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ABSTRACT

ANALYSIS OF MECP2 GENE MUTATIONS IN TURKISH RETT

SYNDROME PATIENTS

Ayça Sayı
M.S. in Molecular Biology and Genetics

Supervisor: Assoc. Prof. Dr. Tayfun Özçelik
August 2001,  111 pages

Rett Syndrome (RTT) is a progressive X-linked dominant childhood neurodevelopmental

disorder, affecting 1/10,000-15,000 girls.  The disease-causing gene was identified as

MECP2 on chromosome Xq28, and mutations have been found in approximately 80% of

patients diagnosed with RTT.  We screened for eight recurrent MECP2 mutations

(R106W, P152R, T158M, R306C, R168X), one rare mutation (F155S) and one

polymorphism (E397K) in 63 RTT patients divided into four groups as classic-RTT

(n=43), variant-RTT (n=14), male-RTT (n=4), and familial-RTT (n=2).  We identified

the recurrent mutations in 18 cases.  These are three R106W, two P152R, five T158M,

five R306C, and three R270X mutations.  R168X and F155S were not detected in our

patients. Only one patient had the E397K polymorphism who also had the R306C

mutation.  All these mutations were confirmed via sequencing analysis.  In exon 4 of

MECP2, several deletion types of mutations are known. By PCR analysis, two patients

were found to have an approximately 44 bp deletion in exon 4.  Also, a novel mutation –

T197M– was identified in one of the patients.  We identified a boy affected by RTT who

is mosaic for the R270X mutation, and had a normal male karyotype. This result show

that a recurrent MECP2 mutation could lead to a similar phenotype in females and males,

if the male is a mosaic for the mutation in his somatic cells.  MECP2 mutation frequency

for the four groups is as follows: 37.2% for the classic-RTT, 28.57% for the variant-

RTT, and 25% for the male-RTT groups.  No mutation was found in the familial group.

We could not find a consistent correlation between the clinical symptoms and the type of

mutations or the X chromosome inactivation patterns of the patients.
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ÖZET

TÜRK RETT SENDROMU HASTALARINDA MECP2 GENİNDEKİ

MUTASYONLARIN ANALİZİ

Ayça Sayı
Moleküler Biyoloji ve Genetik Yüksek Lisans

Tez Yöneticisi: Doç. Dr. Tayfun Özçelik
Ağustos 2001,  111 sayfa

Rett Sendromu (RTT) X'e bağlı dominant kalıtım gösteren, ilerleyici özellikte, bir

çocukluk dönemi nöral gelişim hastalığıdır.  Büyük bir çoğunlukla kızları etkiler ve

1/10,000-15,000 sıklıkla görülür.  Hastalığa neden olan genin Xq28'de bulunan MECP2

olduğu tanımlanmıştır. RTT tanısı konan hastaların yaklaşık %80'inde bu genin

mutasyonu bulunmuştur.  Biz 63 RTT hastasını klasik-RTT (n=43), RTT-varyant (n=14),

erkek-RTT (n=4) ve ailesel-RTT (n=2) olmak üzere dört gruba ayırdık ve bu hastalarda

sekiz adet sık gözüken mutasyonu (R106W, P152R, T158M, R306C, R168X), bir adet

nadir gözüken mutasyonu (F155S), ve bir adet polimorfizmi (E397K) taradık.  Üç

hastada R106W, iki hastada P152R, beş hastada T158M, beş hastada R306C ve üç

hastada R270X mutasyonu olmak üzere toplam onsekiz sık gözüken mutasyonu saptadık.

Bizim hastalarımızda R168X ve F155S mutasyonları bulunamamıştır. R306C mutasyonu

olan bir hastada aynı zamanda E397K polimorfizmi saptanmıştır.  Tüm bu mutasyonların

varlığı sekans analizi ile doğrulandı.  MECP2'nin dördüncü eksonunda bilinen birkaç

delesyon tipi mutasyon bulunmaktadır.  PCR analizi ile iki hastanın ekson 4'ünde

yaklaşık 44 baz çifti delesyon bulundu.  Hastaların birinde yeni bir mutasyon –T197M-

saptanmıştır.  Normal karyotipe sahip bir erkek RTT hastasında R270X mutasyonu

saptadık.  Bu mutasyon normal MECP2 dizisi ile birlikte görüldüğü için hastada somatik

mozaisizm olduğu sonucuna varılmıştır.  Dört grup RTT hastası için MECP2 mutasyon

sıklığı sırasıyla: klasik-RTT için %37.2, RTT-varyant için %28.57, ve erkek-RTT grubu

için %25 olarak bulunmuştur.  Mutasyon tipi ile klinik semptomlar veya X kromozom

inaktivasyon profilleri arasında anlamlı bir ilişki bulamadık.
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I. Introduction

1.1. Rett Syndrome

Rett Syndrome (RTT) is an X-linked dominant neurodevelopmental disorder

and the second most common cause, after Down syndrome, of severe mental

retardation in females (Christodoulou et al., 2001).  It affects children of all ethnic

groups and has an estimated incidence of 1 in 10,000 to 15,000 females (Kerr et al.,

1985, Hagberg et al., 1993, Leonard et al., 1997).

1.1.1 Identification of a new syndrome - RTT

Andreas Rett initially described RTT in 1966 but it was largely ignored until

1983, when Hagberg et al. published, the first description of a series of 35 patients,

in English (Rett et al., 1966, Hagberg et al., 1983).

RTT is characterized by the cognitive regression (relating to conscious

intellectual activity such as thinking, reasoning), deceleration of head growth, loss of

purposeful hand use with the development of stereotypic hand movements, tremors

(shaking from physical weakness), gait apraxia (loss of purposeful use of limb), and

seizures (a sudden attack, as of disease) occurring after a period of normal

development (Schanen et al., 1999) .

There are necessary and supportive criteria to diagnose RTT (Table 1).

Normal prenatal and perinatal period with normal developmental progress for the

first 6-18 months of life is essential for the diagnosis.  After normal head

circumference at birth, there is deceleration that leads to microcephaly.  Between 6

months to 3 years there is reduction or loss of acquired skills particularly purposeful

hand use, vocalisation (producing sound with the voice) and communication skills.
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The distinctive characteristic of RTT is the stereotypical hand movements such as

hand wringing, hand washing, clapping, patting or other more bizarre hand

automatisms.  Gait ataxia (an inability to coordinate voluntary muscular movements

that is necessary to walk on foot) is also an important feature. Supportive diagnostic

criteria include breathing dysfunction, electroencephalographic abnormalities,

spasticity, peripheral vasomotor disturbance, scoliosis (curvature of the spine), and

growth retardation.  If there is evidence of prenatal onset growth retardation,

microcephaly at birth, an identifiable metabolic, degenerative or storage disorder, an

acquired neurological disorder, retinopathy or optic atrophy, the clinical diagnosis of

RTT is excluded.  The nature of the condition is that of an evolving clinical

phenotype, making the clinical diagnosis uncomplete until 2 to 5 years of age

(Christodoulou et al., 2001).  An RTT patient displaying one of the features of the

disorder is shown in figure 1.

Table 1 Rett Syndrome Diagnostic Criteria (Christodoulou et al., 2001)

Necessary criteria Supportive criteria Exclusion criteria

1. Apparently normal prenatal
and perinatal period

2. Developmental progress
within normal range for the
first 5- 6 months

3. Normal head circumference
at birth, with subsequent
deceleration

4. Reduction or loss of
acquired skills (onset 6
months to 3 years) in
particular purposeful hand
use, vocalisation or speech
(words)

5. Appearance of marked
delay in development

6. Acquisition of hand
stereotypes

7. Gait and or truncal
apraxia(loss of purposeful
use of hand) (by 4 years)

1. Breathing dysfunction
2. Periodic apnoea during

wakefulness
3. Intermittent

hyperventilation
4. Breath holding
5. Forced expulsion of air or

saliva
6. EEG abnormalities
7. Slow wave background

with intermittent rhythmical
activity (3-5 Hz)

8. Epileptiform discharges,
with or without clinical
seizures

9. Spasticity, later with
muscle wasting dystonia

10. Peripheral vasomotor
disturbance

11. Scoliosis
12. Growth retardation
13. Hypotrophic, small, cold
feet

1. Evidence of prenatal onset
of growth retardation or
microcephaly

2. Organomegaly or other
evidence of storage disorder

3. Retinopathy or optic
atrophy

4. Existence of identifiable
metabolic or other
neurodegenerative disorder

5. Acquired neurological
disorder resulting from
severe infection of head
trauma
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Figure 1.  A girl with classical RTT phenotype.

Constant hand wringing, which is a typical symptom of RTT, is observed in

this girl. (Patient 00-173's photo was taken with permission from the family)

1.1.1.1. Natural History

The natural history of a typical patient with classical RTT is characterized by

the progression of four stages (see figure 1) (Hagberg et al., 1986). The patients are

normal at birth and exhibit normal development between 6-18 months. During stage

I, early onset of stagnation, obtaining of new skills slows and patients frequently

show autistic traits. Head growth slows and hypotonia is seen. After several months,

stage 2, the rapid regression stage slowly develops. Previously acquired skills such

as purposeful use of the hands and receptive and expressive language are lost and

there is gait apraxia.
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Figure 2.  Age of onset of signs and symptoms in RTT (Christodoulou and

Ellaway et al., 2001)

Also several unusual behaviours begin.  In Stage 3, the pseudostationary

stage, child's ability about interacting with her environment increases as autistic

features diminish.  Patients develop an irregular respiratory pattern while awake.

Seizures are most frequent during this stage and hand movements intensify.  Somatic

growth is poor and many patients develop osteopenia.  Stage 4, the late motor

deterioration stage, usually presents by 10 years of age and is characterized by

reduced mobility.  However there is no decline in cognition, communication or hand

skills. Repetitive hand movements may decrease.  Scoliosis is a prominent feature.

Rigidity (stiffness) and dystonia (increased muscle tone with abnormal extremity)

are characteristic.  The majority of RTT patients survive into adulthood.
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1.1.1.2. RTT Variants

Females who carry out all of the diagnostic criteria for RTT are classified as

having typical or classical RTT.  However, the clinical expression of RTT also

includes atypical forms that may be more severe or mild in phenotype.  Five possible

RTT variants were described:

1. Infantile seizure onset type: The characteristic features of this form are

predominance of seizures and onset of the disorder before 6 months

(Hanefeld et al., 1985).

2. Congenital form: This form appears early without a period of normal

development, and involves congenital hypotonia and infantile spasms

(Nomura et al., 1985, Rolando et al., 1985).

3. Forme Fruste: This is the milder form that experiences less severe

regression and milder mental retardation and does not have seizures

(Hagberg et al., 1989).

4. Late childhood regression: In this case, regression has developed later

and more gradually than classic RTT (Gillberg et al., 1989).

5. Preserved speech variant (PSV): PSV shares with classic RTT some

symptoms like stereotypical hand-washing activities but differs in that

patients typically recover some degree of speech and hand use and

usually do not show growth failure (De Bona et al., 2000).
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1.1.2. Hypothesis on the inheritance of the RTT gene

The genetic basis of Rett syndrome had been discussed extensively in the

literature following the identification of the syndrome.  Since 99.5% of all cases are

sporadic, it was not easy to define the inheritance pattern (Hagberg et al., 1983,

Martinho et al., 1990, Migeon et al., 1995, Comings et al., 1986, Ellison et al., 1992,

Zoghbi et al., 1988).  There were some clues about the possible genetic origin of the

syndrome such as almost exclusive occurrence in females, high concordance rate

among monozygotic twins while disconcordance among dizygotic twins, and

presence of rare familial cases (Comings et al., 1986, Ellison et al., 1992, Zoghbi et

al., 1988, Engerstrom et al., 1992, Schanen et al., 1997, Sirianni et al., 1998, Zoghbi

et al., 1990).  The first hypothesis by the help of rare familial cases, which indicated

inheritance through maternal lines and nonrandom patterns of X chromosome

inactivation (XCI) in obligate carrier females, suggested that Rett syndrome is an X-

linked dominant disorder caused by mutations in a gene that undergoes X

inactivation (Schanen et al., 1997, Sirianni et al., 1998, Zoghbi et al., 1990). There

were some argumentative hypotheses against this first one. This inheritance pattern

hypotheses included digenic inheritance of X-linked and autosomal loci (Buhler et

al., 1990) trinucleotide repeat expansions (Hofferbert et al., 1997), mitochondrial

inheritance (Ruch et al., 1989, Dotti et al., 1993, Lappalainen et al., 1994, Haas et

al., 1995a, Haas et al., 1995b, Tang et al., 1997), and autosomal dominant

inheritance with sex-limited expression (Killian et al., 1986).  Careful assessment of

the familial cases shown in figure 3, and analysis of the X inactivation patterns in the

putative carrier mothers, X-linked dominant inheritance became favourable again

(figure 3).  In addition, X inactivation studies performed in unaffected and obligate

carrier females displayed skewed X inactivation which favours the mutant X, and
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thus improves the phenotype (Willard et al., 1996, Puck et al., 1998).   II-2 in Rett

syndrome kindred 2, I-2 in Rett syndrome kindred 3, and I-2 in Rett syndrome

kindred 4 are the examples of the obligate carriers of Rett syndrome who were

mildly affected because of the skewed X chromosome inactivation (Migeon et al.,

1995, Schanen et al., 1997, Sirianni et al., 1998, Zoghbi et al., 1990).  Also in

discordant monozygotic twins, the preferential inactivation of paternal X

chromosome was reported (Migeon et al., 1995)

Figure 3. Pedigree for four RTT kindreds, which were used for mapping the

locus.

Filled symbols: Probands with classic RTT phenotype; Hatched symbols: Male RTT
patients (Schanen et al., 1999).

Rett Syndrome Kindred 1 Rett Syndrome Kindred 2

Rett Syndrome Kindred 3

I

II

III

1 2 3

1 2 3 4

1 2

21 3 4 5

1 2

1 2

1 2 3 4 5 6 7 8 9

Rett Syndrome Kindred 4

I

II

1 2 3 4

1 2 3 4
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1.1.3. Localisation of the RTT locus via exclusion mapping

In order to map a locus, 3 strategies could be performed.  The first one is

linkage analysis.  This analysis was not proper for mapping RTT locus because

99.5% of all cases were sporadic so there were not enough families to perform

linkage analysis.  The second is cytogenetic analysis.  It was promising, and

conducted.  But, classical banding techniques, FISH and Southern blotting did not

detect any abnormalities such as translocations, microdeletions or duplications,

which would be consistent with an X-linked dominant disorder (Fan et al., 1999).

