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ABSTRACT

CODE DESIGN FOR ENERGY HARVESTING AND
JOINT ENERGY AND INFORMATION TRANSFER

USING RUN LENGTH LIMITED CODES

Mert Özateş

M.S. in Electrical and Electronics Engineering

Advisor: Tolga Mete Duman

July 2018

Energy harvesting wireless networks and networks that benefit from wireless

energy transfer have become popular in the last decade. In these networks, the

users can obtain the required energy for transmission from an external source,

which eliminates the need of battery replacement. Therefore, such networks have

a high potential for applications in different areas including wireless sensor net-

works, wireless body networks and Internet of Things (IoT). While there have

been many advancements for energy harvesting communications and joint energy

and information transfer from information and communication theoretic perspec-

tives in the literature, these subjects have not been studied from a practical

coding and transmission point of view in depth.

With the above motivation, in this thesis, we propose a serially concatenated

coding scheme to communicate over binary energy harvesting communication

channels with additive white Gaussian noise (AWGN), and design explicit and

implementable codes for both long and short block lengths. Run length limited

(RLL) codes are used to induce the required nonuniform input distributions for

both cases. We employ low density parity check (LDPC) codes for long block

lengths, while for short block length designs, we utilize convolutional codes for

error correction. We consider different decoding approaches for the two cases,

i.e., an iterative decoder is used for the former while Bahl-Cocke-Jelinek-Raviv

(BCJR) algorithm over the product trellis of the convolutional and run length

limited codes is used for the latter. Also, by noticing that similar coding solutions

can be employed, we extend our work to joint energy and information transfer

for both scenarios. Numerical examples demonstrate that the newly optimized

codes with an inner RLL code are superior to the point-to-point optimal codes
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for AWGN channels for long block lengths when energy harvesting or joint energy

and information transfer is considered, and that, for the short block length case,

concatenated convolutional and RLL codes with higher minimum distances offer

excellent performance.

Keywords: Energy harvesting, run length limited codes, low density parity-check

codes, joint energy and information transfer, short block length codes, convolu-

tional codes.



ÖZET

ENERJİ HASADI VE ORTAK ENERJİ VE BİLGİ
TRANSFERİ İÇİN ÇALIŞMA UZUNLUĞU SINIRLI

KODLARI KULLANARAK KOD DİZAYNI

Mert Özateş

Elektrik ve Elektronik Mühendisliği, Yüksek Lisans

Tez Danışmanı: Tolga Mete Duman

Temmuz 2018

Enerji hasadı gerçekleştiren veya kablosuz enerji transferinden yararlanan kablo-

suz ağlar son yıllarda giderek popüler hale gelmektedir. Bu ağlarda kullanıcılar

iletim için gerekli enerjiyi dışarıdan bir kaynaktan elde ederler ve herhangi bir

batarya yenilenmesine gerek kalmaz. Dolayısıyla, bu ağlar kablosuz sensör ağları,

kablosuz beden ağları ve nesnelerin interneti dahil olmak üzere birçok alanda

uygulamalar için önemli bir potansiyel teşkil etmektedir. Enerji hasadı ve or-

tak enerji ve bilgi transferi konusunda bilgi kuramı ve iletişim yönünde birçok

gelişme olsa da, bu konular üzerinde pratik kodlama yönünde sınırlı sayıda çalışma

yapılmıştır.

Bu tezde, toplamsal beyaz Gaussian gürültülü (AWGN) ikili enerji hasadı

iletişim kanalları üzerinde haberleşme amacıyla seri sıralanmış bir kodlama şeması

öneriyoruz ve uzun ve kısa blok uzunluklarında açık ve uygulanabilir kodlar

dizayn ediyoruz. Uzun ve kısa kodların her ikisi için de gerekli doğrusal ol-

mayan girdi dağılımını elde etmek için çalışma uzunluğu sınırlı (RLL) kodları

kullanıyoruz. Blok uzunluğu yüksek kodlar için düşük yoğunluklu parite kontrol

(LDPC) kodları, kısa blok uzunluklu kodlar içinse kıvrımlı kodları dışsal hata

düzeltici kod olarak kullanıyoruz. Kodçözme yöntemi olarak yüksek blok uzun-

luklu kodlar için yinelemeli bir kodçözücü kullanırken, düşük blok uzunluklu kod-

larda kıvrımlı ve RLL kodların birleşimi için Bahl-Cocke-Jelinek-Raviv (BCJR)

algoritmasından yararlanıyoruz. Bunun yanında, enerji hasadı için yaptığımız

çalışmaları benzer kodlama şemalarının kullanılabilmesi sebebiyle ortak enerji

ve bilgi transferi konusunda genişletiyoruz. Sayısal örnekler yüksek blok uzun-

luklu kodlarda içsel bir RLL kodla beraber optimize edilen yeni kodların standart

AWGN kanalları için optimize edilmiş kodlara göre yüksek performans sağladığını,
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düşük blok uzunluklu kodlarda ise yüksek asgari uzunluğa sahip birleşik kıvrımlı

ve RLL kodların yüksek performans gösterdiğini göstermiştir.

Anahtar sözcükler : Enerji hasadı, düşük yoğunluklu parite kontrol kodları, ortak

enerji ve bilgi transferi, kısa blok uzunluklu kodlar, kıvrımlı kodlar.
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Chapter 1

Introduction

1.1 Overview

In energy harvesting wireless networks and networks that exploit wireless energy

transfer techniques, wireless devices can harvest energy from nature or man-made

sources (e.g., radio frequency (RF) signals) for their information transmission

and processing, which eliminates the requirement of excessive energy storage in

hardware and increases the network lifetime. Hence, such wireless networks have a

high potential for applications in various areas including wireless sensor networks,

wireless body networks and Internet of Things (IoT) [1], [2], and they have been

enjoying an upsurge of interest in recent years.

Energy harvesting communication systems and joint energy and information

transfer have been extensively studied from an information theoretic perspective

in the literature. For energy harvesting communications, capacity bounds for

different channel models including noiseless and additive white Gaussian noise

(AWGN) channels are computed for no battery, finite-sized battery and infinite-

sized battery cases [3, 4, 5, 6]. For joint energy and information transfer, Varshney

demonstrates that there is a natural trade-off between the transmitted energy and

the information rate, and there is a unique capacity achieving input distribution
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in [7]. Despite these information theoretic works, research considering practical

code design for energy harvesting communication systems and joint energy and

information transfer is limited, which motivates this thesis.

We consider design of practical codes based on a serially concatenated coding

scheme with an inner run length limited (RLL) code and an outer error correction

code for energy harvesting communication systems and joint energy and infor-

mation transfer. In both energy harvesting and joint energy and information

transfer, a nonuniform input distribution is required for optimal transmission.

On the other hand, classical linear block or convolutional codes induce a uniform

distribution of zeros and ones at the channel input, and they are not suitable for

direct use. Hence, in this thesis, we utilize RLL codes [8] to obtain the required

nonuniform input distribution for both scenarios. RLL codes are represented by

two parameters d and k, where d and k denote the allowable minimum and max-

imum number of zeros between consecutive ones, respectively, therefore they are

suitable to regulate the energy usage at the transmitter as well as power trans-

fer via RF signals. In the existing literature, RLL codes have been mostly used

for optical and magnetic recording for disk drives or visible light communica-

tions. However, here we consider their use as inner codes for our proposed coding

scheme.

1.2 Thesis Contributions

The main contribution of this thesis is design of explicit and implementable codes

to communicate over noisy binary energy harvesting systems and to transmit en-

ergy and information simultaneously. We propose a serially concatenated coding

scheme for energy harvesting communications for long block lengths, where an

inner RLL code generates the required nonuniform input distribution for optimal

transmission and an outer low density parity check (LDPC) code provides error

correction capabilities. At the receiver side, we employ an iterative decoder with

two decoding approaches with different complexities. The simplified approach

ignores the memory in the channel state while the improved decoding solution

2



exploits this memory by considering it jointly with the code trellis, i.e., via an ex-

tended trellis. For code design purposes, we fix the inner RLL code and optimize

the outer LDPC code using Extrinsic Information Transfer (EXIT) charts and a

random perturbation technique. Via numerical examples, we demonstrate that

the newly optimized codes with an inner RLL code outperform the off-the-shelf

codes (i.e., codes optimized for standard point-to-point (P2P) AWGN channels)

and improved decoding solution is superior to the simplified one.

We also extend our work for energy harvesting communications to joint en-

ergy and information transfer since it is a highly related problem that can exploit

similar coding approaches. In joint energy and information transfer, the purpose

is to increase the transmitted power levels and information rates at the same

time, however, there is a natural trade-off between the two. We consider on-off

signalling to model this trade-off and exploit the serially concatenated coding

scheme that we propose for energy harvesting communications with small modi-

fications. We design the outer LDPC code using techniques as in the energy har-

vesting case, and demonstrate via numerical examples that the newly designed

codes are superior to the P2P optimal codes.

In our setup, nonlinear trellis codes (NLTCs) can also be used as inner codes

as done in [9] and [10]. However, in this thesis, we utilize the RLL codes as they

allow for higher transmission rates for both energy harvesting and joint energy

and information transfer. We also note that the results in this thesis are based

on 2-state RLL codes, which are very simple compared to the existing solutions.

We also address short block length code designs for energy harvesting commu-

nications and joint energy and information transfer with the motivation that long

block length codes are not suitable for communication systems with stringent de-

lay and complexity constraints. In this case, we propose a serially concatenated

coding scheme with an inner RLL and an outer convolutional code, and describe

the concatenated code by a product trellis. We perform decoding via Bahl-Cocke-

Jelinek-Raviv (BCJR) algorithm over the product trellis at the receiver side, and

aim to maximize the minimum free distance of the concatenated code for code

design purposes. Through several numerical examples, we demonstrate that the

3



concatenated convolutional and RLL codes with higher minimum distances offer

superior performance.

