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Abstract— Misinformation in online social networks (OSNs)1

has been an ongoing problem, and it has been studied heavily2

over recent years. In this article, we use gamification to tackle3

misinformation propagation in OSNs. First, we construct a game4

based on the notion of cooperative games on graphs where the5

nodes of the social network are players. We use random regular6

networks and real networks in our simulations to show that7

the constructed game follows evolutionary dynamics and that8

the outcome of the game depends on the relation between the9

structural properties of the network and the benefit and cost10

variables defined in a cooperative game. Second, we create a11

game on the network level where the players control a set of12

nodes. We define agents whose goal is to maximize the total13

reward that we set up to be the number of nodes affected at14

the end of the game. We propose a deep reinforcement learning15

(RL) technique based on the multiagent deep deterministic policy16

gradient (MADDPG) algorithm. We test the proposed method17

along with well-known node selection algorithms and obtain18

promising results on different social networks.19

Index Terms— Cooperative games, misinformation propaga-20

tion, online social networks (OSNs), reinforcement learning (RL).21

I. INTRODUCTION22

WHERE people receive news now includes online media23

such as news websites and social networks in addition24

to traditional media such as TV, radio, and newspapers [1],25

mainly due to the convenience in terms of quickness and26

socializing aspects [2]. These platforms have become sources27

to spread not just news but also ideas and have been uti-28

lized as tools to influence people for different purposes such29

as altering the public mind to vote for certain parties [3],30

advertising certain products for commercial advantage [4]31

generating awareness for certain issues in health [5], and32

global problems [6], [7].33

The fast progress in communication does not come without34

disadvantages. With the fast pace of information exchange,35

the validation process also seems to be done faster, less36

thoroughly, and completely overlooked in most cases [8].37

People tend to believe the information they see on the Internet38

and even help it propagate to others on social networks [9].39

It is evident from the literature that misinformation spread is40

encouraged by various threat actors with the help of fabricated41
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text, media, and an army of ingenuine accounts that are used in 42

