary searches within each distance range. The first pivot is processed

as in the sorted-array approach, after that, for each range of objects that has the

same discretized distance to the first vantage point, we perform a binary search

to find the range that is valid for the second pivot. The search continues in this

fashion performing binary searches within ranges.

FQA is unique among vantage-point methods that are designed to reduce com-

putational overhead in that it does not require any additional storage. However



CHAPTER 2. SIMILARITY SEARCH 16

it does not work very well if too many bits are used for the distance values, since

this would require that the structure be sorted only by the first pivot. This cre-

ates an additional trade-off between the number of bits used for distance storage

and extra CPU processing time needed. This comes in addition to the trade-o

between number of bits and query performance in terms of distance computa-

tions. Their experiments show great improvements in low dimensions, but for 20

dimensional data for a database of one million objects, they estimate FQA would

take only 37.6

2.3 KVP Algorithm

In this section KVP structure [18], will be introduced in detail. This structure

is unique since it improves both the storage and computational overhead of the

classical vantage-points approach. The KVP structure offers a number of benefits:

1. It is a simple data structure and can be implemented relatively easily.

2. It can support dynamic operations like insertion and deletion.

3. It is easily adapted for use as a disk-based structure and its access patterns

minimize the number of disk-seek operations.

4. Queries may be executed in parallel.

2.3.1 The KVP Structure

In vantage points all pivots are kept in structure even though not all of them

may be useful in query evaluation. In [18], it is reported that it is desirable to

use pivots that are particularly close to the query object. Similarly, a pivot to

be more effective for objects that are close to or distant from it. This suggest an

improvement over keeping all pivots, at index creation time, one can find pivots

that are more close or distant to a object, and choose to keep only the distances

to these promising pivots.



CHAPTER 2. SIMILARITY SEARCH 17

This is indeed what is done with KVP, the distance relations between the

pivots and database elements are computed beforehand at construction time.

In addition to reducing CPU overhead by first processing the most promising

pivots, one can eliminate distance computations to the less promising pivots, thus

decreasing the space requirements. There are two ways this can be implemented.

One way would involve the usual layout, where every pivot stores an array of

distances to all the database objects. The object distances can be sorted so that

binary search can be used to quickly determine set of objects that are eliminated.

Another way to implement the basic idea is to have a collection of object entries,

where each object entry stores the distances to its selected pivots. The benefit

of this latter approach is that it is very easy to insert or delete objects from the

database, since there is no global data structure that keeps information about the

objects. KVP takes the second approach. Figure 2.3 illustrates the approach.

Other than the fact that KVP only stores a subset of pivot distances, the way

it processes queries is identical to the classical global pivot-based method. For

each database object it maintains a lower and upper bound for the distance to

the query object. Each pivot is used to attempt to tighten these bounds. After

processing all possible pivot distances, if the bounds are good enough to either

discard the object as out of the query range, or prove that it is within the query

range, one avoids computing the actual distance between the object and the query

object. Otherwise this distance is computed.

Figure 2.4 shows the query performance of KVP as a function of the number

of pivots stored for a query radius of 0.4 in 20 dimensions. The results that are

labeled as random choose the next pivot to be used randomly, simulating a classic

vantage-points structure. KVP methods first process close and distant vantage

points. For example, assume we have a KVP structure that has a pool of 50

prioritized vantage points, which we refer to as KVP 50. In the sorted array of

pivot distances 0 through 49, the processing proceeds in the order: 0, 49, 1, 48,

2, and so on. As the number of pivots in the pool is increased, the chances of

finding a better suited pivot also increases. Varying the number of pivots provides

flexibility to improve query performance by spending more time at construction

time without increasing space and CPU overhead.



CHAPTER 2. SIMILARITY SEARCH 18

Figure 2.3: A sample database of 9 vectors in 2-dimensional space, and an ex-
ample of the KVP structure on this database that keeps 2 distance values per
database object. (a) The location of objects. Boxes represent objects that have
been selected as pivots. (b) The distance matrix between pivots and regular
database objects. For each object, the 2 most promising pivot distances are se-
lected to be stored in KVP (indicated by using gray background color). (c) The
first three object entries in the KVP. Each object entry keeps the id of the object,
and an array of pivot distances.

As seen from the graphs that KVP, can eliminate database objects much faster

than the classic approach.

2.3.2 Secondary Storage

Access patterns of pivot-based structures are targeted toward minimizing CPU

time, but they are not always suitable to be stored on disk. For example, per-

forming binary search in secondary storage is expensive as it involves many seek



CHAPTER 2. SIMILARITY SEARCH 19

Figure 2.4: Query performance of the KVP structure, for vectors uniformly dis-
tributed in 20 dimensions.

operations. Disks are much better at performing sequential scans. The KVP

structure is quite amenable for data that are stored on disk. It only requires a

sequential scan of distance values. It does not involve a heavy processing burden,

so processing time does not dominate over I/O time. It requires relatively little

memory, since only the vantage objects, the query object, and the distance vector

of the processed object is needed.

2.3.3 Memory Usage

KVP and its variants HKvp and EcKvp store fewer distance values than the clas-

sic vantage-point methods [18]. Depending on the parameters of KVP structure,

memory usage of KVP changes. KVP structure keeps tracks of indexes used in

structure. Also for each object a subset of pivots is selected, and distance from



CHAPTER 2. SIMILARITY SEARCH 20

object to selected pivots is precomputed and stored.

For object collection of n objects, if bd bits are used for distance values and

bi bits are used for indexes of pivots, and assuming npivot selected in index con-

struction with npivotlimit limit per object, memory usage of KVP is mKV P ,

mKV P = n× (npivotlimit × (bd + bi)) + npivot ∗ bi

As with FQA, KVP can decrease memory consumption by discretization, so

that fewer bits are used for the distance values. Consider its simplest form where

the intervals have equal width, using b bits in a metric space where the maximum

distance is Dmax. This will map distances into buckets of width Dw where

Dw = Dmax

2b

Since all the distances in the same bucket will be assigned the same distance

value, the maximum error will be Dw per distance value. Assuming query objects

are distributed uniformly, we can approximate the error toDw/2 .

Therefore, query process is modified to use r+ Dmax

2
, instead of r and rest of al-

gorithm stays same. This discretization can improve memory usage considerably,

since can be very large n.

2.3.4 Comparison of KVP and Tree-Based Structures

Using a KVP structure, one can easily vary a number of parameters, including

the construction cost, the number of pivots used per object, the number of pivots

stored per object, the number of pivots processed at query time per object, and

the number of bits used per distance value.

In a sense, it is possible to view most of the existing structures as variants of

the vantage point-based methods. For example in a VP-tree with a branching fac-

tor of k, there is one pivot per node, all the objects in subtrees can be eliminated

with their distances to this pivot, and number of branches have an affect similar

to the number of bits used. For a database object, there are approximately as



CHAPTER 2. SIMILARITY SEARCH 21

many pivots as the height of the tree. This view explains why changing k in the

VP-tree has little affect on query performance, since as k increases and pivots

become more precise (which is similar to using more bits), the height of the tree

becomes shorter and there are fewer pivots per database object. A major problem

with the VP-tree is that the only data that is used are the cutoff values. The

individual distances of objects to the pivots are computed but then discarded.

From the perspective of vantage points, it is also easier to see why GNAT

with branching factor k improves on the VP-tree. In GNAT, there are k pivots

per node, and the distance ranges of k subtree to these pivots are stored. One

slight disadvantage of GNAT is that ranges of distances to a pivot can overlap.

However, instead of having just one pivot per one, objects in GNAT make use of

k pivots.

Tree-based methods have two advantages over the classical vantage points

methods. Whereas a pivoting operation involves one object in vantage points,

it usually involves groups of objects in tree-based structures. This is something

that only cause increase on the CPU overhead, and has a negative impact on

the number of distance computations. Secondly, tree-based methods attempt to

divide the space into clusters in order to benefit from the locality of pivots. This

is similar to what priority vantage points and KVP try to accomplish. While

tree structures have varying degrees of success in clustering similar objects to-

gether, KVP takes a direct approach and precisely computes the closest pivots.

In addition, KVP properly makes use of far pivots as well.



Chapter 3

General Purpose Computing On

GPU

Recent developments on graphics chips, known generically as Graphics Processing

Units or GPUs, have provided a quite powerful computational units. Researchers

and developers have become interested in utilizing this power for general purpose

computing, an effort known collectively as GPGPU (for General Purpose com-

puting on the GPU). In this section we summarize the efforts in field of GPGPU,

give an overview of the techniques and computational building blocks used to

map general purpose computation to graphics hardware, and survey the various

general purpose computing tasks to which GPUs have been applied. A quite good

survey on this field is provided by Owens et al. [71], which this section is based.

Recent graphics architectures provide tremendous memory bandwidth and

computational horsepower. For example, the flagship ATI Radeon HD 5970

($625 as of January 2010) boasts 256.0 GB/sec memory bandwidth; with 4.64

TeraFLOPS theoretical single precision processing power. Similarly competitor

NVIDIA’s flagship product GeForce 295 GTX ($475 as of January 2010) has

223.8 GB/sec memory bandwidth. GPUs also use advanced processor technol-

ogy; for example, the ATI HD 5970 contains 4.3 billion transistors and is built

on a 40-nanometer fabrication process.

22



CHAPTER 3. GENERAL PURPOSE COMPUTING ON GPU 23

Graphics hardware is fast and getting faster quickly. In fact graphics hard-

ware performance increasing more rapidly than that of CPUs. The disparity can

be attributed to fundamental architectural differences: CPUs are optimized for

high performance on sequential code, with many transistors dedicated to extract-

ing instruction-level parallelism with techniques such as branch prediction and

out-of-order execution. On the other hand, the highly data-parallel nature of

graphics computations enables GPUs to use additional transistors more directly

for computation, achieving higher arithmetic intensity with the same transistor

count.

Modern graphics architectures have become flexible as well as powerful. Early

GPUs were fixed-function pipelines whose output was limited to 8-bit-per-channel

color values, whereas modern GPUs now include fully programmable processing

units that support vectorized floating point operations on values stored at full

IEEE single precision (but note that the arithmetic operations themselves are not

yet perfectly IEEE-compliant). High level languages have emerged to support the

new programmability of the vertex and pixel pipelines [12, 61, 62]. Additional

levels of programmability are emerging with every major generation of GPU

(roughly every 18 months). For example, current generation GPUs introduced

vertex texture access, full branching support in the vertex pipeline, and limited

branching capability in the fragment pipeline. The next generation will expand

on these changes and add geometry shaders, or programmable primitive assembly,

bringing flexibility to an entirely new stage in the pipeline [6]. The raw speed,

increasing precision, and rapidly expanding programmability of GPUs make them

an attractive platform for general purpose computation.

Yet the GPU is hardly a computational panacea. Its arithmetic power results

from a highly specialized architecture, evolved and tuned over years to extract

maximum performance on the highly parallel tasks of traditional computer graph-

ics. The increasing flexibility of GPUs, coupled with some ingenious uses of that

flexibility by GPGPU developers, has enabled many applications outside the orig-

inal narrow tasks for which GPUs were originally designed, but many applications

still exist for which GPUs are not (and likely never will be) well suited. Word

processing, for example, is a classic example of a pointer chasing application,



CHAPTER 3. GENERAL PURPOSE COMPUTING ON GPU 24

dominated by memory communication and difficult to parallelize.

Todays GPUs also lack some fundamental computing constructs, such as effi-

cient scatter memory operations (i.e., indexed write array operations) and integer

data operands. The lack of integers and associated operations such as bit-shifts

and bitwise logical operations (AND, OR, XOR, NOT) makes GPUs ill-suited

for many computationally intense tasks such as cryptography (though upcoming

Direct3D 10 class hardware will add integer support and more generalized in-

structions [6]). Finally, while the recent increase in precision to 32-bit floating

point has enabled a host of GPGPU applications, 64-bit double precision arith-

metic remains a promise on the horizon. The lack of double precision hampers

or prevents GPUs from being applicable to many very large scale computational

science problems.

Furthermore, graphics hardware remains difficult to apply to non-graphics

tasks. The GPU uses an unusual programming model, so effective GPGPU pro-

gramming is not simply a matter of learning a new language. Instead, the com-

putation must be recast into graphics terms by a programmer familiar with the

design, limitations, and evolution of the underlying hardware. Today, harnessing

the power of a GPU for scientific or general purpose computation often requires

a concerted effort by experts in both computer graphics and in the particular

computational domain. But despite the programming challenges, the potential

benefits, a leap forward in computing capability and a growth curve much faster

than traditional CPUs are too large to ignore.

3.1 Overview Of Graphics Hardware

In this section we will outline the evolution of the GPU and describe its current

hardware and software.

3D graphics applications require high computation rates and exhibit substan-

tial parallelism which differentiate it from more general computation domains.

Graphic cards are designed to take advantage of the native parallelism in the



CHAPTER 3. GENERAL PURPOSE COMPUTING ON GPU 25

application, allowing higher performance on graphics applications than can be

obtained on more traditional microprocessors.

All of today’s commodity GPUs structure their graphics computation in a

similar organization called the graphics pipeline. This pipeline is designed to allow

hardware implementations to maintain high computation rates through parallel

execution. The pipeline is divided into several stages. All geometric primitives

pass through each stage: vertex operations, primitive assembly, rasterization,

fragment operations, and composition into a final image. In hardware, each stage

is implemented as a separate piece of hardware on the GPU in what is termed a

task parallel machine organization. Figure 3.1 shows the pipeline stages in current

GPUs. For more detail on GPU hardware and the graphics pipeline, NVIDIA’s

GeForce 6 series of GPUs is described by Kilgariff and Fernando [47]. From

a software perspective, the OpenGL Programming Guide provides an excellent

reference [69].

Figure 3.1: The modern graphics hardware pipeline. The vertex and fragment
processor stages are both programmable by the user.



CHAPTER 3. GENERAL PURPOSE COMPUTING ON GPU 26

3.1.1 Programmable hardware

The graphics pipeline described above was historically a fixed function pipeline,

where the limited number of operations available at each stage of the graphics

pipeline were hardwired for specific tasks. However, the success of off-line ren-

dering systems such as Pixars RenderMan [86] demonstrated the benefit of more

flexible operations, particularly in the areas of lighting and shading. Instead

of limiting lighting and shading operations to a few fixed functions, RenderMan

evaluated a user defined shader program on each primitive, with impressive visual

results.

Over the past seven years, graphics vendors have transformed the fixed func-

tion pipeline into a more flexible programmable pipeline. This effort has been

primarily concentrated on two stages of the graphics pipeline: the vertex stage

and the fragment stage. In the fixed function pipeline, the vertex stage included

operations on vertices such as transformations and lighting calculations. In the

programmable pipeline, these fixed function operations are replaced with a user

defined vertex program. Similarly, the fixed function operations on fragments

that determine the fragment’s color are replaced with a user defined fragment

program.

Each new generation of GPUs has increased the functionality and generality

of these two programmable stages. 1999 marked the introduction of the first pro-

grammable stage, NVIDIA’s register combiner operations that allowed a limited

combination of texture and interpolated color values to compute a fragment color.

In 2002, ATI’s Radeon 9700 led the transition to floating point computation in

the fragment pipeline.

The vital step for enabling general purpose computation on GPUs was the

introduction of fully programmable hardware and an assembly language for spec-

ifying programs to run on each vertex [56] or fragment. This programmable shader

hardware is explicitly designed to process multiple data parallel primitives at the

same time. In general, these programmable stages input a limited number of

32-bit floating point 4-vectors. The vertex stage outputs a limited number of



CHAPTER 3. GENERAL PURPOSE COMPUTING ON GPU 27

32-bit floating point 4-vectors that will be interpolated by the rasterizer; the

fragment stage outputs up to 4 floating point 4-vectors, typically colors. Each

programmable stage can access constant registers across all primitives and also

read-write registers per primitive. The programmable stages have limits on their

numbers of inputs, outputs, constants, registers, and instructions; with each new

revision of the vertex shader and pixel [fragment] shader standard, these limits

have increased.

GPUs typically have multiple vertex and fragment processors. Fragment pro-

cessors have the ability to fetch data from textures, so they are capable of memory

gather. However, the output address of a fragment is always determined before

the fragment is processed, and the processor cannot change the output location

of a pixel. Vertex processors recently acquired texture capabilities, and they are

capable of changing the position of input vertices, which ultimately affects where

in the image pixels will be drawn. Thus, vertex processors are capable of both

gather and scatter. Unfortunately, vertex scatter can lead to memory and ras-

terization coherence issues further down the pipeline. Combined with the lower

performance of vertex processors, this limits the utility of vertex scatter in current

GPUs.