1.3 Thesis Outline

The rest of the thesis is organized as follows. In Chapter 2, the existing literature

about the capacity bounds and practical coding approaches for energy harvesting

communications and joint wireless energy and information transfer are reviewed.

In Chapter 3, we describe the proposed coding scheme for energy harvesting

communication systems, and design explicit and implementable codes for that

scenario. In Chapter 4, we extend our work to code design for joint energy and

information transfer. In Chapter 5, we focus on design of short block length codes

for the two scenarios under consideration. We conclude the thesis and highlight

some future research directions in Chapter 6.

4



Chapter 2

Literature Review

In this chapter, we review the prior works that approach energy harvesting com-

munication systems and joint energy and information transfer from information

and communication theoretic perspectives, and the previous literature that de-

velop practical coding solutions for these scenarios.

The chapter is organized as follows. In Sections 2.1 and 2.2, prior works

on energy harvesting communication systems and joint energy and information

transfer are reviewed, respectively. The existing literature on practical coding

solutions to these problems is the focus of Section 2.3, and finally the chapter is

concluded in Section 2.4.
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2.1 Energy Harvesting Communication Sys-

tems

In energy harvesting communication systems, the transmitter obtains the re-

quired energy for transmission from an external source [3], as depicted in Figure

2.1. For each channel use, the transmitter transmits a symbol and harvests a

unit of energy with probability q, which denotes the energy arrival probability.

Harvested energy is used for transmission or it is stored in a finite-sized battery

(if a battery is equipped) if the transmission requires no energy. Transmitted

symbol is constrained by the available energy, hence a zero symbol is transmitted

regardless of what the input bit is in the case of energy shortage.

Encoder

Ei

Mi Xi Channel
Yi Decoder

Mi

^

Figure 2.1: Block diagram of an energy harvesting communication system.

In most of the prior works about energy harvesting communication systems,

the main purpose is to calculate bounds on the channel capacity and to derive

optimal transmission strategies for different scenarios. For the simplest case, if the

energy state of the transmitter is independent and identically distributed (i.i.d.)

in time, Shannon strategy [11] is proved to be optimal for transmission. However,

presence of battery introduces memory into the system. Namely, the energy state

depends on the previous state, the current channel input and the battery size in

addition to the harvested energy at the current time instant, making the problem

highly complicated.

Energy harvesting communications over a noiseless channel with a unit-sized

battery is studied in [3]. In order to exploit the memory in the channel state, the
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binary energy harvesting channel (BEHC) is modelled as an equivalent timing

channel. In that model, after sending a “1” symbol, the encoder waits until a

unit of energy is harvested to send another “1”, and this idle time is denoted as

Zk, which has a geometric distribution with parameter q. After a unit of energy

is harvested, the encoder waits a number of channel uses Vk according to Zk

and then transmits a “1”. Encoder observes the idle time and the past channel

inputs to calculate the state sequence, and decoder observes Tk, which denotes

the number of channel uses between the (k − 1)-th moment that the channel

output Y = 1 and the k-th moment that Y = 1 to calculate the output sequence.

The capacity of this channel is equal to the capacity of the BEHC, and it can be

calculated as follows:

CT = sup
p(u),v(u,z)

I(U ;T )

E[T ]
(2.1)

where U is an auxiliary random variable with a countably infinite support, p(u)

is the probability mass function of U and v(u, z) is a mapping from the auxiliary

random variable U and state Z to the channel input V . In order to calculate the

capacity, optimal distribution for U should be found, which makes the problem

complicated. Therefore, two upper bounds for the capacity of BEHC are derived

in [3]. The first one is a genie upper bound, which assumes the timing channel

state Zk is known at the receiver, resulting in

Cgenie
UB = max

p∈[0,1]

qH2(p)

q + p(1− q)
(2.2)

where H2(p) is the binary entropy function and p is the parameter of geometric

random variable V , which denotes the number of channel inputs that encoder

waits to transmit a “1” after a unit of energy is harvested.

The second upper bound is called the state leakage upper bound, which is

obtained by measuring the minimum information carried by m-letter sequence

7



Tm about Zm, which can be calculated as:

C leakage
UB = sup

pT (t)∈P

H(T )−
∞∑
t=1

H2((1−q)t)
1−(1−q)t

pT (t)

E[T ]
(2.3)

where q is the energy arrival probability, H2(.) is the binary entropy function, T

represents the differences between the channel uses for which “1”s are observed

at the output of the channel, pT (t) is the probability density function of T , and

P is given by

P =

{
pT (t)

∣∣∣∣ s∑
t=1

pT (t) ≤ 1− (1− q)s, s = 1, 2, ..

}
. (2.4)

Two extreme cases, i.e., infinite and no battery cases, are also studied in [3].

For the infinite-sized battery case, the capacity is given by

CIS =

{
H2(q) q ≤ 1

2
,

1 q > 1
2
.

(2.5)

If there is no energy storage, the harvest first model is considered rather than

the transmit first model. In the harvest first model, energy is harvested and then

the input symbol is transmitted through a BEHC. In this case, channel input

Xi = 1 is allowed only if a unit of energy is harvested for that channel use, i.e.,

Ei = 1. Then, the channel capacity for this case can be calculated as follows:

CZS = max
p
H2(pq)− pH2(q). (2.6)

Several capacity results and achievable rates are depicted in Figure 2.2.
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Figure 2.2: Capacity results for zero battery and infinite battery cases and achiev-

able rates with unit battery.

Energy harvesting systems communicating over an AWGN channel with an

infinite-sized battery is studied in [4]. In that work, a scalar AWGN channel is

considered with input X, output Y and Gaussian noise with zero mean and unit

variance. An external source supplies Ei units of energy at each channel use and

the unused energy is stored in a battery with size Emax = ∞. Presence of the

infinite-sized battery makes the probability of overflow zero. At the i-th channel

use, Ei units of energy is supplied to the battery and X2
i amount of energy is

dissipated from it, where Xi represents the channel input. Hence, the power

constraint on channel input symbols is as follows:

k∑
i=1

X2
i ≤

k∑
i=1

Ei, k = 1, ..., n. (2.7)
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In a standard AWGN channel an independent distribution of input symbols

achieves the channel capacity as pointed out in [12]. However, the power con-

straint in (2.6) on the input symbols makes channel inputs dependent to past

channel inputs, hence the problem requires finding the capacity of channels with

memory. An upper bound on the capacity of this channel is equal to the capacity

of a classical AWGN channel with an average power constraint P equalling the

energy arrival rate, which can be calculated as

C =
1

2
log(1 + P ). (2.8)

Since the battery is infinite-sized, this capacity can be achieved by the two

transmission policies proposed in [4], which are save-and-transmit and best-effort-

transmit schemes. In the save-and-transmit scheme, the main idea is splitting the

transmission into two phases, collecting sufficient amount of energy in the first

phase (saving phase), and then transmitting data in the second phase (transmit-

ting phase). By following the notation in [4], if the length of the saving phase is

h(n) channel uses, and the length of the transmitting phase is n− h(n) channel

uses, the AWGN channel capacity can be achieved by letting h(n) and n− h(n)

to go to infinity since an unbounded amount energy is stored in the saving phase

making the probability of energy shortage in the transmitting phase zero. In the

best-effort-transmit scheme, there is no saving phase and data is transmitted di-

rectly. If there is available energy in the battery, the corresponding code symbol

is sent and a zero symbol is sent otherwise. The number of mismatches between

the codebook and the transmitted data due to energy shortage is finite from the

strong law of large numbers, hence the classical AWGN channel capacity in (2.8)

can be achieved.

Authors of [5] study communication over the classical AWGN channel where

the channel input is amplitude-constrained and stochastically varies at each chan-

nel use, which is equivalent to the problem of binary energy harvesting communi-

cations over an AWGN channel with no battery for energy storage. Prior to that
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work, Smith determined the capacity achieving input distribution for a static am-

plitude constrained AWGN channel in [13] and Shannon derived the capacity of

a state-dependent channel whose state information is available only at the trans-

mitter in [11]. Authors of [5] combine these two prior works, and they obtain

the capacity of a time-varying amplitude constrained channel by the Shannon

strategy and they optimize the input distribution of the extended alphabet chan-

nel (extended according to the amplitude constraints). Their results show that

the capacity of AWGN channels with time-varying input amplitude constraints

is given by

C = max
F∈Ω

IF (T ;Y ), (2.9)

where T = [T1, T2] is a random vector that generates the codewords. T1 and

T2 have support sets [−a1, a1] and [−a2, a2] with joint cumulative distribution

function F . Authors demonstrate that the input distribution that achieves this

capacity has a support set of finite cardinality.

If the battery is finite-sized, the problem of calculating the exact channel ca-

pacity is still open. However, bounds on the channel capacity for this case are

studied in [6]. There is also a recent paper [14] that covers the capacity analysis

of a discrete energy harvesting channel with a finite-sized battery using a general

framework.

Energy harvesting wireless sensor networks where one sensor communicates

with a single receiver are studied in [15]. In that work, the energy harvesting

sensor performs source acquisition and data transmission over a time-varying

channel. At each time slot k, Ek amount of energy is harvested and stored in an

infinite-sized battery. After that, Xk number of bits are generated by the source

encoder. Number of generated bits depends on the distortion level and energy per

channel use allocated to source encoder and observation state. This bit stream is

buffered into a first-input-first-output (FIFO) queue first and then transmitted

through a fading channel, which is driven by a stationary ergodic process Hk.
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The main problem considered in [15] is finding the optimal policy for distribu-

tion of the harvested energy by the sensor between source acquisition and data

transmission. An energy management unit (EMU) decides the allocation of the

energy to source acquisition and data transmission based on the statistics of en-

ergy harvesting, data queue, fading channel SNR and measurement SNR, which

is a characterization of source acquisition process. Performance of the system is

evaluated according to the stability of the data queue under an average distor-

tion constraint at the receiver, and it is demonstrated that the optimal policies

require dividing the battery into two subcomponents which are used for source

acquisition and data transmission. Allocating the available energy to these two

subcomponents allows separate optimization of source acquisition and data trans-

mission processes. Suboptimal strategies where either source acquisition or data

transmission is optimized are also considered, and numerical results show that

increasing the variance of energy harvesting process increases the distortion at

the receiver and a joint optimization of source acquisition and data transmission

rather than optimization of one of them provides significant gains.