the process. There is an ongoing game maintained by various 43

actors, most frequently for various reasons such as political 44

propaganda that could have profound effects on both internal 45

and international stages. 46

Most of the time, the spread of misinformation does not 47

occur as an isolated incident but in a repeated fashion. The 48

users of various social media platforms encounter various 49

stages and forms of misinformation daily, and so far, there does 50

not seem a permanent solution. Therefore, it might be useful 51

to address the misinformation problem as a repeated game 52

in a social network environment where there exist multiple 53

stages with multiple actors that affect the end-user (whether 54

they participate or not) in some way. In this article, we define 55

the misinformation problem as a game from two different 56

perspectives: 1) node level and 2) network level. 57

In the first part of this work, we approach the misinforma- 58

tion propagation problem from a game-theoretic perspective. 59

The setting where spatial relation between players plays a 60

role in determining the outcome of the game is called spatial 61

games [10], [11]. In the particular context of social networks 62

as graphs, we approach the problem as a graph game. A vast 63

amount of literature exists on graph games, and a particular 64

study [12] approaches the problem of cooperation on graphs. 65

Their work shows that cooperation is only favorable if players’ 66

benefit/cost ratio exceeds the average number of degrees 67

(i.e., connections) in the graph. They show that otherwise, 68

cooperation is not favorable. We construct a misinformation 69

exchange game based on cooperative game theory. Our simu- 70

lations also yield that the probability of countering misinfor- 71

mation is increased if the benefit/cost ratio exceeds the average 72

degree. This approach, however, displays some disadvantages, 73

such as the ambiguity of figuring out the actual or expected 74

values of benefits and costs. 75

We then build another game that is played at the network 76

level, where players are given a set of nodes and try to 77

maximize the number of affected nodes. Since we find this 78

setup suitable for a learning environment for a multiagent 79

reinforcement learning (RL) setting, we propose to utilize 80

a method based on the multiagent deep deterministic pol- 81

icy gradient (MADDPG) algorithm. For the same setting, 82

we also implement other algorithms based on the highly estab- 83

lished centrality, page-rank, and cost effective lazy forward 84

(CELF) algorithms and share the results of the methods as a 85

comparison. 86
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TABLE I

PAYOFF MATRIX OF PRISONER’S DILEMMA

TABLE II

PAYOFF MATRIX OF THE COOPERATION GAME

To summarize, our contributions are as follows.87

1) We explore the misinformation propagation problem as88

a cooperative game on graphs and construct the payoff89

matrix where we define the benefit and costs associated90

with certain actions of the players (the nodes).91

2) We run various simulations on random regular networks92

and a real network based on Facebook to explore how93

the game evolves concerning the benefit and cost ratio.94

3) We define another game at the network level where there95

are agents that try to maximize the number of nodes96

affected on their behalf during their misinformation and97

counter-misinformation campaigns.98

4) We propose a deep RL-based method for the selections99

of the actions of the agent in the network level game,100

perform experiments and compare the results with other101

node selection techniques.102

II. MISINFORMATION GAME AT THE NODE LEVEL103

A. Evolution of Cooperation on Graphs104

Prisoner’s dilemma is a well-known game in the field105

of game theory with two accomplices presented with two106

strategies: 1) cooperate (silence) and 2) defect (betrayal) [10].107

A typical payoff matrix for the cooperation game inspired by108

the prisoner’s dilemma is shown in Table I. In this scenario,109

although the mutual cooperation q = (−1,−1) is the most110

favorable overall outcome, the individually best choices force111

the players to defect: t = (−2,−2).112

Cooperation within communities has also been studied [13],113

including the iterated form of the game in a networked114

scenario to identify the evolutionary properties of coopera-115

tion [14]. In such a game, people are nodes on a graph and116

connected with edges representing a contextual relationship.117

A cooperator emits a benefit b to all its neighbors at the cost118

of c. A defector does not emit any benefit but benefits from the119

cooperators it neighbors. The payoff matrix of such a game is120

given in Table II.121

In this networked setting, with benefit and cost presented122

as the game parameters, the evolution mechanism is layout123

through updating nodes with respect to certain mechanisms.124

At a time instant, a node is randomly chosen to be updated.125

There are three such update strategies [12].126

1) Death-birth updating strategy where a node is chosen127

to die and cooperators and defectors compete over it128

without considering its original fitness.129

2) Birth-death updating where a node is chosen for repro- 130

duction and its child replaces one of the neighbors. 131

3) Imitation updating where a node is chosen to replace its 132

strategy with respect to its neighbors. Its fitness is taken 133

into account. 134

We will specifically visit death-birth updating and imitation 135

updating strategies since these two can provide intuitive appli- 136

cations in today’s online social networks (OSNs): death-birth 137

updating can simulate setting the strategy of a node only by 138

its neighboring strategies, while imitation updating can provide 139

an analogy for the update of a node while also considering its 140

own fitness in the final decision. 141

Here, we will describe the strategies using the payoffs in 142

Table I. Under death-birth updating, let us assume that a node 143

is to be updated. Let k represent the number of neighbors of 144

the node, a C player is a cooperator, and a D is a defector. 145

In this sense, kC represents the number of C neighbors whereas 146

kD represents the number of D neighbors with k = kC + kD. 147

Then, the node’s strategy is set as C based on the probability 148

as follows: 149

kC fC

kC fC + kD fD
(1) 150

where kC fC and kD fD denote the total fitness of the neighbor- 151

ing nodes with C and D strategies, respectively. The fitness 152

of a C player and a D player is described in the following 153

equations if the selected node was a D player: 154

fC = 1−w+w[[(k−1)pC|C]q+[(k − 1)pD|C+1]r ] (2) 155

fD = 1−w+w[[(k−1)pC|D]s+[(k−1)pD|D+1]t]. (3) 156

In these two equations, we describe the fitness of a node 157

in terms of its neighbors. pC|C is the probability of finding 158

a C node as a neighbor of a C node, whereas pD|C is the 159

probability of finding a D node as a neighbor of a C node. 160

(k − 1)pC|C q represents the total contribution from C neigh- 161

bors. Calculating these probabilities is relatively cost-effective 162

in large graphs. w is the selection parameter that provides a 163

linear combination within the game dynamics. We talk about a 164

strong selection when w is close to 1; a weak selection when 165

it is very small. 166

For imitation updating, we need to describe the fitness of a 167

C node f0 that is about to be updated as follows: 168

f0 = 1−w +w(kC s + kDt). (4) 169

The node chooses strategy D with respect to the following 170

probability: 171

kD fD

kC fC + kD fD + f0
. (5) 172

According to the game plan where payoffs are set as in 173

Table II, cooperators are favored if b/c > k+2 under imitation 174

updating and b/c > k under death-birth updating [12]. 175

B. Information Propagation as an Evolutionary 176

Game on Graphs 177

We visit similar games from the literature toward an analogy 178

for the misinformation game. “Closed-bag exchange” is a 179
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game where two people exchange bags containing money and180

