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Time-delay estimation is studied for cognitive radio systems, which facilitate opportunistic use of spectral resources. A two-step
approach is proposed to obtain accurate time-delay estimates of signals that occupy multiple dispersed bands simultaneously,
with significantly lower computational complexity than the optimal maximum likelihood (ML) estimator. In the first step of the
proposed approach, an ML estimator is used for each band of the signal in order to estimate the unknown parameters of the signal
occupying that band. Then, in the second step, the estimates from the first step are combined in various ways in order to obtain the
final time-delay estimate. The combining techniques that are used in the second step are called optimal combining, signal-to-noise
ratio (SNR) combining, selection combining, and equal combining. It is shown that the performance of the optimal combining
technique gets very close to the Cramer-Rao lower bound at high SNRs. These combining techniques provide various mechanisms
for diversity combining for time-delay estimation and extend the concept of diversity in communications systems to the time-
delay estimation problem in cognitive radio systems. Simulation results are presented to evaluate the performance of the proposed

estimators and to verify the theoretical analysis.

1. Introduction

Cognitive radio is a promising approach to implement
intelligent wireless communications systems [1-8]. Cogni-
tive radios can be perceived as more capable versions of
software defined radios in the sense that they have sensing,
awareness, learning, adaptation, goal driven autonomous
operation, and reconfigurability features [9, 10]. Thanks to
these features, radio resources, such as power and bandwidth,
can be used more efficiently [1]. Especially since the elec-
tromagnetic spectrum is a precious resource, it must not be
wasted. The recent spectrum measurement campaigns in the
United States [11] and Europe [12] show that the spectrum
is under-utilized; hence, opportunistic use of unoccupied
frequency bands is highly desirable.

Cognitive radio provides a solution to the problem of
inefficient spectrum utilization by using the vacant frequency

spectrum over time in a certain geographical region. In other
words, a cognitive radio system can opportunistically use
the available spectrum of a legacy system without interfering
with the licensed users of that spectrum [2, 3]. In order
to facilitate such opportunistic spectrum utilization, it is
important that cognitive radio devices are aware of their
positions, and monitor the environment continuously. These
location and environmental awareness features of cognitive
radios have been studied extensively in the literature [10, 13—
19]. In [13], the concept of cognitive radar is introduced,
which provides information related to the objects in an
environment; that is, it performs environmental sensing. In
[14], a radio environment mapping method for cognitive
radio networks is studied. Conceptual models for location
and environmental awareness engines and cycles are pro-
posed in [10, 15, 16] for cognitive radio systems. Also, [18]
introduces the concept of a topology engine for cognitive



radios by studying topology information characterization
and its applications to cognitive radio networks.

The location awareness feature of cognitive radios can
be used in many network optimization applications, such as
location-assisted spectrum management, network planning,
handover, routing, dynamic channel allocation, and power
control [8, 20]. Location awareness requires that a cognitive
radio device performs accurate estimation of its position.
One possible way of obtaining position information is to use
the Global Positioning System (GPS) technology in cognitive
radio systems. However, this is not a very efficient or cost-
effective solution [17]. As another approach, cognitive radio
devices can estimate position-related parameters of signals
traveling between them in order to estimate their positions
[17, 21]. Among various position related parameters, the
time-delay parameter commonly provides accurate position
information with reasonable complexity [21, 22]. The main
focus of this study is time-delay estimation in cognitive radio
systems. In other words, the aim is to propose techniques
for accurate time-delay estimation in dispersed spectrum
systems in order to provide accurate location information
to cognitive users. Since the accuracy of location estimation
increases as the accuracy of time-delay estimation increases,
design of time-delay estimators with high accuracy and
reasonable complexity is crucial for the location awareness
feature of a cognitive radio system [21].