The third one, exclusion mapping, was the most suitable method for the localisation

of the RTT gene.

The basis of exclusion mapping is that because the related probands inherited

the same mutation, the defective gene must lie in a region of the X chromosome that

is shared by the probands (Schanen et al., 1999).  The first progress in mapping

came from the studies of RTT kindreds 1, 2 and 3 (figure 3).  These were maternally

related half-sisters and aunt-niece pair in these families (Ellison et al., 1992, Anvret

et al., 1990, Archidiacono et al., 1991).  Polymorphic X-linked markers were typed

for RTT kindred 1, 2 and 3, and the region near the marker was excluded if the

probands inherited different alleles.  Subsequently, a Brazilian family (RTT kindred

4) was identified, which further narrowed the critical region (Figure 3 and 4).  In

general, using the affected sister pairs for exclusion mapping was risky because the

mutation on the putative RTT gene could be transmitted through the paternal lineage

if the father was a germline mosaic.  But for RTT kindred 4, it was thought that the

inheritance was maternal since there were affected and unaffected sisters and skewed

X inactivation in the mother.  With the help of these four RTT kindreds, the RTT
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locus was mapped to Xq28, a particularly gene rich part of the genome, via

exclusion mapping (Schanen et al., 1997, Sirianni et al., 1998, Schanen et al., 1998).

Figure 4. The exclusion mapping

A. Pedigree of the Brazilian family and schematic diagram of extended haplotype
of each X chromosome.  The only region of X chromosome concordant for
RTT is indicated (Sirianni et al., 1998).

B. The regions excluded by the four RTT kindreds is summarized. Filled bars
indicate excluded regions. The loci flanking the discordant and concordant
regions are shown on the right. Ideogram shows the approximate cytogenetic
location (Schanen et al., 1999).

  

1.1.4. Candidate gene screening

In many disorders, after genetic mapping, transcripts within critical region were

identified and then were screened for mutations in probands.  The Human Genome

Project was instrumental in the increase of the number of genes that fall into the

minimal critical region which would be used for mutation screening in relatively few

families (Schanen et al., 1999, Dragich et al., 2000).  In order to choose the

candidate genes, the RTT pathology was used as a clue.  In RTT, obvious pathology

“Minimal Critical
Region” for RTT

A B
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was limited to the central nervous system (CNS) where there was evidence for

abnormal development or maintenance of affected neurons.  As a note, mosaicism

for the mutation was not apparent at the cellular level (Armstrong et al., 1998).

Initially, attention was largely directed toward genes expressed predominantly in the

CNS, and genes for neurotransmitter and their receptors, neural specific proteins

were excluded (Heidary et al., 1998, Percy et al., 1998, Van Den Veyver et al.,

1998, Narayanan et al., 1998, Cummings et al., 1998, Wan et al., 1998).  However

careful examination of female patients and more severely affected male patients

indicated that the RTT gene was also important for the function of other tissues

(Motil et al., 1994; Haas et al., 1997; Motil et al., 1998).  Finally, 14 years of search,

Amir et al. and Wan et al. broke the silence in RTT in late summer 1999, and

identified MECP2 mutations in RTT probands both in familial and sporadic cases.

1.2. Methyl-CpG binding protein 2 (MECP2) gene

1.2.1. Identification of  MECP2 gene

CpG dinucleotides are nonrandomly formed at much of the

heterochromatic regions of the chromosomes and the promoter regions of many

genes.  60-90% of CpG nucleotides in mammalian genome are modified by

methylation at the carbon 5 position.  The remaining non-methylated CpGs are

found in CpG islands that usually include functional promoters.  Methylation of

cytosine residues in CpGs is important both in stable silencing of heterochromatin

and reversible regulation of gene expression, however, it is not important for the

proliferation and in vitro differentiation of embryonic stem (ES) cells (Ng et al.,

1999a, Li et al., 1992, Tate et al., 1996).
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Two models were suggested for transcriptional repression based on

CpG methylation.  According to the first model, DNA is bound by proteins, which

preferentially interact with methylated CpG sites, and prevent binding of activators

or basal transcription factors.  Second model suggests that due to preferential

interaction between methylated DNA, ubiquitous components of chromatin may

alter chromatin structure and lead to transcriptional repression (Mostoslavsky et al.,

1997).

Initial efforts to identify protein-mediated CpG methylation-

dependent repression led to the identification of MECP1 (Meehan et al., 1989,

Boyes et al., 1991). After a year, a second member of MECP family was identified

and cloned in rat (Lewis et al., 1992), and in  the human (Adler et al., 1995).  This

member was named as MECP2.  Both of the members bind symmetrically

methylated CpGs with a sequence-independent manner (Boyes et al., 1991).

Although MECP1 required more than 10 CpG pairs to bind DNA (Boyes et al.,

1992), MECP2 can bind singly methylated CpG pairs (Lewis et al., 1992).  Although

there is functional homology between MECP1 and MECP2, different binding

specificity and expression patterns suggest that MECP1 does not compensate for the

loss of MECP2 function (Dragich et al., 2000).

  Mecp2 gene was found to be X-linked in the mouse (Quaderi et al.,

1994), and later studies placed MECP2 gene to human X chromosome in Xq28

between the interleukin I receptor-associated kinase (IRAK) and the color vision

(RCP/GCP) loci.  The MECP2 gene spans 76 kb and is composed of four exons that

is transcribed from telomere to centromere with 1461 nucleotide coding sequence
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(figure 5).  The 5' non-coding exon was identified recently by Reichwald et al.2000,

MECP2 is subjected to X-inactivation (D'esposito et al., 1996).

Figure 5. MECP2 is flanked by IRAK and RCP loci.

The direction of the arrows indicates the orientation of the transcription (Dragich et
al., 2000)

Although, expression of MECP2 was at low levels early in

development, it was expressed ubiquitously in embryonic and adult tissues

(Meehan et al., 1992). MECP2 has three transcripts, which vary in length.   Their

lengths are respectively 1.8kb, ~7.5kb and ~10 kb.  By the different use of

polyadenylation signals in 3'UTR, these three transcripts are formed.  Although

there is tissue-specific variation in expression, short (1.8 kb) and long (10 kb)

transcripts are present in most of the tissues.  The long transcript is found at higher

levels than the shorter one in brain and spinal cord.  They are expressed similarly in

kidney, thyroid, lung, gastrointestinal tract and adrenal glands.  The short one is

expressed at higher levels in skeletal and cardiac muscle, lymphoid tissues, liver

and placenta (D'esposito et al., 1996, Reichwald et al., 2000).  Although, there is a

low level of expression of the long transcript in the developing nervous system, the

expression is increased in postnatal hippocampus and olfactory bulb (Coy et al.,

1999).  Because of the identical half-lifes of the short and the long transcripts, the

difference between the functions of these transcripts is not fully understood yet

(Reichwald et al., 2000).

MECP2IRAK RCP

cen tel



13

1.2.2. The structure and function of  MeCP2

MeCP2 is an abundantly expressed nuclear protein which is

associated with 5-methyl-rich heterochromatin (Tate et al., 1996, Nan et al., 1997).

Its 486 amino acids consist of four functional domains: (1) a methyl-CpG binding

domain (MBD; 85 amino acids in length) which is necessary to bind 5-methyl

cytosine in the major groove of DNA in the presence or absence of assembled

chromatin (Nan et al., 1993, Wakefield et al., 1999); (2) a transcriptional

repression domain (TRD; 104 amino acids in length) which interacts with

corepressor Sin3A to recruit histone deacetylases 1 and 2 (HDAC1and 2)(figure 6)

(Nan et al., 1998b, Jones et al., 1998); (3) a nuclear localization signal (NLS)

which may be responsible for the transport of MeCP2 into the nucleus (Nan et al.,

1996a, Nan et al., 1996b) and (4) a C-terminal segment which facilitates its binding

to the nucleosome core (Chandler et al., 1999).

 MeCP2 represses transcription through a mechanism that involves binding to

CpGs and recruitment of HDACs to modify chromatin structure.  This leads to

deacetylation of histones which allows DNA to wind more tightly around the

histone, and prevents the access of the transcription machinery to the promoters

(Jones et al., 1999, Wolffe et al., 2000).  However MeCP2 does not always require

deacetylase activity to repress transcription (Nan et al., 1998a, Kaludov et al., 2000,

Yu et al., 2000).  There is a interaction between MeCP2 and the transcriptional

machinery, which comprises TFIIB and E2F (Di Fiore et al., 1999).  This interaction

is an evidence for MeCP2 to repress transcription at a distance (>500 bp) (Nan et al.,

1997, Nan et al., 1998a, Kaludov et al., 2000).  Since, MeCP2 binds to the matrix

attachment sites, it may have a role in the architecture of silenced chromatin

(Buhrmester et al., 1995, Andrulis et al., 1998). These findings indicate that
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MeCP2’s role in nucleus is complex and mediate transcription through overlapping

mechanisms.

Figure 6. Schematic representation of the interaction between MeCP2 and

histone deacetylase complex.
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1.2.3. Mutations of MECP2

The mutation analyses have been focused on the coding region till

now because the untranslated regions of the gene is too long (particularly intron 1, 2

and 3'UTR).  MECP2 mutations have been reported in more than 300 RTT patients,

and up to %80 of the sporadic and %50 of the familial cases were found to have

mutations.  As a consequence of the sporadic occurrence of RTT, most mutations are

de novo. However, there are eight recurrent mutations namely R106W, R133C,

T158M, R168X, R255X, R270X, R294X, and R306C resulting from C to T

transitions that account for ~65% of mutations in patients (Amir et al., 1999, Wan et

al., 1999, Huppke et al., 2000, Cheadle et al., 2000, Bienvenu et al., 2000, Obata et

al., 2000, Hampson et al., 2000, Buyse et al., 2000, Inui et al., 2001, Vacca et al.,

2001, Bourdon et al., 2001, Nielsen et al., 2001, Erlandson et al., 2001).

The deletions found in the 3' end of exon 4 which account for 10% of

the known mutations are important for the function presumably because they are

involved in interaction of MECP2 with nucleosome core (Chandler et al., 1999).

More than 64 distinct mutations have been identified; most of them are nonsense

(approximately 41) although missense mutations (approximately 23) affecting highly

conserved amino acid residues are also seen.  Figure 7 shows the majority of the

mutations found in MECP2 gene and the mutations already associated with RTT is

summarized in appendix 3.
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Figure 7. Mutations identified in MECP2.

Exons 2-4 and the mutations of MECP2 is depicted in the diagram. Noncoding
regions is in black. MBD is in green and TRD is in red. Missense mutations are
listed above and nonsense mutations below the exons. The number of occurrence is
written in parenthesis near the recurrent mutations (Amir et al., 2000).

There is a high proportion of C to T transitions at CpG sites because

CpG dinucleotides are hypermutable, and germline and somatic mutations are

common at these sites (Rideout et al., 1990).  The mechanism that causes this

transition may involve methylation of 5' cytosine via methyltransferase and

spontaneous deamination of 5-methylcytosine to thymine.  C to T or G to A (on

antisense) transitions constitute ~55% single-nucleotide substitutions (Krawczak et

al., 1996).  There is a high level of CpG methylation in male germ cells.  Also the

whole X chromosome, including MECP2, is methylated (Girard et al., 2001).  The
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coding sequence of MECP2 contains 35 CpGs with a C to T transition possibility.

Exon 1 does not contain CpG pairs, which in part explains why no mutation has been

found in this exon.

1.2.4. Polymorphisms of MECP2

By using familial cases, ten different polymorphisms have been

identified (Amir et al., 1999, Wan et al., 1999, Cheadle et al., 2000, Buyse et al.,

2000, Amir et al., 2000a, Orrico et al., 2000).

Table 2   MECP2 polymorphisms identified.

Variant and Exon Nucleotide Change Amino Acid Change Domain

3 375 C to A I125 MBD

4 582 C to T S194

4 608 C to T T203M

4 843 C to T A281 TRD

4 897 C to T T299 TRD

4 984 C to T L328

4 1189 G to A E397K

4 1197 C to T P399

4 1233 C to T S411

4 1330 G to A A444T
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1.2.5. The effect of the mutations on the function of MECP2

Normal function of MeCP2 includes binding to 5mCs in the promoters,

recruiting deacetylase complex, and repressing transcription.  When there is a

mutation, MeCP2 no longer can bind to 5mC and can not recruit deacetylase

complex.  So, transcriptional noise from downstream genes appears to be likely (Van

Den Veyver et al., 2000) (figure 8).

Figure 8. Schematic representation of normal function of MeCP2 and the

effects of mutations to MeCP2 function (Van Den Veyver et al., 2000).
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MECP2 is expressed during organogenesis throughout the embryo, and,

later most strongly in the hippocampus (Coy et al., 1999).  Therefore, mutations of

this gene could impair several organs.  However, the MECP2 related genes that have

transcriptional repression activity and are members of repressor complexes could

compensate for MeCP2 dysfunction in some tissues other than the brain.  These

genes, MBD1, MBD2, MBD3, and MBD4 have been mapped to autosomes; and have

similar MBDs, but not TRD domains (Hendrich et al., 1999; Bird et al., 1999; Ng et

al., 1999; Wade et al., 1999) (figure 9).

Figure 9. MBD protein family

The MBD protein family shares conserved methyl-CpG binding domains. CxxCxxC
domain is found in MBD1. (GR)n represents, glycine-arginine repeats, and (E)
represents glutamic acid repeats. The "repair" domain of MBD 4 is a TG mismatch
glycosylase. TRD (transcriptional repression domain) is found only in MeCP2 (Bird
et al., 1999).
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In general, missense mutations are localized within the MBD domain,

except for R306C, which is found within the TRD, and impair selectivity for

methylated DNA.  Nonsense mutations, which truncate all or some part of the TRD

domain, affect the ability to repress transcription, and lead to a decreased level of

stability (Yusufzai et al., 2000; Ballestar et al., 2000).  Deletions are found within

the C-terminus, and affect the stability of the protein.