goods. In the game, players either honor the deal (cooper-181

ate) or deliver an empty bag (defect). “Peace war game” is182

another example where making peace (cooperate) is mutually183

beneficial; the one-sided “war” (defect) strategy brings more184

benefit to the game. Finally, the lying game has been modeled185

in numerous research [15]. Strategizing for the interest of186

the individual—as evident in these games—may lead to a187

notion called the tragedy of the commons for shared resources.188

The problem has been translated to the digital world as the189

tragedy of the digital commons, and the lack of regulatory190

systems causes pollution in digital resources also associated191

with misinformation [16], [17].192

In an OSN, some nodes may be inclined or even work193

for misinforming their proximity (i.e., their followers, connec-194

tions, friends) on purpose. This deliberate version of misinfor-195

mation is called disinformation, and the nodes are responsible196

for their actions and thus can be included in a game-theoretic197

environment. After being misinformed, previously indifferent198

nodes can relay this information to other nodes, making them199

a part of the game. There may exist other nodes that work200

on the opposite side of the disinformers. These nodes have201

to work harder than the latter since it is harder to convince202

the other nodes about the truth, while false information is203

generally more catchy and sticky, or interesting. The research204

confirms that false information spreads faster [18], [19].205

First, let us define an information exchange game between206

two parties. Assume there are two strategies: 1) coopera-207

tion and 2) defection, where cooperation is sending correct208

information while defection is sending a false one. A player209

receives benefit b if the other player chooses to share correct210

information and there is a cost of correct information to the211

sender, while false information provides no benefit to the212

receiver. The payoffs are defined exactly like the cooperation213

game defined in Table II. The Nash equilibrium of this game214

is with the outcome (0,0) where both players choose to215

disinform. However, there was a better outcome for them216

(b − c, b − c) if they could both choose to relay the correct217

information. This game can also be intuitively connected to218

the famous closed-bag exchange game. If the game is set219

up around this description, the studies about the evolution of220

cooperation on graphs can be easily applied and the findings221

are expected to be in parallel. Although this type of setting for222

the game enables observations on the adaptation of cooperative223

or defective strategies over the population, it does not closely224

simulate the properties of propagation through iterative rounds225

of games over time. Hence, further modifications are required.226

In this modified game, the possible strategies for player 2 are227

different. Player 1, again, shares either correct information or228

a false one while player 2 either accepts the information as229

correct, i.e., believes it, or does not accept it. Since this is230

an iterated game, player 2 can then become a spreader in231

the later rounds. In this new setting, it is possible to define232

fine-grained values for benefit and cost for each player. The233

utility of the correct information to the sender is b1 with a234

cost of c1. The utility of receiving correct information to the235

receiver is b2 if the receiver believes and b3 if the receiver236

does not believe. That is because there is an intrinsic value in237

TABLE III

PAYOFF MATRIX OF THE MISINFORMATION GAME

the correct information. However, the sender does not receive 238

any benefit for the latter. The utility of the false information 239

to the sender is b4 if the receiver believes it, and 0 otherwise. 240

The cost of false information is c2. Believing false information 241

has a cost of c3. Although the information exchange game we 242

previously introduced had the same payoff matrix, we need to 243

introduce some assumptions for the misinformation game in its 244

current form. First, we assume c1 and c3 as equal and denote 245

it as c. We assume that c2 � c1 and disregard c2. We also take 246

all benefits values as equal, except for b2. We think that it is 247

upper-bounded by b − c since the utility of a receiver cannot 248

be larger than the sender’s if the sent information is correct. 249

The simplified payoff matrix is given in Table III. The Nash 250

equilibrium of this simplified game is (0,0), to disseminate 251

“False” information for player 1 and “Do not Believe” the 252

information for player 2. However, the scenario of sending 253

“Correct” information and “Believing” provides a better and 254

mutually beneficial outcome for players 1 and 2, respectively. 255

Hence, the resulting non-zero-sum game displays the same 256

characteristics of the cooperative games and the prisoner’s 257

dilemma in particular, under the previously listed assumptions 258

on the benefit and cost values. 259

In addition, while the Nash equilibrium provides a general 260

solution for games in the traditional setup, we may need 261

other measures of evolutionary dominance under evolutionary 262

settings. Evolutionarily stable strategy (ESS) [20] is a modifi- 263

cation of the Nash equilibrium, which states that a strategy is 264

said to be evolutionarily stable if adopted by a population in an 265

evolutionary environment, and cannot be replaced by another 266

strategy. Given E(I, J ) as the payoff of selecting strategy I 267

against T , for the strategy I to be an ESS, two conditions 268

should be considered [20] as follows: 269

1) E(I, I ) > E(J, I ). 270

2) E(I, I ) = E(J, I ) and E(I, J ) > E(J, J ). 271

According to this definition, the defection strategy is evo- 272

lutionarily stable in the designed misinformation game. How- 273

ever, it has been shown that the evolution of cooperation is 274

possible in the case of b/c > k [12] and small k or large w are 275

the two factors that affect the outcome in favor of cooperation 276

in the iterated cooperation game on graphs [21]. 277

1) Combined Strategy for the Misinformation Game: When 278

the misinformation game is played out on the network, 279

there exist three types of actors: 1) defectors; 2) coopera- 280

tors; and 3) neutral nodes. In a social network, these cor- 281

respond to the misinformers, correctors, and neutral nodes 282

(red, blue, and gray nodes, respectively). In epidemiology as 283

well as information diffusion theory, there exist two main 284

types of notions that describe the state of nodes in a net- 285

work: 1) susceptible, infected, and recovered model (SIR) 286

(Kermack and McKendrick in 1927); and 2) susceptible, 287
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Fig. 1. Random network experiment 1: k = 4 and b/c = 2. (a) Initial setting. After (b) 2500 iterations and (c) 5000 iterations.