Time-delay estimation in cognitive radio systems differs
from conventional time-delay estimation mainly due to
the fact that a cognitive radio system can transmit and
receive over multiple dispersed bands. In other words, since
a cognitive radio device can utilize the spectral holes of
a legacy system, it can have a spectrum that consists of
multiple bands that are dispersed over a wide range of
frequencies (cf. Figure 1). In [23], the theoretical limits on
time-delay estimation are studied for dispersed spectrum
cognitive radio systems, and the effects of carrier frequency
offset (CFO) and modulation schemes of training signals on
the accuracy of time-delay estimation are quantified. The
expressions for the theoretical limits indicate that frequency
diversity can be utilized in time-delay estimation. Similarly,
the effects of spatial diversity on time-delay estimation are
studied in [24] for single-input multiple-output (SIMO)
systems. In addition, the effects of multiple antennas on
time-delay estimation and synchronization problems are
investigated in [25].

In this paper, time-delay estimation is studied for
dispersed spectrum cognitive radio systems. First, it is
observed that maximum likelihood (ML) estimation is not
very practical for time-delay estimation in such systems.
Then, a two-step time-delay estimation approach is proposed
in order to provide accurate time-delay estimation with
significantly lower computational complexity than that of the
optimal ML estimator. In the proposed scheme, the receiver
consists of multiple branches and each branch processes the
part of the received signal that occupies the corresponding
frequency band. An ML estimator is used in each branch
in order to estimate the unknown parameters of the signal
observed in that branch. Then, in the second step, the
estimates from all the branches are combined to obtain the
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Figure 1: Illustration of dispersed spectrum utilization in cognitive
radio systems.

final time-delay estimate. Various techniques are proposed
for the combining operation in the second step: Optimal
combining, signal-to-noise ratio (SNR) combining, selection
combining, and equal combining. The biases and variances
of the time-delay estimators that employ these combining
techniques are investigated. It is shown that the optimal
combining technique results in a mean-squared error (MSE)
that approximates the Cramer-Rao lower bound (CRLB)
at high SNRs. Simulation results are provided in order
to compare the performance of the proposed time-delay
estimators. In a more generic perspective, this study focuses
on the utilization of frequency diversity for a parameter
estimation problem. Therefore, the proposed estimators can
be applied to other systems that have frequency diversity as
well.

The remainder of the paper is organized as follows. In
Section 2, the signal model is introduced and the signal
at each branch of the receiver is described. In Section 3,
the optimal ML receiver is obtained, and the CRLBs
on time-delay estimation in dispersed spectrum cognitive
radio systems are described. The proposed two-step time-
delay estimation approach is studied in Section 4. Then, in
Section 5, the optimality properties of the proposed time-
delay estimators are investigated. Finally, simulation results
are presented in Section 6, and concluding remarks are made
in Section 7.

2. Signal Model

A cognitive radio system that occupies K dispersed frequency
bands is considered as shown in Figure 1. The transmitter
sends a signal occupying all the K bands simultaneously, and
the receiver aims to calculate the time-delay of the incoming
signal.

One approach for designing such a system involves the
use of orthogonal frequency division multiplexing (OFDM).
In this approach, the received signal is considered as a
single OFDM signal with zero coefficients at the subcarriers
corresponding to the unavailable bands [26-28]. Then, the
signal can be processed as in conventional OFDM receivers.
The main drawback of this approach is that it requires
processing of very large bandwidths when the available
spectrum is dispersed over a wide range of frequencies.
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Figure 2: Block diagram of the front-end of a cognitive radio
receiver, where BPF and LNA refer to band-pass filter and low-noise
amplifier, respectively.

Therefore, the design of RF components, such as filters
and low-noise amplifiers (LNAs), can become very complex
and costly, and result in components with high power
consumption [29]. In such scenarios, it can be more practical
to process the received signal in multiple branches, as shown
in Figure 2. In that case, each branch processes one available
band and down-converts the signal according to the center
frequency of that band. Therefore, signals with narrower
bandwidths can be processed at each branch.

For the receiver model in Figure 2, the baseband rep-
resentation of the received signal in the ith branch can be
modeled as

ri(t) = aiel'si(t — 1) + mi(t), (1)

fori=1,...,K, where 7 is the time-delay of the signal, a; =
a;e/? and w; represent, respectively, the channel coefficient
and the CFO for the signal in the ith branch, s;(¢) is the
baseband representation of the transmitted signal in the ith
band, and #;(¢) is modeled as complex white Gaussian noise
with independent components, each having spectral density
o?.