Majority of the nonsense mutation in the 5' end of the coding sequence

of MECP2 are proposed to result in the degradation of the mRNA molecule by a

mechanism called nonsense mediated decay (NMD).  This process monitors the

mRNAs for errors during gene expression and degrades them (Leeds et al., 1992

a,b).  In contrast, similar mutations within the last exon may by-pass this pathway

and result in the production of a truncated protein (Zhang J., 1998).  Since majority

of the mutations are nonsense and lie within the last exon, they are expected to

escape the NMD pathway.  In conjunction with this observation, a decrease in

disease severity was noted in cases that had truncating mutations within or

downstream of TRD when compared with the mutations within the N-terminal

region.  The nonsense mutations L138X, R168X, E235X, R255X, R270X, V288X,

and R294X were found to lead to the truncation of the TRD, and affect the ability to

repress transcription (Yusufzai et al., 2000).  A mutation resulting in the most

truncated protein was reported from an autistic RTT patient with a relatively mild

phenotype.  This Q19X mutation led to a gene product of only 19 amino acids.  This

example indicates that the premature truncation at the beginning of the protein does

not have to be the reason for a severe phenotype (Kim et al., 2000; Nielsen et al.,

2001).
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 The three recurrent RTT missense mutations, R106W, R133C, and

F155S have a greatly reduced (> 100-fold) affinity to the methylated DNA, which is

consistent with the impairment selectivity for binding to methylated DNA (Yusufzai

et al., 2000; Ballestar et al., 2000).  Another recurrent missense mutation, T158M,

which substitutes thr with met on the loop structure outside the DNA-binding

domain, shows only a small reduction (2-fold) in affinity to methylated DNA.

However, T158 in MECP2 is conserved from Xenopus to human and not present in

the other MBD family members, which suggest that this residue has a precise role

not related with its methyl-CpG binding activity (Dragich et al., 2000).

C-terminal region of MECP2 is required for protein stability (Yusufzai

et al., 2000).  Interestingly, this region shows an overall homology of 35% identity,

and 50% positivity in a 75 amino acid region with two brain-specific factors, brain-

specific factor-1 (BF-1) and fork head 4 (FKH4), which are members of the fork

head family. Their role is restricted to developing telencephalon.  This subregion

overlaps with -COOH terminus of MECP2, which has been shown to facilitate

MeCP2 binding to DNA (Chandler et al., 1999).
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1.3. MECP2 and X-linked mental retardation

Mental retardation is related with substantial limitations in mental

functioning.  In OMIM (Online Mendelian Inheritance in Man Database), 937

entries contained the term "MR", corresponding to 220 autosomal dominant, 437

autosomal recessive, 159 X-linked, and 121 non classified conditions.  IQ is used for

measuring MR; 50<IQ<70 means mild MR, and IQ<50 means severe MR.

Approximately 2-3% of the population has an IQ below 70. MR can be subdivided

into two: syndromic, which is characterized with consistent and distinctive clinical

finding (fragile-X is the most common one); and non specific (MRX) if MR is the

only primary symptom among affected individuals.  X-linked non specific MR

represents 5% of all MRs.  Eight genes have been identified which cause X-linked

MR when mutated.  These genes are OPHN1, GDI1, PAK3, ILRAPL, TM4SF2,

VCX-A and ARHGEF6 (figure 10).  However, their incidence is very low, being

around 0.5-1% of MRX (Toniolo et al., 2000; Castellvi-Bel et al., 2001).

Figure 10. The MR genes that are localized on the X chromosome (MECP2 not

included) (Castellvi et al., 2001).
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 Recently, mutations in MECP2 have been identified in four non

specific X-linked mental retardation families with multiple affected individuals.  In

the first family A140V mutation was identified in all of the four severely affected

males and two mildly affected females (Orrico et al., 2000).  E406X mutation was

identified in a three generation family in which two affected males display severe

MR and progressive spasticity (Meloni et al., 2000).  E137G mutation was found in

another MR family, and finally R167W mutation was found in a three-generation

family with four non-specific mentally retarded males (Couvert et al., 2001).  So far,

these mutations have not been reported in any one of the typical RTT cases.

There is a high frequency of mutations in MECP2 (~2%) when

compared with the other non specific X-linked MR genes (%0.5-1%).  This finding

indicates that MECP2 gene mutations are important for the MR phenotype (Couvert

et al., 2001).

In addition to MR, MECP2 mutations have been identified in patients

with Angelman syndrome phenotype (Imessaoudene et al., 2001; Watson et al.,

2001).

1.4. Male cases

Although RTT exclusively affects females, rare male cases have also been

reported.  Until now, five reports described mutations in male cases (Wan et al.,

1999, Clayton-Smith et al., 2000, Meloni et al., 2000, Orrico et al. 2000, Villard et

al., 2000).  Four of them are rare familial cases.  First one described a male child

with congenital encephalopathy who survived to age >1 year old (Wan et al., 1999).

Second described four brothers with severe nonspecific MR and movement disorders
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(Orrico et al., 2000). Third described two men affected by severe mental retardation

and progressive spasticity (Meloni et al., 2000).  Fourth described two brother who

died because of severe neonatal encephalopathy (Villard et al., 2000), and the fifth

described a sporadic case in which a boy affected by a nonfatal neurodevelopmental

disorder who has somatic mosaicism for a MECP2 mutation (Clayton-Smith et al.,

2000).

However MECP2 mutations are considered to be lethal for males.  In

addition, sex-limited expression of RTT can be explained by the occurrence of the de

novo X-linked mutations exclusively in the male germ cells which results in affected

daughters.  With this hypothesis, the absence of affected males can be explained by

the fact that sons do not inherit their X-chromosome from their fathers.  The

frequency of male-germ-line transmission of the mutation was found as 71% (Girard

et al., 2001) and 96.3% (Trappe et al., 2001).  These findings suggest that male

patients are naturally protected from de novo MECP2 mutations.

1.5. Mouse models for RTT

The unresolved issue in the pathogenesis of RTT is whether the

disease is the result of a dysfunction of postnatal neurons when the symptoms

become apparent or a prenatal developmental abnormality with postnatal phenotypic

appearance of the disease (Chen et al., 2001).  The most appropriate approach to

address this issue appears to be mouse studies.

The first mouse study indicated that Mecp2 is essential for

development, and its disruption leads to embryonic lethality (Tate et al., 1996).

Recent studies oppose this finding and demonstrated that Mecp2-null mice are
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viable, and show some of the symptoms of RTT at approximately six weeks of age

(Chen et al., 2001, Guy et al., 2001).

In both of these studies conditional knock-out technology was used to

delete exon 3 or exons 3 and 4 of MECP2.  Both in Mecp2-null mice and mice in

which Mecp2 was deleted in brain showed some of the symptoms of RTT such as

tremor, heavy breathing, and cold extremities indicating autonomic abnormalities

that are also characteristic for human RTT patients.  The most consistent changes

with the human RTT in mutant mice were smaller brain size and general reduction of

neuronal cell size (Chen et al., 2001, Guy et al., 2001).

1.6. Epigenetic regulation of gene expression and RTT

Methylation of CpG dinucleotides is necessary for transcriptional

repression and underlies the processes of X-inactivation, genomic imprinting, tissue-

specific and developmental regulation of gene expression (Cross et al., 1995).

1.6.1. X-inactivation

Dosage of X-linked genes is kept equal between females and males by

random X inactivation in each cell early in embryogenesis in females (Lyon et al.,

1986).  The exception for that is the genes in pseudoautosomal region which

normally escapes from X-inactivation and have functional homologues on Y

chromosome (Schneider-Gadicke et al., 1989, Goodfellow et al., 1984, Fisher et al.,

1990).

Two X-inactivation mechanisms, which can lead to RTT, were

hypothesized. The first, a mechanism in which the abnormality in X-chromosome
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inactivation leading to functional disomy of an X-linked gene(s), was proposed to

explain exclusive occurrence of RTT in females (Riccardi et al., 1986).  The

existence of male patients argues strongly against this disomy model (Schanen and

Francke, 1998).

The second is a more likely model which suggests that X-inactivation

patterns influence the phenotypic expression of RTT (Schanen et al., 1999).

Random X-inactivation pattern was found in most of the RTT cases (Zoghbi et al.,

1990, Anvret et al., 1990, Nielsen et al., 2001, Amir et al., 2000a, Webb et al., 1993,

Camus et al., 1996).  Skewed X inactivation, which leads to differences in

phenotypic expression was also observed in several non penetrant or mildly affected

obligate carrier females, and in an unaffected twin.  These results indicate that non

random pattern of X inactivation protects against the consequences of MECP2

mutations (Migeon et al., 1995, Schanen et al., 1997, Sirianni et al., 1998, Zoghbi et

al., 1990, Wan et al., 1999, Amir et al., 2000a, Krepischi et al., 1998, Villard et al.,

2001).  Recently, a case of RTT with 46,X,r(X) in which complete skewed

inactivation of the ring was shown.  Interestingly, no mutations were found in the

MECP2 gene present in intact X.  This finding suggested that, there could be two

loci related with RTT, one with the MECP2 locus which mutations predominantly

cause sporadic RTT.  The second is an unidentified locus in which mutations cause

mildly affected or unaffected carriers or familial cases (Rosenberg et al., 2001).

To evaluate the X-inactivation pattern, a rapid PCR methylation assay

has been developed for androgen receptor gene locus, where methylation of AR

locus correlates with X-inactivation.  In AR assay, which is widely used, the paternal
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allele can be distinguished from the maternal copy through the polymorphism of the

trinucleotide repeats in the locus (Allen et al., 1992)

1.6.2. Genomic Imprinting

Genomic imprinting is an epigenetic form of gene regulation that

determines expression or repression of genes according to their parental origin (Reik

et al., 1998, Jirtle et al., 1999).  This mechanism results in monoallelic expression of

the imprinted genes.  More than 25 imprinted genes have been identified.  These

genes have a role in fetal and placental growth, cell proliferation, and adult

behaviour (Jirtle et al., 1999, Barlow et al., 1995).

Methylation at CpG sites controls the multi step imprinting process.

In this process, the chromosome is methylated during gametogenesis or in the zygote

depending on its parental origin.  There is continuity in methylated state during cell

division and differentiation and the transcriptional machinery recognises the

methylated CpGs that result in monoallelic expression (Pfeifer et al., 2000).  Since

methylation-related transcriptional silencing underlies genomic imprinting, a role for

MeCP2 in this process can be thought.  However no data has been found about the

over or underexpression of imprinted genes as a consequence of MECP2 mutations

(Wan et al., 1999).

1.6.3. Developmental regulation of gene expression

During development, cells and tissues differentiate due to regulated

gene expression.  This regulation of gene expression can be performed in two levels

(Minie et al., 1992).  First is at the level of individual interaction of trans-acting

factors with local promoters and enhancers.  The stage-specific transcription factors,

which have a role in the regulation of B cell differentiation during development is a
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good example of this process (Hagman et al., 1994).  The second is at the level of

chromatin structure.  The developmentally regulated changes in histones determines

the repression of specific genes (Wolffe et al., 1996).

Since MeCP2 is a global transcriptional repressor, the mutations of

MECP2 can disrupt gene regulation in development by affecting trans-acting factors.

1.6.4. Tissue-specific gene expression

Although, the DNA content of all eukaryotic cells is identical, there

are different cell types.  The thing that makes this difference is the pattern of the

genes, which are expressed in the cell.  Briefly, the genes that are expressed define

the function of the cell.  Common housekeeping genes, which are expressed in all

cell types, perform the essential cell function.  The expression of other genes is

restricted to specific cell type with the help of tissue-specific gene expression

process (Strachan et al., 1996).

MeCP proteins bind to methylated CpG at a promoter and prevent

expression of the gene.  This process constitutes the cornerstone of the tissue

specificity.  It can be thought as the mutations of MECP2 can disrupt the tissue

specific gene expression.  But this hypothesis is highly unlikely since with impaired

tissue- specific gene expression process, the fetus would most probably be not

viable. Also there are functional and structural homologues of MeCP2 protein,

which can take over the impaired function of MeCP2.
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1.7. Aim and Strategy

The Rett syndrome project in our laboratory has the main aim of

studying the possible disturbances in DNA-methylation dependent gene silencing

which may be a new disease mechanism in human.  My specific aims in this project

are (1) Conformation of RTT diagnosis by DNA analysis.  For this purpose recurrent

MECP2 mutations will be analysed by restriction enzyme analysis and confirmed via

automated sequencing.  (2) Correlation of the phenotype (the symptoms) with the

genotype (the mutations).  (3) Correlation of the X chromosome inactivation patterns

with the clinical severity.
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2. Materials and Methods

2.1. Materials

2.1.1. Patient Samples

Collaborating physicians at Hacettepe University Medical Faculty (Ankara,

Turkey) referred Rett Syndrome patients to Bilkent University, Faculty of Science,

Molecular Biology and Genetics Department (Ankara, Turkey).  Blood samples

were collected in tubes containing EDTA.  Informed consent was obtained from the

parents of the patients.