Energy harvesting multi-hop sensor networks are studied in [16], where the

correlations among different sensor measurements are exploited via distributed

source coding. An online learning algorithm based on Lyapunov optimization

with weight perturbation is proposed to perform joint optimization of source

coding and data transmission. Numerical examples demonstrate that proposed

strategy approaches optimality in terms of average network cost. Communica-

tion over a fading channel with an energy harvesting sensor is studied in [17],

where a delay constraint is also imposed on the system and optimal strategies for

compression and transmission are derived.

Design and analysis of the conventional medium access control (MAC) proto-

cols including time-division multiple-access (TDMA), framed-ALOHA (FA) and

dynamic-FA (DFA) for energy harvesting wireless sensor networks are studied in

[18]. In the communication scheme considered, there are multiple energy har-

vesting devices transmitting their data in periodic inventory rounds (IR). The

transmitted data is collected at a fusion center (FC), and energy harvesting is per-

formed between two successive IRs. Two metrics are introduced and derived for

12



each MAC protocol to measure the performance of the protocols, which demon-

strate delivery efficiency and time efficiency. In addition, a backlog estimation

algorithm is proposed for the DFA protocol. Detailed information about the DFA

protocol can also be found in [19].

In addition to the above, optimal transmission and scheduling policies for sev-

eral scenarios in energy harvesting communication systems are studied in the

literature. Optimal power allocation policies for throughput maximization where

causal state information (SI) or full SI of energy harvesting channel is available

is studied in [20], and a dynamic programming approach is considered to solve

the optimization problem. Optimal transmission policies for communication over

a fading channel are studied in [21]. A directional water-filling algorithm is pro-

posed to maximize the throughput and minimize the completion time of com-

munication session subject to the finite-sized battery and causality constraints,

which means that energy flow can only be from past to future and cannot ex-

ceed the battery size. An optimal scheduling policy that represents an iterative

block coordinate ascent algorithm based on convex optimization for a multi-input

multi-output (MIMO) multi-access channel is proposed in [22]. Authors of [23]

consider the scenario with data packets having different importance values. The

transmitter has to decide whether it should transmit the packet or not by con-

sidering the importance of the packet, the channel state and harvested energy.

In that work, two approaches are proposed to solve the transmission problem;

one is based on a function approximation and the other one uses reinforcement

learning. Energy harvesting communications where the knowledge of the amount

of available energy in the subsequent time instance is not available and only the

statistical distribution of energy arrivals is known is examined in [24]. Authors of

[25] consider remote estimation with an energy harvesting sensor and derive the

optimal power allocation strategies for that scenario. Also, performance bounds

of the considered scenario in [25] are derived in [26]. Optimal offline and online

transmission policies with energy harvesting relays to maximize the end-to-end

system throughput subject to the data buffer size and energy storage constraints

are studied in [27]. Authors of [28] propose an energy-aware transmission pol-

icy with the objective of maximizing long-term average throughput where the
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finite-sized battery usage is constrained, and they demonstrate that the proposed

strategy is asymptotically optimal if the battery has sufficient capacity.

Large scale networks, particularly mobile ad hoc networks (MANETs) and cel-

lular networks with energy harvesting are also considered in a few works in the

literature. MANETs are studied in [29], where the transmitters are distributed

according to a homogenous Poisson point process and transmission power is op-

timized with the constraints on the throughput and outage probability. On the

other hand, authors of [30] study cellular networks, by assuming transmitters are

distributed as in [29] and modelling the energy field using stochastic geometry to

design large-scale energy harvesting wireless networks.

2.2 Joint Energy and Information Transfer

Simultaneous energy and information transmission is a highly related problem

to energy harvesting. Here the purpose is to increase the transmitted energy

levels as well as to achieve reliable communication. On the other hand, there is

a natural trade-off between the transmitted energy and information, for which

the first explicit formulation is provided in [7]. The fact emphasized in [7] is that

to maximize the transmitted energy, the most energetic symbol should be sent

all the time and to maximize the transmitted information, a different capacity-

achieving input distribution should be used. These two objectives can be stated as

an optimization problem where information rate is maximized under a minimum

received energy constraint. If Xn
1 = (X1,X2,...,Xn) denotes the channel input, Y n

1

= (Y1,Y2,...,Yn) denotes the channel output and B denotes the minimum received

energy, the n-th capacity-energy function is computed as follows:

Cn(B) = max
Xn

1 :E[b(Y n1 )]≥nB
I(Xn

1 ;Y n
1 ). (2.10)

Here, the input vector Xn
1 that satisfies the condition E[b(Y n

1 )] ≥ nB is called

a B-admissible test source and the maximization is over the B-admissible test
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sources. Then, the capacity-energy function of the channel is given by

C(B) = sup
n

1

n
Cn(B). (2.11)

A coding theorem, which provides an operational significance to (2.12) can be

proven. Some properties of the capacity-energy function have also been developed

in [7].

Interactive exchange of energy and information is studied in [31]. In that work,

a system model that includes two nodes communicating with on-off signalling is

considered. At each channel use k, node j transmits an energy-carrying symbol

(on-symbol) Xj,k = 1 or an off-symbol (Xj,k = 0). Transmission of an “on”

symbol costs one unit of energy to the sender node and transmission of an “off”

symbol requires no energy use. Therefore, a node can transmit a zero only if

there is no available energy in that node. Since the channel is noiseless, the

transmitted symbol is directly received from the recipient node. Transmission of

an “on” symbol implies that one unit of energy is transferred from the sender to

the recipient, therefore the energy state of node j evolves as:

U1,k = (U1,k−1 −X1,k−1) +X2,k−1 (2.12)

where the total number of energy units in the two nodes is set to a finite number U ,

the initial state is set as U1,1 = u1,1 ≤ U , and in the channel use k, U2,k = U−U1,k.

Therefore, the coding strategies that aim to maximize the information rate alone

are not optimal for this scheme since the energy is constrained and the energy flow

should jointly be considered with the information flow for optimal transmission.

The coding strategy proposed in [31] is based on codebook multiplexing. That

is, each node constructs U codebooks and the codebooks used for transmission

are chosen according to the energy state of the node. Namely, if a node has

a large amount of energy, a codebook that includes a larger fraction of ones

is utilized, and if the amount of the available energy units is low, a codebook
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with a larger fraction of zeros is used. If the construction of the codebooks

is independent, an inner capacity bound can be achieved and if the codebooks

are jointly constructed, outer bounds on the capacity are obtained. Simulation

results demonstrate that using adaptive codebooks that consider energy state of

the nodes provide significant gains over random codebooks in terms of achievable

sum-rates. Extensions to the stochastic evolution of energy harvesting at the

recipient node and transmission over noisy channels can also be found in [31].

Simultaneous wireless information and power transfer (SWIPT) is also stud-

ied for various models in the literature. The fundamental trade-off between

the transmitted energy and information rate formulated in [7] is studied for a

frequency-selective AWGN channel in [32]. Practical receiver implementations

including separate and integrated information and energy receivers along with

rate-energy characterizations are studied in [33], and optimal transmission strate-

gies to achieve different rate-energy trade-offs are derived for both implementa-

tions. Authors of [33] also consider the same framework for MIMO broadcast

channels in [34]. Optimal beamforming design for a multiuser multiple-input

single-output (MISO) SWIPT system is studied with the purpose of maximizing

weighted sum-power at the energy harvesting receivers subject to a signal-to-

interference-and-noise ratio (SINR) constraint at information decoding receivers

in [35]. Authors of [36] consider a resource allocation problem for a SWIPT or-

thogonal frequency-division multiple access (OFDMA) system and they propose

a non-linear energy harvesting model in order to increase the power conversion

efficiency at the receiver. Linear precoder design with the purpose of minimiz-

ing the minimum mean-square error (MMSE) for the SWIPT systems employing

transmitters with hardware impairments is investigated in [37]. The case of op-

portunistic energy harvesting, where the receiver can perform either information

decoding (ID) or energy harvesting (EH) at each time instance is studied in [38],

and optimal mode switching policies between ID and EH are derived for flat-

fading channels. Two-user MIMO interference channels are studied in [39] in the

same context, and optimal transmission strategies are presented. Various power

allocation strategies for a wireless cooperative network communicating over a re-

lay are proposed in [40]. Linear precoder design for MIMO interference channels
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is studied in [41] with the objective of minimizing the average mean-square error

under a harvested energy constraint at the receiver. Authors of [42] consider a

Rician fading channel for the MIMO setup and propose two different strategies

with the same purpose in [41]. MIMO wiretap channel is considered in [43], where

the objective is to design the transmit covariance matrix to maximize the secrecy

rate with the constraint on the harvested energy. As a very recent work, the

problem of joint mode switching (between information decoding and energy har-

vesting) and power allocation is studied in [44], where the purpose is to maximize

the harvested energy at the receiver under the constraints on the information rate

and transmit power.

2.3 Practical Coding Schemes for Energy Har-

vesting and SWIPT

Energy harvesting and simultaneous information and energy transfer are studied

from a communication theoretic perspective in a few recent papers as well. The

authors in [9] focus on practical code design for joint energy and information

transfer using on-off signalling over an AWGN channel. It is known that the

optimal input distribution to maximize the transmitted information is a uniform

distribution for the considered channel. However, in order to transmit more en-

ergy, a larger fraction of ones should be transmitted, hence a serially concatenated

coding scheme that consists of an inner nonlinear trellis code (NLTC) and outer

LDPC code is proposed. The inner NLTC is used to obtain the non-uniform input

distribution, and the outer LDPC code ensures error correction. At the receiver

side, an iterative decoding approach is considered, i.e., the receiver is divided into

two subblocks and decoding is performed by exchanging of the extrinsic LLRs of

the input symbols between these two subblocks.