3.2 GPU Programming Model

GPUs are a compelling solution for applications that require high arithmetic rates

and data bandwidths. GPUs achieve this high performance through data paral-

lelism, which requires a programming model distinct from the traditional CPU

sequential programming model. In this section, we briefly introduce the GPU

programming model using both graphics API terminology and the terminology

of the more abstract stream programming model, because both are common in

the literature.

The stream programming model exposes the parallelism and communication



CHAPTER 3. GENERAL PURPOSE COMPUTING ON GPU 28

patterns inherent in the application by structuring data into streams and ex-

pressing computation as arithmetic kernels that operate on streams. Owens [70]

discuss the stream programming model in the context of graphics hardware, and

the Brook programming system [12] offers a stream programming system for

GPUs.

Because typical scenes have more fragments than vertices, in modern GPUs

the programmable stage with the highest arithmetic rates is the fragment stage. A

typical GPGPU program uses the fragment processor as the computation engine

in the GPU. Such a program is structured as follows [32]:

1. First, the programmer determines the data parallel portions of his applica-

tion. The application must be segmented into independent parallel sections.

Each of these sections can be considered a kernel and is implemented as a

fragment program. The input and output of each kernel program is one or

more data arrays, which are stored (sometimes only transiently) in textures

in GPU memory. In stream processing terms, the data in the textures com-

prise streams, and a kernel is invoked in parallel on each stream element.

2. To invoke a kernel, the range of the computation (or the size of the output

stream) must be specified. The programmer does this by passing vertices to

the GPU. A typical GPGPU invocation is a quadrilateral (quad) oriented

parallel to the image plane, sized to cover a rectangular region of pixels

matching the desired size of the output array. Note that GPUs excel at

processing data in two dimensional arrays, but are limited when processing

one dimensional arrays.

3. The rasterizer generates a fragment for every pixel location in the quad,

producing thousands to millions of fragments.

4. Each of the generated fragments is then processed by the active kernel frag-

ment program. Note that every fragment is processed by the same fragment

program. The fragment program can read from arbitrary global memory

locations (with texture reads) but can only write to memory locations corre-

sponding to the location of the fragment in the frame buffer (as determined



CHAPTER 3. GENERAL PURPOSE COMPUTING ON GPU 29

by the rasterizer). The domain of the computation is specified for each in-

put texture (stream) by specifying texture coordinates at each of the input

vertices, which are then interpolated at each generated fragment. Texture

coordinates can be specified independently for each input texture, and can

also be computed on the fly in the fragment program, allowing arbitrary

memory addressing.

5. The output of the fragment program is a value (or vector of values) per

fragment. This output may be the final result of the application, or it may

be stored as a texture and then used in additional computations. Com-

plex applications may require several or even dozens of passes (multipass)

through the pipeline.

While the complexity of a single pass through the pipeline may be limited

(for example, by the number of instructions, by the number of outputs allowed

per pass, or by the limited control complexity allowed in a single pass), using

multiple passes allows the implementation of programs of arbitrary complexity.

3.2.1 GPU Program Flow

Flow control is a fundamental concept in computation. Branching and looping

are such basic concepts that it can be daunting to write software for a platform

that supports them to only a limited extent. The latest GPUs support vertex and

fragment program branching in multiple forms, but their highly parallel nature

requires care in how they are used. This section surveys some of the limitations

of branching on current GPUs and describes a variety of techniques for iteration

and decision making in GPGPU programs. Harris and Buck [33] provide more

detail on GPU flow control.



CHAPTER 3. GENERAL PURPOSE COMPUTING ON GPU 30

3.2.1.1 Hardware mechanisms for flow control

There are three basic implementations of data parallel branching in use on current

GPUs: predication, MIMD branching, and SIMD branching.

Architectures that support only predication do not have true data dependent

branch instructions. Instead, the GPU evaluates both sides of the branch and

then discards one of the results based on the value of the Boolean branch condi-

tion. The disadvantage of predication is that evaluating both sides of the branch

can be costly, but not all current GPUs have true data dependent branching

support. The compiler for high level shading languages like Cg or the OpenGL

Shading Language automatically generates predicated assembly language instruc-

tions if the target GPU supports only predication for flow control.

In Multiple Instruction Multiple Data (MIMD) architectures that support

branching, different processors can follow different paths through the program.

In Single Instruction Multiple Data (SIMD) architectures, all active processors

must execute the same instructions at the same time. The only MIMD processors

in a current GPU are the vertex processors of the NVIDIA GeForce 6 and 7 series

and NV40 and G70 based Quadro GPUs. Classifying GPU fragment processors

is more difficult. The programming model is effectively Single Program Multiple

Data (SPMD), meaning that threads (pixels) can take different branches. How-

ever, in terms of architecture and performance, fragment processors on current

GPUs process pixels in SIMD groups. Within a SIMD group, when evaluation

of the branch condition is identical for all pixels in the group, only the taken

side of the branch must be evaluated. However, if one or more of the processors

evaluates the branch condition differently, then both sides must be evaluated and

the results predicated. As a result, divergence in the branching of simultaneously

processed fragments can lead to reduced performance.



CHAPTER 3. GENERAL PURPOSE COMPUTING ON GPU 31

3.2.1.2 Moving branching up the pipeline

Because explicit branching can hamper performance on GPUs, it is useful to have

multiple techniques to reduce the cost of branching. A useful strategy is to move

flow control decisions up the pipeline to an earlier stage where they can be more

efficiently evaluated.

Static Branch Resolution On the GPU, as on the CPU, avoiding branching

inside inner loops is beneficial. For example, when evaluating a partial differential

equation (PDE) on a discrete spatial grid, an efficient implementation divides

the processing into multiple loops: one over the interior of the grid, excluding

boundary cells, and one or more over the boundary edges. This static branch

resolution results in loops that contain efficient code without branches. (In stream

processing terminology, this technique is typically referred to as the division of

a stream into substreams.) On the GPU, the computation is divided into two

fragment programs: one for interior cells and one for boundary cells. The interior

program is applied to the fragments of a quad drawn over all but the outer one

pixel edge of the output buffer. The boundary program is applied to fragments

of lines drawn over the edge pixels. Static branch resolution is further discussed

by Goodnight et al. [25].

Z-Cull Precomputed branch results can be taken a step further by using an-

other GPU feature to entirely skip unnecessary work. Modern GPUs have a

number of features designed to avoid shading pixels that will not be seen. One

of these is Z-cull. Z-cull is a hierarchical technique for comparing the depth (Z)

of an incoming block of fragments with the depth of the corresponding block of

fragments in the Z-buffer. If the incoming fragments will all fail the depth test,

then they are discarded before their pixel colors are calculated in the fragment

processor. Thus, only fragments that pass the depth test are processed, work is

saved, and the application runs faster. In fluid simulation, land locked obstacle

cells can be masked with a z-value of zero so that all fluid simulation computa-

tions will be skipped for those cells. If the obstacles are fairly large, then a lot

of work is saved by not processing these cells. Harris and Buck provide pseudo

code [33] for the technique.



CHAPTER 3. GENERAL PURPOSE COMPUTING ON GPU 32

Data Dependent Looping With Occlusion Queries Another GPU feature de-

signed to avoid drawing what is not visible is the hardware occlusion query (OQ).

This feature provides the ability to query the number of pixels updated by a ren-

dering call. These queries are pipelined, which means that they provide a way

to get a limited amount of data (an integer count) back from the GPU without

stalling the pipeline (which would occur when actual pixels are read back). Be-

cause GPGPU applications almost always draw quads with known pixel coverage,

OQ can be used with fragment kill functionality to get a count of fragments up-

dated and killed. This allows the implementation of global decisions controlled

by the CPU based on GPU processing. Harris and Buck provide pseudo code for

the technique [33].

3.2.2 GPU Programming Systems

In this section we look at the high level languages that have been developed for

GPU programming, and the debugging tools that are available for GPU pro-

grammers. Code profiling and tuning tends to be a very architecture specific

task. GPU architectures have evolved very rapidly, making profiling and tuning

primarily the domain of the GPU manufacturer. As such, we will not discuss

code profiling tools in this section.

3.2.2.1 High Level Shading Languages

Most high level GPU programming languages today share one thing in common:

they are designed around the idea that GPUs generate pictures. As such, the high

level programming languages are often referred to as shading languages. That

is, they are a high level language that compiles a shader program into a vertex

shader and a fragment shader to produce the image described by the program.

Cg [61], HLSL, and the OpenGL Shading Language all abstract the capabil-

ities of the underlying GPU and allow the programmer to write GPU programs

in a more familiar C-like programming language. They do not stray far from



CHAPTER 3. GENERAL PURPOSE COMPUTING ON GPU 33

their origins as languages designed to shade polygons. All retain graphics specific

constructs: vertices, fragments, textures, etc. Cg and HLSL provide abstractions

that are very close to the hardware, with instruction sets that expand as the

underlying hardware capabilities expand. The OpenGL Shading Language was

designed looking a bit further out, with many language features (e.g. integers)

that do not directly map to hardware available today.

Sh is a shading language implemented on top of C++ [62]. Sh provides a

shader algebra for manipulating and defining procedurally parameterized shaders.

Sh manages buffers and textures, and handles shader partitioning into multiple

passes. Sh also provides a stream programming abstraction suitable for GPGPU

programming.

3.2.3 GPGPU languages and libraries

More often than not, the graphics centric nature of shading languages makes

GPGPU programming more difficult than it needs to be. As a simple example,

initiating a GPGPU computation usually involves drawing a primitive. Looking

up data from memory is done by issuing a texture fetch. The GPGPU program

may conceptually have nothing to do with drawing geometric primitives and

fetching textures, yet the shading languages described in the previous section

force the GPGPU application writer to think in terms of geometric primitives,

fragments, and textures. Instead, GPGPU algorithms are often best described as

memory and math operations, concepts much more familiar to CPU programmers.

The programming systems below attempt to provide GPGPU functionality while

hiding the GPU specific details from the programmer.

The Brook programming language extends ANSI C with concepts from stream

programming [12]. Brook can use the GPU as a compilation target. Brook

streams are conceptually similar to arrays, except all elements can be operated

on in parallel. Kernels are the functions that operate on streams. Brook auto-

matically maps kernels and streams into fragment programs and texture memory.



CHAPTER 3. GENERAL PURPOSE COMPUTING ON GPU 34

Accelerator is a system from Microsoft Research that aims to simplify GPGPU

programming by providing a high level data parallel programming model in a

library that is accessible from within traditional imperative programming lan-

guages [82]. Accelerator translates data parallel operations on the fly to GPU

pixel shaders, demonstrating significant speedups over C versions running on the

CPU.

CGiS is a data parallel programming language from the Saarland University

Compiler Design Lab with similar aims to Brook and Accelerator, but with a

slightly different approach [63]. Like Brook, CGiS provides stream data types,

but instead of explicit kernels that run on the GPU, the language invokes GPU

computation via a built in data parallel forall operator.

The Glift template library provides a generic template library designed to

simplify GPU data structure design and separate GPU algorithms from data

structures [51]. Glift defines GPU computation as parallel iteration over the

elements of a data structure. The model generalizes the stream computation

model and connects GPGPU with CPU based parallel data structure libraries

such as the Standard Template Adaptive Parallel Library (STAPL). The library

integrates with a C++, Cg, and OpenGL GPU development environment.

CUDA (an acronym for Compute Unified Device Architecture) is a parallel

computing architecture developed by NVIDIA. CUDA is the computing engine in

NVIDIA graphics processing units or GPUs that is accessible to software develop-

ers through industry standard programming languages. Programmers use ’C for

CUDA’ (C with NVIDIA extensions), compiled through a PathScale Open64 C

compiler, to code algorithms for execution on the GPU. CUDA architecture sup-

ports a range of computational interfaces including OpenCL and DirectCompute.

Third party wrappers are also available for Python, Fortran, Java and Matlab.

AMD first released its Stream Computing SDK (v1.0), in December 2007 un-

der the AMD EULA, to be run on Windows XP. The SDK includes ”Brook+”,

an AMD hardware optimized version of the Brook language developed by Stan-

ford University, itself a variant of the ANSI C (C language), open-sourced and

optimized for stream computing. The AMD Core Math Library (ACML) and



CHAPTER 3. GENERAL PURPOSE COMPUTING ON GPU 35

AMD Performance Library (APL) also be included as a part of SDK. Another

important part of the SDK, the Compute Abstraction Layer (CAL), is a software

development layer aimed for low-level access, through the CTM hardware inter-

face, to the GPU architecture for performance tuning software written in various

high-level programming languages.

Finally, the OpenCL (Open Computing Language) is a framework for writing

programs that execute across heterogeneous platforms consisting of CPUs, GPUs,

and other processors. OpenCL includes a language (based on C99) for writing

kernels (functions that execute on OpenCL devices), plus APIs that are used to

define and then control the platforms. OpenCL provides parallel computing using

task-based and data-based parallelism.

OpenCL is analogous to the open industry standards OpenGL and OpenAL,

for 3D graphics and computer audio, respectively. OpenCL extends the power

of the GPU beyond graphics (GPGPU). OpenCL is managed by the non-profit

technology consortium Khronos Group (http://www.khronos.org/opencl/).

3.2.4 Debugging tools

Support for debugging on GPUs is fairly limited, when compared with CPU. The

advent of GPGPU programming makes it clear that a GPU debugger should have

similar capabilities as traditional CPU debuggers, including variable watches, pro-

gram break points, and single-step execution. GPU programs often involve user

interaction. While a debugger does not need to run the application at full speed,

the application being debugged should maintain some degree of interactivity. A

GPU debugger should be easy to add to and remove from an existing applica-

tion, should mangle GPU state as little as possible, and should execute the debug

code on the GPU, not in a software rasterizer. Finally, a GPU debugger should

support the major GPU programming APIs and vendor-specific extensions.

There are a few different systems for debugging GPU programs available to

use, but nearly all are missing one or more of the important features that are



CHAPTER 3. GENERAL PURPOSE COMPUTING ON GPU 36

present in cpu debuggers.

gDEBugger [2] and GLIntercept [83] are tools designed to help debug OpenGL

programs. Both are able to capture and log OpenGL state from a program. gDE-

Bugger allows a programmer to set breakpoints and watch OpenGL state variables

at runtime, as well as to profile applications using GPU hardware performance

signals. There is currently no specific support for debugging shaders, but both

support runtime shader editing.

The Microsoft Shader Debugger [1], however, does provide runtime variable

watches and breakpoints for shaders. The shader debugger is integrated into the

Visual Studio IDE, and provides all the same functionality programmers are used

to for traditional programming. Unfortunately, debugging requires the shaders to

be run in software emulation rather than on the hardware. In contrast, the Apple

OpenGL Shader Builder also has a sophisticated IDE and actually runs shaders in

real time on the hardware during shader debug and edit. The downside to this tool

is that it was designed for writing shaders, not for computation. The shaders are

not run in the context of the application, but in a separate environment designed

to help facilitate shader writing.

While many of the tools mentioned so far provide a lot of useful features for

debugging, none provide any support for shader data visualization or printf-style

debugging. Sometimes this is the single most useful tool for debugging programs.

The Image Debugger [4] was among the first tools to provide this functionality by

providing a printf-like function over a region of memory. The region of memory

gets mapped to a display window, allowing a programmer to visualize any block of

memory as an image. The Image Debugger does not provide any special support

for shader programs, so programmers must write shaders such that the output

gets mapped to an output buffer for visualization.

The Shadesmith Fragment Program Debugger [74] was the first system to

automate printf-style debugging while providing basic shader debugging func-

tionality like breakpoints, program stepping, and programmable scale and bias

for the image printf. While Shadesmith represents a big step in the right direction

for GPGPU debugging, it still has many limitations, the largest of which is that



CHAPTER 3. GENERAL PURPOSE COMPUTING ON GPU 37

Shadesmith is currently limited to debugging assembly language shaders. Addi-

tionally, Shadesmith only works for OpenGL fragment programs, and provides

no support for debugging OpenGL state.

3.3 GPGPU Techniques

In this section we describe some of the building blocks of GPU computation.

3.3.1 Stream operations

There are several fundamental operations on streams that many GPGPU appli-

cations implement. These operations are: map, reduce, scatter and gather, scan,

stream filtering, sort, and search. In the following sections we define each of these

operations.