Algorithm 1 Node Update Algorithm
Require: G: Graph
Require: B: Set of Cooperator Nodes (Blue)
Require: R: Set of Defector Nodes (Red)
Require: Gr: Set of Neutral Nodes (Gray)
1: procedure UPDATENODE(G,B , R, Gr )
2: SB ← 0 � Blue Fitness Sum
3: SR ← 0 � Red Fitness Sum
4: v, V ← randomlychoose(G, B, R, Gr )
5: for v̂ ∈ V do
6: fv̂ ← calculatefitness(G, v̂, B, R)
7: if v̂ ∈ B then
8: SB ← SB + fv̂
9: else if v̂ ∈ R then

10: SR ← SR + fv̂
11: end if
12: end for
13: fv ← calculatefitness(G, v, B, R)
14: if v ∈ B then
15: SB ← SB + fv
16: else if v ∈ R then
17: SR ← SR + fv
18: end if
19: if SB > SR then
20: B ← B ∪ v
21: else if SB < SR then
22: R← R ∪ v
23: end if
24: return v
25: end procedure

infected, susceptible (SIS) model. In the SIR model, a node288

can be susceptible, infected, or recovered without ever getting289

infected again. In the SIS model, however, a node can be290

reinfected. With this analogy, a susceptible, hence neutral291

node, can be infected or misinformed and become a spreader.292

It can be recovered with correct information to become a293

corrector. In this work, we chose the SIS model; thus, it is294

possible that a node can change its state from a gray node295

to a red or blue node, and a blue or red node can invert its296

position to become a red or blue node. To reflect this strategy,297

we need to accommodate two different strategies: 1) one for298

gray nodes to select a new position and 2) one for nodes with 299

an existing stance to change their type. The first corresponds to 300

a death-birth updating strategy where the fitness of the node to 301

be updated is not taken into consideration. The latter is when 302

a node updates its type based on its neighbors and its own 303

fitness. 304

We adopt the updating algorithm given as Algorithm 1. This 305

algorithm denotes a mix of death–birth and imitation updating 306

strategies. The algorithm is described as follows. During the 307

simulation, a node v is randomly selected to be updated, along 308

with its set of neighbors V . For each neighbor v̂ ∈ V , a fitness 309

value fv̂ is calculated and it is added to a cumulative sum; 310

SB for cooperators (blue) or SR for defectors (red), according 311

to the strategy (blue or red) of v̂ . Then, the fitness of the 312

selected node fv is calculated. After the addition of fv to the 313

cumulative sum of its original strategy, the strategy of v is 314

updated with strategy B or R with the larger cumulative sum 315

(SB or SR). 316

C. Simulations 317

In this section, to observe whether the misinformation game 318

described in this work is similar to the cooperation game, 319

we run various simulations. The particular point we are after is 320

the inequality of b/c > k. We want to see whether the graph is 321

to be dominated by misinformation when the inequality fails, 322

and whether correct information holds when the inequality is 323

met. 324

1) Random Regular Networks: To test with the changing 325

number of average neighbors, we choose to experiment with 326

random regular graphs. Furthermore, we apply a community 327

detection algorithm to create groups of nodes. These will serve 328

as the set of competing nodes over unassigned nodes. In all our 329

experiments, red nodes describe misinformers, and blue nodes 330

describe correctors. Gray nodes are not assigned. We also pay 331

attention to the sizes of the blue and red groups. We do not 332

want one group to have a larger upstart advantage over the 333

other. 334

In the first experiment, k is chosen as 4 and b/c is 2. Fig. 1 335

shows the state of the network, and we see that the misinformer 336

strategy increases its population over the cooperator strategy. 337

In the second experiment, k is chosen as 4 and b/c is 20. 338

We see that blue nodes end up with a slightly larger population 339

than the red nodes (Fig. 2). 340
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Fig. 2. Random network experiment 2: k = 4 and b/c = 20. (a) Initial setting. After (b) 2500 iterations and (c) 5000 iterations.

Fig. 3. Change of blue/red ratio during the simulation of random network
experiment with various benefit and cost values.