In [9], the inner NLTC is designed with the goal of maximizing the mini-

mum Hamming distance between the codewords on the trellis while satisfying an
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average ones density in the codewords. In order to achieve this goal, set par-

titioning is performed to a selected subset of binary labels, for which minimum

pairwise Hamming distance is maximized first, and then groups of two pairs are

taken to maximize the minimum Hamming distance, and partitioning continues

in this manner. Resulting output labels are assigned to branches by exploiting

an extended Ungerboeck’s rule to complete the NLTC design. For the design of

the outer LDPC code, NLTC is fixed and EXIT chart analysis is utilized. Degree

distributions of the LDPC codes are optimized using the random perturbation al-

gorithm introduced in [45]. Simulation results demonstrate that optimized LDPC

codes for the inner NLTC provide significant gains in terms of the bit error rate

performance compared to both regular and irregular LDPC codes optimized for

AWGN channels.

Practical code design based on a serial concatenation of an inner NLTC and

an outer LDPC code to communicate over a binary energy harvesting channel

with AWGN is studied in [10]. In that work, the energy harvesting transmitter

includes a finite-sized battery and energy arrivals are modelled as a Bernoulli(q)

process. At the receiver side, an iterative decoder is employed with two decoding

approaches. The inner NLTC design and the outer LDPC code optimization are

performed with the same approach used in [9]. Numerical results demonstrate

the superiority of the designed codes compared to the reference schemes, and the

superiority of the proposed improved decoding method compared to the simplified

decoding approach.

Code design for joint information and energy transfer using constrained RLL

codes over a P2P communication link is studied in [49]. An RLL code is specified

with two parameters d and k, which states that the number of zeros between two

consecutive ones is at least d and at most k (the first and last sequences of zeros

can be shorter than d in length). A type-1 RLL code is defined in the same way

with a type-0 RLL code, however, d and k denote the number of ones between

consecutive zeros. The system model considered in [49] consists of a transmitter,

a P2P channel and a receiver. In the transmitter, the message sequence M is

encoded by an RLL encoder into the sequence Xn, for which Xi = 1 denotes an
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energy-carrying (“on”) symbol and Xi = 0 denotes an “off” symbol. In the point-

to-point channel, the energy is lost with a probability of p10. At the receiver side,

the received symbol is utilized for both decoding and energy harvesting. At the

channel use i, the symbol Yi is received; and, if Yi = 1, the energy of the received

symbol is stored in a supercapacitor. Energy utilization at the receiver is modelled

stochastically; if Zi = 1, a unit of energy is utilized from the supercapacitor or if

the supercapacitor is empty, from the battery. If the energy is received but not

used in the i-th channel use, i.e., Zi = 0, it is stored in a battery with size Bmax.

The energy contained in the battery is denoted as Bi and it evolves as:

Bi+1 = min(Bmax, (Bi + Yi − Zi)). (2.13)

Since the battery is finite-sized, overflow and underflow events occur. In the

case where the receiver harvests a unit of energy when the battery is full and

the harvested energy is not used, an overflow event occurs. A random process Oi

keeps track of the overflow events, Oi = 1 if Bi = Bmax, Yi = 1 and Zi = 0 and

Oi = 0 otherwise. Probability of an overflow event is defined as:

Pr(O) = lim
n→∞

sup
1

n

n∑
i=1

E[Oi]. (2.14)

An underflow event takes place if the battery is empty, no energy is harvested

and an energy unit is requested from the receiver. A random process Ui keeps

track of the underflow events, Ui = 1 if Bi = 0, Yi = 0 and Zi = 1 and Ui = 0

otherwise. Probability of an underflow event is defined as:

Pr(U) = lim
n→∞

sup
1

n

n∑
i=1

E[Ui]. (2.15)

The optimization problem in [49] is defined as minimizing the maximum un-

derflow or overflow probabilities with reliable communication at a fixed rate R.
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As a result, the code performance is evaluated according to the overflow and un-

derflow probabilities at the receiver. Performance comparison of unconstrained

codes and different RLL codes illustrates that by a proper choice of the RLL

code parameters (d, k), they provide significant performance gains since the code

structure can match to receiver’s energy utilization model.

Authors of [50] study the scenario that the receiver completely relies on the

received signal energy to satisfy its power requirements. They consider on-off

signalling, where a “1” corresponds to an energy-carrying symbol and the trans-

mitter sends only the codewords that have sufficient energy. In particular the

codewords should include at least d ones in a window of d + 1 bits. This con-

straint defines a type-1 (d,∞) RLL code.

The problem of finding the capacity of a (d,∞) code over a noiseless channel

is first studied by Shannon and it is given by

C0 = lim
N→∞

log2MN

N
(2.16)

where MN denotes the maximum number of distinct binary sequences of length

N RLL codewords. RLL codes are characterized by Markov chains and a type-1

(d,∞) RLL code can be modelled by a Markov chain consisting d+1 states, where

Sn ∈ {1, 2, ...d + 1} denotes the state and Xn denotes the input symbol. State

transition from Sn−1 to Sn generates the input bit Xn. If Sn ∈ {1, 2, ...d}, a “1”

is produced with probability 1, if Sn = d+ 1, a “0” is produced with probability

p (which makes Sn+1 = 1), and a “1” is produced with probability 1 − p (which

makes Sn+1 = d+1). Since this is an irreducible and aperiodic Markov chain, the

state transition probabilities πj can be explicitly computed and the information

rate is given by

R(p) = πdH(p). (2.17)

In [50], it is shown that (d,∞) code capacity can be achieved by this Markov
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chain with an optimal choice of the transition probability p. For a given d, (d,∞)

code capacity can be formulated as follows:

C0 = max
0≤p≤1

R(p). (2.18)

The problem of computing the achievable rates over memoryless channels using

(d,∞) codes is also studied in [50]. In general, the channel capacity is calculated

as follows:

C = lim
N→∞

sup
P (XN )

I(XN ;Y N)

N
(2.19)

= lim
N→∞

sup
P (SN )

I(SN ;Y N)

N
(2.20)

where XN denotes the input sequence, Y N denotes the output sequence and

SN denotes the state sequence. Although (2.21) provides an expression for the

channel capacity for the noiseless case, it is difficult to obtain the exact channel

capacity for noisy channels and lower bounds are computed through numerical

optimization or approximations. In general, a lower bound on the capacity for a

stationary Markovian source over a memoryless channel is given by

CLB = sup
P (S1,S2)

I(S2;Y2|S1). (2.21)

Closed form expressions for the lower bounds on the channel capacity using

a (d,∞) RLL code are computed for a binary symmetric channel (BSC), a Z-

channel and a binary erasure channel (BEC) in [50], and several numerical results

are provided. These results demonstrate that increasing the RLL code parameter

d degrades the capacity, and state transition probability p should be optimized

according to the channel characteristics as well as the RLL code parameter d. For

the case of binary symmetric and Z-channels, the optimized value of p depends on
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both the RLL code parameter d and channel parameter q, however, for the case

of a BEC, the optimized value of p does not vary with the erasure probability,

i.e., it is same with the noiseless case for a given d.

Using subblock energy-constrained codes (SECCs) when the received signal is

used for both decoding and energy harvesting is studied in [51]. SECCs are a

class of codes that satisfy a carried energy constraint in every subblock. Bounds

for the capacity over a discrete memoryless channel (DMC) and error exponents

are derived in [51]. Constant subblock-composition codes (CSCCs) for which all

the subblocks have the same fixed composition and constant composition codes

(CCCs) for which every codeword have the same composition are also studied.

In SECCs, the codewords are partitioned into length L subblocks and compo-

sition of each subblock satisfies the following constraint:

∑
x∈X

b(x)
Nj(x)

L
=
∑
x∈X

b(x)Pj(x) ≥ B (2.22)

where b(x) denotes the harvested energy when x ∈ X is transmitted, B denotes

the required energy per symbol, Nj(x) is the number of the occurrences of x in

the subblock j and Pj(x) ≡ Nj(x)/L denotes the j-th subblock composition. The

codewords of a SECC are in the form of n = kL, where n is the codeword length,

k is the number of the subblocks and L is the fixed subblock length. Capacity of

an SECC block code transmitted over a DMC (WL : Ak → (Y L)k), which has an

input alphabet A and output alphabet YL, can be calculated as

CL
SECC(B) = max

P
XL1

:XL
1 ∈A

I(XL
1 ;Y L

1 )

L
(2.23)

where distribution of the subblocks is maximized over the set A. Here, the

capacity-achieving input distribution can be found by using the Blahut-Arimoto

algorithm [52], [53].
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For a CSCC with subblock composition P and subblock length L transmitted

over a DMC with the input alphabet T L
P and the output alphabet YL, the channel

capacity can be computed as follows:

CL
CSCC(P ) = max

P
XL1

:XL
1 ∈T LP

I(XL
1 ;Y L

1 )

L
. (2.24)

Numerical results show that the capacity of a SECC is generally higher than

that of CSCC, due to the flexibility of SECCs. Also, the capacity of SECCs

increases with the subblock length L, since larger L values allows a more flexible

choice of the code symbols in a subblock. In addition, CL
CSCC(B) increases as the

receiver energy buffer size Emax increases.

An encoding strategy called exponential backoff strategy for binary energy

harvesting channels with a finite-sized battery is presented in [54]. In that work,

a proposed strategy based on modelling the power usage as a fixed fraction of the

available energy in the battery is studied first for a noiseless channel and then

the analysis is extended to the case of noisy channels. The authors also construct

the corresponding decoder and evaluate the performance of the proposed strategy

by comparing the achievable rates with the exponential back-off strategy and a

uniform policy for the power allocation. Numerical results demonstrate that the

proposed strategy outperforms the uniform policy for large values of the expected

energy rate over time.