The signal model in (1) assumes that the signal in each
branch can be modeled as a narrowband signal. Hence, a
single complex channel coefficient is used to represent the
fading of each signal.

The system model considered in this study falls within
the framework of cognitive radio systems, since the cognitive

user first needs to detect the available frequency bands, and
then to adapt its receiver parameters accordingly. Therefore,
the spectrum sensing and adaptation features of cognitive
systems are assumed for the considered system in this study
[9, 10].

3. Optimal Time-Delay Estimation and
Theoretical Limits

Accurate estimation of the time-delay parameter 7 in (1) is
quite challenging due to the presence of unknown channel
coefficients and CFOs. For a system with K bands, there
are 3K nuisance parameters. In other words, the vector 6 of
unknown parameters can be expressed as

9:[7 ay---ag 1 ¢k wl...wK]' (2)

When the signals in (1) are observed over the interval
[0, T'], the log-likelihood function for @ is given by [30]

K1 T
AO) = -
(6) C,»:Zlﬂffo

where c is a constant that is independent of 0 (the unknown
parameters are assumed to be constant during the observa-
tion interval). Then, the ML estimate for 6 can be obtained
from (3) as [23]

ri(t) — ol itsi(t — 1) }zdt, (3)

O
K T K 2
1 e, Eilai]
:argmgx{iziofjoﬂ{(x?(e ]w,fri(t)sfk(t—‘[)}dt—g 20_12 },
(4)
where E; = fglsi(t — 7)|2dt is the signal energy, and

R represents the operator that selects the real part of its
argument.

It is observed from (4) that the ML estimator requires
an optimization over a (3K + 1)-dimensional space, which
is quite challenging in general. Therefore, the aim of this
study is to propose low-complexity time-delay estimation
algorithms with comparable performance to that of the
ML estimator in (4). In other words, accurate time-delay
estimation algorithms are studied under practical constraints
on the processing power of the receiver. Since the ML
estimator is difficult to implement, the performance compar-
isons will be made with respect to the theoretical limits on
time-delay estimation (an ML estimator achieves the CRLB
asymptotically under certain conditions [30]). In [23], the
CRLBs on the MSEs of unbiased time-delay estimators are
obtained for the signal model in (1). When the baseband
representation of the signals in different branches is of the
form s;(t) = > diypi(t — IT;), where d;; denotes the complex
training data and p;(t) is a pulse with duration Tj, the CRLB
is expressed as

E{(?— T)Z} > , (5)
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FiGure 3: The block diagram of the proposed time-delay estimation
approach. The signals r(t),..., 7k (t) are obtained at the front-end
of the receiver as shown in Figure 2.

where
~ T
B - j 15/t — o) | 2dt, (6)
0

. T
ER = JOIR{S,'-(t —1)s¥(t — 1) }dt, (7)

with §'(t) representing the first derivative of s(t). In the
special case of |dj;l = |d;| foralll and p;(t) satisfying
pi(0) = pi(T;) fori = 1,...,K, (5) becomes [23]

K & 2 -1
E{(7-1)’] = (ZEU‘;) : (8)
i1 i

It is observed from (5) and (8) that frequency diversity can
be useful in time-delay estimation. For example, when one of
the bands is in a deep fade (i.e., small af), some other bands
can still be in good condition to facilitate accurate time-delay
estimation.

4. Two-Step Time-Delay Estimation and
Diversity Combining

Due to the complexity of the ML estimator in (4), a two-step
time-delay estimation approach is proposed in this paper, as
shown in Figure 3. Two-step approaches are commonly used
in optimization/estimation problems in order to provide
suboptimal solutions with reduced computational complex-
ity [31, 32]. In the proposed estimator, each branch of the
receiver performs estimation of the time-delay, the channel
coefficient, and the CFO related to the signal in that branch.
Then, the estimates from all the branches are used to obtain
the final time-delay estimate as shown in Figure 3. In the
following sections, the details of the proposed approach are
explained, and the utilization of frequency diversity in time-
delay estimation is explained.