3.3.1.1 Map

Given a stream of data elements and a function, map will apply the function to

every element in the stream. The GPU implementation of map is straightforward,

and perhaps best illustrated with an example. Assume we have a stream of data

with values. We would like to compute squares of these values. A kernel to do

this would multiply each element in the stream by itself to produce the output

stream. This application of a function to an input stream is the essence of the

map operation.

3.3.1.2 Reduce

Sometimes a computation requires computing a smaller stream from a larger

input stream, possibly to a single element stream. This type of computation is



CHAPTER 3. GENERAL PURPOSE COMPUTING ON GPU 38

called a reduction. For example, a reduction can be used to compute the sum or

maximum of all the elements in a stream.

On GPUs, reductions can be performed by alternately rendering to and read-

ing from a pair of textures. On each rendering pass, the size of the output, the

computational range, is reduced by one half. In general, we can compute a re-

duction over a set of n data elements in O(n
p
logn) time steps using the parallel

GPU hardware (with p elements processed in one time step), compared to O(n)

time steps for a sequential reduction on the CPU. To produce each element of the

output, a fragment program reads two values, one from a corresponding location

on either half of the previous pass result buffer, and combines them using the

reduction operator (for example, addition or maximum). These passes continue

until the output is a one-by-one buffer, at which point we have our reduced re-

sult. For a two dimensional reduction, the fragment program reads four elements

from four quadrants of the input texture, and the output size is halved in both

dimensions at each step. Buck et al. describe GPU reductions in more detail in

the context of the Brook programming language [12].

3.3.1.3 Scatter and Gather

Two fundamental memory operations with which most programmers are familiar

are write and read. If the write and read operations access memory indirectly,

they are called scatter and gather respectively. A scatter operation looks like the

C code d[a] = v where the value v is being stored into the data array d at address

a. A gather operation is just the opposite of the scatter operation. The C code

for gather looks like v = d[a].

The GPU implementation of gather is essentially a dependent texture fetch

operation. A texture fetch from texture d with computed texture coordinates a

performs the indirect memory read that defines gather. Unfortunately, scatter

is not as straightforward to implement. Fragments have an implicit destination

address associated with them: their location in frame buffer memory. A scatter

operation would require that a program change the framebuffer write location of



CHAPTER 3. GENERAL PURPOSE COMPUTING ON GPU 39

a given fragment, or would require a dependent texture write operation. Since

neither of these mechanisms exist on today’s GPU, GPGPU programmers must

resort to various tricks to achieve a scatter. These tricks include rewriting the

problem in terms of gather; tagging data with final addresses during a traditional

rendering pass and then sorting the data by address to achieve an effective scatter;

and using the vertex processor to scatter (since vertex processing is inherently a

scattering operation). Buck has described these mechanisms for changing scatter

to gather in greater detail [11].

3.3.1.4 Scan

A simple and common parallel algorithmic building block is the all-prefix-sums

operation, also known as scan [37]. For each element in a sequence of elements,

prefix-sum computes the sum of all previous elements in the sequence. The

first implementation of scan on GPUs was presented by Horn and demonstrated

for the applications of collision detection and subdivision surfaces [41]. Hensley

et al. used a similar scan implementation to generate summed-area tables on

the GPU [36]. The algorithms of Horn and Hensley et al. were efficient in

the number of passes (O(log n)) executed, but required O(n log n) total work,

a factor of log n worse than the optimal sequential work complexity of O(n).

Greß et al. presented O(n) algorithms for GPUs [30]. Greß et al. construct

a list of potentially intersecting bounding box pairs and utilize scan to remove

the non-intersecting pairs. The algorithm of Sengupta et al. is notable for its

method of switching from a tree-based work-efficient algorithm to Horns brute-

force algorithm as it approaches the root of the tree. This hybrid approach more

efficiently uses all of the parallelism provided by the GPU.

3.3.1.5 Stream filtering

Many algorithms require the ability to select a subset of elements from a stream,

and discard the rest. The location and number of elements to be filtered is vari-

able and not known a priori. Example algorithms that benefit from this stream



CHAPTER 3. GENERAL PURPOSE COMPUTING ON GPU 40

filtering operation include simple data partitioning (where the algorithm only

needs to operate on stream elements with positive keys and is free to discard neg-

ative keys) and collision detection (where only objects with intersecting bounding

boxes need further computation).

Horn has described a technique called stream compaction [41] that implements

stream filtering on the GPU. Using a combination of scan and search, stream

filtering can be achieved in O(log n) passes.

3.3.1.6 Sort

A sort operation allows us to transform an unordered set of data into an or-

dered set of data. Sorting is a classic algorithmic problem that has been solved

by several different techniques on the CPU. Many of these algorithms are data-

dependent and generally require scatter operations; therefore, they are not di-

rectly applicable to a clean GPU implementation. Data-dependent operations

are difficult to implement efficiently, and scatter is not implemented for frag-

ment processors on today’s GPUs. To make efficient use of GPU resources, a

GPU-based sort should be oblivious to the input data, and should not require

scatter.

Most GPU-based sorting implementations [31, 46, 76, 75] have been based on

sorting networks. The main idea behind a sorting network is that a given network

configuration will sort input data in a fixed number of steps, regardless of the

input data. Additionally, all the nodes in the network have a fixed communication

pattern. The fixed communication pattern means the problem can be stated in

terms of gather rather than scatter, and the fixed number of stages for a given

input size means the sort can be implemented without data-dependent branching.

This yields an efficient GPU-based sort, with an overall O(nlog2n) computational

complexity.

Sorting networks can also be implemented efficiently using the texture map-

ping and blending functionalities of the GPU [29]. In each step of the sorting

network, a comparator mapping is created at each pixel on the screen and the



CHAPTER 3. GENERAL PURPOSE COMPUTING ON GPU 41

color of the pixel is compared against exactly one other pixel. The comparison

operations are implemented using the blending functionality and the comparator

mapping is implemented using the texture mapping hardware, thus entirely elimi-

nating the need for fragment programs. Govindaraju et al. have also analyzed the

cache efficiency of sorting network algorithms and presented an improved bitonic

sorting network algorithm with a better data access pattern and data layout.

The precision of the underlying sorting algorithm using comparisons with fixed-

function blending hardware is limited to the precision of the blending hardware.

For example, the current blending hardware has 16-bit floating point precision.

Alternatively, the limitation to 16-bit values on current GPUs can be alleviated

by using a single-line fragment program for evaluating the conditionals, but the

fragment program implementation on current GPUs is slightly slower than the

fixed-function pipeline.

Greß and Zachmann [31] present a novel algorithm, GPU-ABiSort, to further

enhance the sorting performance on GPUs. Their algorithm is based on an adap-

tive bitonic sorting algorithm and achieves an optimal performance of O(n log

n) for any computation time T in the range of O(log2n) ≤ T ≤ O(nlogn). The

algorithm maps well to the GPU and is able to achieve good performance on an

NVIDIA 7800 GTX GPU.

GPUs have also been used to efficiently perform 1-D and 3-D adaptive sorting

of sequences [27]. Unlike sorting network algorithms, the computational complex-

ity of adaptive sorting algorithms is dependent on the extent of disorder in the

input sequence, and work well for nearly-sorted sequences. The extent of disorder

is computed using Knuths measure of disorder. Given an input sequence I, the

measure of disorder is defined as the minimal number of elements that need to

be removed for the rest of the sequence to remain sorted. The algorithm pro-

ceeds in multiple iterations. In each iteration, the unsorted sequence is scanned

twice. In the first pass, the sequence is scanned from the last element to the

first, and an increasing sequence of elements M is constructed by comparing each

element with the current minimum. In the second pass, the sorted elements in

the increasing sequence are computed by comparing each element in M against

the current minimum in I M. The overall algorithm is simple and requires only



CHAPTER 3. GENERAL PURPOSE COMPUTING ON GPU 42

comparisons against the minimum of a set of values. The algorithm is, therefore,

useful for fast 3D visibility ordering of elements where the minimum comparisons

are implemented using the depth buffer [27].

External memory sorting algorithms are used to organize large terabyte-scale

datasets. These algorithms proceed in two phases and use limited main memory

to order the data. Govindaraju et al. [26] present a novel external memory

sorting algorithm to sort billion-record wide-key databases using a GPU. In the

first phase, GPUTeraSort pipelines the following tasks on the CPU, disk controller

and GPU: read disk asynchronously, build keys, sort using a GPU, generate runs

and write disk. In this phase, GPUTeraSort uses the data parallelism and high

memory bandwidth on GPUs to quickly sort large runs. In the second phase,

GPUTera-Sort uses a similar task pipeline to read, merge and write the runs.

GPUTeraSort offloads the compute-intensive and memory intensive tasks to the

GPU; therefore, it is able to achieve higher I/O performance and better memory

performance than CPU-only algorithms.

3.3.1.7 Search

The last stream operation we discuss, search, allows us to find a particular ele-

ment within a stream. Search can also be used to find the set of nearest neighbors

to a specified element. Nearest neighbor search is used extensively when com-

puting database queries (e.g. find the 10 nearest restaurants to point X). When

searching, we will use the parallelism of the GPU not to decrease the latency of

a single search, but rather to increase search throughput by executing multiple

searches in parallel.

Binary Search The simplest form of search is the binary search. This is a

basic algorithm, where an element is located in a sorted list in O(log n) time.

Binary search works by comparing the center element of a list with the element

being searched for. Depending on the result of the comparison, the search then

recursively examines the left or right half of the list until the element is found,

or is determined not to exist.



CHAPTER 3. GENERAL PURPOSE COMPUTING ON GPU 43

The GPU implementation of binary search [41, 76, 75] is a straightforward

mapping of the standard CPU algorithm to the GPU. Binary search is inherently

serial, so we can not parallelize lookup of a single element. That means only a

single pixel’s worth of work is done for a binary search. We can easily perform

multiple binary searches on the same data in parallel by sending more fragments

through the search program.

Nearest Neighbor Search Nearest neighbor search is a slightly more compli-

cated form of search. In this search, we want to find the k nearest neighbors to

a given element. During a nearest neighbor search, candidate elements are main-

tained in a priority queue, ordered by distance from the seed element. At the end

of the search, the queue contains the nearest neighbors to the seed element.

Unfortunately, the GPU implementation of nearest neighbor search is not as

straightforward. We can search a k-d tree data structure [23], but it is difficult

to efficiently maintain a priority queue. The important detail about the prior-

ity queue is that candidate neighbors can be removed from the queue if closer

neighbors are found. Purcell et al. propose a data structure for finding nearest

neighbors called the kNN-grid [76, 75]. The grid approximates a nearest-neighbor

search, but is unable to reject candidate neighbors once they are added to the

list. The quality of the search then depends on the density of the grid and the

order in which candidate neighbors are visited during the search.

3.3.2 Data Structures

Every GPGPU algorithm must operate on data stored in an appropriate struc-

ture. This section describes the data structures used thus far for GPU computa-

tion. Effective GPGPU data structures must support fast and coherent parallel

accesses as well as efficient parallel iteration, and must also work within the con-

straints of the GPU memory model.

GPU data are almost always stored in texture memory. To maintain paral-

lelism, operations on these textures are limited to read-only or write-only access



CHAPTER 3. GENERAL PURPOSE COMPUTING ON GPU 44

within a kernel. Write access is further limited by the lack of scatter support.

Outside of kernels, users may allocate or delete textures, copy data between the

CPU and GPU, copy data between GPU textures, or bind textures for kernel

access. Lastly, most GPGPU data structures are built using 2D textures for

three reasons. First, GPU’s 2D memory layout and rasterization pattern (i.e.,

iteration traversal pattern) are closely coupled to deliver the best possible mem-

ory access pattern. Second, the maximum 1D texture size is often too small for

most problems, and third, current GPUs cannot efficiently write to a slice of a

3D texture.

Iteration In modern C/C++ programming, algorithms are defined in terms of

iteration over the elements of a data structure. The stream programming model

performs an implicit data parallel iteration over a stream. Iteration over a dense

set of elements is usually accomplished by drawing a single large quad. This is

the computation model supported by Brook, Sh, and Scout. Complex structures,

however, such as sparse arrays, adaptive arrays, and grid-of-list structures often

require more complex iteration constructs [8, 49, 50]. These range iterators are

usually defined using numerous smaller quads, lines, or point sprites.

Generalized Arrays via Address Translation The majority of data structures

used thus far in GPGPU programming are random-access multidimensional con-

tainers, including dense arrays, sparse arrays, and adaptive arrays. Lefohn et

al. [51] show that these virtualized grid structures share a common design pat-

tern. Each structure defines a virtual grid domain (the problem space), a physical

grid domain (usually a 2D texture), and an address translator between the two

domains. A simple example is a 1D array represented with a 2D texture. In

this case, the virtual domain is 1D, the physical domain is 2D, and the address

translator converts between them.

In order to provide programmers with the abstraction of iterating over ele-

ments in the virtual domain, GPGPU data structures must support both virtual-

to-physical and physical-to-virtual address translation. For example, in the 1D

array example above, an algorithm reads from the 1D array using a virtual-to-

physical (1D-to-2D) translation. An algorithm that writes to the array, however,



CHAPTER 3. GENERAL PURPOSE COMPUTING ON GPU 45

must convert the 2D pixel (physical) position of each stream element to a 1D

virtual address before performing computations on 1D addresses. A number of

authors describe optimization techniques for pre-computing these address trans-

lation operations before the fragment processor [8, 49, 50]. These optimizations

pre-compute the address translation using the CPU, the vertex processor, and/or

the rasterizer.

The Brook programming systems provide virtualized interfaces to most GPU

memory operations for contiguous, multi-dimensional arrays. Sh provides a sub-

set of the operations for large 1D arrays. The Glift template library provides

virtualized interfaces to GPU memory operations for any structure that can be

defined using the programmable address translation paradigm. These systems

also define iteration constructs over their respective data structures [12, 51, 62].

3.4 GPGPU applications

In this section we survey a range of applications and tasks implemented on graph-

ics hardware.

The use of computer graphics hardware for general purpose computation has

been an area of active research for many years, beginning on machines like the

Ikonas [19], and the Pixel Machine [73]. Pixars Chap [54] was one of the ear-

liest processors to explore a programmable SIMD computational organization,

on 16-bit integer data; Flap, described three years later, extended Chaps integer

capabilities with SIMD floating point pipelines. These early graphics computers

were typically graphics compute servers rather than desktop workstations. Early

work on procedural texturing and shading was performed on the UNC Pixel-

Planes 5 and PixelFlow machines [68]. This work can be seen as precursor to

the high level shading languages in common use today for both graphics and

GPGPU applications. The PixelFlow SIMD graphics computer was also used to

crack UNIX password encryption [45].

The wide deployment of GPUs in the last several years has resulted in an



CHAPTER 3. GENERAL PURPOSE COMPUTING ON GPU 46

increase in experimental research with graphics hardware. The earliest work

on desktop graphics processors used non-programmable (fixed-function) GPUs.

Lengyel et al. used rasterization hardware for robot motion planning [52]. Bohn

used fixed-function graphics hardware in the computation of artificial neural net-

works [7]. Convolution and wavelet transforms with the fixed-function pipeline

were realized by Hopf [40].

Programmability in GPUs first appeared in the form of vertex programs

combined with a limited form of fragment programmability via extensive user-

configurable texture addressing and blending operations. While these dont con-

stitute a true ISA, so to speak, they were abstracted in a very simple shading

language in Microsoft’s pixel shader version 1.0 in Direct3D 8.0. Trendall and

Stewart gave a detailed summary of the types of computation available on these

GPUs [84]. A major limitation of this generation of GPUs was the lack of floating

point precision in the fragment processors. Strzodka showed how to combine mul-

tiple 8-bit texture channels to create virtual 16-bit precise operations [80], and

Harris analyzed the accumulated error in boiling simulation operations caused by

the low precision [34].

Below we briefly explain some GPU applications classified under some major

application areas:

Physically based simulation Early GPU-based physics simulations used cel-

lular techniques such as cellular automata (CA). Greg James of NVIDIA

demonstrated the Game of Life cellular automata and a 2D physically based

wave simulation running on NVIDIA GeForce 3 GPUs. Harris et al. used a

Coupled Map Lattice (CML) to simulate dynamic phenomena that can be

described by partial differential equations, such as boiling, convection, and

chemical reaction-diffusion [35].

