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Abstract

An active real-time database system (ARTDBS) is designed to provide timely response to the critical situations that are de®ned

on database states. Although a number of studies have already addressed various issues in ARTDBSs, little attention has been paid

to scheduling transactions in a distributed ARTDBS environment. In this paper, 2 we describe a detailed performance model of a

distributed ARTDBS and investigate various performance issues in time-cognizant transaction processing in ARTDBSs. The exper-

iments conducted evaluate the performance under various types of active workload and di�erent distributed transaction-processing

architectures. The performance metric used in the evaluations is the fraction of transactions that violate their timing constraints. We

also describe and evaluate a nested transaction execution scheme that improves the real-time performance under high levels of active

workload. Ó 1998 Elsevier Science Inc. All rights reserved.
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1. Introduction

Real-time database systems are designed to provide
timely response to the transactions of data-intensive ap-
plications. Each transaction processed in a real-time da-
tabase system is associated with a timing constraint
typically in the form of a deadline. Active database sys-
tems, on the other hand, extend conventional database
systems with the ability to specify and implement reac-
tive behavior which is typically speci®ed in terms of
event-condition-action (ECA) rules. The general form
of an ECA rule is: on event if condition do action. The
semantics of such a rule is that when an event occurs,
the corresponding condition is checked, and if the con-
dition is satis®ed, then a speci®ed action is executed
[16]. Therefore, an active database system has to moni-
tor events of interest and detect their occurrences. The
semantics of rule execution can be speci®ed in a transac-
tion framework. A transaction which triggers rules can
be called a triggering transaction, and the transaction
which executes the triggered rule can be called the trig-
gered transaction.

Active real-time database systems (ARTDBSs) ®eld
has emerged as a result of the requirement to apply
real-time scheduling techniques to rule execution in ac-
tive database systems that support time-critical applica-
tions. Some examples of such application areas are
command and control systems, automated manufactur-
ing, air-tra�c control, intelligent network services, and
cooperative distributed navigation systems [42]. Few
studies, that are brie¯y described in the next section,
have addressed various problems that might arise in
integrating the concepts from real-time scheduling algo-
rithms and active database systems.

In our work, we investigate various performance
issues in time-cognizant transaction processing in dis-
tributed ARTDBSs. We describe a performance model
designed for studying the performance of various com-
ponents of a distributed ARTDBS, and present the re-
sults of experiments conducted to be able to address
the performance issues in executing transactions under
various types of active workload. The performance met-
ric used in the evaluations is the fraction of transactions
that miss their deadlines. Two di�erent transaction-pro-
cessing architectures, that we call distributed transaction
and mobile data, are employed in the experiments. In the
distributed transaction architecture, a transaction exe-
cutes a cohort at each site that stores one or more data
pages required by the transaction. The mobile data
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architecture, on the other hand, is based on transmitting
data pages to wherever they are needed. We also consid-
er di�erent types of semantics in controlling the concur-
rent execution of triggering and triggered transactions.
Besides conducting experiments with the assumption
that the triggering and triggered transactions share the
locks, we also describe and evaluate a nested transaction
execution scheme that exploits the nested structure of
rule execution to improve the performance.

1.1. Related work

Most of the work in active database systems area to
date has concentrated on rule speci®cation, e�cient
event detection and rule execution (e.g., [6,8,10,17,
18,21±23,29]). A detailed description of the issues related
to active database systems can be found in Ref. [37].
Involvement of timing constraints in active databases
was ®rst considered in the HiPAC (High Performance
ACtive Database System) project [9,15]. Three basic
concepts explored in this project are active database
management, timing constraints, and contingency plans.
Contingency plans are alternate actions that can be in-
voked whenever the system determines that it cannot
complete an action within its deadline. A knowledge
model was developed for the project that provides prim-
itives for de®ning condition-action rules and timing
constraints, control mechanisms for e�cient rule search-
ing, and support for the execution model. The execution
model was provided to specify the semantics of rule
execution in a transaction framework. An important is-
sue determined by the execution model is the coupling
mode between the triggering transaction and the trig-
gered rule. Three basic coupling modes are introduced
in Ref. [16]: immediate, deferred, and detached. In imme-
diate coupling mode, the triggered rule is executed im-
mediately within the triggering transaction. In deferred
coupling mode, the triggered rule is executed at the
end but before the commit of the triggering transaction.
Finally, in detached coupling mode, the triggered rule is
executed in a separate transaction independent of the
triggering transaction.