4.1. First Step: Parameter Estimation at Different Branches.
In the first step of the proposed approach, the unknown
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parameters of each received signal are estimated at the corre-
sponding receiver branch according to the ML criterion (cf.
Figure 3). Based on the signal model in (1), the likelihood
function at branch i can be expressed as

1 ! jw;t 2
MB) == 55| [r(0 —me st -0 'd

fori = 1,...,K, where 6; = [7 a; ¢; wi] represents the

vector of unknown parameters related to the signal at the ith

branch, r,(¢), and ¢; is a constant that is independent of 0.
From (9), the ML estimator at branch i can be stated as

N T ) 2
0, = argrr})inj ‘ri(t) — el Vits;(t — T)‘ dt, (10)
i 0

where (Aii = [7; a; ggi w;] is the vector of estimates at the ith
branch. After some manipulation, the solution of (10) can
be obtained as

T
I R{ri()e 195 (e — )l de |,

0
(11)

[‘/l’\i $i C/L\),] = arg (gnax

i>Wi>Tj

1 (" o
a, = — : _(ft¢x) _ 2
a = E Joﬁ{m(t)e JOtP) gk (¢ T,));dt. (12)

In other words, at each branch, optimization over a three-
dimensional space is required to obtain the unknown
parameters. Compared to the ML estimator in Section 3,
the optimization problem in (4) over (3K + 1) variables is
reduced to K optimization problems over three variables,
which results in a significant amount of reduction in the
computational complexity.

In the absence of CFO; that is, w; = 0 for all 4, (11) and
(12) reduce to

[?,» ¢i] = argr(lﬁliif( jjﬁ{ri(t)e’j‘ﬁ"sf‘(t— Ti)}dt ,  (13)
a; = E%J;R{ri(t)e’f@s?‘(t — %)} dt. (14)

In that case, the optimization problem at each branch is
performed over only two dimensions. This scenario is valid
when the carrier frequency of each band is known accurately.

4.2. Second Step: Combining Estimates from Different
Branches. After obtaining K different time-delay estimates,
T1,..., 7K, in (11), the second step combines those estimates
according to one of the criteria below and makes the final
time-delay estimate (cf. Figure 3).

4.2.1. Optimal Combining. According to the “optimal” com-
bining criterion (the optimality properties of this combining
technique are investigated in Section 5), the time-delay
estimate is obtained as

L= (15)
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where 7; is the time-delay estimate of the ith branch, which is
obtained from (11), and

Ki = ’2 > (16)

with E; being defined in (6). In other words, the optimal
combining technique estimates the time-delay as a weighted
average of the time-delays of different branches, where the
weights are chosen as proportional to the multiplication of
the SNR estimate, E;a>/o?, and Ei/E; . Since E; is defined as
the energy of the first derivative of s;(¢) as in (6), Ei/E; canbe
expressed, using Parseval’s relation, as Ei/Ei = 472 iz’ where
Bi is the effective bandwidth of s;(¢), which is defined as [30]

B =g | Pl (17)

with S;( f) denoting the Fourier transform of s;(t). Therefore,
it is concluded that the optimal combining technique assigns
a weight to the time-delay estimate of a given branch in
proportion to the product of the SNR estimate and the
effective bandwidth related to that branch. The intuition
behind this combining technique is the fact that signals
with larger effective bandwidths and/or larger SNRs facilitate
more accurate time-delay estimation [30]; hence, their
weights should be larger in the combining process. This
intuition is verified theoretically in Section 5.

4.2.2. SNR Combining. The second technique combines the
time-delay estimates in the first step according to the SNR
estimates at the respective branches. In other words, the
time-delay estimate is obtained as

K A
= 217(1 )/sz’ (18)
21 Yi
where
~
a: E;
Vi = :731' (19)

Note that y; defines the SNR estimate at branch i. In other
words, this technique considers only the SNR estimates at the
branches in order to determine the combining coefficients,
and does not take the signal bandwidths into account.

It is observed from (15)—(19) that the optimal combining
and the SNR combining techniques become equivalent if
E\/E;, = --- = Ex/Ex. Since E/E; = 4n? ?, where B; is
the effective bandwidth defined in (17), the two techniques
are equivalent when the effective bandwidths of the signals at
different branches are all equal.