Several groups have used the GPU to successfully simulate fluid dynamics.

Several papers presented solutions of the Navier-Stokes equations (NSE) for

incompressible fluid flow on the GPU [8, 25, 49].

Other recent work includes flow calculations around arbitrary obstacles [8,



CHAPTER 3. GENERAL PURPOSE COMPUTING ON GPU 47

49].

Rigid body simulation for computer games has been shown to perform very

well on GPUs. Havok FX demonstrated an API for rigid body and particle

simulation on GPUs, featuring full collisions between rigid bodies and par-

ticles, as well as support for simulating and rendering on separate GPUs

in a multi-GPU system. Running on a PC with dual NVIDIA GeForce

7900 GTX GPUs and a dual-core AMD Athlon 64 X2 CPU, Havok FX

achieves more than a 10x speedup running on GPUs compared to an equiv-

alent, highly optimized multithreaded CPU implementation running on the

dual-core CPU alone.

Signal and image processing The high computational rates of the GPU have

made graphics hardware an attractive target for demanding applications

such as those in signal and image processing.

Motivated by the high arithmetic capabilities of modern GPUs, several

projects have developed GPU implementations of the fast Fourier trans-

form (FFT) [12, 43]. (The GPU Gems 2 chapter by Sumanaweera and

Liu, in particular, gives a detailed description of the FFT and their GPU

implementation.) In general, these implementations operate on 1D or 2D

input data, use a Cooley-Tukey radix-2 decimation-in-time approach (with

the exception of Jansen et al.s decimation-in-frequency approach [43]), and

require one fragment program pass per FFT stage.

Yang and Pollefeys used GPUs for real-time stereo depth extraction from

multiple images [92]. Their pipeline first rectifies the images using per-pixel

projective texture mapping, then computes disparity values between the

two images, and, using adaptive aggregation windows and cross checking,

chooses the most accurate disparity value. Their implementation was more

than four times faster than a comparable CPU-based commercial system.

Woetzel and Koch addressed a similar problem using a plane sweep al-

gorithm. The approach of Woetzel and Koch begins with a plane sweep

over images from multiple cameras and pays particular attention to depth

discontinuities [91].



CHAPTER 3. GENERAL PURPOSE COMPUTING ON GPU 48

Strzodka and Garbe describe a real-time system that computes and visual-

izes motion on 640480 25 Hz 2D image sequences using graphics hardware

[81]. Their system assumes that image brightness only changes due to mo-

tion (due to the brightness change constraint equation). Using this assump-

tion, they estimate the motion vectors from calculating the eigenvalues and

eigenvectors of the matrix constructed from the averaged partial space and

time derivatives of image brightness.

Erra introduced fractal image compression to the GPU with a brute-force

Cg implementation that achieved a speedup of over 100:1 over a comparable

CPU implementation [20].

Image/Video Processing Frameworks Apple’s Core Image and Core Video

frameworks allow GPU acceleration of image and video processing tasks;

the open-source framework Jahshaka uses GPUs to accelerate video com-

positing.

Graphics Perhaps not surprisingly, one of the early areas of GPGPU research

was aimed at improving the visual quality of GPU-generated images. Many

of the techniques described below accomplish this by simulating an entirely

different image generation process from within a fragment program (e.g. a

ray tracer). These techniques use the GPU strictly as a computing engine.

Other techniques leverage the GPU to perform most of the rendering work,

and augment the resulting image with global effects.

Ray tracing is a rendering technique based on simulating light interactions

with surfaces. It is nearly the reverse of the traditional GPU rendering

algorithm: the color of each pixel in an image is computed by tracing rays

out from the scene camera and discovering which surfaces are intersected

by those rays and how light interacts with those surfaces. The ray-surface

intersection serves as a core for many global illumination algorithms. The

earliest GPGPU ray tracing systems demonstrated that the GPU was capa-

ble of not only performing ray-triangle intersections, but that the entire ray

tracing computation including acceleration structure traversal and shading

could be implemented entirely within a set of fragment programs [75].



CHAPTER 3. GENERAL PURPOSE COMPUTING ON GPU 49

Nearly all of the major ray tracing acceleration structures have been imple-

mented in some form on the GPU: uniform grids [75], k-d trees [23]. All

of these structures are limited to accelerating ray tracing of static scenes.

The efficient implementation of dynamic ray tracing acceleration structures

is an active research topic for both CPU and GPU based ray tracers.

Some of the early GPU based ray tracing work required special drivers, as

features like fragment programs and floating point buffers were relatively

new and rapidly evolving. There are currently open-source GPU-based ray

tracers that run with standard drivers and APIs.

Geometric computing GPUs have been widely used for performing a number

of geometric computations. These geometric computations are used in many

applications including motion planning, virtual reality, etc. and include the

following.

Collision Detection GPU-based collision detection algorithms rasterize the

objects and perform either 2D or 2.5-D overlap tests in screen space. Fur-

thermore, visibility computations can be performed using occlusion queries

and used to compute both intra and inter object collisions among multiple

objects [60].

Transparency Computation Transparency computations require the sorting

of 3D primitives or their image space fragments in a back-to-front or a

front-to-back order and can be performed by image-space occlusion queries

[27].

Particle Tracing Particle tracingand in general generation of vector-field vi-

sualizing primitives has been an active field of research, particularly since

the availability of geometry creation and modification features on GPUs.

Recent applications make use of either the copy-to-vertex-buffer, the render-

to-vertex-buffer [46] or the vertex-texture-fetch functionality to displace

primitives.

The performance of many geometric algorithms on GPUs is also dependent

upon the layout of polygonal meshes; a better layout more effectively uti-

lizes the vertex caches on GPUs. Yoon et al. proposed a novel method for

computing cache-oblivious layouts of polygonal meshes and applied it to



CHAPTER 3. GENERAL PURPOSE COMPUTING ON GPU 50

improve the performance of geometric applications such as view-dependent

rendering and collision detection on GPUs [94]. Their method does not

require any knowledge of cache parameters and does not make assumptions

on the data access patterns of applications. A user constructs a graph rep-

resenting an access pattern of an application, and the cache-oblivious algo-

rithm constructs a mesh layout that works well with the cache parameters.

The cache-oblivious algorithm was able to achieve 220 times improvement

on many complex scenarios without any modification to the underlying ap-

plication or the runtime algorithm.

Databases and data mining Database Management Systems (DBMSs) and

data mining algorithms are an integral part of a wide variety of commercial

applications such as online stock market trading and intrusion detection

systems. Many of these applications analyze large volumes of online data

and are highly computation-and memory-intensive. As a result, researchers

have been actively seeking new techniques and architectures to improve the

query execution time. The high memory bandwidth and the parallel pro-

cessing capabilities of the GPU can significantly accelerate the performance

of many essential database queries such as conjunctive selections, aggrega-

tions, semi-linear queries and join queries. Govindaraju et al. compared

the performance of SQL queries on an NVIDIA GeForce 6800 against a 2.8

GHz Intel Xeon processor. Preliminary comparisons indicate up to an or-

der of magnitude improvement for the GPU over a SIMD-optimized CPU

implementation [28].

GPUs are highly optimized for performing rendering operations on geomet-

ric primitives and can use these capabilities to accelerate spatial database

operations. Recent research has also focused attention on the effective uti-

lization of graphics processors for fast stream mining algorithms. In these

algorithms, data is collected continuously and the underlying algorithm per-

forms continuous queries on the data stream as opposed to one-time queries

in traditional systems. Many researchers have advocated the use of GPUs as

stream processors for compute-intensive algorithms [12]. Recently, Govin-

daraju et al. have presented fast streaming algorithms using the blending



CHAPTER 3. GENERAL PURPOSE COMPUTING ON GPU 51

and texture mapping functionalities of GPUs [29]. Data is streamed to and

from the GPU in real time, and a speedup of 25 times is demonstrated on

online frequency and quantile estimation queries over high end CPU imple-

mentations. The high growth rate of GPUs, combined with their substantial

processing power, are making the GPU a viable architecture for commercial

database and data mining applications.



Chapter 4

Implementation of Algorithms

Implementation work in this thesis is performed in C++ language and both CPU

and GPU executable versions of the implementations are provided. Since sev-

eral algorithms with different implementations are to be compared, a library to

support development is also implemented. Currently it contains implementations

of Brute Force Scan and KVP algorithm for CPU and GPU execution. Library

provides a framework to expand and integrate new algorithms as well as utilities

for different GPGPU programing environments. Tools to evaluate performance

for each index are also provided.

The library architecture closely mimics the goals and structure of similarity

search. The goal of similarity searching is, given a finite set of objects U, and a

distance function d(x, y) defined among objects of U, preprocess U and build a

data structure so that similarity searches can be carried out on that set. Although

several other queries like approximate search, joins are also possible the library

focuses on the two most popular types of queries:

1. Range queries: given a query object q ∈ U , and a radius r, retrieve all

database objects within distance r to q)

2. k-nearest-neighbor queries: given a query object q ∈ U and an integer K,

retrieve the K database objects closest to q, breaking ties arbitrarily).

52



CHAPTER 4. IMPLEMENTATION OF ALGORITHMS 53

There are three main interfaces in the library: MetricSpaceObject, Metric-

Space, and Index. These interfaces provide a basis to implement new metric

space and indexes easily. During design goal was to interpret these interfaces as

black boxes, on which the only operations one can perform are specified in the

interface, and nothing else should be assumed on them. Since we assume these

objects are black-boxes another interface GPUStreamSerializable is also intro-

duced. Although this interface has nothing to with similarity search it provides

a mechanism to transfer these object to GPU memory, if it is required. This

approach also enables seamless integration of GPU versions of the algorithms.

First of these interfaces MetricSpaceObject interface is the highest level de-

scription of metric space objects and provides essentially a (usually opaque) data

type. It provides basic operations like copying a metric object from an existing

object. It also extends GPUSerializable interface, so that object can be trans-

ferred to GPU memory, if algorithm is to be run on GPU.

Interface GPUSerializable provides and abstraction on how to load metric

spaces objects or index structures to GPU memory. Basically this interface defines

functionality to serialize a structure in a memory location. GPU programming

model requires each parameters to kernels to be either be streams or basic types

like int, float etc. Therefore by defining this interface a generic mechanism to

load each index or metric space to GPU is provided. Functions specified by this

interface are as follows:

virtual void* allocateBuffer(int objectCount): allocates a buffer big enough

to contain objectCount objects to be used in GPU transfer.

virtual void freeBuffer(void *ptr): frees a previously allocated buffer for

GPU transfer

virtual int getStreamSize(int objectCount): returns the size of serialized

structure for objectCount object in bytes.

virtual void* toStream(void* streamBuffer,int offset,int size): converts size

objects starting from index offset to memory location pointed by stream-

Buffer. If streamBuffer is null necessary memory is allocated first.



CHAPTER 4. IMPLEMENTATION OF ALGORITHMS 54

Interface MetricSpace describes collections of metric space object plus a dis-

tance function among pairs of such objects. It also implements functions to

load/save objects from/to disk, etc. Metric spaces can be either randomly gen-

erated (e.g. uniformly distributed unitary cubes) or gathered from some public

repository. In addition to extending GPUStreamSerializable interface, it defines

following functions:

virtual int size(): returns number of objects existing in collection.

virtual char* getPath(): returns path to the object collection file.

virtual void setPath(const char* path): sets path to file where object col-

lection is to be saved/found.

virtual int open(): opens and initializes metric space.

virtual bool isOpen(): returns true if metric space is opened before, false oth-

erwise

virtual void close(): closes and frees resources used by metric space.

virtual MetricSpaceObject* getObject(int index): return object specified

by the index.

virtual MetricSpaceObject* createNewObject(): creates a new metric

space object and returns a pointer to it.

virtual float distance(MetricSpaceObject *o1, MetricSpaceObject *o2):

computes distance between two given metric space objects

virtual bool generateRandomObjects(int argc,char** argv): generates a

random object collection

virtual bool convertToBinary(const char* path,const char*name): converts

text databases two binary versions

Currently only vector metric spaces are implemented by library. Class Vec-

torSpace implements generation, persistence and loading of metric vector spaces.



CHAPTER 4. IMPLEMENTATION OF ALGORITHMS 55

Index Interface provides an abstraction for data structures for indexing metric

spaces, and should work with any of them. An index implements functions to

build the index from a database, run range and kNN queries, etc. This interface

also extends GPUSerializable interface, for index to run on GPU. Complete list

of functions defined in this interface are as follows:

virtual char* getName(): returns unique name for the index implementation.

virtual char* getPath(): returns path to the index file.

virtual void setPath(const char* path): sets path to file where index is to

be saved/found.

virtual MetricSpace* getMetricSpace(): returns the metric space imple-

mentation that index uses

virtual void setMetricSpace(MetricSpace* space): sets the metric space

implementation that index uses

virtual Index* GPUImplementation(): returns GPU implementation of the

index

virtual Index* CPUImplementation(): returns CPU implementation of the

index

virtual void build (int n, int argc, char **argv): builds index using given

parameters. argc specifies number of arguments, argv contains the argu-

ments

virtual void save(): saves index

virtual void load(): load index

virtual RadiusQueryResults* search (MetricSpaceObject* qobj, float r,

RadiusQueryResults* results): performs range query

virtual KNNQueryResults * searchNN (MetricSpaceObject* qobj, int k,

KNNQueryResults * results): performs k-nearest neighbor query



CHAPTER 4. IMPLEMENTATION OF ALGORITHMS 56

virtual void getSearchTaskConstraints(SearchTaskConstraints *constraints):

returns any constraints that index imposes on search tasks

virtual SearchTask* createTask(int taskID,int offset,int size): creates a

search task for size number of objects with given taskID for objects starting

at index offset

virtual void initialize(SearchTask* task): initializes index, before queries

are made.

virtual RadiusQueryResults* search (SearchTask* task, MetricSpaceObject*

qobj, float r,RadiusQueryResults* results): performs range query as

specified in search task

virtual KNNQueryResults * searchNN (SearchTask* task, MetricSpaceObject*

qobj, int k,KNNQueryResults * results): performs k-nearest neighbor

query as specified in search task

Notice in this interface two different versions of range and k-nearest neighbor

query search functions are specified. The first specifications performs queries on

whole set of objects contained in metric space. Second versions performs queries

only on some objects specified by search tasks. Search task are abstraction on

decomposing search. Base interface only defines a task id for the task, number

of objects to be processed and index of object from which search will start. This

allows parallelization of similarity searches, without requiring index implemen-

tation to address the issue. Some other dispatcher class assigns this tasks to

available GPUs or CPU cores present in the system.

Library currently supports two queries, range and k-nearest neighbor. Classes

RadiusQueryResults and KNNQueryResults provides necessary structures to eas-

ily manage result set.

Queries are performed by calling corresponding search function of index. Spe-

cific implementations for range and k-nearest neighbor provides functionality to

handle generation of a query object, loading and persistence of queries.



CHAPTER 4. IMPLEMENTATION OF ALGORITHMS 57

In this design, to add a new index or metric space, it suffices to provide

only concrete implementation for corresponding object implementing necessary

interfaces.

4.1 Brute Force Search Implementation on

GPU

Brute Force Search is implemented to provide a benchmark for KVP algorithm

as well as to observe performance gains to be obtained by utilizing GPU.

Brute Force Search of distances involves computing distance of each object in

object collection with query object. Computed distances compared against query

radius and a result set of objects whose distance to query object is less than or

equal query object is returned.

The first step of GPU adaptation of the algorithm is to load object collection

into graphic card texture memory. ATI Cal and Brook+ requires this collection to

be converted into kernel streams first. Although specific function calls differ, both

frameworks basically requires objects to be serialized as bytes to some memory

location first. Thus objects are serialized into float array of appropriate size,

Figure 4.1 shows how this serialization is performed.

Brook+ and ATI Cal framework requires objects to be serialized into some

system memory before they can be copied into GPU local memory. Thus a naive

implementation requires double data copying, luckily by suitable implementation

of metric vector spaces, this double copy requirement is bypassed. Metric space

object structure designed so as match GPU memory representation, and just

pointer to this structure is passed to memory copy functions.

Another optimization worth of noting was to use float4 as stream type, this

optimization allowed us benefit from graphic card architecture as it enabled ex-

ecution of four multiplications concurrently in one instruction, which will be

explained while discussing distance computations kernel.



CHAPTER 4. IMPLEMENTATION OF ALGORITHMS 58

Figure 4.1: Serialized representation of objects.