The research on real-time database systems to date
has mainly focused on development and evaluation of
time-cognizant scheduling techniques that aim to maxi-
mize the fraction of satis®ed timing constraints while
maintaining consistency of the underlying database
(e.g., [1,4,11,12,14,19,26±28,32,35,40,46]). For an over-
view of the recent research on real-time database sys-
tems, the reader is encouraged to refer to [36,49]. The
results of a considerable amount of research devoted
to various issues in distributed real-time database sys-
tems have also appeared in the literature. These issues
include concurrency control (e.g., [32,43,45]), deadline
assignment (e.g., [30,33]), replication (e.g., [47]), and
commitment (e.g., [24,34,44]). In Ref. [45], several dis-

tributed real-time concurrency control protocols were
described and the relative performance of the protocols
was reported in a nonreplicated database environment.
In Ref. [43], several methods were investigated to apply
a real-time locking protocol, called priority-ceiling, as a
basis for concurrency control in a distributed environ-
ment. The relative performance of static and dynamic
locking approaches in a distributed real-time database
system was studied in Ref. [32].

The problem of assigning priorities to transactions in
ARTDBSs was studied by Purimetla et al. [38] and Siva-
sankaran et al. [42]. Three priority assignment policies,
that use di�erent amount of semantic information about
transactions, were proposed, and the performance of the
policies was evaluated using an ARTDBS simulator.
The same research group also developed some strategies
for data placement, logging, and recovery to achieve ef-
®cient transaction processing in ARTDBSs [41]. It was
shown that exploiting the characteristics of data for
transaction processing, placing the data at the appropri-
ate level of the memory hierarchy, and performing log-
ging and recovery of data appropriate for each type of
data is crucial to attain high performance in ARTDBSs.

Branding and Buchmann [5] identi®ed `network man-
agement' as one of the applications that require both ac-
tive and real-time database support. Their primary work
was development of an ARTDBS for this application
and seamless integration of the ARTDBS's execution
model with the underlying operating system primitives.

Berndtsson and Hansson [2] characterized the basic
features of active and real-time database systems, and
addressed several issues that need to be considered while
combining those features. In a recent work, Datta and
Son [13] studied various concurrency control methods
in ARTDBSs, and proposed a number of new strategies.
Performance of the proposed concurrency control strat-
egies was investigated through simulation experiments.

2. A distributed active real-time database system model

We have extended the performance model of a dis-
tributed real-time database system that we used in an
earlier work [48], by adding a Rule Manager to handle
triggering transactions. In the distributed system model,
a number of data sites are interconnected by a local
communication network. As depicted in Fig. 1, each site
contains a Transaction Generator, a Transaction Manag-
er, a Rule Manager, a Message Server, a Resource Man-
ager, a Scheduler, and a Bu�er Manager.

The Transaction Generator is responsible for generat-
ing the workload for each data site. The arrivals at a da-
ta site are assumed to be independent of the arrivals at
the other sites. Each transaction in the system is distin-
guished by a globally unique transaction id. The id of a
transaction is made up of two parts: a transaction
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number which is unique at the originating site of the
transaction and the id of the originating site which is un-
ique in the system.