4.2.3. Selection Combining-1 (SC-1). Another technique for
obtaining the final time-delay estimate is to determine
the “best” branch and to use its estimate as the final
time-delay estimate. According to SC-1, the best branch is
deﬁned as the one that has the maximum value of x; =
ﬁfEi/aiz, for i = 1,...,K. In other words, the branch with

the maximum multiplication of the SNR estimate and the
effective bandwidth is determined as the best branch and its
estimate is used as the final one. That is,

~

A A a;E;
T=7%, m= argieﬁlaXK}{(’ﬁl}, (20)
;

where 7,, represents the time-delay estimate at the mth
branch.

4.2.4. Selection Combining-2 (SC-2). Similar to SC-1, SC-
2 selects the “best” branch and uses its estimate as the
final time-delay estimate. However, according to SC-2, the
best branch is defined as the one with the maximum SNR.
Therefore, the time-delay estimate is obtained as follows
according to SC-2:

A A
T=7T, m=ar

~2
aiEi
, 21
gie??f.’,‘m{ o? } (21

1
where 7,, represents the time-delay estimate at the mth
branch.

SC-1 and SC-2 become equivalent when the effective
bandwidths of the signals at different branches are all equal.

4.2.5. Equal Combining. The equal combining technique
assigns equal weights to the estimates from different branches
and obtains the time-delay estimate as follows:

=
Il

e

T (22)

A=

1

1

Considering the proposed combining techniques above,
it is observed that they are similar to diversity combining
techniques in communications systems [33]. However, the
main difference is the following. The aim is to maximize
the SNR or to reduce the probability of symbol error
in communications systems [33]; whereas, in the current
problem, it is to reduce the MSE of time-delay estimation.
In other words, this study considers diversity combining for
time-delay estimation, where the diversity results from the
dispersed spectrum utilization of the cognitive radio system.

5. On the Optimality of
Two-Step Time-delay Estimation

In this section, the asymptotic optimality properties of the
two-step time-delay estimators proposed in the previous
section are investigated. In order to analyze the performance
of the estimators at high SNRs, the result in [24] for time-
delay estimation at multiple receive antennas is extended to
the scenario in this paper.

Lemma 1. Consider any linear modulation of the form s;(t) =
D diipi(t—IT;), where d;; denotes the complex data for the Ith
symbol of signal i, and p;(t) represents a pulse with duration
T;. Assume that [~ si(t — 7)s}(t — 7)dt = 0, fori = 1,...,K,
then, for the signal model in (1), the delay estimate in (11) and



the channel amplitude estimate in (12) can be modeled, at high
SNR, as

‘/l’\i =T+, (23)

ai = a; + 1, (24)

for i = K, where v; and n; are independent zero
mean Gaussian random variables with variances af/(gia?)
and a,-z/Ei, respectively. In addition, v; and v; (n; and n;) are
independent for i # j.

Proof. The proof uses the derivations in [23] in order to
extend Lemmal in [24] to the cases with CFO. At high
SNRs, the ML estimate @i of 0; = [rai ¢, w] in (11)
and (12) is approximately distributed as a jointly Gaussian
random variable with the mean being equal to 6; and the
covariance matrix being given by the inverse of the Fisher
information matrix (FIM) for observation r;(t) in (1) over
[0, T]. Then, the results in [23] can be used to show that,
under the conditions in the lemma, the first 2 x 2] block of the
covariance matrix can be obtained as diag{o?/(E;a?), 67/E;}.
Therefore, 7; and a; can be modeled as in (23) and (24). In
addition, since the noise components at different branches
are independent, the estimates are independent for different
branches. O

Based on Lemma 1, the asymptotic unbiasedness prop-
erties of the estimators in Section 4 can be verified. First,
it is observed from Lemma 1 that E{7;} = 7. Considering
the optimal combining technique in (15) as an example, the
unbiasedness property can be shown as

21K=1 KiE{:[\i | al)-~~)aK}
Z,K:ﬂfi
I

K
Eizl Ki

E{7 | 4,..., 4} =

(25)

>

where x; = a%Ei/a,? .Since E{T | ay,...,ax} does not depend
on él\l,...,él\K, E{‘/l’\} = E{E{‘/l’\ | 511,... ,51\1(}} = 7. In other
words, since for each specific value of a;, 7; is unbiased
(i = 1,...,K), the weighted average of 7j,...,7x is also
unbiased. Similar arguments can be used to show that all the
two-step estimators described in Section 4 are asymptotically
unbiased.