ATI Graphics cards used in implementation has limits on stream sizes. ATI

Radeon HD 4870x2 only supports 8192 elements per 1D stream, and for ATI

Radeon HD 5870 this limit is 16384. Thus you can not allocate streams whose

element number greater than this specified limits. For 2D streams this limit is

8192x8192 and 16384x16384 respectively. Brook+ framework provide automatic

conversion of 1D arrays to 2D arrays whose size exceeds the limit. ATI CAL

framework does not provide automatic conversion of 1D arrays to 2D arrays, so

in order to overcome this limitations, all streams that are to be expected to have

more than 8192 are allocated as 2D streams. This limit on streams requires a

address translation code, and extra computation steps in GPU implementation.

Once objects are loaded into GPU, only query and radius information changes

per query. This information is also serialized as objects and transferred to GPU

and GPU kernel is called from the CPU side.

3 Kernel functions are used to implement brute force linear scan on GPU. The

first kernel is used for Brook+ implementation to compute distance of an object

to query object which given in listing 4.1



CHAPTER 4. IMPLEMENTATION OF ALGORITHMS 59

1 ke rne l f loat distL2D ( f l o a t 4 ob j e c t [ ] , int o f f s e t ,

2 f l o a t 4 queryObject [ ] , int d)

3 {
4 int i = 0 ;

5 f l o a t 4 d i f f ;

6 f l o a t 4 t o t a l = f l o a t 4 ( 0 . 0 f , 0 . 0 f , 0 . 0 f , 0 . 0 f ) ;

7

8 for ( i =0; i<d ; i++){
9 d i f f = ob j e c t [ o f f s e t+i ]−queryObject [ i ] ;

10 t o t a l += d i f f ∗ d i f f ;
11 }
12 return s q r t ( t o t a l . x+t o t a l . y+t o t a l .w+t o t a l . z ) ;

13 }

Listing 4.1: Brook+ Kernel for distance computation

This kernel is a reduce kernel which computes distance from query object to

a given object using euclidean distance. First parameter is a float4 stream rep-

resenting objects. Second parameter named offset, and represents the starting

index of object whose distance to query object is to be computed. Third param-

eter is query object stream and finally fourth parameter is the dimension of the

object divided by four.

distL2D kernel computes euclidean distance of query object to some given

object. Lines 4-5 initializes variables used in kernel. Local variable i used as loop

counter, diff to hold difference between each vector coordinate, total is used to

hold running cumulative sum of squared differences. Local variables are defined

as float4, which is basically a record of 4 floats. Advantage of this type is that

it enables use of packed arithmetic operations. Packed version of arithmetic

operations performs the operation simultaneously on the corresponding fields of

the record. Consider following code:



CHAPTER 4. IMPLEMENTATION OF ALGORITHMS 60

f loat val1x , val2x , rx ;

f loat val1y , val2y , ry ;

f loat val1w , val2w , rw ;

f loat val1z , val2z , rz ;

rx = val1x ∗ val2x ;

ry = val1y ∗ val2y ;

rw = val1w∗val2w ;

rz = va l1z ∗ va l2z ;

which is equivalent to following code

f l o a t 4 val1 , val2 , r ;

r = val1 ∗ va l2 ;

because of packed operation instructions available in GPU.

In each loop iteration difference between vector coordinates is computed,

squared and added to running sum total. As it can be seen loop does not run num-

ber of dimension times, as would expected. It runs number of dimensions/4 times

because of and architecture of GPU supports 4 operations in one instruction. As

depicted in figure 4.2, by using float4 type loop is optimized by performing 4

coordinate pair differences in one instruction.

Similarly running sum and squaring of difference in line 10, also benefits by

performing operations in one instruction. Instead of d * (1 subtraction+1 multi-

plication+1 addition), packed versions of operations are performed in GPU thus

number of required clock cycles is reduced by 4. Finally in line 12 each separate

running sum in float4 structure is summed and square root of total is returned

as distance.

Second kernel used in Brook+ implementation is given in listing 4.2



CHAPTER 4. IMPLEMENTATION OF ALGORITHMS 61

Figure 4.2: Packed instruction execution.

1 ke rne l void BROOK linear scan r query ( f l o a t 4 ob j e c t [ ] , int d , f l o a t 4

queryObject [ ] ,

2 out f loat di s tance<>)

3 {
4 d i s t ance = distL2D ( object , i n s t ance ( ) . x∗d , queryObject , d ) ;

5 }

Listing 4.2: Brook+ Kernel for Brute Force Search

This kernel calls first kernel for each object in objects collection. Although

no for loop is present, code defined in the kernel is invoked per each output

stream element, which is named distance. First parameter of kernel is object

stream which holds objects whose distance is to be computed. Second parameter

is dimensions of objects /4 and third parameter is query object stream. In line

4 kernel invokes distL2D kernel by passing object and query streams, along with

dimension information. Index of object whose distance to query object is to

be computed is determined by instance() primitive of Brook+ language, which

returns index of output stream for which kernel is invoked.

ATI Cal implementation of Brute Force Search kernel is given in listing 4.3



CHAPTER 4. IMPLEMENTATION OF ALGORITHMS 62

1 ke rne l void CAL l inear scan r query ( int indexMetaData [ ] ,

2 f l o a t 4 ob j e c t [ ] [ ] , f l o a t 4 queryObject [ ] , out f loat di s tance<>)

3 {
4 int i =0;

5 int width = indexMetaData [ 0 ] ;

6 int d = indexMetaData [ 2 ] ;

7 f l o a t 4 d i f f ;

8 f l o a t 4 t o t a l = f l o a t 4 ( 0 . 0 f , 0 . 0 f , 0 . 0 f , 0 . 0 f ) ;

9 in t2 idx = in s t ance ( ) . xy ;

10 int actua l Index = ( idx . y∗width+idx . x ) ;

11

12 i f ( actua l Index >= indexMetaData [ 1 ] ) {
13 return ;

14 }
15 actua l Index = actua l Index ∗ d ;

16

17 idx . x = actua l Index % width ;

18 idx . y = actua l Index / width ;

19

20

21 for ( i =0; i<d ; i++){
22 d i f f = ob j e c t [ idx . y ] [ idx . x]−queryObject [ i ] ;

23 t o t a l += d i f f ∗ d i f f ;
24 idx . x++;

25 i f ( idx . x >= width ) {
26 idx . y ++;

27 idx . x = 0 ;

28 }
29 }
30 d i s t ance = sq r t ( t o t a l . x+t o t a l . y+t o t a l .w+t o t a l . z ) ;

31 }

Listing 4.3: ATI CAL Kernel for Brute Force Search

This kernel differs from Brook+ kernel as there is no automatic address trans-

lation support in ATI Cal framework, also distance computation kernel is un-

folded. First parameter of this kernel is indexMetaData, which consists of several

values guiding computation in kernel. First value in indexMetaData stream is



CHAPTER 4. IMPLEMENTATION OF ALGORITHMS 63

supposed to be the width of distance stream, hence object stream. Second value

is the number of objects in object collection and third value is the number of

dimensions/4.

Lines 4 to 10 consists of initialization of local variables used in kernel.

In line 12 a check is performed to terminate kernel if computations is not

necessary. This is because of the stream size limits imposed by graphic card. Since

we can not allocate arbitrary sized 1D streams, 2D stream is allocated if limit is

surpassed. Width of 2D stream is set to maximum allowed value and height is

computed accordingly. This approach can sometimes allocate unnecessary space,

if total number of objects is not multiple of maximum 2D stream width. Line 12

checks this condition and exits from kernel without any further computation.

Line 17 and 18 translates 1D index to 2D stream index and in for loop starting

on line 21 computes euclidean distance of object to query object in similar fashion

as in Brook+ kernel.

4.2 KVP Implementation GPU

KVP algorithm is chosen for implementation because it readily supports paral-

lelization.This structure is unique since it improves both the storage and compu-

tational overhead of the classical vantage-points approach. The KVP structure

offers a number of benefits:

1. It is a simple data structure and can be implemented relatively easily.

2. It can support dynamic operations like insertion and deletion.

3. It is easily adapted for use as a disk-based structure and its access patterns

minimize the number of disk-seek operations.

4. Queries may be executed in parallel.



CHAPTER 4. IMPLEMENTATION OF ALGORITHMS 64

KVP algorithm utilizes precomputed object to pivot distances to reduce num-

ber of distance computations in a similarity search. Given a query, algorithm first

computes distances to pivots from query object. These distances, along with pre-

computed object to pivot distances are used to set a bound on query to object

distances. If distance bounds are found to be greater than search radius query

object is discarded. If upper bound for distance is smaller than radius, then

object is added to result set without any need for actual distance computation.

The first step of GPU adaptation of the algorithm is to load object collection

into graphic card texture memory as in brute force search method. This step is

performed similar to GPU adaptation of Brute Force search.

Second step is to load index structure into memory. The same limitations

on streams sizes and memory copy requirements apply, so KVP representation is

modified to adapt GPU. Original implementation of KVP stores a record per ob-

ject which consist of object pivot distances and indexes to pivots whose distances

is precomputed. In our implementation, they are represented as a single array

of object to pivots distances and pivot indexes respectively. This representation

enables loading of KVP structure into graphic card memory without temporary

memory copy operations.

Another modification to original implementation was to change data struc-

ture which hold the indexes of pivots used in KVP. Since GPU adaptation of

KVP designed to utilize all graphic processing units available on a system, this

representation posed a problem. When there is more than one graphic processor

present in the system processing of query is divided between each graphic process-

ing unit by assigning a part of object collection to each graphic processing unit.

Thus not every object is present in each graphical processing unit, and indexes to

pivots are not useful. So instead of passing indexes of pivots in collection, pivot

object is passed instead.

Once objects are loaded into GPU, only query and radius information changes

per query. This information is also serialized as objects and transferred to GPU

and GPU kernel is called from the CPU side.



CHAPTER 4. IMPLEMENTATION OF ALGORITHMS 65

5 Kernel functions are used to implement brute KVP algorithm on GPU. The

first kernel is used for address translation of indexes for objects. As noted before

this was due to stream size limitations of graphics cards. Kernel listed in listing

4.4 takes two arguments, actual index of object in 1D streams and maximum 2D

width allowed by graphic card. Using this values objects index is calculated and

result is returned in structure consisting of two integers.

1 ke rne l i n t2 t rans l a t eAddre s s ( int actual Index , int width )

2 {
3 in t2 idx ;

4 idx . x = actua l Index % width ;

5 idx . y = actua l Index / width ;

6 return idx ;

7 }

Listing 4.4: ATI CAL kernel for Address Translation

Next kernel is implemented to perform distance computations between query

object and a object whose index is given. Listing for this kernel is show in listing

4.5.



CHAPTER 4. IMPLEMENTATION OF ALGORITHMS 66

1 ke rne l f loat distL2D ( f l o a t 4 ob j e c t [ ] [ ] , int d , f l o a t 4 queryObject [ ] ,

int l o g i c a l I ndex , int width )

2 {
3 int i =0;

4 f l o a t 4 d i f f ;

5 f l o a t 4 t o t a l = f l o a t 4 ( 0 . 0 f , 0 . 0 f , 0 . 0 f , 0 . 0 f ) ;

6

7 in t2 idx = trans l a t eAddre s s ( l o g i c a l I nd e x ∗d , width ) ;

8

9 for ( i =0; i<d ; i++){
10 d i f f = ob j e c t [ idx . y ] [ idx . x]−queryObject [ i ] ;

11 t o t a l += d i f f ∗ d i f f ;
12 idx . x++;

13 i f ( idx . x >= width ) {
14 idx . y ++;

15 idx . x = 0 ;

16 }
17 }
18 return s q r t ( t o t a l . x+t o t a l . y+t o t a l .w+t o t a l . z ) ;

19 }

Listing 4.5: ATI CAL kernel for Object distance computation

distL2D kernel after local variable initialization, actual index of object whose

distance is to be computed is found. Then euclidean distance computation is

performed similar to Brute Force Search.

The kernel presented on listing 4.6 used for computing distance from query

object to each pivot in KVP structure. It consists of one line, a call to distL2D

kernel with appropriate parameters. After execution of this kernel queryPivot-

Distance stream contains distance of query to each pivot, which is later used on

computation of object to query distance bounds.



CHAPTER 4. IMPLEMENTATION OF ALGORITHMS 67

1 ke rne l void computeQueryToPivotDistances ( int indexMetaData [ ] , f l o a t 4

ob j e c t [ ] [ ] , f l o a t 4 queryObject [ ] , out f loat queryPivotDistance<>)

2 {
3 queryPivotDistance = distL2D ( object , indexMetaData [ 2 ] , queryObject ,

i n s t anc e ( ) . x , indexMetaData [ 0 ] ) ;

4 }

Listing 4.6: ATI CAL kernel for Query object to pivot distance computation

Kernel computeDistanceBounds which is show in listing 4.7, computes dis-

tance bounds for an object whose index is specified. First argument of kernel,

indexMetaData stream, is used to pass index and graphic card specific informa-

tion to kernel. First value of stream contains maximum 2D width supported by

graphic card. Second value is the number of objects in object collection. Third

value is dimensions of objects divided by four, as objects are represented as float4

streams. Lastly fourth value is the number of pivots selected during KVP index

construction. Next parameter of the kernel is a stream used to represent ob-

ject pivot distances. Third parameter is a stream representing indexes of pivots

whose distance to objects is precomputed. Fourth parameter is the query to pivot

distances. Last two parameters are query radius and index of the object whose

distance bounds is to be computed.

After initialization in computeDistanceBounds kernel, for loop in line 10

computes minimum and maximum possible distance of object to query ob-

ject using precomputed object to pivot distance. In each iteration of loop,

a pivot next in sequence of pivots is selected (Line 11). According triangle

inequality of metric spaces, upper bound for this objects distance should be

d(query,pivot)+d(pivot,object). If this maximum possible distance is greater than

query radius, which implies that object is query result set, this maximum distance

value is returned without considering other pivots. If it is not smaller or equal to

query radius than minimum possible distance is computed. Again this minimum

on distance value is checked against query radius. If minimum possible distance

value is greater than query radius, which implies that object is not definitely in

query result set, minimum distance is returned without considering remaining



CHAPTER 4. IMPLEMENTATION OF ALGORITHMS 68

pivots. If no conclusive bounds on object distance is can not be established, next

pivot is used to establish the distance bound.

1 ke rne l f loat computeDistanceBounds ( int indexMetaData [ ] , f loat

nodePivotDistance [ ] [ ] , int nodePivotIndex [ ] [ ] , f loat

queryPivotDistance [ ] , f loat r , int l o g i c a l I nd e x )

2 {
3 int numberOfNodePivots = indexMetaData [ 3 ] ;

4 i n t2 idx = trans l a t eAddre s s ( l o g i c a l I nd e x ∗numberOfNodePivots ,

indexMetaData [ 0 ] ) ;

5 int i = 0 ;

6 f loat minDist = 0 .0 f ;

7 f loat maxDist = 0 .0 f ;

8 int pivotIndex = 0 ;

9

10 for ( i =0; i<numberOfNodePivots ; i++){
11 pivotIndex = nodePivotIndex [ idx . y ] [ idx . x ] ;

12 maxDist = queryPivotDistance [ p ivot Index ] + nodePivotDistance [ idx

. y ] [ idx . x ] ;

13 i f (maxDist <= r )

14 return maxDist ;

15

16 minDist = abs ( queryPivotDistance [ p ivotIndex ] −
nodePivotDistance [ idx . y ] [ idx . x ] ) ;

17 i f ( minDist > r )

18 return minDist ;

19

20 idx . x++;

21 i f ( idx . x >= indexMetaData [ 0 ] ) {
22 idx . y ++;

23 idx . x = 0 ;

24 }
25 }
26 return −1.0 f ;
27 }

Listing 4.7: ATI CAL kernel for object distance bound computation

After examining all possible pivots for query to object distance bounds, if no

usable distance bound can be established, i.e. objects presence of elimination



CHAPTER 4. IMPLEMENTATION OF ALGORITHMS 69

from query result set can be proved, object is marked for distance computation

by returning special value -1.

Last kernel implementation for KVP algorithm is presented in listing 4.8. This

kernel starts computation by checking whether this invocation is for a valid object.

If it is not it immediately returns. If it is for a valid object, first distance bounds

on object is computed. If result of distance bound computation is conclusive so

as to decide whether include object in result set or eliminate it kernel returns. If

not distance from query to object is computed (Line 11).