2.1.2. Oligonucleotides

The primers used in the polymerase chain reactions (PCR), and the cycle

sequencing reactions were synthesized on the Beckman Oligo 1000 M DNA

synthesizer (Beckman Instruments Inc., Fullerton, CA, USA) at Bilkent University,

Faculty of Science, Department of Molecular Biology and Genetics (Ankara,

Turkey).  The primer sequences used for the analysis of MECP2 gene and AR gene

are given in Table 3 and 4.
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Table 3  Sequence of the MECP2 primers

Exons Name Sequence (5'→3') Expected

Size (bp)

[MgCl2]

(mM)

RTT 3 F GA 526 CCTGGTCTCAGTGTTCATTG

RTT 3 R GA 527 CTGAGTGTATGATGGCCTGG
597 1.5

RTT 4.1 F GA 530 TTTGTCAGAGCGTTGTCACC

RTT 4.1 R GA 531 CTTCCCAGGACTTTTCTCCA
380 1.5

RTT 4.2 F GA 532 AACCACCTAAGAAGCCAAA

RTT 4.2 R GA 533 CTGCACAGATCGGATAGAAGAC
380 1.5

RTT 4.3 F GA 534 GGCAGGAAGCGAAAAGCTGAG

RTT 4.3 R GA 535 TGAGTGGTGGTGATGGTGGTGG
366 1

RTT 4.4 F GA 536 TGGTGAAGCCCCTGCTGGT

RTT 4.4 R GA 537 CTCCCTCCCCTCGGTGTTTG
414 1.5

RTT 4.5 F GA 538 GGAGAAGATGCCCAGAGGAG

RTT 4.5 R GA 539 CGGTAAGAAAAACATCCCCAA
386 1.5

Table 4  Sequence of the AR primer pair

Exons Name Sequence (5'→3') Expected

Size (bp)

[MgCl2]

(mM)

RS-6 GA542 GTCCAAGACCTACCGAGGAG

RS-7 GA543 CCAGGACCAGGTAGGCTGTG
280 1
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2.1.3. Chemicals and Reagents

The chemicals and reagents used in this project were purchased from the

following sources:

Reagent Supplier

Acrylamide Sigma, St.Louis, MO, USA

Acetic Acid Carlo Erba, Milano, Italy

Agarose Basica LE, EU

Ammonium persulfate Sigma, St.Louis, MO, USA

Bisacrylamide Sigma, St.Louis, MO, USA

Boric acid  Sigma, St.Louis, MO, USA

Bromophenol blue  Sigma, St.Louis, MO, USA

Chelex  BioRad,Hercules, CA, USA

Chloroform  Carlo Erba, Milano, Italy

Ethanol  Merck, Frankfurt, Germany

Ethidium bromide  Sigma, St.Louis, MO, USA

Ficoll Type 400  Sigma, St.Louis, MO, USA

Formamide  Sigma, St.Louis, MO, USA

Glycerol  Carlo Erba, Milano, Italy

Hydrogen peroxide 40%  Carlo Erba, Milano, Italy

Isoamyl alcohol  Carlo Erba, Milano, Italy

Metaphor Agarose  FMC BioProd, Rockland, USA

NuSieve 3:1 Agarose  Basica LE, EU

Silver Nitrate  Sigma, St.Louis, MO, USA

Phenol  Carlo Erba, Milano, Italy

Proteinase K  Appligene-Oncor, USA
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Reagent Supplier

QIAquick PCR purification kit  Qiagen, Chatsworth, CA, USA

Sodium acetate  Carlo Erba, Milano, Italy

Sodium chloride  Sigma, St.Louis, MO, USA

Sodium dodecyl sulfate(SDS)  Sigma, St.Louis, MO, USA

Sodium hydroxide  Sigma, St.Louis, MO, USA

TEMED  Carlo Erba, Milano, Italy

TrisHCl  Sigma, St.Louis, MO, USA

Trisodium citrate  Sigma, St.Louis, MO, USA

Xylene cyanol  Sigma, St.Louis, MO, USA

pUC Mix Marker, 8  MBI Fermentas Inc., Amh, NY, USA,
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2.1.4. Restriction Enzymes

The restriction enzymes used in this project with their recognition and

restriction sites and the composition of the recommended buffers are listed in table

5.  The enzymes were obtained from the designated suppliers and used according to

the manufacturers' instructions.

Table 5  Restriction Enzymes Used for Mutation Detection

Restriction
Enzyme

Recognition Site Buffer (1X) Supplier

NlaIII 5’-CATG↓-3’
3’-↑GTAC-5’

NE Buffer 4
50mM potassium acetate

20mM Tris acetate
10mM magnesium acetate

1mM DTT

Biolabs
Beverly, MA, USA

NlaIV 5’-GGN↓NCC-3’
3’-CCN↑NGG-5’

NE Buffer 4
50mM potassium acetate

20mM Tris acetate
10mM magnesium acetate

1mM DTT

Biolabs
Beverly, MA, USA

HphI 5’-GGTGA (N)8↓-3’
3’-CCACT (N)7↑-5’

Buffer B+

10mM Tris-HCl
10mMMgCl2

0.1mg/ml BSA

MBI Fermentas Inc.
Amherst,NY,USA

HhaI 5’-G↓CGC-3’
3’-CGC↑G-5’

Buffer Y+

33mM Tris acetate
10mM magnesium acetate
66mM potassium acetate

0.1 mg/ml BSA

MBI Fermentas Inc.
Amherst,NY,USA

Hinf I 5’-G↓ANTC-3’
3’-CTNA↑G-5’

Buffer Y+

33mM Tris acetate
10mM magnesium acetate
66mM potassium acetate

0.1 mg/ml BSA

MBI Fermentas Inc.
Amherst,NY,USA

Eco130I (StyI)   AA
5’-C↓CTTGG-3’
3’-GGAAC↑C-5’

                TT

Buffer Y+

33mM Tris acetate
10mM magnesium acetate
66mM potassium acetate

0.1 mg/ml BSA

MBI Fermentas Inc.
Amherst,NY,USA

HpaII 5’-C↓CGG-3’
3’-GGC↑C-5’

Buffer Y+

33mM Tris acetate
10mM magnesium acetate
66mM potassium acetate

0.1 mg/ml BSA

MBI Fermentas Inc.
Amherst,NY,USA
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2.1.5. Polymerase Chain Reaction materials

The kits, which were used in PCR reaction, were obtained from MBI

Fermentas Inc. (Amherst, NY, USA).  Kits contained Thermus aquaticus DNA

polymerase (5U/µl), 10X PCR buffer (100 mM Tris-HCl (pH 8.8 at 25 °C), 500 mM

KCl, 0.8% Nonidet P40), 25 mM MgCl2 solution, and 10 mM dNTP mix (one ml of

10 mM dNTP solution contains 10µmol each of dATP, dCTP, dGTP, dTTP).  PCR

reactions were performed in 0.2 ml ThermowellTM tubes (Corning Costar Corp.,

Cambridge, MA, England) using the Gene Amp PCR system 9600 (Perkin Elmer,

Foster City, CA, USA).

2.1.6. DNA sequence analysis materials

Cycle sequencing reaction was performed using the ABI PRISMTM Ready

reaction Dye Terminator Cycle Sequencing Kit (ABI, Perkin Elmer, Foster City,

CA, USA).  The sequencing kit contained terminator premix with A-dye terminator,

C-dye terminator, G-dye terminator, T-dye terminator; dITP, dATP, dCTP and

dTTP; Tris-HCl (pH 9.0); MgCl2; thermal stable pyrophosphatase; and AmpliTaq

DNA polymerase, FS (8 U/µl).  Each kit also contained a PGEM  R 3 Zf(+) control

template (0.2 µg/µl) and -21 M13 forward primer (0.8 pmol/µl).  Cycle sequencing

reactions were performed in the Gene Amp PCR system 9600.  Electrophoresis was

performed using the 377 Sequencer (ABI,Perkin Elmer, Foster City, CA, USA).
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2.1.7. Standard Solutions and Buffers

Acrylamide:Bisacrylamide stock solution (%40)

39.5 acrylamide

0.53g bisacrylamide

The volume was adjusted to 100 ml by adding ddH2O.

Agarose gel loading buffer (6X)

15 % ficoll

0.05 % bromphenol blue

0.05 % xylene cyanol

Developer Solution

1.5 % NaOH

0.1 % formaldehyde

Extraction buffer

10 mM Tris HCl, pH 8.0

10 mM EDTA, pH 8.0

Proteinase K 20 mg/ml

0.5 % SDS

Fixative Solution

10 % ethanol

0.5 % acetic acid

Silver nitrate solution

0.1% silver nitrate
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Sequencing loading buffer

5 parts deionized formamide

1 part EDTA/ blue dextran

25mM EDTA (pH 8.0)

50 mg/ml blue dextran

SSC (20X)

3 M NaCl

0.3 M trisodium citrate, pH 7.0

TE Buffer

10 mM Tris HCl pH 8.0

  1 mM EDTA

Tris-boric acid-EDTA (TBE) (10 X) (1L)

108 g Tris HCl

  55 g boric acid

20 ml 0.5 M EDTA

q.s. 1000 ml ddH2O

2.2. Methods

2.2.1. DNA isolation from whole blood specimens

Blood samples have been stored at 40C for one to five days.  Before starting

DNA isolation, blood was frozen in 700 µl aliquots in 1.5 ml eppendorf tubes at -

800C for at least one day.

Blood was thawed, 800 µl of 1X SSC was added, and the content was mixed

by vortexing.  Then, it was centrifuged in a microfuge (Heraeus instruments,
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Biofuge, Osterode, Germany) at 13,000 rpm for 1 minute.  The supernatant was

removed without disturbing the cell pellet and discarded into disinfectant.  Then 1.4

ml 1X SSC was added and the tube was vortexed briefly to resuspend the cell pellet.

Again, it was removed, avoiding the pellet.  Cell pellet could be washed several

times with 1 X SSC if necessary.

Next, 800 µl extraction buffer (10 mM TrisHCl ph 8.0, 10 mM EDTA pH

8.0, 0.5 % SDS) and 10 µl proteinase K (20 g/ml ddH2O) were added.  The tube was

vortexed briefly to resuspend the cell pellet.  The suspension was incubated at 560C

for at least 1 hour.  Incubation could be done overnight if necessary to dissolve the

cell pellet.

The DNA was then extracted with 400 µl phenol/chloroform/isoamyl alcohol

(25:24:1) and vortexed for 60 seconds.  This step must be carried out in the fume

hood. The tube was spun in a microfuge for 5 minutes at 13,000 rpm.  The upper

aqueous layer (∼ 700 µl) was removed and placed in a new tube.  If DNA

supernatant was sticky or if the interface was not clear after this step, the supernatant

is not removed.  An additional extraction step was performed with 350 µl

phenol/chloroform/isoamyl alcohol.  The recovered supernatant was separated into

two or more tubes (350 µl per tube).

The DNA was then precipitated from the suspension by adding 35 µl NaOAc

(3M, pH 5.2) and 700 µl ice-cold absolute ethanol (EtOH) were added to each tube,

mixing by inversion and placing at - 200C for 30 minutes.  The tubes were spun in a

microfuge for 15 minutes at 13,000 rpm.  The alcohol was removed and the pellet
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was washed with 1.0 ml room temperature 70 % EtOH.  The tubes were spun in a

microfuge for 5 minutes at 13,000 rpm.  All the alcohol was removed with a

micropipette and the tubes were left open on the bench (∼30 min) to allow the EtOH

to evaporate. The DNA was solubilized in 200 µl TE (pH 8.0) by incubating at 560C

for at least 1 hour.  Incubation was done overnight if necessary to solubilize the

pellet. The DNA was then stored at - 200C.

The concentration and purity of the double stranded DNA was determined on

the Beckman Spectrophotometer Du 640 (Beckman Instruments Inc., Fullerton, CA,

USA) using the Beckman Instruments Du Series 600 Spectrophotometer software

program.  Absorbance readings were taken at wavelengths of 260 nm and 280 nm.

The A260 allows calculation of the concentration of nucleic acid in the sample.  An

optical density value of one corresponds to approximately 50 µg/ml of double

stranded DNA.  The A260/A280 ratio provides an estimate of the purity of the nucleic

acid.  A pure preparation of DNA will have A260/A280 ratio between 1.8- 2.0.  If there

is contamination with protein or phenol, the A260/A280 ratio will be significantly less

than the values given above and accurate quantitation of the amount of nucleic acid

will not be possible.

DNA was also checked by horizontal agarose gel electrophoresis to verify

that it was high molecular weight.  A 1.0 % agarose minigel with 1 X TBE was

prepared. Ethidium bromide (1 µl/ml) was incorporated into the gel.  DNA samples

were loaded into the sample wells and the gel was run at 80 V.  After the run, the

DNA was visualized with UV transilluminator.
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2.2.2 DNA isolation from hair

Procedures utilizing Chelex 100 chelating resin have been used for extracting

DNA from hair samples for use with the polymerase chain reaction.  The procedures

are simple, rapid and do not involve organic solvents.

Minimum 5-6 individual pieces of rooted hair was pulled out.  Then, it was

washed with 1-2 ml ddH2O.  Rooted hair was put into an eppendorf tube that

included 200 µl 5% chelex.  The mixture was incubated overnight at 56oC.  Then

vortexed for 10 seconds.

Next boiled for 8 minutes and vortexed for 10 seconds.  The tube was spun at

13.000 rpm for 2-3 minutes.  Then for PCR reaction, 10-20 µl was taken from

supernatant.

2.2.3 Polymerase Chain Reaction (PCR)

Polymerase chain reaction (PCR) is a technique, which is used to amplify the

number of copies of a specific region of DNA, in order to produce enough DNA to

be adequately tested.  There are three distinct events in PCR, which are repeated for

30 to 40 cycles: template denaturation, primer annealing and DNA synthesis.

Template DNA is denatured by heating the reaction to 95-960C.  After denaturation,

the primers are allowed to hybridize to their complementary single-stranded target

sequences.  The temperature of this step depends on the homology of the primers for

the target sequence as well as the base composition of the oligonucleotides.  The last

step is the extension of the oligonucleotide primer by the thermostable polymerase.
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720C is the ideal working temperature for the polymerase.  Usually, the larger the

template, the longer the time required for a proper extension.

Generally, 50- 100 ng DNA was used as a template.  A 25 µl PCR reaction

contained 2.5 µl 10 X PCR buffer (final concentration 1 X PCR buffer), 1.5- 3.0

mM MgCl2, 200µM dNTP, 20 pmol forward primer, 20 pmol reverse primer and 1

U Taq polymerase.  The volume was adjusted to 25 µl by adding ddH2O. Setting up

a series of PCR reactions using a range of MgCl2 concentrations optimised MgCl2

concentration for each primer pair.  Table 6 lists the appropriate MgCl2

concentration and melting temperatures for each exon.

Amplification was performed in the GeneAmp PCR with the following

parameters: initial denaturation at 950C for 5 min; 30 cycles of 950C for 30 sec

(denaturation), 57-620C for 30 sec (annealing), 720C for 30 sec (extension); and a

final extension at 720C for 10 min.  After the PCR cycles were completed, the tubes

were held at 40C for at least 5 minutes or until removal.
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 Table 6 Optimum MgCl2 concentrations and Tm for PCR of MECP2 and AR

  exons

2.2.4 Agarose Gel Electrophoresis

Agarose gel electrophoresis is a commonly used method for DNA analysis.

The method is based on the mobility of DNA molecules in the pores of agarose.