Fig. 3 shows the change of blue/red ratio over time for341

different values of benefit and cost when k = 4. According to342

the experiments, the dominance of cooperators is possible if343

b/c > k.344

2) Facebook Network: We also run simulations on a real345

data set based on a set of Facebook users published in [22]346

(around 4000 nodes, 80 000 edges). Similarly, we first choose347

two communities and label these as blue or red. Then we348

run the same algorithm. In this graph k = 43. In the first349

experiment with this data, we choose b/c = 5. The results in350

Fig. 4 show that there is red dominance.351

In the second experiment, we exaggerate the ratio of b/c352

to see its effect. Fig. 5 shows that the blue strategy dominates353

the red strategy with this setting.354

We repeat the experiment for various b/c combinations, and355

again, according to our observations, as shown in Fig. 6, the356

cooperators are favored if b/c > k.357

3) Strategy Dominance Probabilities: In evolution and evo-358

lutionary game theory, as well as in [12], the term fixation359

corresponds to the state of a network where a network is360

completely covered in one of the types of nodes. In our361

simulations, at this moment of our research, we use the “win”362

probability, which we obtain by the ratio of blue wins over363

red over a finite number of iterations. In Fig. 7(a), we show364

that the winning probability increases as b/c increases. The 365

graph shows data for small (N = 100), medium (N = 1000), 366

and large (N = 10 000) networks, each with 5N epochs and 367

50 iterations. k was chosen as 4. 368

4) Effect of Initial Node Distribution on the Dominance: 369

In our previous simulations, the initial network setting was 370

the random distribution of nodes. However, in real-world 371

scenarios, this may not be the case. In Fig. 7(b), we start the 372

network after calculating two same-sized clusters for opposing 373

sides using community detection where most of the network 374

is neutral. We use the Leuven method [23] for community 375

detection for its wide acceptance and accessibility. However, 376

more recent methods such as [24] and [25] could also be used. 377

Our initial results show that the win probability is dramatically 378

increased in this network structure. 379

In the community setting, the connectivity between the 380

clusters is low (local k is low) at the very beginning. Since 381

red nodes require blue nodes to benefit, initially, the spread 382

rate of red nodes is low; only when the connectivity between 383

red nodes and blue nodes is high (local k is high) then the red 384

nodes are advantageous. 385

D. Limitations of a Node-Level Game 386

Studying the misinformation game where the players are the 387

nodes within a social network may enable a better theoretical 388

understanding of how nodes change their strategies under an 389

evolutionary setting. On the other hand, establishing such 390

a game in contemporary social networks on the web in a 391

holistic manner is difficult. This is because the users are 392

actual people with different aspirations and have different 393

motives for using such networks, and they are exchanging 394

and influenced by different information simultaneously. There 395

may be individual benefit and cost values for each interaction 396

rather than static network-wide values for them. In addition, 397

determining benefit and cost as discrete variables that could 398

simulate or offer analogies for the real-life benefits and costs 399

of the said misinformation mechanism is also difficult; hence 400

as was in our study, it leads to making assumptions. 401

However, it may be beneficial to list some of the concepts 402

we considered for the values of benefit and cost while doing 403

the study and their limitations. One such example would be 404

to associate benefit with reputation. In this context, sending 405

correct information would yield some benefit in the form of 406
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Fig. 4. Facebook experiment: k = 43 and b/c = 5. (a) Initial setting. After (b) 10 000 iterations and (c) 20 000 iterations.

Fig. 5. Facebook experiment k = 43 and b/c = 70. (a) Initial setting. After (b) 10 000 iterations and (c) 20 000 iterations.

Fig. 6. Change of blue/red ratio during the simulation of Facebook network
with various benefit and cost values.

reputation, while cost means preparing such information. The407

problem with this is that it is not intuitive to represent the value408

of information in terms of reputation, and vice versa, so that409

we can calculate the payoff, not to mention the hardness of410

deciding what reputation is. It may be possible to associate411

the said cost with the expected loss of reputation if we ignore412

the value of information. Yet, it may be possible to incor-413

porate the value of information into the expected reputation.414

However, we would still need to differentiate between correct415

and false information.416

We showed that the average number of neighbors k is 417

indeed a factor in how the evolution of strategies among nodes 418

occurs. In addition, we showed through simulations that prior 419

predispositions such as existing communities (e.g., cliques or 420

clusters) would also indicate different evolution characteristics. 421

Prior studies on spatial evolutionary games also show such 422

results regarding the effects of network structure [26], [27]. 423

This motivates future work on a fine-grain analysis of the 424

effects of connectivity, such as the size and the number 425

of cliques, echo chambers, and types of relationships. For 426

instance, if the value of benefit and cost were dynamic, 427

as previously said, the feasibility of a partitioning algorithm 428

based on the node-wise values of b/c > k could be studied. 429

III. GAME BETWEEN NETWORK-LEVEL PLAYERS 430

In today’s OSNs, there exist intrinsic actors above the node 431

level, i.e., outside the network, with different motives such 432

as politics, advertisement, and reputation who try to spread 433

various information to affect people’s minds using various 434

techniques. One such technique is to control or influence a 435

set of nodes that serve for the benefit of the actor during an 436

information spread campaign. These nodes can be maintained 437

by real people (sometimes called trolls) or could be bot 438

accounts [28]. A vast amount of research exists on identifying 439

and mitigating fake accounts in OSNs, and a recent review is 440

provided by [29]. While dealing with misinformation through 441

means of identifying such ingenuine accounts provides relief 442

for the real people to be notified about such accounts and help 443

regulate the social network, the broader problem specification 444
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Fig. 7. Strategy dominance probabilities with different network sizes and b/c. Blue win probability with changing (a) b/c and (b) b/c, network partitioned
using community detection.