1 ke rne l void computeObjectQueryDistances ( int indexMetaData [ ] , f l o a t 4

ob j e c t [ ] [ ] , f loat nodePivotDistance [ ] [ ] , int nodePivotIndex [ ] [ ] ,

f loat queryPivotDistance [ ] , f loat r , f l o a t 4 queryObject [ ] , out f loat

di s tance<>)

2 {
3 in t4 index = in s t ance ( ) ;

4 int ob jec t Index = index . y∗ indexMetaData [0 ]+ index . x ;

5 f loat d i s t ;

6

7 i f ( ob jec t Index >= indexMetaData [ 1 ] )

8 return ;

9 d i s t = computeDistanceBounds ( indexMetaData , nodePivotDistance ,

nodePivotIndex , queryPivotDistance , r , ob j ec t Index ) ;

10 i f ( d i s t == −1.0 f )
11 d i s t = distL2D ( object , indexMetaData [ 2 ] , queryObject , object Index ,

indexMetaData [ 0 ] ) ;

12 d i s t ance = d i s t ;

13 }

Listing 4.8: ATI CAL kernel for KVP algorithm

4.3 Filtering Results on GPU

Adaptations of search algorithms presented in this thesis rely on the fragment

processor, which operates across a large set of output memory locations, consum-

ing a fixed number of input elements per location and operating a small program



CHAPTER 4. IMPLEMENTATION OF ALGORITHMS 70

on those elements to produce a single output element in that location. Because

the fragment program must write its results to a preordained memory location,

it is not able to vary the amount of data that it outputs according to the input

data it processes.

Many algorithms are difficult to implement under these limitations, specif-

ically, algorithms that reduce many data elements to few data elements. The

reduction of data by a fixed factor has been carefully studied on GPUs [12]; such

operations require an amount of time linear in the size of the data to be reduced.

However, nonuniform reductionsthat is, reductions that filter out data based on

its content on a per element basis have been less thoroughly studied, yet they are

required for a number of interesting applications.

Search algorithms presented in this thesis does not specifically require distance

filtering to be performed on GPU. Filtering of results, i.e. deciding whether an

object is in result set based on its distance which is basically a condition check on

an array of distance values, can be performed in CPU side. Even filtering result

set on CPU provides speed up of several times in execution times, as bulk of

the time is spent on distance computations. Thus and implementation provided

still benefit acceleration by utilization of graphic cards, yet if this filtering can be

performed efficiently in GPU, additional speed up can be obtained by eliminating

some data transfer from GPU to CPU. In order to explore this possibility a result

set filtering algorithm that makes it possible to perform filtering GPU is presented

is also designed.

Our problem is to eliminate objects from result set that have distance value

greater than specified query radius. Several approaches can be used. The most

obvious method for compaction can be a stable sort to eliminate the records;

however, using bitonic sort to do this will result in a running time of O(n (log

n)2) ([13]). Instead, we present a technique here that uses a scan ([37]) to obtain

a running count of the number of distances that are smaller or equal to query

radius, and then use a scatter pass to compact them, for a final running time of

O(n log n) similar the algorithm given [72] .

Given a list of objects, to decide where a particular object redirect itself, it



CHAPTER 4. IMPLEMENTATION OF ALGORITHMS 71

is sufficient to count the number of distances that are smaller or equal to query

radius to the left of the each distance, then move the object that many records

to the left. On a parallel system, the cost of finding a running count is actually

O(n log n). The multipass technique to perform a running sum is called a scan.

It starts by counting the number of valid distance in the current record. This

number is saved to a stream for further processing. The kernel for this part is

listed in listing 4.9

1 ke rne l void i n i t i a l i z e r e s u l t s i n d e x ( f loat di s tance <>, f loat rad iu s ,

out int r e s u l t s i nd ex <>,out int r e s u l t s i nd ex2 <>)

2 {
3 i f ( d i s t anc e > rad iu s ) {
4 r e s u l t s i n d e x = 0 ;

5 r e s u l t s i n d e x 2 = 0 ;

6 }
7 else {
8 r e s u l t s i n d e x = 1 ;

9 r e s u l t s i n d e x 2 = 1 ;

10 }
11 }

Listing 4.9: ATI CAL Kernel for Result Set Filtering Initialization

Now each record in the stream holds the number of valid distances (distances

thats are smaller or equal to query radius) at its location, which is 0 or 1. This

can be used to the algorithm’s advantage in another pass, where the stream sums

itself with records indexed to the left and saves the result to a new stream. Now

each record in the new stream effectively has added the number of valid distances

at its current position and left of it. The subsequent steps add their values to

values indexed at records of increasing powers of two to their left, until the power

of two exceeds the length of the input array. This process is illustrated in Figure

4.3.

Kernel used for this multipass operation is presented in listing 4.10



CHAPTER 4. IMPLEMENTATION OF ALGORITHMS 72

Figure 4.3: Iteratively counting number of objects in result set.

1 ke rne l void s can index ( int metaData [ ] , int twotoi , int input [ ] [ ] , out

int r e s u l t s i nd ex <>)

2 {
3 in t2 c index = in s t ance ( ) . xy ;

4 int l o g i c a l I nd e x = (metaData [ 0 ] ∗ c index . y )+cindex . x−twoto i ;

5 int va l = input [ c index . y ] [ c index . x ] ;

6

7 i f ( l o g i c a l I nd e x >= metaData [ 1 ] )

8 return ;

9

10 i f ( l o g i c a l I nd e x >= 0) {
11 c index . x = l o g i c a l I n d e x % metaData [ 0 ] ;

12 c index . y = l o g i c a l I n d e x / metaData [ 0 ] ;

13 va l += input [ c index . y ] [ c index . x ] ;

14 }
15 r e s u l t s i n d e x = va l ;

16 }

Listing 4.10: ATI CAL Kernel for Result Set Filtering Scan



CHAPTER 4. IMPLEMENTATION OF ALGORITHMS 73

After performing this multipass counting kernel log n times, each record knows

how many valid distances are present before them. The value at the very right of

the stream indicates how many objects there are in the result set, and hence the

length of the compacted output. To get size of result set kernel listed in listing

4.11 is invoked.

1 ke rne l void r e s u l t s e t s i z e ( int metaData [ ] , int r e s u l t s i n d e x [ ] [ ] , out

int count<>)

2 {
3 in t2 index ;

4 index . x = (metaData [1 ]−1) % metaData [ 0 ] ;

5 index . y = (metaData [1 ]−1) / metaData [ 0 ] ;

6 count = r e s u l t s i n d e x [ index . y ] [ index . x ] ;

7 }

Listing 4.11: ATI CAL Kernel for Obtaining Result Set Size

If result set size greater than zero, a new stream where first number of result

set size elements contains indexes of objects that are in result set is computed

through a scatter operation. As in this step each value in the stream holds number

of valid distances to left of it (counting it self also), its position on this new stream

is its value minus one. Kernel implementing scatter operation is listed in listing

4.12

1 ke rne l void f i l t e r r e s u l t s ( int metaData [ ] , f loat radius , f loat

di s tance <>,int r e s u l t s i nd ex <>,out int f i l t e r e d i n d e x [ ] [ ] )

2 {
3 in t2 index = in s t ance ( ) . xy ;

4 int i n pu t l o g i c a l I nd ex ;

5 int ou tpu t l og i c a l I ndex ;

6 i f ( rad iu s >= di s t ance ) {
7 i npu t l o g i c a l I nd ex = (metaData [ 0 ] ∗ index . y )+index . x ;

8

9 i f ( i npu t l o g i c a l I nd ex >= metaData [ 1 ] )

10 return ;

11

12 ou tpu t l og i c a l I ndex = r e s u l t s i nd ex −1;
13 index . x = outpu t l og i c a l I ndex % metaData [ 0 ] ;

14 index . y = outpu t l og i c a l I ndex / metaData [ 0 ] ;



CHAPTER 4. IMPLEMENTATION OF ALGORITHMS 74

15

16 f i l t e r e d i n d e x [ index . y ] [ index . x ] = inpu t l o g i c a l I nd ex ;

17 }
18 }

Listing 4.12: ATI CAL Kernel for Filtering Result set

Now we have a stream which contain indexes of objects which are in the result

set, a new stream with appropriate size is created to retrieve index and computed

distance to query object. Kernel listed in listing 4.13 is used to copy results back

to system memory.

1 ke rne l void c o p y f i l t e r e d r e s u l t s ( int metaData [ ] , f loat d i s t anc e [ ] [ ] ,

int r e s u l t s i n d e x [ ] [ ] , out f l o a t 2 r e s u l t s e t <>)

2 {
3 f l o a t 2 va l ;

4

5 int c index = ( ( in s t anc e ( ) . y∗metaData [ 0 ] )+in s tance ( ) . x ) ∗4 ;
6 int r index = r e s u l t s i n d e x [ c index /metaData [ 0 ] ] [ c index % metaData

[ 0 ] ] ;

7 int x = r index % metaData [ 0 ] ;

8 int y = r index / metaData [ 0 ] ;

9 va l . x = ( f loat ) r index ;

10 va l . y = d i s t ance [ y ] [ x ] ;

11 r e s u l t s e t = va l ;

12 }

Listing 4.13: ATI CAL Kernel for copying Filtered Result set



Chapter 5

Experiment Results

Experimental data are collected using a system which had 2 graphics cards; ATI

Radeon 4870x2 (2GB) and ATI Radeon 5870 (1GB), 6GB of system memory with

Intel i7 cpu. Details of system configuration is given in table 5.1 Implementation

is done on C++ and compiled with all optimization flags enabled. In order to

utilize all the multi-threading capabilities of cpu, cpu versions of algorithms are

run in 8 (which produced the best performance) different threads. In these tests,

measurements are performed by following steps:

1. Initialization: objects,index structures and queries are loaded.

2. Warming Run: before measuring execution time, a warming run for the

query is performed.

3. Query Execution: 1000 queries are repeatedly executed to minimize mea-

surement errors and elapsed time is reported.

The synthetic data used in these tests consists of randomly generated vectors

with varying dimensions (16,32,48,64,80,96,112,128,144 and 160). Each dimen-

sion is random coordinate value uniformly distributed over the range [0.0− 1.0].

The object collection on which similarity queries were executed consisted of 220

vectors up to 10×220 vectors. Measurements of timings are grouped into two test

75



CHAPTER 5. EXPERIMENT RESULTS 76

Test Hardware

Processor Intel Core i7-920 (Bloomfield) 2.66 GHz, 8 MB L3 Cache,
power-saving settings disabled

Motherboard LANPARTY DK X58-T3eH6
Memory Corsair Dominator 6GB (3 x 2GB) DDR3-1600 8-8-8-24 @

1,600 MHz
Graphics Cards ATI Radeon HD 4870x2

ATI Radeon HD 5870

System Software and Drivers

Operating System Microsoft Windows 7 Ultimate x64
Graphics Driver AMD Catalyst 9.12

Table 5.1: System configuration of Test Hardware

Test Set 1 Test Set 2
Run# Dimension Object Count Dimension Object Count
1 16 1048576 16 1048576
2 32 1048576 16 2097152
3 48 1048576 16 3145728
4 64 1048576 16 4194304
5 80 1048576 16 5242880
6 96 1048576 16 6291456
7 112 1048576 16 7340032
8 128 1048576 16 8388608
9 144 1048576 16 9437184
10 160 1048576 16 10485760

Table 5.2: Number of objects and dimension sizes used in measurements.

sets and named as test set 1 and test set 2. Test set 1 aims to measure effect of

dimensionality on execution times, by taking execution times with same object

count (220) and varying dimensions. Test set 2 aims to measure effect of object

count on execution times, by taking execution times with same dimensionality

(16) and varying object count. Table 5.2 shows object counts and dimension sizes

used in each test set

Only results of ATI CAL implementation is reported in this work, as Brook+

and OpenCL implementation performances were similar, as they are built on ATI

CAL framework in implementations provided by ATI.



CHAPTER 5. EXPERIMENT RESULTS 77

These test sets are measured against various implementations. First GPU

implementations where distance computations were done in GPU, distance val-

ues returned to system memory and result set filtering was done on CPU were

measured. Then in order to see effect of GPU to CPU data transfers, same tests

are repeated and execution times are measured for the modified implementation

where there were no distance value transfer from GPU to system memory. Lastly

same tests are repeated with implementation where filtering performed on GPU

and only result set is transferred from GPU to system memory.

In the following sub-sections we report results of theses experiments.

5.1 Comparison of implementations with Result

Set Filtering on CPU

In these tests, aim was to measure speedups obtained by GPU utilization in dis-

tance computation. Implementations used in this test compute distance values

on the GPU and reports back query to object distance for each object. Dis-

tance function was selected to be euclidean distance of query and object vectors.

Filtering of distances are done on CPU side.

D N Linear Scan KVP CAL KVP CAL
16 1048576 59.11 35.25 20.16 22.18
32 1048576 101.13 36.87 21.19 21.94
48 1048576 140.81 37.18 22.18 21.99
64 1048576 182.76 30.53 22.67 21.92
80 1048576 223.68 32.25 23.95 22.06
96 1048576 264.41 36.11 25.09 22.13
112 1048576 301.96 35.95 27.31 19.54
128 1048576 355.24 37.84 27.99 20.86
144 1048576 385.97 38.17 30.78 20.45
160 1048576 427.46 39.66 30.81 20.03

Table 5.3: Execution times in seconds for 1000 radius queries on object set size
of 220 vectors, with varying vector dimensions. Result set filtering performed on
CPU.



CHAPTER 5. EXPERIMENT RESULTS 78

In order to see effects of object dimension size and object collection size two

sets of different tests were performed. In test set 1, dimension of the vectors

were changed between 16 to 160, by increments of 16, and number of objects are

kept constant at 220. Table 5.3 shows measured timings for test set 1, figure 5.1

shows results as chart. Figure 5.2 shows speed up factors for each implementation

compared to CPU brute force search.

Figure 5.1: Execution times in seconds for 1000 radius queries on 220 vectors,
with varying vector dimensions. Result set filtering performed on CPU.

Figure 5.2: Relative speeds of implementations for test set 1, when result set
filtering is performed on CPU.

Results show that as the number of dimensions increase, GPU versions of

the algorithms perform considerable better from CPU versions. While in lower



CHAPTER 5. EXPERIMENT RESULTS 79

dimensions speedup factor is only 2.66, as dimension size increases the speed up

increases. In the test performed using 1048576 vectors of 160 dimensions, speed

up factor was 21.23. This is in accord with the expectation that as distance func-

tion gets computationally intensive, gains from GPU utilization increases. Both

CPU and GPU implementation execution times increase linearly, as expected.

Yet GPU version of KVP algorithm has best slope, scaling better. Also it is

worth to note that KVP algorithm is slightly slower in the test performed us-

ing 16 dimensioned vectors from GPU implementation of brute force scan. As

dimensions increase GPU implementation of KVP outperforms GPU version of

brute force scan by speed up factor of 1.5.

D N Linear Scan KVP CAL KVP CAL
16 1048576 59.26 35.33 20.15 22.13
16 2097152 119.81 73.84 38.86 43.11
16 3145728 180.13 104.43 57.83 63.47
16 4194304 241.03 156.87 76.51 84.33
16 5242880 309.31 187.57 95.55 103.59
16 6291456 376.38 245.77 114.53 124.93
16 7340032 436.79 245.03 133.38 144.82
16 8388608 495.22 297.82 152.26 165.41
16 9437184 557.72 346.96 171.29 186.45
16 10485760 613.90 362.56 190.18 188.37

Table 5.4: Execution times in seconds for 1000 radius queries on vectors with
16 dimensions and varying number of vectors. Result set filtering performed on
CPU.

In order to see effects of object collection size another set of different tests are

performed. In test set 2, dimension of the vectors are kept constant at 16 and

number of objects are incremented by 220. Table 5.4 shows measured timings for

test set 2, figure 5.3 shows results as chart. Figure 5.4 shows speed up factors for

each implementation compared to CPU brute force search.

Results show that as number of of objects increase, GPU versions of the al-

gorithms still perform better but speed up factor, although slightly increases as

number of objects increase, is nearly same for all object collection size. Both CPU

and GPU implementation execution times increase linearly, as expected, but slope

of GPU implementations was higher than test set 1 results. Later experiments



CHAPTER 5. EXPERIMENT RESULTS 80

Figure 5.3: Execution times in seconds for 1000 radius queries on vectors with
16 dimensions and varying number of vectors. Result set filtering performed on
CPU.

showed that this was due to system memory to graphic card memory distance

value transfers. In test set 1 only dimensions were changing which did not effect

number of distance values transferred from graphic card memory to system mem-

ory. Second set of tests used varying number of objects, thus increasing number

of distances to be transferred from graphic card memory to system memory.