Agarose is a chain of sugar molecules, which is extracted from seaweed.  DNA has a

negative charge in solution, so it will migrate to the positive pole in an electric field.

The rate of migration will depend on the amount of charge and on the shape or size

of the molecule.

Genomic DNA and PCR products were analysed by using agarose gel

electrophoresis.  Agarose gels included agarose, 1X TBE and ethidium bromide (20

mg/ml). Runs were performed with 1 X TBE at 90 V for 30 minutes.

Gene Exons Primers
Tm

(0C)

[MgCl2]

(mM)

Exon 3 GA 526/527 62 1.5

Exon 4.1 GA 530/531 60 1.5

Exon 4.2 GA 532/533 58 1.5

Exon 4.3 GA 534/535 62 1

Exon 4.4 GA 536/537 58 1.5

MECP2

Exon 4.5 GA 538/539 60 1.5

AR Exon 1 GA 542/543 57 1
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2.2.5 Electrophoresis Markers

The length of DNA fragments were estimated by comparing to known

molecular weight standards that had been run on the same gel.  PUC mix,8

was used as DNA marker. The sizes of the fragments were given in figure

11.

Figure 11. Fragment sizes in pUC mix,8 DNA marker and φX174 DNA/HinfI

marker,10.

2.2.6 Restriction Enzyme Digestion

Restriction enzyme digestion of PCR products with HphI, NlaIII, NlaIV,

HhaI, HinfI, HpaII and StyI were performed in 20 µl reaction volumes.  Reactions

were carried out using the reaction buffer and conditions recommended by the

manufacturer.  One unit of enzyme was used to digest the PCR products.  In order to

determine the amount of PCR product that would be used in digestion, the PCR

samples were run on agarose gel before the digestion.  The incubation temperature

was 370C for all of the enzymes.  After digestion, heat inactivation was performed at

650C.
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After incubation the cut and uncut PCR fragments were analysed by agarose

gel electrophoresis.  DNA size markers were used to calculate the sizes of the bands.

Electrophoresis was performed using 3 % Nusieve 3:1 agarose or 2 % Metaphor at 5

V/cm in 1X TBE for 2.5 hours.  After the electrophoresis, the gel was stained in

EtBr (1µg / ml) for 20 minutes and then destained by two 15 minutes washes with

distilled water.

2.2.7 Polyacrylamide Gel Electrophoresis (PAGE)

Polyacrylamide gel electrophoresis is a high-resolution technique.  This

technique is based on the mobility of DNA molecules from negative pole to positive

pole upon voltage application through the porous structure of the polyacrylamide

gel.

12% nondenaturing gel was used for analysing the restriction enzyme

digestion results.  In order to prepare the PAGE, acrylamide / bisacrylamide from

40% stock, 10XTBE was mixed and the volume is completed to 40 ml with ddH2O.

10% APS and Temed was added to the mixture and poured to the PAGE apparatus.

The sample was loaded to the gel and runs are performed at 60 V for 3 hours.

2.2.8 Silver Staining

Silver staining is a method suitable for detection of double-stranded and

single-stranded DNA, and is more sensitive than ethidium bromide.

The steps in silver staining was as follows.  The gel was rinsed twice in

ddH2O for 1 minute.  Then it was incubated in 300 ml fixative solution for 3 minutes
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and it was rinsed again in ddH2O for 1 minute.  After this step, the gel was incubated

in 300 ml of 0.1% AgNO3 solution for 10 minutes at room temperature and rinsed

twice rapidly in  ddH2O.  As a last step, 300 ml of ice-cold developer solution was

added to the gel and incubated in this solution until the bands develop.

2.2.9 DNA sequence Analysis

The DNA sequencing analysis was performed using the ABI 377 DNA

sequencer at Molecular Biology and Genetics Department, Bilkent University.

DNA sequence analysis of MECP2 exon 3 for sample 99-91 using GA 526 and GA

527 primers, exon 4.1 for samples 99-114, 00-132, 00-157 using GA 530 and GA

531 primers, exon 4.3 for samples 99-104, 00-179, 00-187, 00-196 using GA 534

and GA 535 primers were performed.  Forward and reverse primer pairs were used

for sense strand and antisense strand sequencing.  The PCR products were cleaned

up with QIAquick PCR purification kit to remove the excess dNTP, MgCl2 etc.  The

purified PCR products were quantitated via agarose gel electrophoresis by

comparing band intensities with a DNA size marker of known concentration.  The

products with 20-100 ng/µl concentrations were sequenced.  For sequencing

reactions, Big DyeTM Terminator Cycle Sequencing Ready Reaction Kit ( ABI

Prism, Catalogue # 4303152) was used.  Cycle sequencing reaction was set up as

follows; 3-6 µl template, 1 µl primer and 4 µl terminator ready reaction mix was put

into 0.2 ml tubes and the volume is adjusted to 20 µl by ddH2O.  The reactions were

performed in Perkin Elmer GeneAmp PCR 9600 system according to the following

protocol: 25 cycles at 960C for 10 sec, at 500C for 5 sec, and at 600C for 4 min.

Sequencing products were precipitated using isopropanol.  Then DNA pellet was

resuspended in a sequencing loading buffer, and loaded in the 4% sequencing gel.
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During electrophoresis, the data was collected using ABI data collection

software.  After the run, these data were automatically analyzed by an ABI software.

Then the files that were analyzed were imported into Factura program to identify the

unambigous sequences and subsequently imported to Sequence Navigator program

for alignment with the reference DNA sequence.

2.2.10 Allele-specific X-chromosome inactivation assay

For this assay, genomic DNA (1µg) from the patients (who has a mutation)

was digested overnight, with methylation sensitive HpaII enzyme, in 25 µl volume,

by use of manufacturer's recommended buffer.  PCR amplification using GA 542

and 543 primers that amplify 280 bp AR gene was performed.  The PCR conditions

were; 950C for 5 min, followed by 30 cycles at 950C for 30 sec, at 560C for 30 sec,

and at 720C 30 sec with a final extension at 720C for 10 min.  The products were

separated on 12% PAGE and then visualized via silver staining.
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3. Results

3.1. DNA Isolation

Genomic DNA was isolated from patient's peripheral blood by using a

phenol chloroform extraction method (Ausubel et. al, 1994).  All extracted DNAs

were evaluated quantitatively and qualitatively by UV spectrophotometer, and

agarose gel electrophoresis.  DNA samples have an optic density ratio of 1.7-1.8.

The DNA samples represent single, high molecular weight band on agarose gel

(figure 12).   The concentrations of these DNA samples are 200, 160, 181 and 140

µg/ml, respectively.

Figure 12. DNA isolation by using phenol/chloroform extraction method

Samples were electrophoresed through a 1% agarose gel at 8V/cm for 35 min.
 Lane 1: 01-305; lane 2: 01-320; lane 3: 01-332; lane 4: 01-333

1 2 3 4
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3.2. Polymerase Chain Reaction

All PCR products were analyzed by agarose gel electrophoresis.  MECP2

exon 4.1 primers, GA 530, and GA 531 amplified samples shown in figure 13. The

expected size of the PCR product is 380 bp.  This was confirmed by comparison of

the observed DNA band with the size marker.  PCR mixture did not contain

contaminating DNA because there was no DNA band in the negative control sample

(Appendix 1 shows the schematic representation of the PCR products and primers

that were used in the sequence).

Figure 13. Analysis of PCR products

Samples were electrophoresed through a 2% agarose gel at 8V/cm for 35 min.
Lane 1: pUC mix DNA marker, 8; lanes 2-10: exon 4.1 samples; lane 11: negative
control

3.3. Detection of recurrent MECP2 mutations

Eight different types of mutations, one polymorphism and one deletion were

screened.  Since, RTT is an X-linked dominant disorder the patients are

heterozygous for the mutations.  Table 7 lists these mutations and polymorphism

(appendix 2 includes a figure that depicts the alterations, that were screened, in the

sequence of MECP2).

  1         2          3        4        5         6         7         8        9         10      11

380 bp
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Table 7 MECP2 mutations and polymorphism that are screened

3.3.1. R106W

A C316T point mutation was identified in two affected half sisters (Amir

et.al. 1999).  This point mutation is a missense mutation that changes Arg to Trp at

codon 106 within MBD.  The mutation occurs within the recognition site of the

restriction enzyme NlaIII and results in a gain of the cleavage site.  Thus, digestion

of MECP2 exon 3 PCR products with NlaIII might be a simple and cost-effective

assay for identifying the other Rett syndrome patients who inherited the same

mutation.

NlaIII has five recognition sites in the wild type MECP2 exon 3 DNA

sequence.  GA 526 and GA 527 primer pairs were used in the PCR reaction.  The

PCR amplified fragment is 597 bp.  After NlaIII digestion the expected fragment

StyI(+),MnIII(-)1189 G→AE397K-----4

Polymorphism:

NlaIV(-)806 delGV288XTRD4

NlaIV(-)808 C→TR270XTRD4

HphI(+)502 C→TR168X-----4

Nonsense:

HhaI(-)916 C→TR306CTRD4

NlaIII(+)473 C→TT158MMBD4

HinfI(+),TfiI(+)464 C→TF155SMBD4

NlaIV(-)455 C→GP152RMBD4

NlaIII(+)316 C→TR106WMBD3

Missense:

Restriction
Change (+/-)

Amino Acid
Change

Nucleotide
Change

DomainAlteration Type
and Exon
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sizes are 156 bp, 152 bp, 141 bp, 67 bp, 50 bp and 31 bp.  When there is a R106W

mutation, a new NlaIII cleavage site is created.  In a heterozygous individual the

expected fragment sizes are 156 bp, 152 bp, 141 bp, 121 bp, 67 bp, 50 bp, 35 bp and

31 bp (schematically depicted in figure 14).

Amplified MECP2 exon 3 PCR products were incubated with NlaIII in the

recommended buffer at 370 C for 3 hours.  After digestion, the DNA samples were

analysed by polyacrylamide gel electrophoresis.

The NlaIII digestion result for individual 99-91 is shown in figure 15.

Restriction digestion of the 99-91 sample and a control sample with NlaIII results in

a pattern with extra fragments 121 bp and 35 bp (this band is not shown in figure) in

lenght, indicating heterozygosity for the R106W mutation in the patient sample, and

no extra fragments in the control sample.

DNA samples from 63 RTT patients were analyzed for R106W mutation

using this method.  Three patients were found to be heterozygous for R106W

mutation (99-91, 00-163 and 00-174).
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Figure 14. Expected NlaIII fragment sizes for wild type, mutant and

heterozygous individuals.

A. Black lines indicate the recognition / a cleavage site of NlaIII and the dashed
horizontal line indicates the mutation-induced cleavage site of NlaIII.

B. A schematic representation of the normal and mutant DNA samples run on
PAGE is shown.

152 bp

3’

141 bp

156 bp

NORMAL

152 bp

 67 bp

 50 bp

 31 bp

MECP2,Exon 3, 597 bp

RTT 3F-3R (GA 526-527)

R106W (Arg  →   Trp)

306 C → T

NlaIII(+) digestion(CATG )

67bp 121bp 35bp 152bp 141bp 50bp 31bp

A

B
MUTANT

152 bp

141 bp

 67 bp

 50 bp

 31 bp

 35 bp

121 bp

HETEROZYGOUS

141 bp

 67 bp

 50 bp

 31 bp

 35 bp

121 bp

156 bp

5’
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Figure 15. Detection of R106W mutation by cleavage with NlaIII enzyme.

DNA fragments were electrophoresed in 12% PAGE at 60 V for 4 hours.
Lane 1: pUC mix DNA marker, 8; lane 2: NlaIII-digested mutant 99-91; lane 3:
NlaIII-digested control.

3.3.2. P152R

A C455G point mutation was identified in one of the sporadic patients

(Cheadle et.al. 2000).  This point mutation is a missense mutation that changes Pro

to Arg at codon 152 within MBD.  The mutation occurs within the recognition site

of the restriction enzyme NlaIV and results in a loss of the cleavage site.

NlaIV has four recognition sites in the wild type MECP2 exon 4.1 DNA

sequence.  GA 530 and GA 531 primer pairs were used in the PCR reaction.  The

PCR amplified fragment is 380 bp.  When there is a P152R mutation, a NlaIV

recognition site is abolished.  In a heterozygous individual the expected fragment

sizes are 213 bp, 175 bp, 95 bp, 49 bp, 38 bp and 23 bp (schematically depicted in

figure 16).

 1       2       3 

121 bp



53

Amplified MECP2 exon 4.1 PCR products were incubated with NlaIV in the

recommended buffer at 37 0 C for 3 hours.  As an uncut control, amplified MECP2

exon 4.1 PCR products were also incubated in the same NlaIV buffer, except

without the addition of enzyme.  After digestion the DNA samples were analysed by

agarose gel electrophoresis.

The NlaIV digestion result for individual 00-157 is shown in figure 17.

Restriction digestion of the 00-157 sample with NlaIV results in a pattern with

fragments of 213 bp, 95 bp, 49 bp and 23 bp in length, indicating heterozygosity for

the F155S mutation and 175 bp, 95 bp, 49 bp, 38 bp and 23 bp fragments in the

control sample.

DNA samples from 63 RTT patients were analyzed for F155S mutation

using this method.  Two patients were heterozygous for F155S mutation (00-133,

00-157).



54

Figure 16. Expected NlaIV fragment sizes for wild type, mutant and

heterozygous individuals.

A. Black lines indicate the recognition / a cleavage site of NlaIV and the narrow
vertical line indicates the mutation-induced abolishment of cleavage site of NlaIV.
B. A schematic representation of the normal and mutant DNA samples run on
agarose gel electrophoresis is shown.

3’

MECP2, Exon 4.1, 380 bp

RTT 4.1F- 4.1R (GA 530-531)

P152R (Pro  →  Arg)

455 C   →  G

NlaIV(-) digestion(GGN NCC)

23bp 49bp 95bp 38bp 175bp

××

A

B

NORMAL

175 bp

  95bp

 49 bp

  23 bp
 38 bp

MUTANT

213 bp

  95bp

  23 bp

 49 bp

175 bp

 38 bp

HETEROZYGOUS

213 bp

  95bp

  23 bp

 49 bp

5’
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Figure 17. Detection of P152R mutation by cleavage with NlaIV enzyme.