is mainly associated with the area of influence maximization445

which deals with identifying the parameters that lead to446

maximal influence for various agents over the nodes of social447

networks. Influence maximization has been identified as an448

NP-hard problem [30].449

Given a social network, which is a graph with nodes repre-450

senting users and edges (directed or undirected) representing451

a relationship (such as friendship, follow, connection), there is452

at least one player that controls or influences directly some of453

the nodes to start spreading some information. The scenario454

becomes misinformation propagation if the information spread455

falls into the misinformation category. The purpose of the456

player is to maximize the number of nodes affected.457

A. Mechanism Design458

We set the environment for the game to be the network.459

For the sake of simplicity, there exist two players, each given460

a set of randomly selected nodes. While player one spreads461

misinformation, the other player opposes the misinformation462

campaign. In each time step, each of the players utilizes463

one of the nodes as the seed for misinformation. As the464

propagation mechanism, we chose the SIR model. The reward465

for the players is the number of affected nodes after the466

game is ended. In this work, we utilize various well-known467

node selection algorithms and propose another one based468

on deep RL using the MADDPG algorithm. The nodes that469

are selected by the algorithms out of a randomly selected470

(same for each) set of nodes then are used in the information471

propagation game. Below, we describe the specifics of the472

baseline algorithms and the proposed method.473

1) Node-Centrality: Centrality is a measure of a node’s474

location in the network and is generally used to identify the475

importance of the node. There are various techniques for476

calculating the value, such as the number of in-degrees and477

out-degrees, eigenvector centrality, Katz-centrality, and others.478

In this work, we experimented with various node-centrality479

measures and opted for the degree-centrality method as we480

observed that the results of those measures appear to be quite 481

similar. 482

2) Page-Rank: Page-rank was introduced by the Google 483

search engine to find out the importance of web pages. Today 484

it has been modified and used in many areas, including social 485

network analysis as a measure of node importance. 486

3) Greedy: The greedy algorithm was proposed by [30]. 487

It takes a network with n nodes and computes the spread 488

value until it finds k nodes with maximal marginal spread. 489

Its complexity is O(kn) multiplied by the time required by 490

the spread. Theoretical guarantees exist, mentioning that the 491

algorithm achieves at least 63% of the spread resulting from 492

the optimal set. 493

4) Cost Effective Lazy Forward (CELF): CELF [31] is a 494

modification of the greedy algorithm that achieves the same 495

results with less computation using an optimization technique 496

called lazy-forwarding. 497

5) Proposed Method Based on MADDPG: We approach the 498

selection of nodes for misinformation or countering it from 499

an RL perspective. The problem statement is as follows: the 500

social network is an environment consisting of states, actions, 501

and rewards. At any point in time, the state s is a list of node 502

stances, the actions are a list of selected nodes, and the rewards 503

are the number of nodes affected by the actions. Is it possible 504

to learn a policy π that could maximize the expected reward 505

over time? (
∑

t E[rt |π]) (see Fig. 8). 506

An RL problem can often be described as a Markov decision 507

process (MDP), which contains the transition function that 508

encapsulates the state-to-state transition probabilities and the 509

reward function that outputs the value of the reward given the 510

current state. In such a context, the transition and the reward 511

functions can be thought of as the model of the environment 512

and provide a basis for a subset of RL algorithms called the 513

“model-based” algorithms which utilize the said model to find 514

an optimal policy that gives the maximum expected reward. 515

However, in some cases, the definition, the transition prob- 516

abilities, and the associated reward functions of an MDP are 517

unknown for various reasons, such as the complexity of the 518
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Fig. 8. RL problem over a social network.