2.4 Chapter Summary

In this chapter, we reviewed the prior works on energy harvesting communication

systems as well as those on joint energy and information transfer that approach

these problems from information and communication theoretic perspectives and

present practical transmission solutions. In Sections 2.1 and 2.2, we introduced

the main system models and presented relevant information theoretic limits and
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optimal transmission/scheduling strategies for several scenarios for energy har-

vesting communications and joint energy and information transfer while we dis-

cussed existing results on the practical coding schemes and code design in Section

2.3.
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Chapter 3

Code Design for Energy

Harvesting Communications

In this chapter, we consider a binary energy harvesting communication system

over a noisy channel, and design explicit and implementable codes to communi-

cate over this system. We propose a serially concatenated coding scheme with

an inner RLL code and an outer LDPC code, where the inner RLL code is used

to obtain the suitable nonuniform input distribution while the outer LDPC code

provides error correction. We fix the inner RLL code and design the outer LDPC

code based on an EXIT chart analysis. A random perturbation based algorithm is

used to optimize the degree distributions of the LDPC code ensembles. Numerical

examples demonstrate that the newly designed codes outperform the P2P optimal

codes over AWGN channels for energy harvesting communication systems.

The rest of the chapter is organized as follows. In Section 3.1, we introduce

the system model. In Section 3.2, we describe the proposed coding approach and

the corresponding decoder. In Section 3.3, we describe the design procedure for

the LDPC code ensembles. We present several code design examples in Section

3.4, and conclude the chapter in Section 3.5.
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3.1 System Model

We consider an energy harvesting communication system as depicted in Figure

3.1 where the transmitter is equipped with a finite-sized battery and the energy

harvesting process is driven by an external source [3]. Energy arrivals are binary

(Ei ∈ {0, 1}) and are modelled as an i.i.d. Bernoulli(q) random variables where q

denotes the energy arrival probability in each time interval. The channel inputs

are binary (Xi ∈ {0, 1}) as well. We assume that transmission of the bit “1” costs

one unit of energy, while the bit “0” costs no energy. We consider on-off signalling,

and denote the ones density of the channel input as p, i.e., P (Xi = 1) = p.

Encoder

Ei

Mi Xi Channel
Yi Decoder

Mi

^

Figure 3.1: Block diagram of an energy harvesting communication system.

At each channel use i, a binary symbol Xi is transmitted and then Ei amount

of energy is harvested. Harvested energy is stored for subsequent transmissions in

a battery with capacity Bmax if it is not full. The channel input Xi is constrained

by the available energy in the battery. If there is no stored energy, a zero symbol

is transmitted regardless of the input bit. Battery state at time instance i is

denoted by Si and it evolves as:

Si+1 = min{Si −Xi + Ei, Bmax}. (3.1)

At the receiver side (which is explained in detail in Section 3.2), an iterative

decoder adapted to the binary energy harvesting channel by using the zero-state

stationary probability of the battery (π0) is employed as a simplified decoding
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approach. As an improved decoding solution, the energy state of the battery is

incorporated into the RLL code trellis as well. We use the result from [10], where

the battery state evolution is modelled as a Markov chain, and its zero-state

stationary probability is calculated as

P (S = 0) = π0 =
(1− q)p

(1− q)p+ q
Bmax−1∑

i=0

(q/p)i
. (3.2)

Achievable rates for energy harvesting communications over an AWGN channel

with noise variance σ2 and a BSC with crossover probability ε are calculated

in [10]. These rates depend on the parameter π0, and the dependence of π0

to the ones density of the input distribution indicates that the optimal ones

density at the input is non-uniform, in general. Therefore, classical linear block

or convolutional codes, which induce a uniform density of ones and zeros, cannot

be directly utilized for optimal transmission. Here, we propose the use of RLL

codes as inner codes, which induce a nonuniform distribution at the channel input,

along with the outer LDPC codes for error correction.

3.2 Concatenation of LDPC and RLL Codes

In the proposed coding scheme for energy harvesting communication systems, the

transmitter side consists of a serial concatenation of an LDPC encoder and inner

RLL encoder as depicted in Figure 3.2. The LDPC coded sequence is encoded

with an RLL encoder according to a (d, k) constraint where d and k denote the

allowable minimum and maximum number of zeros between consecutive ones,

respectively. Clearly, the parameters d and k regulate the ones density at the

output of the RLL encoder. If the LDPC code has a rate R1 and the RLL code

has a rate R2, the overall code rate of the communication scheme is R1R2.
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Figure 3.2: Block diagram of the transmitter.

At the receiver side, we employ an iterative decoder as depicted in Figure

3.3. The receiver consists of two blocks denoted as Block A and Block B, where

Block A includes a BCJR decoder (RLL-BCJR) and the LDPC code’s variable

node decoder (VND). RLL-BCJR block computes a posteriori log-likelihood ratio

(LLR) values of the binary symbols {sj} using channel observations and a priori

information from the LDPC VND.

We first consider a simplified decoding approach to calculate the LLR values

at the output of the RLL-BCJR block. Namely, we ignore the memory in the

channel state and simply assume that the channel states are i.i.d., hence we have

a memoryless Z-channel with 1 → 0 crossover probability π0 connected to the

AWGN channel. We match the RLL-BCJR block to this channel and calculate

the LLR values at the output of the RLL-BCJR block as follows [46]:

L(ul) = log

[∑
U+

p(sl−1 = s′, sl = s, y)∑
U−
p(sl−1 = s′, sl = s, y)

]
, (3.3)

p(s′, s, y) = αl−1(s′)γmod
l (s′, s)βl(s), (3.4)

γmod
l (s′, s) = exp[ukL

e(uk)/2]
m∏

n=1

P (cnl = 1)γmod
l,1 + P (cnl = 0)γmod

l,0 (3.5)

28



{yk}

Channel

RLL
BCJR

IS LDPC
VND

IV

IA

IB

LDPC 
CND

Destination

A B

Figure 3.3: Block diagram of iterative decoder.

where sl is the encoder state at time l, U+ is the set of pairs (s′, s) for the state

transitions from state s′ to state s with the encoder input ul = 0 and U− is the

set of pairs (s′, s) for the state transitions from state s′ to state s with ul = 1. cl

is the corresponding codeword output for the state transition (s′, s), Le(uk) is the

a priori LLR of uk, m is the length of the codeword output cl, and γmod
l,1 and γmod

l,0

represent the state transition probabilities. These values are calculated using

γmod
l,1 =

1

2πσ2

(
(1− π0)exp

(
− (ynl − cnl )2

2σ2

)
+ π0exp

(
− (ynl − 0)2

2σ2

))
, (3.6)

γmod
l,0 =

1

2πσ2
exp
(
− (ynl − cnl )2

2σ2

)
. (3.7)

Here n denotes the corresponding index of the channel observation yl (or the

corresponding codeword output cl), and σ2 is the noise variance.

As a second (improved) decoding approach, we implement the BCJR algo-

rithm over an extended trellis, which includes the battery state as well. In this

approach, there are Bmax+1 states for each RLL code state, each one representing

one battery state along with the RLL code state. This is similar to the approach

taken in [10]. Note that we do not utilize this decoding approach for code de-

sign purposes due to its high complexity. Instead, we design the LDPC codes
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with the simplified decoding approach above, and employ the specific codes from

the designed ensembles to demonstrate the superiority of the improved decoding

approach via finite block length simulations.

The LDPC VND computes the reliabilities of the binary symbols {sj} using a

priori information from the RLL-BCJR algorithm and the information received

from the LDPC check node decoder (CND) based on the code constraints. Block

B consists of the LDPC CND that calculates the extrinsic LLR values of the

binary symbols {sj} based on the a priori information received from the LDPC

VND and the code constraints. Iterative decoding is performed by passing of the

extrinsic information between Block A and Block B.

The overall decoding algorithm at the receiver is described as follows:

1. For initialization, the a priori LLRs of binary symbols {sj} at the input of

Block A are set to zero.

2. A priori information for the RLL-BCJR is calculated by the LDPC VND

by summing the incoming messages from the check nodes at each variable

node.

3. RLL-BCJR computes the extrinsic LLR for each bit and sends it as a priori

information to the LDPC VND.

4. LDPC VND computes the messages to be sent to the LDPC CND using a

priori information from the RLL-BCJR and the messages from the LDPC

CND.

5. LDPC CND computes the extrinsic LLRs to be sent to the LDPC VND

according to the LDPC code constraints.

6. LDPC VND computes the total LLRs for the input symbols and checks

whether a valid codeword is obtained or not. Algorithm iterates until a

valid codeword is obtained or a predetermined number of iterations are

performed.
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3.3 Outer LDPC Code Optimization

3.3.1 EXIT Chart Analysis

In order to optimize the decoding threshold of the concatenated RLL and LDPC

coding scheme, we employ an EXIT chart analysis [56]. As it is introduced in the

previous section, our iterative decoder consists of two blocks, denoted as Block A

and Block B. We compute the mutual information at the output of each subblock

and utilize the iterative decoder to draw the EXIT curves of different subblocks.