DNA fragments were electrophoresed in 2% Metaphor at 60 V for 3 hours.
Lane 1: pUC mix DNA marker, 8; lanes 2-3; 5-6 : NlaIV-digested control; lane 4:
NlaIV-digested mutant 00-157 individual; lane 7: Uncut control

3.3.3. F155S

C464T point mutation was identified in a sporadic case (Amir et.al., 1999).

This point mutation is a missense mutation that changes Phe to Ser at codon 155.

The mutation occurs within the recognition site of the restriction enzyme HinfI and

results in a gain of the restriction site.

HinfI does not have a recognition site in the wild type MECP2 exon 4.1

DNA sequence.  GA 530 and GA 531 primer pairs were used in the PCR reaction.

The PCR amplified fragment is 380 bp.  When there is a F155S mutation, a HinfI

recognition site is created.  In a heterozygous individual the expected fragment sizes

are 380 bp, 197 bp and 183 bp (schematically depicted in figure 18).

1    2     3      4    5     6    7

175 bp
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Amplified MECP2 exon 4.1 PCR products were incubated with HinfI in the

recommended buffer at 37 0 C for 3 hours.  As HinfI enzyme control, MECP2 exon

4.4 PCR product were incubated in the recommended buffer at 37 0 C for 3 hours.

After digestion, the DNA samples were analysed by polyacrylamide gel

electrophoresis.

The HinfI digestion result is shown in figure 19.  Restriction digestion of the

RTT samples of exon 4.1 result in pattern with 380 bp fragment, indicating that the

samples are wild type for F155S mutation.  Digestion of the HinfI-digested control

of MECP2 exon 4.4 with the enzyme results in a pattern with fragments 185 bp, 174

bp and 61 bp in length, indicating that enzyme is working.

DNA samples from 63 RTT patients were analyzed for F155S mutation

using this method. No F155S mutation was found.
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Figure 18.  Expected HinfI fragment sizes for wild type, mutant and

heterozygous individuals.

A. The sphered line indicates the mutation-induced cleavage site of HinfI.
B.  A schematic representation of the normal and mutant DNA samples runs on
PAGE is shown.
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Figure 19.  Detection of F155S mutation by cleavage with HinfI enzyme.

DNA fragments were electrophoresed in 12% PAGE at 60 V for 3 hours.
Lane 1: φX174 DNA marker, 8; lane 2-3: Normal RTT samples ( 00-163,
00-174); lane 4: HinfI-digested exon 4.4 control (99-95)

3.3.4. T158M

A C473T point mutation was identified in one of the sporadic patients (Amir

et.al. 1999).  This point mutation is a missense mutation that changes Tyr to Met at

codon 158 within MBD.  The mutation occurs within the recognition site of the

restriction enzyme NlaIII and results in a gain of the restriction site.

NlaIII does not have a recognition site in the wild type MECP2 exon 4.1

DNA sequence.  GA 530 and GA 531 primer pairs were used in the PCR reaction.

The PCR amplified fragment is 380 bp.  When there is a T158M mutation, a NlaIII

recognition site is created.  In a heterozygous individual the expected fragment sizes

are 380 bp, 197 bp and 183 bp (schematically depicted in figure 20).

185 bp

174 bp

61 bp

   1         2           3          4

380 bp
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Amplified MECP2 exon 4.1 PCR products were incubated with NlaIII in the

recommended buffer at 37 0 C for 3 hours.  After digestion, the DNA samples were

analysed by polyacrylamide gel electrophoresis.

The NlaIII digestion result for individual 99-107 is shown in figure 21.

Restriction digestion of the 99-107 sample with NlaIII results in a pattern with

fragments of 380, 197bp and 183 bp in length, indicating heterozygosity for the

T158M mutation and a single fragment of 380 bp in the control sample.

DNA samples from 63 RTT patients were analyzed for T158M mutation

using this method.  Five patients were heterozygous for T158M mutation (99-107,

00-132, 00-155, 00-188, 00-201).
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Figure 20. Expected NlaIII fragment sizes for wild type, mutant and

heterozygous individuals.

A.   The shingle line indicates the mutation-induced cleavage site of NlaIII.
B. A schematic representation of the normal and mutant DNA samples run on

PAGE is shown.
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Figure 21.  Detection of T158M mutation by cleavage with NlaIII enzyme.

DNA fragments were electrophoresed in 12% PAGE at 60 V for 4 hours.
Lane 1: φX174 DNA marker, 8; lane 2: NlaIII-digested mutant 99-107; lane 3:
NlaIII-digested control.

3.3.5. R168X

 C502T point mutation was identified in six unrelated sporadic cases (Wan

et.al. 1999).  This point mutation is a nonsense mutation that changes Tyr to stop at

codon 168 between the MBD and TRD.  The mutation occurs within the recognition

site of the restriction enzyme HphI and results in a gain of the restriction site.

HphI does not have a recognition site in the wild type MECP2 exon 4.1

DNA sequence.  GA 530 and GA 531 primer pairs were used in the PCR reaction.

The PCR amplified fragment is 380 bp.  When there is a R168X mutation, a HphI

recognition site is created.  In a heterozygous individual the expected fragment sizes

are 358 bp, 235bp, 123 bp and 22 bp (schematically depicted in figure 22).

1        2          31        2          3

183 bp
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Amplified MECP2 exon 4.1 PCR products were incubated with HphI in the

recommended buffer at 37 0 C for 3 hours.  As an uncut control, amplified MECP2

exon 4.1 PCR products were also incubated in the same HphI buffer, except without

the addition of enzyme.  As HphI enzyme control, hMLH1 exon 14 PCR product

were incubated in the recommended buffer at 37 0 C for 3 hours.   After digestion,

the DNA samples were analysed by agarose gel electrophoresis.

The HphI digestion result is shown in figure 23.  Restriction digestion of the

RTT samples results in pattern with fragments 358 bp and 22 bp (not shown in

figure), indicating that the samples are wild type for R168X mutation.Digestion of

the HphI-digested control of hMLH1 exon 14 with the enzyme results in a pattern

with fragments 254 bp, 183 bp and 71 bp in length, indicating that enzyme is

working.

DNA samples from 63 RTT patients were analyzed for R168X mutation

using this method.  No R168X mutation was found.
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Figure 22. Expected HphI fragment sizes for wild type, mutant and

heterozygous individuals.

A. Black lines indicate the recognition / a cleavage site of HphI and the dashed
vertical line indicates the mutation-induced cleavage site of HphI.

B. A schematic representation of the normal and mutant DNA samples run on
agarose gel electrophoresis is shown.
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Figure 23.  Detection of R168X mutation by cleavage with HphI enzyme.

DNA fragments were electrophoresed in 4% NuSieve at 60 V for 3 hours.
Lane 1: pUC mix DNA marker, 8; lane 2: Uncut control; lane 3-4: HphI-digested
hMLH1 exon 14 control ( 97-2,97-168); lane 5: RTT sample (00-150)

3.3.6. R306C

A C916T point mutation was identified in one of the sporadic patients.  This

mutation is the first missense mutation identified in TRD (Wan et.al. 1999).  This

point mutation changes Arg to Cys at codon 306.  The mutation occurs within the

recognition site of the restriction enzyme HhaI and results in a loss of the cleavage

site.

HhaI has three recognition sites in the wild type MECP2 exon 4.3 DNA

sequence.  GA 534 and GA 535 primer pairs were used in the PCR reaction.  The

PCR amplified fragment is 366 bp.  When there is a R306C mutation, a HhaI

recognition site is abolished.  In a heterozygous individual the expected fragment

sizes are 308 bp, 164bp, 144 bp, 47 bp and 11 bp (schematically depicted in figure

24).

   1          2          3        4          5
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Amplified MECP2 exon 4.3 PCR products were incubated with HhaI in the

recommended buffer at 37 0 C for 3 hours.  As an uncut control, amplified MECP2

exon 4.3 PCR products were also incubated in the same HhaI buffer, except without

the addition of enzyme.  After digestion the DNA samples were analysed by agarose

gel electrophoresis.

The HhaI digestion result for individual 00-179 is shown in figure 25.

Restriction digestion of the 00-179 sample with HhaI results in a pattern with

fragments of 308 bp, 164 bp, 144 bp, 47 bp and 11 bp in length, indicating

heterozygosity for the R306C mutation and 164 bp, 144 bp, 47 bp and 11 bp

fragments in the control sample.

DNA samples from 63 RTT patients were analyzed for R306C mutation

using this method.  Five patients were heterozygous for R306C mutation (99-95,00-

43,00-44,00-160,00-179).
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Figure 24. Expected HhaI fragment sizes for wild type, mutant and

heterozygous individuals.

A. Black lines indicate the recognition / a cleavage site of HhaI and the horizantal
brick line indicates the mutation-induced abolishment of cleavage site of HhaI.

B. A schematic representation of the normal and mutant DNA samples run on
agarose gel electrophoresis is shown.
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Figure 25.  Detection of R306C mutation by cleavage with HhaI enzyme.

DNA fragments were electrophoresed in 2% Metaphor at 60 V for 3 hours.
Lane 1: pUC mix DNA marker, 8; lanes 2 and 5: HhaI-digested control; lane 3:
Uncut control; lane 4: HhaI-digested mutant 00-179 individual.

3.3.7. R270X/V288X

 C808T point mutation was identified in three sporadic cases (Cheadle et.al.,

2000) and del806G was identified in all affected members of a two-generation

family (Wan et al., 1999).  C808T point mutation is a nonsense mutation that

changes Arg to stop at codon 270 within TRD.  Del806G causes a frameshift

mutation, after 19 missense amino acids, leads to a stop codon at position 288 within

the TRD.  These two mutations occur within the recognition site of the restriction

enzyme NlaIV and results in a loss of the restriction site.

NlaIV have a recognition site in the wild type MECP2 exon 4.3 DNA

sequence.  GA 534 and GA 535 primer pairs were used in the PCR reaction.  The

PCR amplified fragment is 366 bp.  When there is an R270X or V288X mutation,

this NlaIV recognition site is abolished.  In a heterozygous individual with R270X

   1      2       3       4       5
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mutation, the expected fragment sizes are 366 bp, 314 bp and 52 bp and for V288X

mutation in heterozygous individual, the expected fragment sizes are 365 bp, 314 bp

and 52 bp  (schematically depicted in figure 26).

Amplified MECP2 exon 4.3 PCR products were incubated with NlaIV in the

recommended buffer at 37 0 C for 3 hours.  As an uncut control, amplified MECP2

exon 4.3 PCR products were also incubated in the same NlaIV buffer, except

without the addition of enzyme.  After digestion, the DNA samples were analysed

by agarose gel electrophoresis.

The NlaIV digestion result is shown in figure 27.  Restriction digestion of the

RTT samples results in pattern with fragments 366/365 bp, 314 bp and 52 bp (not

shown in figure), indicating that the samples are heterozygous for the R270X or

V288X mutation.

DNA samples from 63 RTT patients were analyzed for the R270X/V288X

mutations using this method.  Three patients were found to have a mutation. In order

to identify whether this mutation was R270X or V288X, DNA sequencing was

performed.  According to the result of the sequencing reactions, these three patients

had the R270X mutation (99-104, 00-187, 00-196).



69

Figure 26. Expected NlaIV fragment sizes for wild type, mutant and

heterozygous individuals.

A. The diagonal brick line indicates the mutation-induced abolishment of cleavage
site of NlaIV.

B. A schematic representation of the normal and mutant DNA samples run on
agarose gel electrophoresis is shown.
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Figure 27.  Detection of R270X/V288X mutation by cleavage with NlaIV enzyme.

DNA fragments were electrophoresed in 2% Metaphor at 60 V for 3 hours.
Lane 1: pUC mix DNA marker, 8; lane 2: NlaIV-digested control; lane 3: NlaIV-
digested mutant 99-104 individual, lane 4: Uncut control

3.4 Detection of E397K MECP2 polymorphism by StyI

A C1189T polymorphism was identified in two unrelated families (Wan

et.al. 1999).  This polymorphism changes Glu to Lys at codon 397.  The alteration

occurs within the recognition site of the restriction enzyme StyI and results in a gain

of the cleavage site.

StyI has two recognition sites in the wild type MECP2 exon 4.4 DNA

sequence.  GA 536 and GA 537 primer pairs were used in the PCR reaction.  The

PCR amplified fragment is 414 bp.  When there is a E397K polymorphism, a StyI

recognition site is created. In a heterozygous individual the expected fragment sizes

are 237 bp, 135bp, 102 bp, 101 bp and 76 bp (schematically depicted in figure 28).

     1         2         3        4
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Amplified MECP2 exon 4.4 PCR products were incubated with StyI in the

recommended buffer at 37 0 C for 3 hours.  After digestion the DNA samples were

analysed by polyacrylamide gel electrophoresis.

The StyI digestion result for individual 00-160 is shown in figure 29.

Restriction digestion of the 00-160 sample with StyI results in a pattern with

fragments of 237 bp, 135bp, 102 bp, 101 bp and 76 bp in length, indicating

heterozygosity for the E397K polymorphism and 237 bp, 101 bp and 76 bp

fragments in the control sample.

DNA samples from 60 RTT patients were analyzed for E397K

polymorphism using this method.  One patient who also bears R306C mutation was

heterozygous for E397K polymorphism (00-160).
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Figure 28. Expected StyI fragment sizes for wild type, mutant and heterozygous

individuals.

A. The grey line indicates the mutation-induced cleavage site of StyI.
B. A schematic representation of the normal and mutant DNA samples run on
PAGE is shown.
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Figure 29. Detection of E397K polymorphism by cleavage with StyI enzyme.

DNA fragments were electrophoresed in 12% PAGE at 60 V for 4 hours.
Lane 1: pUC mix DNA marker, 8; lane 2-4: StyI-digested control; lane 5: StyI-
digested 00-160 individual.

Totally, 18 mutations and 1 polymorphism were found in 69 RTT patients.

Table 8, indicates the samples which were found to have MECP2 mutations and

polymorphism.