Regarding the variance of the estimators, it can be shown
that the optimal combining technique has a variance that is
approximately equal to the CRLB at high SNRs (in fact, this
is the main reason why this combining technique is called
optimal). To that aim, the conditional variance of 7 in (15)

given ay, ..., dx is obtained as follows:
K 2 A~ ~ A~
A A ~ K Var{t; | a1,...,a
Var{7 | ai,...,ax} = Zimi 4 Varlzi | a,. ., K}, (26)

(SEiw)’
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where the independence of the time-delay estimates is used to
obtain the result (cf. Lemma 1). Since Var{7; | ai,. ..,aK} =
Var{7; | a;} = 02/(Ea ) from Lemma 1 and «x; = a; E/al ,
(26) can be expressed as

Var{7 | ay,...

(27)

Lemma 1 states that at high SNRs, a; is distributed as a
Gaussian random variable with mean a; and variance o2/E;.
Therefore, for sufficiently large values of Ei/o?,..., Ex/o%,
(27) can be approximated by

K\
Var(? | an,..ae) ~ (S E9) (28)

i-1 i

which is equal to CRLB expression in (8). Therefore,
the optimal combining technique in (15) results in an
approximately optimal estimator at high SNRs.

The variances of the other combining techniques in
Section 4 can be obtained in a straightforward manner and
it can be shown that the asymptotic variances are larger than
the CRLB in general. For example, for the SNR combining
technique in (18), the conditional variance can be calculated

(@B ot) (a?/ (Eia?))

Sii(a
( i1 (@lEi/o? )2

Var{? | 4y,...,dx} =

(29)

which, for sufficiently large SNRs, becomes

)

K 2m (K 2

Al A ~ °E: °E;

Var{rlal,...,aK}zzaNl 5 ZQZZI . (30)
io1 Eiof \i51 0i

Then, from the Cauchy-Schwarz inequality, the following
condition is obtained:

K (a2B (Eio?))
(5 (i (onBr)) (anBirr) )
) S (a2B2/(Eio?))
- SX (@ (Bio?)) 24 (a

= CRLB,

Var{7 | ai,...,ax} =

which holds with equality if and only if E;/E, = -« =
EK/EK (or, f1 = - -+ = Pk). In fact, under that condition,
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the optimal combining and the SNR combining techniques
begome idenNtical as mentionedN in Section 4, since x; =
él\lel/O‘lz = (E,/E,)(Eﬁ,z/a,z) = (E,‘/E,‘)yi (Cf (16) and (19)).
In other words, when the effective bandwidths of the signals
at different branches are not equal, the asymptotic variance
of the SNR combining technique is strictly larger than the
CRLB.

Regarding the selection combining approaches in (20)
and (21), similar conclusions as for the diversity combining
techniques in communications systems can be made [33].
Specifically, SC-1 and SC-2 perform worse than the optimal
combining and the SNR combining techniques, respectively,
in general. However, when the estimate of a branch is
significantly more accurate than the others, the performance
of the selection combining approach can get very close to the
optimal combining or the SNR combining technique. How-
ever, when the branches have similar estimation accuracies,
the selection combining techniques can perform significantly
worse. The conditional variances of the selection combining
techniques can be approximated at high SNR as

Var{? | a,...,4 }~min{012 ok } (32)
15--.50K ENIQ%’”.’EKQ%( 5
for SC-1, and
PN N E . 2 Z
Var{7 | ai,...,ax} ~ Nmmln{ 012,...,%2}, (33)
Em Elal EKaK

for SC-2, where m = argmin;e i, _x} {aiz/(EiaAf)}. From (32)
and (33), it is observed that ifE1/E1 = ... = EK/EK B =
-+ - = Pk), then the asymptotic variances of the SC-1 and
SC-2 techniques become equivalent.