By following the notation in [45], we denote the mutual information at the output

of the LDPC VND and the LDPC CND by IA and IB, respectively, and the mutual

information at the input and output of the RLL-BCJR block by IV and IS as

depicted in Figure 3.3. We assume Gaussian distribution for the exchanged LLR

values between the subblocks, hence we can use the low-complexity J function

approximation to calculate IA, IB and IV by the analytical formulas

IA =
∑
i

λiJ
(√

(i− 1)(J−1(IB))2 + (J−1(IS))2
)
, (3.8)

IB = 1−
∑
j

ρjJ
(√

j − 1J−1(1− IA)
)
, (3.9)

IV =
∑
i

λiJ
(√

iJ−1(IB)
)
, (3.10)

where {λi} and {ρj} are the coefficients of variable and check node degree distri-

butions λ(x) and ρ(x) that denote the fraction of the edges in the Tanner graph

connected to degree-i variable nodes and degree-j check nodes, respectively [45],

and J function is defined as
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J(σ) = 1−
∫ ∞
−∞

1√
2πσ2

e−
(x−σ2

2 )2

2σ2 log2(1 + e−x)dx. (3.11)

For computation of the mutual information at the output of the RLL-BCJR

block (mutual information between the LLR values at the output of the RLL-

BCJR decoder and the input symbols), we perform Monte Carlo simulations

by taking a sufficiently long random input sequence. We model the a priori

information of the RLL-BCJR algorithm by generating the input LLRs using the

mutual information values from the LDPC VND, and the fact that the exchanged

LLRs between the subblocks are normally distributed. Then, we calculate IS as

IS = I(L;X) ∼= 1− 1

N

N∑
n=1

log2(1 + e−Ln), (3.12)

where N is picked very large, and Ln denotes the LLR value of the nth coded

bit of the all-zero codeword of length N . Note also that we utilize i.i.d. channel

adapters [47] in our calculations since randomization of the all-zero sequence is

required for the analysis.

3.3.2 Degree Distribution Optimization

LDPC codes that are optimized for P2P communication channels are not optimal

when there is an inner code or modulation [45], in general, hence optimization of

the degree distributions of the LDPC code ensembles may provide significant per-

formance gains. Differential evolution and EXIT chart analyses are two common

tools to optimize degree distributions of LDPC code ensembles. Here, we employ

EXIT chart analysis due to its lower complexity to find optimal code ensembles.

In order to optimize the outer LDPC code, we fix the inner RLL code and

optimize the decoding threshold of the LDPC code degree distribution. We com-

pute the decoding threshold of an LDPC code ensemble by employing an EXIT
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chart analysis, which is explained in the previous subsection in detail. A specific

LDPC code ensemble is used if and only if the mutual information converges to

1, which demonstrates that the probability of error will vanish. If there exists a

value I that satisfies IA(I) < IB(I), then the tunnel between the EXIT curves of

Block A and Block B is closed, i.e., iterative decoder does not converge and the

probability of error cannot be made go to zero.

For the degree distribution optimization, we employ a random perturbation

algorithm similar to the one in [45]. At each iteration of the optimization process,

we perturb the degree distributions by zero-mean Gaussian random variables with

a specific variance except for only three degrees, which are obtained by solving

the following linear equations:

∞∑
i=1

λi = 1

∞∑
j=1

ρj = 1 (3.13)

∞∑
j=1

ρj
j

= (1−R)
∞∑
i=1

λi
i
. (3.14)

where 0 ≤ λi ≤ 1 and 0 ≤ ρj ≤ 1. The last equation applies since the degree

distributions should be compatible with the rate of the LDPC code.

After a new instance of a degree distribution is generated, we calculate the

SNR threshold of the new degree distribution; if it is lower, we replace the de-

gree distribution with the current one. The algorithm iterates until there is no

improvement after a predetermined number of iterations.
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3.4 Numerical Examples

In this section, we demonstrate the bit error rate performance of the designed

codes for energy harvesting communication systems. We consider an energy har-

vester with an energy arrival probability of q = 0.4 and a unit-sized battery at

the transmitter. We fix the inner code as the rate 2
3

type-1 RLL(0,1) code. Note

that the type-1 version of an RLL code can be obtained by switching the roles of

ones and zeros [49]. The resulting ones density is p = 0.27. We compare the per-

formance of three rate 1
2

LDPC codes with block length 20k: the first one is the

regular (3,6) LDPC code, the second one is the irregular LDPC code optimized

for an AWGN channel introduced in [57] with a maximum variable node degree

of 4, and the third one is the LDPC code optimized for the specific inner RLL

code and the energy harvesting process with multiple degrees of the variable and

check nodes, and a maximum variable node degree 10. The resulting optimized

degree distributions of the designed LDPC code are as follows:

λ2 = 0.3070, λ3 = 0.1868, λ4 = 0.0607, λ10 = 0.4455,

ρ5 = 0.4456, ρ8 = 0.0580, ρ12 = 0.4964.

Performances of the three different codes are evaluated through finite block

length simulations as depicted in Figure 3.4. The overall code rate is 1
3
. The

results demonstrate that the newly optimized LDPC code yields a gain of ap-

proximately 0.55 dB compared to the LDPC code optimized over an AWGN

channel, and 1.3 dB compared to regular (3,6) LDPC code at a bit error rate of

10−4.

We evaluate the performance of the improved decoding approach by taking

the optimized LDPC code for the type-1 RLL(0,1) code and evaluating its per-

formance with the simplified and improved decoders through finite block length

simulations. We take q = 0.4 and assume a unit-sized battery. Figure 3.5 depicts

the corresponding results. We observe that the improved decoding approach is

superior to the simplified one by approximately 0.6 dB at a bit error rate of 10−4

and it operates near the achievable rate limits (i.e., approximately within 0.9 dB).
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Figure 3.4: Bit error rate performance of three LDPC codes concatenated with
rate R=2

3
type-1 RLL(0,1) code. Outer LDPC codes are of rate R=1

2
and block

length 20k.

We emphasize that the advantage of using of the RLL codes with respect to

the existing solutions based on NLTCs is that they allow us to obtain higher code

rates compared to those obtained in [10]. In addition, our results are based on

only 2-state RLL codes, which are very simple compared to the existing solutions.

3.5 Chapter Summary

In this chapter, we consider a binary energy harvesting communication system

over an AWGN channel, and design practical codes. We exploit a serially con-

catenated coding scheme consisting of inner RLL and outer LDPC codes. At the

receiver side, we employ an iterative decoder where a BCJR decoder matched

to the RLL code and energy harvesting process exchanges extrinsic LLR values

with an LDPC decoder. We consider two decoding approaches; while the simpli-

fied one ignores the memory in the battery state, the improved decoder exploits
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Figure 3.5: Bit error rate performance of optimized LDPC code concatenated
with rate R=2

3
type-1 RLL(0,1) code with simplified and improved decoding.

Block length of the LDPC code is 20k.

it. Since the optimized codes for P2P communications are not optimal for our

scenario due to the existence of the inner code, we fix the inner RLL code and

optimize the outer LDPC code by an EXIT chart analysis and a random pertur-

bation technique. We demonstrate that our newly designed codes outperform the

P2P optimal ones, and that the improved decoding approach is superior to the

simplified one via numerical examples.
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Chapter 4

Code Design for Joint Energy

and Information Transfer with

RLL Codes

In this chapter, our purpose is to design practical codes for joint energy and infor-

mation transfer with the aim of increasing the transmitted energy levels as well

as achieving reliable communication. Since classical linear block or convolutional

codes induce a uniform input distribution at the channel input and a nonuniform

input distribution is required to increase the transmitted energy levels, we utilize

a serial concatenation of RLL and LDPC codes as in Chapter 3. For code design

purposes, we fix the inner RLL code and design the outer LDPC code using the

same procedure, and demonstrate that the newly optimized LDPC codes for the

specific inner RLL code are superior to P2P optimal codes for joint information

and power transfer.

The rest of the chapter is organized as follows. In Section 4.1, we describe

the channel model and present information theoretic limits for joint energy and

information transfer. In Section 4.2, we present the proposed solution. Numerical

examples that illustrate the performance of the designed codes are the focus of

Section 4.3, and the chapter is concluded in Section 4.4.
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4.1 System Description

4.1.1 Channel Model

We consider transmission over an AWGN channel with the objective of joint

energy and information transfer. The input-output relationship is given by

Y = X + Z (4.1)

where X ∈ {0, 1} is the channel input and Z is the Gaussian noise with zero

mean and variance σ2. We assume that the noise terms are i.i.d. across time. We

consider on-off signalling to model the trade-off between the transmitted energy

and the information rate assuming that X = 1 is an energy-carrying symbol and

X = 0 carries no energy. Clearly, we can transmit more energy by transmitting

codewords that have a higher ones density, however, this limits the information

rates.

For the sake of joint energy and information transfer, the receiver has to harvest

a certain level of energy. By assuming that an average ones density of p is required

at the channel input, we employ RLL codes to induce this nonuniform input

distribution. If the harvested energy per information bit at the receiver is p, the

signal-to-noise ratio at the receiver side is defined as Eb
N0

= p
N0

.

4.1.2 Information Theoretic Limits

The mutual information between the input and output of an AWGN channel with

an i.i.d. Bernoulli(p) distributed input is calculated as follows [48]:

I(X;Y ) = h(Y )− 1

2
log(πeN0) (4.2)
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where

h(Y ) = −
∞∫

−∞

fY (y)log(fY (y))dy, (4.3)

fY (y) =
1√
πN0

(
(1− p)e−

y2

N0 + pe
− (y−1)2

N0

)
. (4.4)

These equations illustrate that, in order to maximize the information rate, a

ones density of p = 0.5 should be used at the channel input. However, in order

to increase the transmitted power levels by increasing the ones density of the

channel input, one should sacrifice some information rate.

4.2 Proposed Coding Scheme

We utilize a serially concatenated coding scheme as done in Chapter 3 with a

small modification to adapt it for joint energy and information transfer. The block

diagram of the transmitter and receiver is depicted in Figure 4.1. We employ an

inner RLL code to make sure that the input has the desired distribution, and

an outer LDPC code for error correction. The modification with respect to the

proposed coding scheme in Chapter 3 is that the receiver is changed according

to the absence of the energy harvesting process. Also, in this case, an RLL code

inducing a ones density higher than 0.5 is employed to increase the transmitted

power levels. The input message bits are encoded by an outer LDPC encoder

and an inner RLL encoder, and then they are directly transmitted through an

AWGN channel.
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Figure 4.1: Block diagram of the transmitter, the channel and the iterative de-

coder.