Table  8  RTT patients with MECP2 alterations

  1            2           3            4           5

237 bp

135 bp

102/101 bp

 76 bp

Alteration Type 

and Exon Domain

Nucleotide Change Amino Acid 

Change

Restriction Change(+/-)

Frequency Samples

Missense:
2 MBD 316C      T R106W         NlaIII (+)  3 / 63 99-91,00-163,00-174
3 MBD 455C      G P152R         NlaIV (-)  2 / 63 00-133,00-157
3 MBD 464C      T F155S HinfI (+),TfiI (+)  0 / 63  ---------
3 MBD 473C      T T158M         NlaIII (+)  5 / 63 99-107,00-132,00-155,00-188,00-201
3 TRD 916C      T R306C         HhaI (-)  5 / 63 99-95,00-43,00-44,00-160,00-179

Nonsense:
3 ..... 502C      T R168X         HphI (+) 0 / 63  ---------
3 TRD 808C      T R270X         NlaIV (-)  3 / 63 99-104,00-187,00-196
3 TRD 806del     G V288X         NlaIV (-) 0 / 63  ---------

Polymorphism:
3 ..... 1189C      T E397K StyI (+),MnlII (-)  1 / 60 00-160

MECP2 ALTERATIONS
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3.5.  Detection of 3' deletion by PCR-based approach

For RTT patients, 00-45 and 00-184, after the PCR amplification of MECP2

exon 4.4 by the primers GA 536 and GA 537 there was a visible doublet on

acrylamide gel (figure 30).  Between the two bands in the gel, 44 bp difference is

calculated.  In that region, Buyse et al. 2000, reported a 44 bp deletion, 1164del44nt

and recently Nielsen et al. 2001, reported another 44 bp deletion, 1155 del 44nt, so

that, 00-45 and 00-184 was proposed to have 1164del44nt, 1155 del44nt or another

deletion with 44 bp.  Consequently, it needs to be analyzed subsequently by

subcloning and sequencing to indicate the type of deletion.

Figure 30.  Detection of 3' deletion at PCR level

Lane 1: pUC mix, DNA marker, 8; lane 2: 00-45; lane 3: 00-184, lane 4: 00-174,
lane 5: negative control

     1           2            3          4          5
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3.6. Detection of unknown mutation

During the detection of T158M mutation via NlaIII enzyme digestion, 99-

114 sample displayed different pattern (figure 31).  There was ~ 310 bp extra band,

probably because of the creation of new recognition site for NlaIII.  Subsequent

analysis by sequencing indicated that there was C590T transition, which leaded to

T197M mutation in 99-114 individual (figure 36).

Figure 31. Detection of unknown mutation by cleavage with NlaIII enzyme.

DNA fragments were electrophoresed in 12% PAGE at 60 V for 4 hours.
Lane 1: pUC mix DNA marker, 8; lane 2: NlaIII-digested 99-114; lane 3: NlaIII-
digested control, lane 4: NlaIII-digested 00-155 with T158M mutation.
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3.7. DNA Sequence Analysis

3.7.1. MECP2 exon 3 R106W mutation

Cycle sequencing reactions were performed using MECP2 exon 3 primers,

GA 526 and GA 527 and ABI prism kit, for 99-91 sample in order to confirm that

the template had R106W mutation.  By using ABI Sequence Analysis Software on

the 377 DNA Sequencer, the DNA products were electrophoresed and analyzed.

Heterozygous bases were identified using the Factura software program.  Then,

finally the DNA sequence was aligned with the reference sequence using the

Sequence Navigator Software Program.  The only difference between the reference

sequence and 99-91 sample was at nucleotide 316 in exon 3.  At this position,

although there was C (cytosine) residue in the reference sequence, the 99-91 sample

was heterozygous "N" with one allele having a C (cytosine) residue and the other

allele having a T (tyrosine) residue at this point (figure 32).  Thus, after restriction

enzyme digestion results, it was confirmed by sequencing that 99-91, 00-163, 00-

174 samples had R106W mutation.
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Figure 32. Electropherogram showing R106W (306 C to T) mutation.

a. Sample 99-91: DNA sequence obtained with forward primer,
b. Sample 99-91: DNA sequence obtained with reverse primer.

3.7.2. MECP2 exon 4.1 P152R mutation

Cycle sequencing reactions were performed using MECP2 exon 4.1 primers,

GA 530 and GA 531 and ABI prism kit, in order to confirm the RE digestion result

for P152R mutation.  One of the sample found to be mutant by RE digestion, 00-

133, was sequenced.  By using ABI Sequence Analysis Software on the 377 DNA

Sequencer, the DNA products were electrophoresed and analyzed.  Heterozygous

bases were identified using the Factura software program.  Then, finally the DNA

sequence was aligned with the reference sequence using the Sequence Navigator

Software Program.  The only difference between the reference sequence and 00-133

sample was at nucleotide 455 in exon 4.1.  At this position, although there was C

(cytosine) residue in the reference sequence, the 00-133 sample was heterozygous

b

C/T

C/T

a
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"N" with one allele having a C (cytosine) residue and the other allele having a G

(guanine) residue at this point (figure 33).

Figure 33.  Electropherogram showing P152R (455 C to G) mutation.

a. Sample 00-133: DNA sequence obtained with forward primer,
b. Sample 00-133: DNA sequence obtained with reverse primer.

3.7.3. MECP2 exon 4.1 T158M mutation

Cycle sequencing reactions were performed using MECP2 exon 4.1 primers,

GA 530 and GA 531 and ABI prism kit, in order to confirm the RE digestion result

for T158M mutation.  One of the sample found to be mutant by RE digestion, 00-

132, was sequenced.  By using ABI Sequence Analysis Software on the 377 DNA

Sequencer, the DNA products were electrophoresed and analyzed.  Heterozygous

bases were identified using the Factura software program.  Then, finally the DNA

sequence was aligned with the reference sequence using the Sequence Navigator

b

C/G

C/G

a
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Software Program.  The only difference between the reference sequence and 00-132

sample was at nucleotide 473 in exon 4.1.  At this position, although there was C

(cytosine) residue in the reference sequence, the 00-132 sample was heterozygous

"N" with one allele having a C (cytosine) residue and the other allele having a T

(tyrosine) residue at this point (figure 34).

Figure 34.  Electropherogram showing T158M (473 C to T) mutation.

a. Sample 00-132: DNA sequence obtained with forward primer,
b. Sample 00-132: DNA sequence obtained with reverse primer.

3.7.4. MECP2 exon 4.3 R306C mutation

Cycle sequencing reactions were performed using MECP2 exon 4.3 primers,

GA 534 and GA 535 and ABI prism kit, in order to confirm the RE digestion result

for R306CM mutation.  One of the sample found to be mutant by RE digestion,

a
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00-179, was sequenced.  By using ABI Sequence Analysis Software on the 377

DNA Sequencer, the DNA products were electrophoresed and analyzed.

Heterozygous bases were identified using the Factura software program.  Then,

finally the DNA sequence was aligned with the reference sequence using the

Sequence Navigator Software Program.  The only difference between the reference

sequence and 00-179 sample was at nucleotide 916 in exon 4.3.  At this position,

although there was C (cytosine) residue in the reference sequence, the 00-179

sample was heterozygous "N" with one allele having a C (cytosine) residue and the

other allele having a T (tyrosine) residue at this point (figure 35).

Figure 35.  Electropherogram showing R306C (916 C to T) mutation.

a.     Sample 00-179: DNA sequence obtained with forward primer,
b.     Sample 00-179: DNA sequence obtained with reverse primer.

b

a

C/T

C/T
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3.7.5. MECP2 exon 4.3 R270X mutation

Cycle sequencing reactions were performed using MECP2 exon 4.3 primers,

GA 534 and GA 535 and ABI prism kit, in order distinguish the mutation type,

whether it was R270X or V288X. The samples which were found to had mutation

by RE digestion, 99-104, 00-187 and 00-196 were sequenced.  By using ABI

Sequence Analysis Software on the 377 DNA Sequencer, the DNA products were

electrophoresed and analyzed.  Heterozygous bases were identified using the Factura

software program.  Then, finally the DNA sequence was aligned with the reference

sequence using the Sequence Navigator Software Program.  The only difference

between the reference sequence and 99-104, 00-187 and 00-196 sample was at

nucleotide 916 in exon 4.3.  At this position, although there was C (cytosine) residue

in the reference sequence, the samples were heterozygous "N" with one allele having

a C (cytosine) residue and the other allele having a T (tyrosine) residue at this point

(figure 36). The sequence result of 00-196 will be explained and given in "somatic

mosaicism" section.



82

Figure 36.  Electropherogram showing R270X (808 C to T) mutation.

a.   Sample 99-104: DNA sequence obtained with forward primer,
b. Sample 00-187: DNA sequence obtained with forward primer.

3.7.6. MECP2 exon 4.1 T197M mutation

Cycle sequencing reactions were performed using MECP2 exon 4.1 primers,

GA 530 and GA 531 and ABI prism kit, for 99-114 sample in order to identify the

different pattern, that leaded to mutation, after NlaIII digestion.  By using ABI

Sequence Analysis Software on the 377 DNA Sequencer, the DNA products were

electrophoresed and analyzed.  Heterozygous bases were identified using the Factura

software program.  Then, finally the DNA sequence was aligned with the reference

sequence using the Sequence Navigator Software Program.  The only difference

between the reference sequence and 99-114 sample was at nucleotide 590 in exon

4.1.  At this position, although there was C (cytosine) residue in the reference

sequence, the 99-114 sample was heterozygous "N" with one allele having a C

(cytosine) residue and the other allele having a T (tyrosine) residue at this point

(figure 37).  Thus, after restriction enzyme digestion results, it was identified a novel

mutation; T197M; in sample 99-114 by sequencing.

C/T

C/T

b

a
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Figure 37.  Electropherogram showing T197M (590 C to T) mutation.

a. Sample 00-132: DNA sequence obtained with forward primer,
b. Sample 00-132: DNA sequence obtained with reverse primer.

3.8. Somatic mosaicism for R270X mutation in a boy with classical RTT

A R270X mutation was identified in a boy, 00-196, with RTT.  Also this

mutation was detected in two girls with RTT (99-104, 00-187) (figure 38 B).  The

mutant allele in the affected boy was found along with the wild-type allele through

reduced dosage when compared with the samples of the females.  Although, the

mutant (T) and wild-type (C) nucleotide peaks were equal in the girls, the mutant

(T) nucleotide peak of 00-196 was lower than the wild-type nucleotide (C) peak.

(figure 38A a,b).   In order to perform dosage analysis of the alleles, genomic DNA

of 00-196 and 99-104 was re-amplified with the same primers used in sequencing

reaction, and digested again with NlaIV restriction enzyme.  The restriction

fragment's densitometric scanning revealed that the ratio is 56:44 in the girl and

36:64 in the boy (figure 38 B).

C/T

C/T

a

b
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Figure 38.  00-196 sample which is somatic mosaic for R270X.

A. Sequence analysis of samples 00-196 and 99-104,
B. Restriction digestion result of female 99-104 blood, male 00-196

hair root and 00-196 blood

Also restriction results from 00-196's PCR products from hair sample,

indicated similar ratio (figure 38 B). Cytogenetic analysis showed that 00-196 has

normal 46,XY karyotype. All these findings suggest that 00-196 is a somatic mosaic

for R270X.

A

b. 99-104 (female RTT)

a. 00-196 (male RTT)

B

%T allele

%C allele

41
(36-47)

44
(36-50)

36
(28-43)

59
(53-64)

56
(50-64)

64
(57-72)
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3.9. X-inactivation assay

The androgen receptor (AR) assay was used to assess X chromosome

inactivation pattern in RTT families (Allen et al. 1992).  This assay is based on the

differential methylation of a cytosine residue just 5' to the highly polymorphic

trinucleotide repeat in the androgen-receptor gene.  On inactive X this site is

methylated so that, is resistant to digestion by methylation-sensitive HpaII enzyme.

Conversely, the site is unmethylated on active X and susceptible to digestion. HpaII-

digested genomic DNA is used as a template for PCR reaction.  This amplification

product allows determination of the relative ratio of methylation of each allele,

corresponding to the ratio of inactivation.  The polymorphic triplet repeat, adjacent

to the methylation site, provides a length difference between the alleles. This

difference serves to separate the two alleles.  The X chromosome inactivation

pattern is considered skewed when the same X chromosome appears to be inactive

in ≥80 % of cells (Naumova et al. 1996).

The androgen-receptor assay was performed on genomic DNA from the

female RTT patients who has mutation of MECP2.  Figure 39 represents three of the

sample's, 00-133, 00-188, and 00-196 (male patient) AR assay results. Sample from

the male RTT patient with mutation is amplified only if undigested by HpaII, which

is consistent with the presence of a single active AR gene.  In all samples, except

sample 00-188 random X chromosome inactivation is found.  Table 9 summarizes

the result of X inactivation study.
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 Figure 39. X chromosome inactivation pattern of 00-133, 00-188, 00-196.

A. Lane 1: HpaII-digested PCR product of 00-133; lane 2: Undigested PCR
product of 00-133.

B. Lane 1: HpaII-digested PCR product of 00-188; lane 2: Undigested PCR
product of 00-188.

C.  Lane 1: Undigested PCR product of 00-196; lane 2: HpaII-digested PCR
product of 00-196.

Table 9  X inactivation patterns of RTT patients with MECP2 mutation

No
Family
Code Pt Code Domain Exon Base Change AA change

Mutation
designation

X-inactivation
(AR)

1 RTT-4 99-91 MBD 3 316 C to T Arg to Trp R106W random
2 RTT-34 00-163 MBD 3 316 C to T Arg to Trp R106W Not informative
3 RTT-42 00-174 MBD 3 316 C to T Arg to Trp R106W random
4 RTT-19 00-133 MBD 4 455 C to G Pro to Arg P152R random
5 RTT-28 00-157 MBD 4 455 C to G Pro to Arg P152R Not informative
6 RTT-18 00-132 MBD 4 473 C to T Thr to Met T158M random
7 RTT-51 00-188 MBD 4 473 C to T Thr to Met T158M Skewed
8 RTT-60 00-201 MBD 4 473 C to T Thr to Met T158M random
9 RTT-26 00-155 MBD 4 473 C to T Thr to Met T158M random

10 RTT-9 99-107 MBD 4 473 C to T Thr to Met T158M random
11 RTT-50 00-187 TRD 4 808 C to T - R270X random
12 RTT-8 99-104 TRD 4 808 C to T - R270X random
13 RTT-14 00-43 TRD 4 916 C to T Arg to Cys R306C random
14 RTT-15 00-44 TRD 4 916 C to T Arg to Cys R306C Not informative
15 RTT-6 99-95 TRD 4 916 C to T Arg to Cys R306C random
16 RTT-44 00-179 TRD 4 916 C to T Arg to Cys R306C random
17 RTT-31 00-160 TRD 4 916 C to T Arg to Cys R306C random
18 RTT-16 00-45 4 1163 del44nt - del random
19 RTT-48 00-184 4 1163 del44nt - del random

     1                 2          1          2        1             2

A B C
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3.10. Genotype-Phenotype correlations

 In order to compare the clinical features with the mutational spectrum in

MECP2, a detailed clinical scoring system was used.  The RTT patients harbouring

different mutations were assessed for fourteen clinical symptoms.  Three patients

were with forme fruste variant and sixteen with classical RTT.  Except one patient

the others can not use their hands. The other symptoms are highly variable (table 10

and 11).