environment or purely design choices. The RL algorithms that519

are specifically designed to learn in such environments are520

called the “model-free” RL algorithms. These do not utilize the521

transition and reward functions but rather often have a way to522

learn a value for the current state of the environment explicitly523

by interacting with the environment. This value function can524

then be used to determine a policy.525

Q-learning can be recognized as the starting point of such526

approaches that are based on trial-error; however, as the527

action/observation spaces grow exponentially with respect to528

the complexity of the environments, the need for deep neural529

layers introduced other methods such as deep Q-network530

(DQN) instead of keeping track of every action-state tuple [32]531

in a Q-table. There are also policy gradient-based algo-532

rithms [33] which are used with continuous action spaces533

where a policy is a parametric distribution, and these para-534

meters are adjusted using gradient descent. These algorithms535

led to actor–critic methods, deterministic policy gradient536

(DPG) algorithms [34], and an algorithm called deep DPG537

(DDPG) [35]. Two possible problems related to stability538

arise in the use of DPG algorithms. The first is related to539

the method being “on-policy”—which means that the critic540

evaluates the value of actions based on the same policy—541

creating possible bias [36], by disabling the utilization of a542

stabilization mechanism such as the experience replay buffer543

in DQN. The second issue is the sample complexity problem544

that is related to the required number of samples for efficient545

learning [37], [38]. In DDPG, there is a single agent with546

actor and critic networks where the actor-network chooses an547

action based on the state of the agent, and the critic network548

determines the value of that selection. To reduce the previously549

stated stability problems, DDPG first uses an experience replay550

buffer to store past transitions to operate “off-policy.” Second,551

it employs target networks associated with the actor and critic552

networks combined with a soft-update mechanism to increase553

stability. [39] iterates the possible failures and problems in554

DDPG that may result in poor learning.555

MADDPG [40] was offered as an extension to DDPG for556

multiple agents. In MADDPG, all agents again have their actor557

TABLE IV

HYPER-PARAMETERS FOR THE MADDPG ARCHITECTURE

TABLE V

DATA SETS

and critic networks; however, critic networks have full access 558

to the environment. In addition, MADDPG utilizes a mecha- 559

nism called the policy ensembles for more robustness, along 560

with the inherited mechanisms from DDPG. Instead of relying 561

on a single policy per agent, an ensemble of policies exists to 562

sample from. In this work, we chose MADDPG as it reportedly 563

outperformed various other methods [40] previously, and it 564

supports continuous action spaces in multiagent environments. 565

Also, the agents can see the actions of other agents (even if 566

partially), which is suitable for the scenario in the scope of 567

this work. 568

The MADDPG architecture is comprised of actor and critic 569

networks along with their target networks. The environment 570

is the set of n nodes, and the observations are the states 571

of the nodes. Each node can have one of the three states, 572

infected, neutral, or recovered (i.e., under-misinformation, 573

neutral, or correctly informed). We set up the network to 574

take the n node states as input, and the number of outputs 575

is set out as the number of seed nodes s. The outputs are 576

continuous values and are sorted at the end. The network 577

chooses the output with the largest value in a sense. The 578

other methods are also given the seed s nodes as the input 579

and choose a subset of k nodes to be the originator nodes. 580

This means that CELF, for instance, which is an algorithm 581

that selects the best nodes in the network, is now modified to 582

select the k best nodes from a subset of s nodes. This could 583

potentially undermine the theoretical guarantees mentioned 584

earlier. However, in real networks, the actors cannot choose 585

nodes at will from the entire network but have to work with 586

what they have. Nonetheless, the brute force algorithm still 587

requires s Pk = s!/(s − k)! number of cascades. 588

The hyper-parameters for the MADDPG architecture are 589

given in Table IV. 590

B. Experimental Results 591

In our experiments, we use four fairly large networks, 592

two from Facebook, one from Twitter, and one from the 593

Epinions.com dataset. The details are given in Table V. In our 594

experiments, we randomly select s = 100 nodes per game 595

as the pool for selection for the algorithms. The algorithms 596
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Fig. 9. Agent 1—cumulative spread.

Fig. 10. Agent 1—spread at each step.

then select top k = 20 nodes as originators. We then run597

one spread iteration per originator node and observe the total598

spread. We continue until all k nodes are exhausted. The599

spread dynamic is chosen as SIR, and we utilize the following600

transitions probabilities: P(I |S) = 0.02, P(R|I ) = 0.01,601

P(R|S) = 0.01.602

During the training, we incorporated two mechanisms for603

improving the agent networks. The first one is to introduce604

noise to facilitate learning. We found that the addition of noise605

is critical for exploration. While experimenting with various606

noise mechanisms, we decided on a noise function based607

on an Ornstein–Uhlenbeck process, also called the Vasicek608

model (6). The first part defines the drift over X where609

|X | = s. μ defines the long-term mean, and θ is the mean610

reversion speed. The second part dWt is the discrete form of611

a Wiener process (7) at time step dt , where W is a random612

variable between [0, T ] and σ is the scale of randomness, i.e.,613

volatility. Given W0 = 0; for 0 < s < t < u < v < T ,614

Wt −Ws and Wv −Wu are independent increments and these615

increments follow a Gaussian N distribution with zero mean616

and unit variance. The noise, then, is sampled at time step t617

and added as Xt + d Xt618

d Xt = θ(μ− Xt)dt + σdWt (6)619

dWt ∼
√

dt N(0, 1). (7)620

The second improvement is to decide when to save check-621

points during the training by using a sliding window of size k622

for the past rewards. Here, there were many available options,623

such as sum, mean, rolling sum, etc., but we used the area 624

under the curve (AUC). If the window has a larger AUC than 625

the previous best, we save the checkpoint. 626

We report the results of Agent 1—who tries to maximize the 627

spread of misinformation, and Agent 2—who tries to minimize 628

it. We experimented with various combinations of s and k, 629

and as the results were similar, we only report the results in 630

the mentioned setting. The MADDPG agents were trained a 631

maximum of 1000 times per game. We played 100 games 632

for the results. The results are given as the mean curves and 633

the 95% confidence interval was also plotted. We omitted the 634

results for the greedy algorithm as the results coincide with 635

the CELF algorithm, as previously expected. 636

Fig. 9 contains the results for Agent 1 and the cumulative 637

spread. The results show that the agent effectively learns the 638

set of influential nodes as compared to other algorithms, and 639

even outperforms an established algorithm—CELF in most 640

cases. Fig. 10 gives the spread at each step. Figs. 11 and 641

12 give the cumulative and step-by-step spreads of Agent 2, 642

respectively. The results are similar. We see that the improve- 643

ment experienced by Agent 1 is also experienced by Agent 2. 644

We see that the undirected networks show different charac- 645

teristics than the directed ones. For directed graphs diffusion 646

happens much faster considering the number of nodes spread. 647

This may be due to the size difference between those networks 648

and connectivity (e.g., the average number of neighbors) 649

inside the network. We also notice that the spread amount 650

for Agent 2 is around half of Agent 1 for directed graphs, 651

which is expected as we set up the transition probabilities 652
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Fig. 11. Agent 2—cumulative spread.