At the receiver side, we employ an iterative decoder, i.e., the decoding is

performed by exchanging extrinsic information between a BCJR decoder matched

to the RLL code and an LDPC decoder. The main difference between the iterative

decoder in Chapter 3 and the iterative decoder in this chapter is as follows. Since

there is no energy harvesting process, the BCJR decoder is only matched to the

RLL code, hence the LLR calculations at the output of the RLL-BCJR block are

performed using [46]

L(ul) = log

[∑
U+

p(sl−1 = s′, sl = s, y)∑
U−
p(sl−1 = s′, sl = s, y)

]
, (4.5)

p(s′, s, y) = αl−1(s′)γl(s
′, s)βl(s), (4.6)

γl(s
′, s) = exp[ukL

e(uk)/2] exp

[
− ‖yl − cl‖

2

2σ2

]
, (4.7)

where sl is the encoder state at time l, U+ is the set of state pairs (s′, s) for

which the state transitions are from state s′ to state s with an encoder input of

ul = 0, and U− is the set of state pairs (s′, s) corresponding to ul = 1. cl is the

corresponding codeword output for state transition (s′, s), Le(uk) is the a priori

LLR of uk, and yl is the channel observation at time instance l.

Further details of the iterative decoding approach can be found in Chapter

3, and they are omitted here. We also note that, as in Chapter 3, the outer
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LDPC code is optimized via a random perturbation algorithm and the conver-

gence thresholds are computed using an EXIT chart analysis.

4.3 Numerical Examples

To illustrate the potential of the proposed scheme for joint energy and information

transfer, we choose the rate 2
3

RLL(0,1) code, which induces a ones density of

p = 0.73. As in the energy harvesting case, we fix the inner RLL code and

perform the code optimization over the degree distributions with a maximum

variable node degree 10 for the outer LDPC code. The overall code rate of the

concatenated coding scheme is 1
3
. The resulting optimized degree distribution is

given by

λ2 = 0.2885, λ3 = 0.2947, λ4 = 0.0023, λ10 = 0.4145,

ρ5 = 0.4640, ρ8 = 0.1147, ρ12 = 0.4213.

Performances of three different LDPC codes are evaluated through finite block

length simulations, and they are depicted in Figure 4.2. The bit error rate sim-

ulations demonstrate that the optimized LDPC code for the inner RLL code is

superior to the P2P optimized irregular LDPC code for AWGN channels by about

0.25 dB and to the regular LDPC code by about 0.6 dB at a bit error rate of

10−4. The information theoretic limit for reliable communication at a transmis-

sion rate of 1
3

for a ones density of p = 0.73 is at 5.3 dB, which means that our

newly optimized codes are approximately 1.6 dB away from the theoretical limits

of reliable communication.

We highlight that we can achieve a code rate of 1
3

by utilizing an inner RLL

code for joint energy and information transfer, which is higher than the one

obtained in [9] (where the overall code rate of the communication scheme is 1
6
),

for which the coding solution is based on the use of NLTCs.

41



6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8 8
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/N0(dB)

B
it 

E
rr

or
 R

at
e

 

 

Reg.(3,6) LDPC+RLL(0,1)
Opt.LDPC AWGN+RLL(0,1)
Opt.LDPC+RLL(0,1)

Figure 4.2: Bit error rate performance of three LDPC codes concatenated with
RLL(0,1) code of rate R = 2

3
. Block lengths of the outer LDPC codes are 20k

and R = 1
2
.

In addition, to demonstrate the superiority of the optimized LDPC codes de-

signed for the specific inner RLL code compared to the P2P optimal LDPC codes,

we consider the performance of our coding scheme with similar coding schemes

in the literature. For this purpose, we consider the work in [9] for comparison,

where a serial concatenation of an NLTC and an LDPC code is utilized for joint

energy and information transfer. The overall code rate is 1
6
, hence we design rate

1
4

LDPC codes to be used with the rate 2
3

RLL(0,1) code. The optimized degree

distribution of our code of rate 1
4

is given by

λ2 = 0.2837, λ3 = 0.2174, λ4 = 0.4989,

ρ3 = 0.5814, ρ4 = 0.1672, ρ8 = 0.0329, ρ15 = 0.2185.

Figure 4.3 shows the bit error rate performances of the considered schemes.

We note that there is a slight difference between the ones densities at the channel

inputs of considered systems (p = 0.73 in our case and p = 0.75 in [9]), and

this leads to a gap of about 0.34 dB in the required signal-to-noise ratio for a

transmission rate of 1
6
. With this in mind, the performance results demonstrate
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Figure 4.3: Performance comparison between the LDPC codes concatenated with
NLTC and those concatenated with R = 2

3
RLL(0,1) code (R = 1

4
, block length

is 20k).

that the proposed coding scheme offers competitive performance with the existing

solutions.

4.4 Chapter Summary

In this chapter, we exploit the proposed coding scheme of concatenation of LDPC

and RLL codes for joint energy and information transfer. The main idea is to

increase the transmitted energy levels while achieving reliable communication.

Therefore, we employ an inner RLL code that induces a ones density higher than

0.5 to obtain the nonuniform channel input along with an outer LDPC code.

At the receiver side, a BCJR decoder matched to the RLL code exchanges soft

information with an LDPC decoder to perform iterative decoding. Numerical

examples demonstrate that the newly optimized LDPC codes are superior to P2P

optimal codes, and they offer competitive performance with the existing solutions

in the literature for the problem of joint energy and information transfer.
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Chapter 5

Short Block Length Code Design

for Energy Harvesting

Communications and SWIPT

using RLL Codes

While channel codes with asymptotically long block lengths lead to a close to ca-

pacity operation, they are not suitable for communication systems with stringent

delay and complexity constraints, such as those to be employed in sensor net-

works. To satisfy the requirements of such systems, design of short block length

codes is required. With this motivation, in this chapter, we consider an extension

of our work in the previous two chapters to design short block length codes for

energy harvesting communications and joint energy and information transfer.

The chapter is organized as follows. In Section 5.1, we introduce the system

model. We describe the proposed coding scheme in Section 5.2 and the code

design procedure in Section 5.3. We present several performance results of exem-

plary codes in Section 5.4, and conclude the chapter in Section 5.5.
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5.1 System Model

We use the system models for energy harvesting communications and joint energy

and information transfer introduced in Chapter 3 and Chapter 4 with small mod-

ifications. In particular, here, we propose to use RLL and convolutional codes

in a serially concatenated manner. As in the long block length case, RLL codes

are used to obtain a suitable non-uniform channel input distribution while, in

this case, we employ convolutional codes as outer error correction codes instead

of LDPC codes. Our motivation for not employing LDPC codes is based on the

following: for very short block lengths, the codes’ degree distributions do not

exactly match the optimized ones, and their Tanner graphs include inevitable

cycles, which degrade the iterative decoder performance [55], hence it may be

preferable to pick trellis based coding solutions.

5.2 Proposed Coding Scheme

The proposed coding scheme for short block lengths is depicted in Figure 5.1,

where the transmitter side includes a combination of a convolutional and RLL

encoder. A possible way to encode with serial concatenation is as follows: encode

the message sequence with the convolutional encoder, pass the coded bits to the

RLL encoder through a random interleaver, and then encode the coded bits with

the RLL encoder. However, since a random interleaver will cause problems in the

decoding process, degrading the system performance, we omit it.

We describe the concatenated convolutional and RLL codes via a product

trellis obtained by combining their state transitions. For example, for a 4-state

convolutional code and a 2-state RLL code, where the states of the convolutional

code are denoted as S0, S1, S2, S3, and the states of the RLL code are denoted

as S ′0 and S ′1, the states of the concatenated convolutional and RLL codes can be

represented as ordered pairs of the states of these two codes and they are denoted

as S0S
′
0, S2S

′
1, etc. As an illustration, construction of the overall state diagram
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and the product trellis for a (5,7) convolutional code (in octal notation) and an

RLL(0,1) code are depicted in Figures 5.2 and 5.3, respectively.

CC+RLL    
Encoder

{mi} {ck} AWGN  
Channel       

{yk} BCJR   
Decoder

{mi}
^

0
1

0
1

{xk}

Figure 5.1: Block diagram of the proposed coding scheme.
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Figure 5.2: State transition diagrams of (5,7) convolutional and RLL(0,1) code.
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Figure 5.3: Product trellis representation of the concatenated code.

At the receiver side, decoding is performed via a BCJR algorithm operating

on the product trellis. For simplicity, energy harvesting process is approximated

as a Z-channel with 1→ 0 crossover probability is π0 for the simplified decoding

approach and it is directly embedded into the product trellis for the improved

decoding solution for energy harvesting communications, as also done in Chapter

3.

We also employ the proposed coding scheme for joint energy and information

transfer. In this case, there is no energy harvesting process, hence we do not need

to match the BCJR decoder to it at the receiver side, and calculate the output

LLR values as performed in the standard BCJR algorithm [46].
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5.3 Code Design Procedure

We design specific codes by maximizing the minimum distance of the overall con-

catenated code. In order to determine the code’s minimum distance, we compute

the pairwise Hamming distance among all the codewords of the code with a suf-

ficient number of stages in the trellis, making sure that the minimum pairwise

Hamming distance among the considered length codewords gives the minimum

distance of the overall code. We fix the RLL code, perform this procedure for

all possible convolutional codes with a given memory order, and determine the

non-catastrophic convolutional code when combined with the inner code that

maximizes the minimum distance of the overall code as the optimal convolutional

code.

5.4 Numerical Results

In this section, we present several examples to demonstrate the performance of

the designed codes for energy harvesting communications and joint energy and

information transfer. For both cases, we fix the inner RLL code and compare

the performance of three convolutional codes. We also compare the performance

of the designed concatenated codes with that of classical linear codes, used with

time sharing for joint energy and information transfer.