Finally, for the equal combining technique, the variance
can be obtained from (22) as

~ 1S o7
Var{t} = ﬁz (34)

= 5
l—lEiai

In general, the equal combining technique is expected to have
the worst performance since it does not make use of any
information about the SNR or the signal bandwidths in the
estimation of the time-delay.

6. Simulation Results

In this section, simulations are performed in order to eval-
uate the performance of the proposed time-delay estimators
and compare them with each other and against the CRLBs.
The signal s;(¢t) in (1) corresponding to each branch is
modeled by the Gaussian doublet given by

an(t —1.258)°
- G

where A; and (; are the parameters that are used to adjust
the pulse energy and the pulse width, respectively. The
bandwidth of s;(¢) in (35) can approximately be expressed as
B; ~ 1/(2.5(;) [29]. For the following simulations, A; values
are adjusted to generate unit-energy pulses.

si(t) = Ai(l )eZH(tl.ZS(i)Z/(iZ’ (35)

1072 T T T T U R L T

RMSE (s)

10—8 1 1 1 1 1 1 1 1 1

SNR (dB)

—=— Optimal combining
—e— SNR combining
—+— Equal combining

—+— Selection combining 1
—— Selection combining 2
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F1GURE 4: RMSE versus SNR for the proposed algorithms, and the
theoretical limit (CRLB). The signal occupies three dispersed bands
with bandwidths B; = 200 kHz, B, = 100 kHz and B; = 400 kHz.

For all the simulations, the spectral densities of the noise
at different branches are assumed to be equal; that is, aiz = g2
fori=1,...,K.Inaddition, the SNR of the system is defined
with respect to the total energy of the signals at different
branches; that is, SNR = IOIOgIO(Z,K:1 Ei/(20%)).

In assessing the root-mean-squared errors (RMSEs)
of the different estimators, a Rayleigh fading channel is
assumed. Namely, the channel coefficient o; = a;e/? in
(1) is modeled as a; being a Rayleigh distributed random
variable and ¢; being uniformly distributed in [0, 277). Also,
the same average power is assumed for all the bands; namely,
E{la;|?} = 1 is used. The time-delay 7 in (1) is uniformly
distributed over the observation interval. In addition, it is
assumed that there is no CFO in the system.

First, the performance of the proposed estimators is
evaluated with respect to the SNR for a system with K = 3,
B; = 200kHz, B, = 100kHz, and B; = 400 kHz. The results
in Figure 4 indicate that the optimal combining technique
has the best performance as expected from the theoretical
analysis, and SC-1, which estimates the delay according to
(20), has performance close to that of the optimal combining
technique. The SNR combining and SC-2 techniques have
worse performance than that of the optimal and SC-
1 techniques, respectively. In addition, SC-1 has better
performance than that of the SNR combining technique in
this scenario, which indicates that selecting the delay estimate
corresponding to the largest E,-ﬁiz/ o7 value is closer to optimal
than combining the delay estimates of the different branches
according to the SNR combining criterion in (18) for the
considered scenario. The main reason for this is related
to the large variability of the channel amplitudes due to
the nature of the Rayleigh distribution. Since the channel
amplitude levels are expected to be quite different for most
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F1GURE 5: RMSE versus SNR for the proposed algorithms, and the
theoretical limit (CRLB). The signal occupies two dispersed bands
with bandwidths B; = 100 kHz and B, = 400 kHz.

of the time, using the delay estimate of the best one yields
a more reliable estimate than combining the delay estimates
according to the suboptimal SNR combining technique (since
the signal bandwidths are different, the SNR combining
technique is suboptimal as studied in Section 5). Regarding
the equal combining technique, it has significantly worse
performance than the others, since it combines all the delay
estimates equally. Since the delay estimates of some branches
can have very large errors due to fading, the RMSEs of the
equal combining technique become significantly larger. For
example, when converted to distance estimates, an RMSE of
about 120 meters is achieved by this technique, whereas the
optimal combining technique results in an RMSE of less than
15 meters. Finally, it is observed that the performance of the
optimal combining technique gets very close to the CRLB at
high SNRs, which is expected from the asymptotic arguments
in Section 5.