Figure 5.4: Relative speeds of implementations for test set 2, when result set
filtering is performed on CPU.



CHAPTER 5. EXPERIMENT RESULTS 81

5.2 Performance Overhead of Data Transfers

from GPU to CPU

As it can be seen results of previous tests, memory transfers from GPU to CPU

has quite impact on execution times. The tests reported in this section are

performed to see how great this impact was.

D N Linear Scan KVP CAL KVP CAL
16 1048576 59.11 35.25 2.17 2.54
32 1048576 101.13 36.87 3.81 2.70
48 1048576 140.81 37.18 5.21 2.87
64 1048576 182.76 30.53 6.76 2.90
80 1048576 223.68 32.25 8.23 3.06
96 1048576 264.41 36.11 9.41 3.21
112 1048576 301.96 35.95 11.27 3.20
128 1048576 355.24 37.84 12.54 3.28
144 1048576 385.97 38.17 14.09 3.35
160 1048576 427.46 39.66 14.78 3.60

Table 5.5: Execution times in seconds for 1000 radius queries on object set size
of 220 vectors, with varying vector dimensions, no result set fetching.

In order to measure effect of memory transfers from GPU to CPU, implemen-

tations were modified so as leave distances values on the graphic card memory.

Other than distance value fetch code from graphic memory, everything in the

code left same, which assures that GPU still computes the distance values. After

this modification same sets of tests performed. Table 5.5 shows measured timings

for test set 1, figure 5.5 shows results as chart. Figure 5.6 shows speed up factors

for each implementation compared to CPU brute force search.



CHAPTER 5. EXPERIMENT RESULTS 82

Figure 5.5: Execution times in seconds for 1000 radius queries on object set size
of 220 vectors, with varying vector dimensions, no result set fetching.

Figure 5.6: Relative speeds of implementations for test set 1, no result set fetch-
ing.



CHAPTER 5. EXPERIMENT RESULTS 83

When we compare these measurement of execution times with the implemen-

tations that fetch distance values from GPU memory, we can compute memory

transfer overheads from GPU to system memory. By dividing size of data trans-

ferred to time difference data transfer rate is calculated. Data transfer rates is

shown in Table 5.6.

D N Data (MB) Time(sec.) Transfer Rate (MB/sec) % Execu-
tion

16 1048576 4,000 17.99 222.3213 89.25%
32 1048576 4,000 17.39 230.0770 82.03%
48 1048576 4,000 16.96 235.8018 76.49%
64 1048576 4,000 15.91 251.4362 70.18%
80 1048576 4,000 15.72 254.5087 65.62%
96 1048576 4,000 15.68 255.1284 62.50%
112 1048576 4,000 16.03 249.5135 58.71%
128 1048576 4,000 15.45 258.8953 55.20%
144 1048576 4,000 16.69 239.6985 54.22%
160 1048576 4,000 16.03 249.4988 52.04%

16 1048576 4,000 18.00 222.2045 89.32%
16 2097152 8,000 35.61 224.6259 91.64%
16 3145728 12,000 53.48 224.3881 92.48%
16 4194304 16,000 71.05 225.2083 92.86%
16 5242880 20,000 89.02 224.6768 93.16%
16 6291456 24,000 106.92 224.4599 93.36%
16 7340032 28,000 124.67 224.5862 93.47%
16 8388608 32,000 142.46 224.6204 93.56%
16 9437184 36,000 160.41 224.4290 93.65%
16 10485760 40,000 178.19 224.4748 93.70%

Table 5.6: Data Transfer rate and percentage of time used in data transfers.

Analysis of data shows data transfer rates are below theoretical value. Ac-

cording to PCI Express Base 2.0 specification on 15 January 2007 the per-lane

throughput is 500 MB/s. This means a 16-lane PCI connector which is supported

by graphic cards, can support throughput up to 8 GB/s aggregate. Observed max-

imum transfer rate was only 259MB/sec, which is far below theoretical value. In

order to understand reason for slow data transfers, transfer rate is measured

with a utility program provided by ATI, in order to identify non compliant or

fault motherboard or some other hardware issue. Measuring with utility program



CHAPTER 5. EXPERIMENT RESULTS 84

from ATI confirmed that theoretical limit can be achieved for large data transfers.

Thus it is concluded that frameworks used in implementation causes an overhead

per transfer, and small data transfers are effected most.

D N Linear Scan KVP CAL KVP CAL
16 1048576 59.26 35.33 2.15 2.53
16 2097152 119.81 73.84 3.25 4.00
16 3145728 180.13 104.43 4.35 5.27
16 4194304 241.03 156.87 5.47 6.80
16 5242880 309.31 187.57 6.54 8.31
16 6291456 376.38 245.77 7.61 10.11
16 7340032 436.79 245.03 8.71 10.75
16 8388608 495.22 297.82 9.80 12.51
16 9437184 557.72 346.96 10.88 14.19
16 10485760 613.90 362.56 11.98 15.17

Table 5.7: Execution times in seconds for 1000 radius queries on vectors with 16
dimensions and varying number of vectors, no result set fetching..

Same implementation is measured using test set 2. Table 5.7 shows measured

timings for test set 2, figure 5.7 shows results as chart. Figure 5.8 shows speed

up factors for each implementation compared to CPU brute force search.

Analysis of data shows again that if memory transfers were not such a bot-

tleneck further speed ups are possible. Test results show speed up factors up

50 times, lower than previous maximum speed ups measured by test set 1 data,

which confirm the intuition that as kernels get more computationally intensive,

benefits of using GPU increases. It is also worth noting that as number of objects

increase, number of kernel threads increase an a slight penalty in performance

occurs.



CHAPTER 5. EXPERIMENT RESULTS 85

Figure 5.7: Execution times in seconds for 1000 radius queries on vectors with 16
dimensions and varying number of vectors, no result set fetching..

Figure 5.8: Relative speeds of implementations for test set 2, no result set fetch-
ing.



CHAPTER 5. EXPERIMENT RESULTS 86

5.3 Comparison of implementations with Result

Set Filtering on GPU

If we look at table 5.6, we see that nearly %90 time is used for data transfers. So

it is expected that further acceleration is possible if this situation was remedied.

Since we had no control over frameworks used and PCI bus hardware, we tried to

reduce data size transferred. By performing filtering of distance values that are

greater than query radius on GPU side, we were able to reduce data transferred

at the expense of more computationally expensive filtering.

D N Linear Scan KVP CAL KVP CAL
16 1048576 59.11 35.25 13.55 14.01
32 1048576 101.13 36.87 14.94 14.10
48 1048576 140.81 37.18 16.26 14.10
64 1048576 182.76 30.53 16.82 14.12
80 1048576 223.68 32.25 18.16 14.16
96 1048576 264.41 36.11 19.15 14.53
112 1048576 301.96 35.95 21.32 14.49
128 1048576 355.24 37.84 22.03 14.44
144 1048576 385.97 38.17 24.10 15.71
160 1048576 427.46 39.66 24.72 16.02

Table 5.8: Execution times in seconds for 1000 radius queries on object set size
of 220 vectors, with varying vector dimensions, GPU result set filtering.

D N Linear Scan KVP CAL KVP CAL
16 1048576 59.26 35.33 13.49 13.91
16 2097152 119.81 73.84 19.28 20.16
16 3145728 180.13 104.43 28.21 29.31
16 4194304 241.03 156.87 35.37 37.38
16 5242880 309.31 187.57 47.33 49.67
16 6291456 376.38 245.77 56.45 59.67
16 7340032 436.79 245.03 62.59 65.28
16 8388608 495.22 297.82 71.41 74.70
16 9437184 557.72 346.96 82.97 87.25
16 10485760 613.90 362.56 92.07 96.10

Table 5.9: Execution times in seconds for 1000 radius queries on vectors with 16
dimensions and varying number of vectors, GPU result set filtering.



CHAPTER 5. EXPERIMENT RESULTS 87

Figure 5.9: Execution times for 1000 radius queries on object set size of 220

vectors, with varying vector dimensions, GPU result set filtering.

Figure 5.10: Relative speeds of implementations for test set 1, GPU result set
filtering.



CHAPTER 5. EXPERIMENT RESULTS 88

Figure 5.11: Execution times for 1000 radius queries on vectors with 16 dimen-
sions and varying number of vectors, GPU result set filtering.

Figure 5.12: Relative speeds of implementations for test set 2, GPU result set
filtering.

Same sets of tests are performed and results are presented in Table 5.8 which

shows measured timings for test set 1, figure 5.9 shows results as chart. Figure

5.10 shows speed up factors for each implementation compared to CPU brute

force search. Table 5.9 shows measured timings for test set 2, figure 5.11 shows

results as chart. Figure 5.12 shows speed up factors for each implementation

compared to CPU brute force search.

Results show that as number of dimensions increase, GPU versions of the

algorithms perform considerable better from CPU versions in accordance with



CHAPTER 5. EXPERIMENT RESULTS 89

previous tests. While in lower dimensions speedup factor is only 4.36, as dimen-

sion size increases speed up increases. In tests performed using 1048576 vectors

of 160 dimensions, speed up factor was 26.68. This was an improvement over

implementing filtering in CPU, which yielded speed up factor of 21.23.



Chapter 6

Conclusion

The field of GPGPU computing is advancing quickly. Many GPGPU algorithms

continue to be developed for a wide range of problems, from physical simulations

to data mining. Current graphics APIs, and GPGPU languages, provide a fast

computation platform, hiding much of the complexity of parallel execution.

GPUs are growing more general and as high-level languages and toolkits be-

come available, low-level GPGPU programming is becoming obsolete. Progress

of graphic card architecture suggest next generation of graphic cards to be more

suitable to general purpose computation. High-level shader languages provides

eases task of GPU developers, and languages like BrookGPU and standardization

efforts like OpenCL hold similar promise for non-graphics developers who wish

to harness the power of GPUs.

From a general perspective, GPUs may be seen as the first generation of

commodity data-parallel co-processors. Their rapidly increasing computational

capacity that is growing faster than CPUs, make them an attractive platform

for domain specialized, data-parallel computing. Benefits of this platform can

be leveraged further by performing large-scale GPGPU computing with large

clusters of GPU-equipped computers.

At the same time, CPU vendors are aggressively pursuing multi-core designs,

90



CHAPTER 6. CONCLUSION 91

including a heterogeneous example in the Cell processor produced by IBM, Sony,

and Toshiba. The tiled architecture of Cell provides a dense computational fabric

well suited to the stream programming model, similar in many ways to GPUs but

oriented toward running fewer threads with more available resources than the very

large number of fine-grained, lightweight threads on the GPU. Mainstream CPU

vendors like Intel and AMD are continually increasing core numbers to improve

performance as opposed to previous approach of making them faster by increasing

operating frequencies.

All these advances in computer hardware provide an opportunity for devel-

oping new algorithms or adaptation of current algorithms so that one can utilize

these emerging hardware. In the light of this facts, we decided a computationally

intensive task like similarity searching can benefit from advances in graphics card

hardware, more generally architectures that emphasize parallelism in computa-

tion. Our work confirms this intuition.

In this thesis, we have presented an approach for accelerating similarity search

queries using GPUs. A number of implementations with practical improvements

to data structures and algorithms for similarity searching in metric spaces in

GPUs is presented. We have evaluated the efficiency of these implementations

through a number of empirical analyses.

We provided implementations for brute force search and KVP algorithms for

CPU and GPU. When compared with CPU implementation of brute force search,

GPU version of brute force search was faster 17 times. GPU version of KVP

algorithm achieved speed ups up to 27 times.

We showed that similarity search implementations can benefit significantly

from GPU utilization. Experimental results show that current graphic card pro-

cessors extremely powerful. Although hindered by system memory to graphic

card memory data transfers and overhead incurred by GPGPU frameworks, im-

plementations provided in this work provided speedups up to 27 times when

compared with optimized, multi threaded CPU implementation. We believe this

speed up can be greater for applications that requires more computationally in-

tensive distance function than used in this work.



CHAPTER 6. CONCLUSION 92

We have showed that data transfer from graphic memory to system memory

(and vice versa) incurs significant impact on execution time. We have provided

a solution to reduce data transfers in processing similarity search queries.

The challenge in this work was to adapt existing algorithms that were designed

with the CPU architecture in mind, to graphic cards execution architecture. Also

another problem was the lack of tools like debuggers and profilers for GPGPU

environment. Although GPGPU computing is maturing, it is completely estab-

lished. Thus bugs, and lack of documentation on part of vendors that produces

graphic cards made some problems harder to solve.

As future work, same work can be implemented on emerging heterogeneous

systems such as the Sony Playstation 3, which joins a Cell processor and a mod-

ern GPU with a high-bandwidth bus, present interesting opportunities and chal-

lenges.



Bibliography

[1] Microsoft shader debugger. Available at http://msdn.microsoft.

com/library/default.asp?url=/library/en-us/directx9c/directx/

graphics/Tools/ShaderDebugger.asp, 2005.

[2] Graphic remedy gdebugger. Available at http://www.gremedy.com/, 2006.

[3] S. Arya and D. M. Mount. Algorithm for fast vector quantization. In J. A.

Storer and M. Cohn, editors, Proceedings DCC93 (IEEE Data Compression

Conference), pages 381–390, Snowbird, UT, USA, March 1993.

[4] B. Baxter. The image debugger. Available at http://www.billbaxter.

com/projects/imdebug/, 2006.

[5] K. S. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is ”near-

est neighbor” meaningful? In ICDT ’99: Proceedings of the 7th Interna-

tional Conference on Database Theory, pages 217–235, London, UK, 1999.

Springer-Verlag.

[6] D. Blythe. The direct3d 10 system. ACM Trans. Graph., 25(3):724–734,

2006.

[7] C.-A. Bohn. Kohonen feature mapping through graphics hardware. In In

Proceedings of Int. Conf. on Compu. Intelligence and Neurosciences, pages

64–67, 1998.

[8] J. Bolz, I. Farmer, E. Grinspun, and P. Schröoder. Sparse matrix solvers on

the gpu: conjugate gradients and multigrid. ACM Trans. Graph., 22(3):917–

924, 2003.

93



BIBLIOGRAPHY 94

[9] T. Bozkaya and M. Ozsoyoglu. Distance-based indexing for high-dimensional

metric spaces. In SIGMOD ’97: Proceedings of the 1997 ACM SIGMOD

international conference on Management of data, pages 357–368, New York,

NY, USA, 1997. ACM.

[10] S. Brin. Near neighbor search in large metric spaces. In The VLDB Journal,

pages 574–584, 1995.

[11] I. Buck. Taking the plunge into gpu computing. In M. Pharr, editor, GPU

Gems 2, pages 509–519. Addison Wesley, 2005.

[12] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Mike, and H. Pat. Brook

for gpus: Stream computing on graphics hardware. In ACM Transactions

on Graphics (Proceedings of SIGGRAPH 2004), volume 23, pages 777–786,

2004.

[13] I. Buck and T. Purcell. A toolkit for computation on gpus. In R. Fernando,

editor, GPU Gems, pages 621–636, 2004.

[14] W. A. Burkhard and R. M. Keller. Some approaches to best-match file

searching. Commun. ACM, 16(4):230–236, April 1973.

[15] E. Chávez, J. L. Marroqúın, and R. Baeza-Yates. Spaghettis: An array based

algorithm for similarity queries in metric spaces. In SPIRE ’99: Proceedings

of the String Processing and Information Retrieval Symposium & Interna-

tional Workshop on Groupware, page 38, Washington, DC, USA, 1999. IEEE

Computer Society.

[16] E. Chávez, J. L. Marroqúın, and G. Navarro. Fixed queries array: A fast and

economical data structure for proximity searching. Multimedia Tools Appl.,

14(2):113–135, 2001.

[17] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient access method

for similarity search in metric spaces. In VLDB ’97: Proceedings of the 23rd

International Conference on Very Large Data Bases, pages 426–435, San

Francisco, CA, USA, 1997. Morgan Kaufmann Publishers Inc.



BIBLIOGRAPHY 95

[18] C. C. elik. New Approaches to Similarity Searching in Metric Spaces. PhD

thesis, University of Maryland, 2006.