Fig. 12. Agent 2—spread at each step.

of the SIR model that way. However, Agent 2 seems less653

successful in directed graphs—Epinions and Twitter—than the654

undirected graphs, the cumulative spread not reaching half655

of Agent 1 for these networks. It should also be noted that656

the classical methods—centrality and page-rank—still seem657

practical choices for node selection tasks.658

IV. DISCUSSION659

One of the main issues of using a deep neural network is660

the interpretability of results, i.e., making sense of its choices.661

This also remains an issue in our work to be explored in the662

future.663

In this work, we did not utilize any node represen-664

tation techniques such as an adjacency matrix, convolu-665

tionary graphs nodes or a learned representation such as666

node2vec [44] or a network representation scheme such as667

averaging over node2vec embeddings, DeepWalk [45] or668

anonymous walks [46]. This situation creates two immediate669

limitations. First, it takes longer to train the network if we670

do not provide the node representations. Second, the trained671

agents cannot be generalized/transferred to work for other672

social networks but instead work for the trained network only.673

However, there are also opportunities in the approach. As the674

agents learn from the bare states of the nodes, the resulting675

actions could be used as embeddings—a new vectorized rep-676

resentation for the network states and the ranked significance677

of nodes. These embeddings can be used in various research678

tasks in different areas, such as the vaccination problem, node-679

blocking, cloud computing, etc.680

V. RELATED WORK 681

Misinformation has been studied vastly from historical [47], 682

[48], political [49], sociological [18], [50], medical [51], 683

[52], psychological [53] and computer science perspectives. 684

Although the latter will also be our perspective, the other 685

aspects possibly have profound effects on how computer 686

science research on the matter unfolds as well, as shown 687

in [54]. However, the link between other perspectives with 688

computer science is yet to be thoroughly investigated. 689

From a computer science perspective, the research is 690

mainly focused on how the problem and the concept of 691

misinformation are defined [55]; analyzing how online mis- 692

information spreads [18], [56], detecting and stopping its 693

propagation [52], [57], [58]. In this work, we propose a model 694

for misinformation propagation in social networks conforming 695

to a game-theoretic model. Information diffusion on graphs 696

has been studied using game-theoretic models previously. 697

In [59], a framework based on evolutionary game-theoretic 698

models on graphs has been proposed and tested on various 699

synthetic and real networks. Yang et al. [60] propose and 700

analyze an information spread model based on the diffu- 701

sion of competitive information on graphs. The diffusion of 702

rumor and misinformation based on game-theoretic models has 703

been studied recently as well. Kumar and Geethakumari [61] 704

create a model for misinformation spread. Their approach 705

is different from ours in that they approach cooperation as 706

a means to spread misinformation, which is the opposite 707

of our approach. Li et al. [62] describe an evolutionary 708

game with a punishment mechanism and a probabilistic 709
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function to update node strategies. Xiao et al. [63] intro-710

duce internal and external factors and use them in a model711

of rumor propagation under a rumor/anti-rumor setting.712

Askarizadeh et al. [64], [65] explore an evolutionary model713

incorporating factors that affect rumor propagation and its714

control.715

In addition, most of the systems that argue to successfully716

identify and stop misinformation from propagating record a717

time delay. This may indicate, from the attackers’ perspective,718

that the damage would already be enough to influence as many719

people [66]. Hence, a preventive rather than a detection-based720

method may be more effective in defending against the721

problem. It is reported that large social network companies722

employ fake news and troll account detection techniques [67];723

however, it is arguable that these platforms remain to be724

the top sources of misinformation as there is continuous725

research on these platforms [55]. In addition, due to their726

commercial and centralized setups, such platforms are unlikely727

to deliver transparency and objectiveness by being able to728

show interactions as is without incorporating algorithms that729

affect how the interactions are stored, distributed, and shown730

to people.731

Manually identifying “fake news” has also been a motive732

for some organizations to create awareness. However, as these733

organizations curate content with manual labor most of the734

time, it is hard for them to keep track of emerging news stories735

and reach the level of breadth to cover the entire news ecosys-736

tem. In addition, their maintenance and development are done737

solely by a group of certain people, i.e., they are centralized,738

and most of them cannot guarantee transparency and prevent739

manipulation, for instance, in the form of cherry-picking in740

favor of some party.741

VI. CONCLUSION742

In this work, we tackled the problem of misinforma-743

tion propagation in OSNs from a game perspective. First,744

we approached the problem from the node-level point of view,745

where nodes were the actual players. We illustrated that the746

misinformation game constructed as a cooperative game on747

graphs displays the same characteristics that were explored in748

the literature. On the other hand, it has practical drawbacks,749

such as determining real values for variables such as benefit750

and cost described within the game dynamics. On the other751

hand, a more practical approach is possible with network-752

level players. We showed that a deep RL algorithm based753

on MADDPG can select an influential set of nodes in terms754

of misinformation propagation, and it gives promising results755

against various well-known algorithms such as CELF, page-756

rank, and node-centrality.757

In future work, the explainability of the selections by the758

neural nets of RL agents could be studied to understand and759

implement better defense scenarios to stop misinformation760

dissemination. In addition, the behavior of the RL agents could761

be investigated in different types of networks and different762

tasks, domains, and different spread characteristics that are763

associated with the applications of node importance such as764

epidemiology, vaccination, cloud computing, and the Internet765

of Things.766
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