The patients who harbour same mutation do not display similar symptoms.

As a result, there is not any consistent correlation between clinical severity and the

type of mutation.
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Table 10  Genotype-phenotype correlation

Pt Code Mutation
design.

Type of
RTT

Onset
(mo)

Ambulation Seizures Respiratory
dysfunction

Head
growth

Somatic growth
failure

Motor Hand
use

Communication Autonomic
dysfunction

EEG Scoliosis Self-
abuse

Screaming

99-91 R106W cl 3 0 0 1 3 1 0 3 1 0 NA 0 0 0
00-163 R106W FF 3 0 0 0 3 0 1 3 1 1 1 0 0 2
00-174 R106W FF 4 3 2 0 0 0 2 3 2 0 1 0 0 0
00-133 P152R cl 3 3 1 1 2 0 2 3 1 1 1 0 2 2
00-157 P152R cl 1 0 1 0 3 0 0 3 0 0 2 0 1 1
00-132 T158M cl 2 0 0 0 0 0 1 3 0 0 2 1 1 2
00-188 T158M FF 5 3 0 0 0 0 2 3 0 0 2 0 0 2
00-201 T158M cl 3 0 0 0 2 2 0 3 1 1 1 0 1 0
00-155 T158M cl 4 3 2 0 3 ? 2 3 1 1 1 0 2 1
99-107 T158M cl 2 1 2 2 3 2 0 3 ? 1 1 0 0 0
00-187 R270X cl 5 3 2 2 2 2 0 3 ? 1 ? 0 0 0
99-104 R270X cl 2 1 1 0 3 1 1 2 1 0 1 1 0 2
00-43 R306C cl 1 1 0 0 2 0 0 3 1 0 2 0 0 0
00-44 R306C cl 2 1 2 2 3 ? 1 3 1 1 ? 1 ? 1
99-95 R306C cl 1 2 2 3 3 2 0 3 1 1 ? 0 ? 1
00-179 R306C cl 1 0 1 0 3 0 0 3 ? 0 2 0 ? 0
00-160 R306C cl 1 1 1 1 3 0 1 3 1 0 2 0 ? 0
00-45 del cl 2 1 1 0 3 ? 0 3 1 ? 2 1 ? 1
00-184 del cl 2 0 0 0 3 1 1 3 ? ? 1 0 1 1
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Table 11  Severity score for RTT

Variable Sc. Definition Variable Sc. Definition
Age at onset 1 > 30 mo Hand use 0 feeds self

2 18-20 mo 1 holds objects
3 12-18 mo 2 may reach for objects
4 6-12 mo 3 none
5 < 6 mo

Ambulation 0 walks alone Communication 0 makes choices
1 walks with help 1 inconsistent eye gaze
2 used to walk 2 no communication
3 never walked

Seizures 0 None Autonomic dysfunction 0 none
1 well controlled 1 mild color/temperature changes
2 uncontrolled 2 moderate
3 infantile spasms 3 severe

Respiratory dysfunction 0 None Electroencephalogram 0 normal pattern
1 minimal cyanosis 1 multifocal and/or slow spike
2 intermittent cyanosis 2 slow spike; slow background
3 constant cyanosis 3 hypsarrhythmia

Head growth 0 none to minimal deceleration Scoliosis 0 none
1 deceleration > 10th percentile 1 minimal: <200

2 2nd-10th percentile after 24 mo 2 moderate: <200 -70
3 2nd percentile by 24 mo 3 severe >700

4 < 2nd percentile by 24 mo

Somatic growth 0 no growth failure Self abuse 0 none
1 mild failure 1 intermittent
2 moderate failure requiring 2 constant

oral supplements

Motor 0 none to mild ↑ or ↓ tone Screaming 0 none
1 moderate tone change and mild 1 < weekly

↓ ambulation 2 weekly or more
2 severe impairement of ambulation
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4. Discussion 

 

With the discovery of MECP2 mutations, Rett Syndrome became the 

first human disease found to be caused by defects in a protein involved in the 

regulation of gene expression through its interaction with methylated DNA (Amir et 

al., 1999, Wan et al., 1999, Ng et al., 1999a, Li et al., 1992, Tate et al., 1996). 

 

4.1. Mutation Analysis 

In this study 63 RTT patients classified as classical RTT (n=43), RTT 

variant (n=14), male RTT (n=4), and familial RTT (n=2) were screened for seven 

recurrent mutations (R106W, P152R, T158M, R306C, R168X, R270X, V288X), one 

rare mutation (F155S), and one polymorphism (E397K). Restriction enzyme analysis 

was used to analyze these known mutations.  DNA sequencing was performed to 

confirm the results (table 12).   

 

In the classical RTT group R106W was found in one (2.32%) patient, 

P152R in two (4.65%) patients, T158M in four (9.3%) patients, R306C in five 

(11.6%) patients, R270X in two (4.65%) patients, del 44 nt in two (4.65%) patients.  

E397K polymorphism was detected in one patient from this group.  

 

In the RTT variant group R106W was found in two (14.28%) patients, 

T158M in one (7.14%) patient, and the novel T197M mutation in one (%7.14%) 

patient. 



 91

Among the four male RTT patients one (25%) was found to carry the 

R270X mutation along the normal MECP2 sequence.  Finally, no mutation was 

detected among the familial cases.  R168X and V288X mutations were found in any 

one of the groups either.   

 

Table 12 Distribution of the mutations in the patient groups 

 RTT-classic 
(n=43) 

RTT-variant 
(n=14) 

RTT-male 
(n=4) 

RTT-familial 
(n=2) 

Mutation     
R106W 1 (2.32%) 2 (14.28%) 0 0 
P152R 2 (4.65%) 0 0 0 
F155S 0 0 0 0 
T158M 4 (9.3%) 1 (7.14%) 0 0 
R168X 0 0 0 0 
T197M 0 1 (7.14%) 0 0 
R270X 2 (4.65%) 0 1 (25%) 0 
V288X 0 0 0 0 
R306C 5 (11.6%) 0 0 0 
del 44 nt 2 (4.65%) 0 0 0 
Total 16 (37.2%) 4 (28.57%) 1 (25%) 0 
 

Although, R168X mutation has been reported as the most frequent 

mutation with frequency ranging from 12 to 39 % of all mutations found in the studies 

(Wan et al., 1999, Amir et al., 2000a), we did not see this mutation in our patients.  

Thus, R168X mutation is not considered as a common mutation in our Turkish RTT 

patients.  R168X mutation frequency might change from one population to another 

since it was found rarely also in the Swedish RTT patients (Erlandson et al., 2001).   

 

One novel mutation, T197M, was identified in one of our patients. It 

was known that because of the hypermutability of CpG sites, C to T transitions form 

the majority of the MECP2 mutations.  Consistent with this observation, the novel 

mutation that we identified is a C to T transition.  This C590T transition is found in a 
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region which is important for interaction of MECP2 with Sin3A which is a co-

repressor in the histone deacetylase complex (Nan et al., 1998b). Thus this mutation 

most probably affects the interaction of MeCP2 with co-repressor and disrupts the 

MeCP2- repressor complex integrity. 

 

While performing the mutation screening experiments, a boy who is 

mosaic for the recurrent R270X was identified.  After a boy who was reported as 

having somatic mosaicism in the MECP2 gene, our case is the second RTT patient 

who is mosaic for a MECP2 mutation (Clayton-Smith et al., 2000).  In the previous 

report the patient was mosaic for a rare MECP2 mutation.  However, in our case, he 

has somatic mosaicism for a recurrent MECP2 mutation. 

 

Somatic mosaicism has been reported in different genetic diseases 

including X-linked disorders; ornithine transcarbamylase deficiency (Maddalena et 

al., 1988), double cortex syndrome/X-linked lissencephaly (Gleeson et al., 2000), 

Duchenne muscular dystrophy (Bakker et al., 1989), and hemophilia A (Gitschier et 

al., 1989, Oldenburg et al., 2000).  Thus, somatic mosaicism should be considered 

when there is a male patient with an X-linked dominant disease. 

 

Our MECP2 mutation detection rate is 37.2% for the classical group, 

28.57% for the variant group, and 25% for the male group.  This rate can be increased 

by screening for other recurrent mutations such as R255X, and performing DNA 

sequencing for the entire MECP2 gene.  Since this was not cost-effective, it was not 

performed at this stage in our laboratory. 
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4.2. X-chromosome inactivation (XCI) 

To determine whether patterns of X chromosome inactivation 

contributes to phenotypic variability, 19 RTT patients with MECP2 mutations were 

evaluated.  16 patients who were analysed via AR assay were informative.  In these 

patients 15 has random and 1 has skewed X inactivation in blood.  Also, it was seen 

that the patient with skewed X-inactivation does not represent a milder phenotype.  

This may be due to somatic mosaicism for the X-inactivation patterns in different 

tissues. 

 

As a consequence, the X chromosome inactivation pattern can not be 

related to the phenotype which is consistent with the previous study (Nielsen et al., 

2001).  The random XCI pattern in most of the RTT patients suggests that the RTT 

phenotype is seen because of the high expression of mutant MECP2 in cells. 

 
 

4.3.  Genotype- Phenotype Correlation 

In reviewing the phenotypes reported for a mutation, a wide variability 

in each of the domains were examined (Amir et al., 1999, Wan et al., 1999, Amir et 

al., 2000a, Cheadle et al., 2000, Xiang et al., 2000, Bienvenu et al., 2000, Huppke et 

al., 2000).  Positive correlation between mutations and phenotype was reported only 

in Amir et al. 2000a.  A correlation was found between truncating mutations and two 

parameters: breathing abnormalities and low levels of CSF HVA (a breathing 

dysrhythmia, with periods of hyperventilation or apnea, breath-holding, interrupting 

normal breathing).  Also they showed that patients with missense mutations were 

more likely to have scoliosis than with truncating mutations (Amir et al., 2000a). 
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We did not detect any correlation between genotype and phenotype 

(table 10).  The correlation that was shown between truncating mutation and breathing 

dysfunction and missense mutation and scoliosis was not found in our RTT patients 

with mutations.  Except for one patient, the other patients can not use their hands.  

The other characteristics, including major clinical features are different from one 

patient to another. 

 
 

5. Future Perspectives 

  Since only seven recurrent mutations were screened until now, 

additional mutation analysis studies should be performed.  As a first step, R255X 

recurrent mutation can be screened via DNA sequence analysis, since this mutation 

does not make a change at the cleavage site of any enzyme.  Second, our RTT patients 

should be screened for mutations via DNA sequencing analysis for the entire coding 

region of the MECP2 gene.  Third, MECP2 introns can be analysed to see if structure 

or function of the gene is altered by intronic mutations.  

 

One of our male patients with classical RTT was found to be 

mosaic for the R270X mutation.  Single cell clones of this patient from blood cells 

can be obtained to analyse the global expression pattern of genes to better understand  

the underlying pathology in RTT.   

 

After completing the whole MECP2 gene mutation screening, a 

more comprehensive genotype-phenotype correlation can be performed and a 

consistent correlation between the symptoms and the mutations might be established. 

 



 95

As MeCP2 protein is involved in regulation of gene expression, it 

is likely that mutations of MECP2 will cause misregulation of downstream genes, 

which are normally silent.  This is probably the underlying pathology of clinical 

features in RTT.  There are a large numbers of genes on the X chromosome, which 

can be candidate downstream genes that are effected by MECP2 mutations.  These 

candidate genes can be analysed in cell lines derived from a single cell clone of RTT 

patients to understand whether there is inappropriate expression of the genes.  The 

result of this study might demonstrate if gene expression profile on the inactive X 

chromosome is altered in RTT or not. 

 

The other mechanism that is effected by methylation-dependent 

gene silencing is genomic imprinting.  In order to analyze the effects of MECP2 

mutations on the imprinting process genes subject to genomic imprinting can be 

analysed in RTT patients.  While methylation of imprinted allele is lost and imprinted 

allele is reactivated in cells with mutant MECP2, biallelic rather than monoallelic 

expression of imprinted genes would be recognized.  

 

The identification of mutations in MECP2 gene as the cause of 

RTT provides a good opportunity to study the pathogenesis of the disease at the 

molecular level.  As the mouse MECP2 gene is highly similar to the human gene, 

studies of the mouse gene may help us to establish an animal model for RTT.  Using 

the conditional knockout technology, mice that lack MECP2 either in all tissues or 

selectively in the brain was generated (Bird et al., 1999, Guy et al., 2001).  The 

mutant mice show features that are similar to those in RTT, including apparent normal 

pre- and perinatal development but fast postnatal deterioration.  These MECP2 mutant 
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mice can be analyzed, focusing on revealing any cellular defects associated with 

MeCP2 deficiency in the mouse central nervous system.  Since there is behavioral 

defects in RTT, it will be interesting to analyze whether there is also behaviral defects 

in mice.  The result of this study might help to cure the disease because of the 

identification of RTT pathogenesis. 

 

After identifying the function of MeCP2 totally, pathogenesis of RTT 

and the downstream gene products, a cure for RTT may be in reach.  Drugs, gene 

therapy and may be stem cell, with normal MECP2, transplantation can be the 

solution for the treatment of this syndrome. 
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Appendix 1. Schematic representation of the PCR product sizes and primers that were used to amplify the MECP2 gene. 
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Appendix 2. The mutations that were screened in MECP2 gene. 
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