[19] J. N. England. A system for interactive modeling of physical curved surface

objects. SIGGRAPH Comput. Graph., 12(3):336–340, 1978.

[20] U. Erra. Toward real time fractal image compression using graphics hard-

ware. pages 723–728, 2005.

[21] C. Faloutsos, R. Barber, M. Flickner, J. Hafner, W. Niblack, D. Petkovic,

and W. Equitz. Efficient and effective querying by image content. Journal

of Intelligent Information Systems, 3(3/4):231–262, 1994.

[22] C. Faloutsos and K.-I. Lin. Fastmap: a fast algorithm for indexing, data-

mining and visualization of traditional and multimedia datasets. In SIGMOD

’95: Proceedings of the 1995 ACM SIGMOD international conference on

Management of data, pages 163–174, New York, NY, USA, 1995. ACM.

[23] T. Foley and J. Sugerman. Kd-tree acceleration structures for a gpu

raytracer. In HWWS ’05: Proceedings of the ACM SIGGRAPH/EURO-

GRAPHICS conference on Graphics hardware, pages 15–22, New York, NY,

USA, 2005. ACM.

[24] V. Gaede and O. Günther. Multidimensional access methods. ACM Com-

puting Surveys, 30(2):170–231, 1998.

[25] N. Goodnight, C. Woolley, G. Lewin, D. Luebke, and G. Humphreys. A

multigrid solver for boundary value problems using programmable graphics

hardware. In HWWS ’03: Proceedings of the ACM SIGGRAPH/EURO-

GRAPHICS conference on Graphics hardware, pages 102–111, Aire-la-Ville,

Switzerland, Switzerland, 2003. Eurographics Association.

[26] N. Govindaraju, J. Gray, R. Kumar, and D. Manocha. Gputerasort: high

performance graphics co-processor sorting for large database management.

In SIGMOD ’06: Proceedings of the 2006 ACM SIGMOD international con-

ference on Management of data, pages 325–336, New York, NY, USA, 2006.

ACM.



BIBLIOGRAPHY 96

[27] N. K. Govindaraju, M. Henson, M. C. Lin, and D. Manocha. Interactive vis-

ibility ordering and transparency computations among geometric primitives

in complex environments. In I3D ’05: Proceedings of the 2005 symposium

on Interactive 3D graphics and games, pages 49–56, New York, NY, USA,

2005. ACM.

[28] N. K. Govindaraju, B. Lloyd, W. Wang, M. Lin, and D. Manocha. Fast com-

putation of database operations using graphics processors. In SIGGRAPH

’05: ACM SIGGRAPH 2005 Courses, page 206, New York, NY, USA, 2005.

ACM.

[29] N. K. Govindaraju, N. Raghuvanshi, and D. Manocha. Fast and approxi-

mate stream mining of quantiles and frequencies using graphics processors.

In SIGMOD ’05: Proceedings of the 2005 ACM SIGMOD international con-

ference on Management of data, pages 611–622, New York, NY, USA, 2005.

ACM.

[30] A. Greß, M. Guthe, and R. Klein. Gpu-based collision detection for de-

formable parameterized surfaces. Computer Graphics Forum, 25(3):497–506,

Sept. 2006.

[31] E. Greß and G. Zachmann. Gpu-abisort: Optimal parallel sorting on stream

architectures. In In Proceedings of the 20th IEEE International Parallel and

Distributed Processing Symposium (IPDPS 06) (Apr, page 45, 2006.

[32] M. Harris. Mapping computational concepts to gpus. In SIGGRAPH ’05:

ACM SIGGRAPH 2005 Courses, page 50, New York, NY, USA, 2005. ACM.

[33] M. Harris and I. Buck. Gpu flow control idioms. In M. Pharr, editor, GPU

Gems 2, pages 547–555. Addison Wesley, 2005.

[34] M. J. Harris. Analysis of error in a cml diffusion operation. Technical report,

2002.

[35] M. J. Harris, G. Coombe, T. Scheuermann, and A. Lastra. Physically-

based visual simulation on graphics hardware. In HWWS ’02: Proceedings of

the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware,



BIBLIOGRAPHY 97

pages 109–118, Aire-la-Ville, Switzerland, Switzerland, 2002. Eurographics

Association.

[36] J. Hensley, T. Scheuermann, G. Coombe, M. Singh, and A. Lastra. Fast

summed-area table generation and its applications. Computer Graphics Fo-

rum, 24:547–555, 2005.

[37] D. W. Hillis and G. L. Steele. Data parallel algorithms. Commun. ACM,

29(12):1170–1183, December 1986.

[38] G. R. Hjaltason and H. Samet. Index-driven similarity search in metric

spaces (survey article). ACM Trans. Database Syst., 28(4):517–580, 2003.

[39] G. R. Hjaltason and H. Samet. Properties of embedding methods for simi-

larity searching in metric spaces. IEEE Trans. Pattern Anal. Mach. Intell.,

25(5):530–549, May 2003.

[40] M. Hopf and T. Ertl. Hardware based wavelet transformations, 1999.

[41] D. Horn. Stream reduction operations for gpgpu applications. In M. Pharr,

editor, GPU Gems 2, pages 573–589. Addison Wesley, 2005.

[42] G. Hristescu and M. Farach. Cluster-preserving embedding of proteins. Tech-

nical report, 1999.

[43] T. Jansen, B. von Rymon-Lipinski, N. Hanssen, and E. Keeve. Fourier

volume rendering on the gpu using a split-stream-fft. In VMV, pages 395–

403, 2004.

[44] C. T. Jr., A. J. M. Traina, B. Seeger, and C. Faloutsos. Slim-trees: High

performance metric trees minimizing overlap between nodes. In EDBT, pages

51–65, 2000.

[45] G. Kedem and Y. Ishihara. Brute force attack on unix passwords with simd

computer. In SSYM’99: Proceedings of the 8th conference on USENIX Secu-

rity Symposium, pages 8–8, Berkeley, CA, USA, 1999. USENIX Association.



BIBLIOGRAPHY 98

[46] P. Kipfer, M. Segal, and R. Westermann. Uberflow: a gpu-based particle en-

gine. In HWWS ’04: Proceedings of the ACM SIGGRAPH/EUROGRAPH-

ICS conference on Graphics hardware, pages 115–122, New York, NY, USA,

2004. ACM.

[47] A. Kolb and N. Cuntz. Dynamic particle coupling for gpu-based fluid sim-

ulation. Proc. 18th Symposium on Simulation Technique, pages 722–727,

2005.

[48] F. Korn, N. Sidiropoulos, C. Faloutsos, E. Siegel, and Z. Protopapas. Fast

nearest neighbor search in medical image databases. In The VLDB Journal,

pages 215–226, 1996.

[49] J. Krüger and R. Westermann. Linear algebra operators for gpu implemen-

tation of numerical algorithms. In SIGGRAPH ’05: ACM SIGGRAPH 2005

Courses, page 234, New York, NY, USA, 2005. ACM.

[50] A. E. Lefohn, J. M. Kniss, C. D. Hansen, and R. T. Whitaker. A streaming

narrow-band algorithm: interactive computation and visualization of level

sets. In SIGGRAPH ’05: ACM SIGGRAPH 2005 Courses, page 243, New

York, NY, USA, 2005. ACM.

[51] A. E. Lefohn, S. Sengupta, J. Kniss, R. Strzodka, and J. D. Owens. Glift:

Generic, efficient, random-access gpu data structures. ACM Trans. Graph.,

25(1):60–99, 2006.

[52] J. Lengyel, M. Reichert, B. R. Donald, and D. P. Greenberg. Real-time robot

motion planning using rasterizing computer graphics hardware. SIGGRAPH

Comput. Graph., 24(4):327–335, 1990.

[53] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions

and reversals. Soviet Physics Doklady, 10:707+, February 1966.

[54] A. Levinthal and T. Porter. Chap - a simd graphics processor. In SIGGRAPH

’84: Proceedings of the 11th annual conference on Computer graphics and

interactive techniques, pages 77–82, New York, NY, USA, 1984. ACM.



BIBLIOGRAPHY 99

[55] K. I. Lin, H. V. Jagadish, and C. Faloutsos. The tv-tree: an index structure

for high-dimensional data. The VLDB Journal, 3(4):517–542, October 1994.

[56] E. Lindholm, M. J. Kligard, and H. Moreton. A user-programmable vertex

engine. In SIGGRAPH ’01: Proceedings of the 28th annual conference on

Computer graphics and interactive techniques, pages 149–158, New York,

NY, USA, 2001. ACM.

[57] N. Linial, E. London, and Y. Rabinovich. The geometry of graphs and some

of its algorithmic applications. Combinatorica, 15:215–245, 1995.

[58] X. Lu, Y. Wang, and A. K. Jain. Combining classifiers for face recognition. In

ICME ’03: Proceedings of the 2003 International Conference on Multimedia

and Expo - Volume 3 (ICME ’03), pages 13–16, Washington, DC, USA, 2003.

IEEE Computer Society.

[59] D. Maio and D. Maltoni. A structural approach to fingerprint classification.

In ICPR ’96: Proceedings of the International Conference on Pattern Recog-

nition (ICPR ’96) Volume III-Volume 7276, pages 578–585, Washington,

DC, USA, 1996. IEEE Computer Society.

[60] D. Manocha. Quick-cullide: Fast inter- and intra-object collision culling

using graphics hardware. In VR ’05: Proceedings of the 2005 IEEE Con-

ference 2005 on Virtual Reality, pages 59–66, 319, Washington, DC, USA,

2005. IEEE Computer Society.

[61] W. R. Mark, R. S. Glanville, K. Akeley, and M. J. Kilgard. Cg: a system for

programming graphics hardware in a c-like language. In SIGGRAPH ’03:

ACM SIGGRAPH 2003 Papers, pages 896–907, New York, NY, USA, 2003.

ACM.

[62] M. McCool, S. Du Toit, T. Popa, B. Chan, and K. Moule. Shader algebra.

In SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers, pages 787–795, New

York, NY, USA, 2004. ACM.

[63] P. McCormick, J. Inman, J. Ahrens, J. Mohd-Yusof, G. Roth, and S. Cum-

mins. Scout: a data-parallel programming language for graphics processors.

Parallel Comput., 33(10-11):648–662, 2007.



BIBLIOGRAPHY 100

[64] L. Mico, J. Oncina, and R. Carrasco. A fast branch-and-bound nearest-

neighbor classifier in metric-spaces. 17(7):731–739, June 1996.

[65] L. Micó, J. Oncina, and E. Vidal. A new version of the nearest-neighbour ap-

proximating and eliminating search algorithm (aesa) with linear preprocess-

ing time and memory requirements. Pattern Recognition Letters, 15(1):9–17,

1994.

[66] G. Navarro. Searching in metric spaces by spatial approximation. The VLDB

Journal, 11:141–148, 1999.

[67] S. A. Nene and S. K. Nayar. A simple algorithm for nearest neighbor search

in high dimensions. IEEE Trans. Pattern Anal. Mach. Intell., 19(9):989–

1003, 1997.

[68] M. Olano and A. Lastra. A shading language on graphics hardware: the

pixelflow shading system. In SIGGRAPH ’98: Proceedings of the 25th annual

conference on Computer graphics and interactive techniques, pages 159–168,

New York, NY, USA, 1998. ACM.

[69] Opengl, D. Shreiner, M. Woo, J. Neider, and T. Davis. OpenGL(R) Pro-

gramming Guide : The Official Guide to Learning OpenGL(R), Version 2

(5th Edition). Addison-Wesley Professional, August 2005.

[70] J. Owens. Streaming architectures and technology trends. In SIGGRAPH

’05: ACM SIGGRAPH 2005 Courses, page 9, New York, NY, USA, 2005.

ACM.

[71] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E. Lefohn,

and T. J. Purcell. A survey of general-purpose computation on graphics

hardware. Computer Graphics Forum, 26(1):80–113, March 2007.

[72] M. Pharr and R. Fernando. GPU Gems 2: Programming Techniques for

High-Performance Graphics and General-Purpose Computation. Addison-

Wesley Professional, March 2005.

[73] M. Potmesil and E. M. Hoffert. The pixel machine: a parallel image com-

puter. SIGGRAPH Comput. Graph., 23(3):69–78, 1989.



BIBLIOGRAPHY 101

[74] T. Purcell and J. Sen. Shadesmith fragment program debugger., 2003.

[75] T. J. Purcell. Ray tracing on a stream processor. PhD thesis, Stanford, CA,

USA, 2004. Adviser-Hanrahan, Patrick M.

[76] T. J. Purcell, C. Donner, M. Cammarano, H. W. Jensen, and P. Hanrahan.

Photon mapping on programmable graphics hardware. In SIGGRAPH ’05:

ACM SIGGRAPH 2005 Courses, page 258, New York, NY, USA, 2005.

ACM.

[77] H. Samet. The design and analysis of spatial data structures. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 1990.

[78] H. Samet. Spatial data structures. In Modern Database Systems: The Object

Model, Interoperability, and Beyond., pages 361–385. 1995.

[79] T. Seidl and H. P. Kriegel. Optimal multi-step k-nearest neighbor search. In

SIGMOD Conference, pages 154–165, 1998.

[80] R. Strzodka. Virtual 16 bit precise operations on RGBA8 textures. In

Proceedings of Vision, Modeling, and Visualization (VMV’02), pages 171–

178, 2002.

[81] R. Strzodka and C. Garbe. Real-time motion estimation and visualization on

graphics cards. In VIS ’04: Proceedings of the conference on Visualization

’04, pages 545–552, Washington, DC, USA, 2004. IEEE Computer Society.

[82] D. Tarditi, S. Puri, and J. Oglesby. Accelerator: using data parallelism to

program gpus for general-purpose uses. SIGARCH Comput. Archit. News,

34(5):325–335, 2006.

[83] D. Trebilco. Glintercept. Available at http://glintercept.nutty.org/,

2006.

[84] C. Trendall and A. J. Stewart. General calculations using graphics hardware

with applications to interactive caustics. In Proceedings of the Eurographics

Workshop on Rendering Techniques 2000, pages 287–298, London, UK, 2000.

Springer-Verlag.



BIBLIOGRAPHY 102

[85] J. K. Uhlmann. Satisfying general proximity/similarity queries with metric

trees. Information Processing Letters, 40(4):175–179, 1991.

[86] S. Upstill. RenderMan Companion: A Programmer’s Guide to Realistic

Computer Graphics. Addison-Wesley Longman Publishing Co., Inc., Boston,

MA, USA, 1989.

[87] E. Vidal Ruiz. An algorithm for finding nearest neighbors in (approximately)

constant time. 4:145–157, 1986.

[88] J. T.-L. Wang and D. Shasha. Query processing for distance metrics. In

VLDB ’90: Proceedings of the 16th International Conference on Very Large

Data Bases, pages 602–613, San Francisco, CA, USA, 1990. Morgan Kauf-

mann Publishers Inc.

[89] J. T.-L. Wang, X. Wang, K.-I. Lin, D. Shasha, B. A. Shapiro, and K. Zhang.

Evaluating a class of distance-mapping algorithms for data mining and clus-

tering. In KDD, pages 307–311, 1999.

[90] D. A. White and R. Jain. Similarity indexing with the ss-tree. In ICDE ’96:

Proceedings of the Twelfth International Conference on Data Engineering,

pages 516–523, Washington, DC, USA, 1996. IEEE Computer Society.

[91] J. Woetzel and R. Koch. Multi-camera real-time depth estimation with dis-

continuity handling on pc graphics hardware. In ICPR ’04: Proceedings of

the Pattern Recognition, 17th International Conference on (ICPR’04) Vol-

ume 1, pages 741–744, Washington, DC, USA, 2004. IEEE Computer Society.

[92] R. Yang and M. Pollefeys. A versatile stereo implementation on commodity

graphics hardware. Real-Time Imaging, 11(1):7–18, 2005.

[93] P. N. Yianilos. Data structures and algorithms for nearest neighbor search in

general metric spaces. In SODA ’93: Proceedings of the fourth annual ACM-

SIAM Symposium on Discrete algorithms, pages 311–321, Philadelphia, PA,

USA, 1993. Society for Industrial and Applied Mathematics.



BIBLIOGRAPHY 103

[94] S.-E. Yoon, P. Lindstrom, V. Pascucci, and D. Manocha. Cache-oblivious

mesh layouts. In SIGGRAPH ’05: ACM SIGGRAPH 2005 Papers, pages

886–893, New York, NY, USA, 2005. ACM.