Next, similar performance comparisons are performed
for a signal with K = 2, B; = 100kHz, and B, = 400 kHz, as
shown in Figure 5. Again similar observations as for Figure 4
are made. In addition, since there are only two bands (K = 2)
and the signal bandwidths are quite different, the selection
combining techniques, SC-1 and SC-2, get very close to
the optimal combining and the SNR combining techniques,
respectively.

In addition, the equivalence of the optimal combining
and the SNR combining techniques and that of SC-1 and
SC-2 are illustrated in Figure 6, where K = 2 and B, =
B, = 400 kHz are used. In other words, the signal consists of
two dispersed bands with 400 kHz bandwidths, and in each
band, the same signal described by (35) is used. Therefore,
El/El = Ez/Ez is satisfied, which results in the equivalence of
the optimal combining and the SNR combining techniques,
as well as that of the SC-1 and SC-2 techniques, as discussed
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with equal bandwidths of 400 kHz.
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Figure 7: RMSE versus the number of bands for the proposed
algorithms, and the theoretical limit (CRLB). Each band occupies
100 kHz, and ¢} = 0.1 for all i.

in Section 4. Also, since there are only two bands (K = 2), the
selection combining techniques get very close to the optimal
combining and the SNR combining techniques.

In Figure 7, the RMSEs of the proposed estimators are
plotted against the number of bands, where each band is
assumed to have 100 kHz bandwidth. The spectral densities
are set to 6} = 0> = 0.1 for all i. Since the same signals
are used in each band, the optimal combining and the SNR
combining techniques become identical; hence, only one of
them is marked in the figure. Similarly, since SC-1 and SC-2
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Figure 8: RMSE versus SNR for the proposed algorithms, and
the theoretical limit (CRLB) in the presence of CFO. The signal
occupies two dispersed bands with bandwidths B, = 100 kHz and
B, = 400kHz.

are identical in this scenario, they are referred to as “selection
combining” in the figure. It is observed from Figure 7 that
the optimal combining has better performance than the
selection combining and the equal combining techniques.
In addition, as the number of bands increases, the amount
of reduction in the RMSE per additional band decreases
(i.e., diminishing return). In fact, the selection combining
technique seems to converge to an almost constant value for
large numbers of bands. This is intuitive since the selection
combining technique always uses the estimate from one of
the branches; hence, in the presence of a sufficiently large
number of bands, additional bands do not cause a significant
increase in the diversity. On the other hand, the optimal
combining technique has a slope that is quite similar to that
of the CRLB; that is, it makes an efficient use of the frequency
diversity.

Finally, the performance of the proposed algorithms is
investigated in the presence of CFO in Figure 8. The CFOs
at different branches are modeled by independent uniform
random variables over [—100,100] Hz, and the RMSEs are
obtained for the system parameters that are considered for
Figure 5. Again similar observations as for Figures 4 and 5
are made. In addition, the comparison of Figures 5 and 8
reveals that the RMSE values slightly increase in the presence
of CFOs, although the theoretical limit stays the same
[23].

7. Concluding Remarks

Time-delay estimation for dispersed spectrum cognitive
radio systems has been studied. After the investigation of
the ML estimator and the CRLBs, a two-step approach has

been proposed to obtain accurate time-delay estimates with
reasonable computational complexity. In the first step of
the proposed approach, an ML estimator is used at each
branch of the receiver in order to estimate the unknown
parameters of the received signal at that branch. Then, in
the second step, a number of diversity combining approaches
have been studied. In the optimal combining technique, both
the SNRs and the bandwidths of the signals at different
branches are considered to obtain the time-delay estimate;
whereas the SNR combining technique obtains the time-
delay estimate according to the estimated SNR values only.
In addition, two selection combining techniques, as well as
the equal combining technique, have been investigated. It
has been shown that the optimal combining technique can
approximate the CRLB at high SNRs; whereas the equal
combining technique has the worst performance since it does
not make use of any information about signal bandwidths
and/or the SNRs. Simulation results have been presented to
verify the theoretical analysis.
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