As a first example, we compare the performance of a convolutional and an

LDPC code concatenated with a type-1 RLL(0,1) code, where the block length

is 48. We take the energy arrival probability as q = 0.6, and store the harvested

energy in a battery of capacity 2. Figure 5.4 depicts the bit error rate perfor-

mances of the considered schemes. We observe that the (5,7) convolutional code

outperforms the optimized LDPC code for the specific inner RLL code by about

3 dB at a bit error rate of 10−3. We argue that for very short block lengths,

convolutional codes are superior to LDPC codes for error correction with energy

harvesting, hence in the rest of the results we only consider the convolutional
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Figure 5.4: Bit error rate performance of concatenation of type-1 RLL(0,1) code
with a convolutional or an LDPC code, where the block length is 48.

coding approach.

We now investigate the performance of convolutional codes in more depth. We

utilize a type-1 RLL(0,1) code, which induces a ones density of p = 0.27 to obtain

the required nonuniform input distribution for the energy harvesting process, and

perform optimization over constraint length k = 2 convolutional codes. We take

the energy arrival probability q = 0.65 and store the harvested energy in a battery

of capacity 2.

We compare the concatenation of the three rate 1
2

convolutional codes and a

type-1 RLL(0,1) code. The convolutional codes are (5,7), (7,3) and (7,2) convo-

lutional codes (expressed in octal notation). We note that the (5,7) convolutional

code leads to a minimum distance of 4, the (7,3) code leads to a minimum dis-

tance of 3, and the (7,2) code leads to a minimum distance of 2 when concatenated

with the type-1 RLL(0,1) code. We take the block length as 48, and depict the

simulated bit error rate performances of these three codes in Figure 5.5. The

results demonstrate that the (5,7) convolutional code outperforms the (7,3) code

by about 1.2 dB and the (7,2) code by approximately 2.2 dB at a bit error rate
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Figure 5.5: Bit error rate performance of three convolutional codes concatenated
with rate R = 2

3
type-1 RLL(0,1) code. Block length of concatenated codes is 48.

of 10−4. We see that maximizing the minimum distance of the concatenated code

leads to significant gains for energy harvesting.

As mentioned earlier, we also employ an improved decoder for the concate-

nated convolutional and RLL coding scheme by embedding the energy state into

the product trellis. This is similar to what was done in Chapter 3 for energy

harvesting communications. As an example, we take the concatenation of a (5,7)

convolutional code and type-1 RLL(0,1) code, and compare the performance of

this concatenated code decoded via simplified and improved decoders, assuming

an energy arrival probability q = 0.75 and a unit-capacity battery. Figure 5.6

depicts the corresponding results, which demonstrate that the improved decoder

is superior to the simplified decoder by about 0.75 dB at a bit error rate of 10−4.

As another example, we compare the performance of the concatenated convo-

lutional and RLL codes with that of a convolutional code alone. Specifically, we

take the concatenation of the (5,7) convolutional code with the type-1 RLL(0,1)

code as the concatenated coding solution, and the (13,15,17) convolutional code
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Figure 5.6: Bit error rate performance of concatenated code with simplified and
improved decoder. Block length of concatenated code is 48.
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Figure 5.7: Bit error rate performance of concatenated code and convolutional
code, where block length is 48 and q = 0.6.
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Figure 5.8: Bit error rate performance of concatenated code and convolutional
code, where block length is 48 and q = 0.5.

for no code concatenation scenario to make sure that the code rate and the num-

ber of trellis states are the same. We consider two cases for the energy arrival

probability: q = 0.6 and q = 0.5. In both cases, the harvested energy is stored in

a unit-sized battery. Figures 5.7 and 5.8 depict the bit error rate performances of

considered systems, demonstrating that the concatenated convolutional and RLL

coding approach outperforms the convolutional code alone by about 1 dB at a bit

error rate of 10−3 when q = 0.6, and by about 1.7 dB at a bit error rate of 10−2,

when q = 0.5. We observe that the performance gap between the concatenated

convolutional and RLL coding approach and convolutional code alone increases

as the energy arrival probability decreases. This is because the concatenated code

suffers from reduced energy arrival rate less than a convolutional code alone due

to its lower ones density at the channel input.

We also investigate the performance of the newly designed short block length

codes for joint energy and information transfer. For this case, we employ an

RLL(0,1) code to increase the transmitted power level, which induces a ones
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Figure 5.9: Bit error rate performance of three convolutional codes that are
concatenated with rate R = 2

3
RLL(0,1) code. Block length of concatenated

codes are 48.

density of p = 0.73 at the channel input. For the design and selection of the

concatenated codes, the same steps are followed with the energy harvesting case.

Figure 5.9 depicts the resulting performances of the concatenated coding solu-

tions. We observe that the (5,7) convolutional code, which offers a minimum

distance of 4, provides a gain of 1 dB with respect to the concatenated code with

the (7,3) convolutional code (with a minimum distance of 3), and 1.8 dB with

respect to the (7,2) code, (with a minimum distance of 2) at a bit error rate of

10−4.

As a final example, we compare performance of the designed concatenated

codes with a convolutional code used with time switching for joint energy and

information transfer. We consider the concatenation of (5,7) convolutional and

RLL(0,1) codes among the newly designed codes, and the (15,17) convolutional

code with no concatenation (with time switching), which offers the highest mini-

mum distance among the convolutional codes with a constraint length of k = 4 for

comparison. In order to use the convolutional code in the time switching mode,
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Figure 5.10: Bit error rate performance of short block length codes with rate
R=1

3
and block length 48.

we send information and energy together half the time using on-off signalling and

send only “1” in the other half, hence we have a ones density of p = 3
4
. Also, we

puncture the convolutional code to satisfy the rate requirement for a fair compari-

son. Figure 5.10 demonstrates the performance of the designed concatenated and

convolutional codes. We note that both the concatenated (5,7) convolutional and

RLL(0,1) codes and the punctured (15,17) convolutional code have a minimum

distance of 4. The results indicate that the newly designed code outperforms the

convolutional code used in a time sharing mode by about 1.5 dB at a bit error

rate of 10−4. We attribute this improvement to the observation that the newly

designed code includes less codeword pairs at the minimum distance of 4 than

the punctured convolutional code (which was verified using MATLAB).

5.5 Chapter Summary

In this chapter, we focus on design of short block length codes for energy har-

vesting communications and joint energy and information transfer. As in the
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previous chapters, we utilize RLL codes to obtain the required nonuniform input

distribution. We employ convolutional codes for error correction instead of LDPC

codes since the LDPC codes do not perform well for very short block lengths. We

propose a coding scheme based on a serial concatenation of convolutional and

RLL codes, and perform decoding via a BCJR algorithm over the product trel-

lis of the convolutional and RLL codes at the receiver side. We design specific

codes by maximizing the minimum distance of the concatenated code. Numerical

examples illustrate that concatenated convolutional and RLL codes with higher

minimum distances offer superior performance and they outperform the classical

convolutional codes for joint information and energy transfer and energy harvest-

ing communication scenarios.
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Chapter 6

Conclusion and Future Work

In this thesis, we design practical codes for communications over noisy binary

energy harvesting channels and joint energy and information transfer for both long

block lengths (with the objective of approaching capacity limits) and short block

lengths (where the target is communications with stringent delay and complexity

requirements).

The proposed coding scheme consists of a serial concatenation of an inner

RLL code and an outer LDPC code for the case of long block lengths. We first

study energy harvesting communications where the encoded bits are transmitted

through a noisy binary energy harvesting channel and a BCJR decoder matched

to the RLL code and BEHC exchanges soft information with an LDPC decoder to

perform iterative decoding at the receiver side. We consider two approaches for

the iterative decoder: the simplified one ignores the memory in the battery state

and the improved decoding approach integrates the battery state into the trellis.

LDPC code design for the specific inner RLL code is based on an EXIT chart

analysis and the random perturbation technique for optimization. We demon-

strate the superiority of the newly designed codes to the LDPC codes optimized

for point to point communications via numerical examples. We note that using of

the RLL codes allows us to obtain higher code rates with respect to the existing

solutions based on NLTCs.
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As an extension of our work for energy harvesting, we also consider joint

energy and information transfer. This is a highly related problem to energy

harvesting communications and one can utilize the proposed coding scheme for

energy harvesting communications with small modifications. In the case of joint

energy and information transfer, the battery at the transmitter side is eliminated,

hence the iterative decoder employs a BCJR decoder matched only to the RLL

code. The design procedure of the outer LDPC code is the same as the one in

the energy harvesting case. Numerical examples demonstrate that the optimized

codes for the specific inner RLL code outperform the P2P optimal codes for this

case as well.

We also examine design of the short block length codes for energy harvesting

and joint energy and information transfer. We propose a serially concatenated

coding scheme with an inner RLL code and an outer convolutional code, and

describe the concatenated code via a product trellis. At the receiver side, decod-

ing is performed via a BCJR algorithm over the product trellis representing the

concatenated convolutional and RLL codes jointly. Specific codes are designed

by maximizing the minimum distance of the overall code. Numerical examples

illustrate that proposed short block length coding solutions with higher minimum

distances offer superior performance.

We highlight several research directions as possible extensions of our work in

this thesis. Here, we utilize 2-state RLL encoders taken from the previous liter-

ature. However, design of codes with memory that maximize the overall code’s

minimum distance while satisfying a specific ones density at the channel input

may improve the performance. This has similarities with the design of NLTCs,

however, we are after coding solutions with higher code rates and lower complex-

ities. Also, in this thesis, we assume that causal information is available at the

transmitter for the energy arrivals, however, different assumptions regarding the

energy arrivals at both the transmitter and the receiver can also be considered.

In addition, while we study the energy harvesting communications along with

joint energy and information transfer over AWGN channels only, our work can be

extended further to include different types of channels such as BSC or interfer-

ence channels. Furthermore, the improved decoding approach can be utilized for
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code design purposes possibly providing further gains. Finally, for the short block

length case, we employ convolutional codes with a constraint length of only two,

while designs with higher constraint lengths can also be considered to improve

the system performance.
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