The Transaction Manager is responsible for modeling
the execution of transactions. It accepts transactions
from the Transaction Generator and the Rule Manager.
Each transaction is characterized by a real-time con-
straint in the form of a deadline. The transaction dead-
lines are soft; i.e., each transaction is executed to
completion even if it misses its deadline. The Transac-
tion Manager at the originating site of a transaction as-
signs a real-time priority to the transaction based on the
Earliest Deadline First priority assignment policy; i.e., a
transaction with an earlier deadline has higher priority
than a transaction with a later deadline. If any two
transactions originated from the same site carry the
same deadline, a scheduling decision between those
two transactions prefers the one that has arrived earlier.
To guarantee the global uniqueness of the priorities, the
id of the originating site is appended to the priority of
each transaction. The Transaction Manager is responsi-
ble for the implementation of any of the transaction-
processing architectures described in Section 2.2. For
each operation of the executing transaction, the Trans-
action Manager communicates with the Scheduler to
see whether the operation leads to any con¯ict with
the operations of the other transactions.

Access requests for data pages are ordered by the
Scheduler on the basis of the concurrency control proto-
col executed. The protocol we use in our experiments is
the High-Priority concurrency control protocol which
resolves data con¯icts always in favor of high-priority
transactions [1]. At the time of a data lock con¯ict, if
the lock-holding transaction has higher priority than
the priority of the transaction that is requesting the lock,
the latter transaction is blocked. Otherwise, the lock-
holding transaction is aborted and the lock is granted
to the high priority lock-requesting transaction. Assum-
ing that no two transactions have the same priority, this
protocol is deadlock-free since a high priority transac-
tion is never blocked by a lower priority transaction.

Concurrency control is implemented at a page granular-
ity.

There is no globally shared memory in the system,
and all sites communicate via message exchanges over
the communication network. A Message Server at each
site is responsible for sending/receiving messages to/
from other sites. Reliability and recovery issues were
not addressed in this paper. We assumed a reliable sys-
tem, in which no site failures or communication network
failures occur. Also, we did not simulate in detail the op-
eration of the underlying communication network. It
was just considered as a switching element between sites
with a certain service rate.

I/O and CPU services at each site are provided by the
Resource Manager. I/O service is required for reading or
updating data pages, while CPU service is necessary for
processing data pages, performing various page access
control operations (e.g. con¯ict check, locking, etc.)
and processing communication messages. Both CPU
and I/O queues are organized on the basis of real-time
priorities, and preemptive-resume priority scheduling is
used by the CPU's at each site. The CPU can be released
by a transaction either due to a preemption, or when the
transaction commits or it is blocked/aborted due to a
data con¯ict, or when it needs an I/O or communication
service.

Data transfer between disk and main memory is pro-
vided by the Bu�er Manager. The Least Recently Used
(LRU) page replacement strategy is used in the manage-
ment of memory bu�ers.

2.1. Handling the active workload

The Transaction Manager informs the Rule Manager
of each page update. Each successful update operation
which changes the database state is considered as an
event. The Rule Manager is responsible to check if any ac-
tion is triggered when an event message is raised by the
Transaction Manager. Upon getting an event message,
the Rule Manager models the condition evaluation. Satis-
faction of a condition can lead to the triggering of one or

Fig. 1. Performance model used for each data site.
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more of the immediate, deferred, and detached actions of
the rule. Condition evaluation is performed probabilistic-
ally, using a separate probability value for each of the im-
mediate, deferred, and detached coupling modes (see
Table 1). A subtransaction corresponding to each trig-
gered action is submitted to the Transaction Manager.

A detached subtransaction submitted to the Transac-
tion Manager is treated as a new transaction and it is ex-
ecuted independent of the triggering transaction.
Immediate and deferred subtransactions, on the other
hand, are executed as a part of the parent transaction
which has triggered them. They are associated with the
same real-time priority as their parent. Some more so-
phisticated priority assignment policies for subtransac-
tions were proposed in the literature [38,42]; however,
those policies require some a priori knowledge about
transactions like their estimated execution times. Our
system does not assume the knowledge of execution time
of transactions. The subtransactions might access re-
mote as well as local data pages, and their access re-
quests are scheduled in the same way as the parent
transactions (according to the rules associated with
one of the two transaction-processing architectures de-
scribed in the next section). We assume that immediate
and deferred subtransactions do not trigger further sub-
transactions; i.e., there is no cascading rule ®rings.

When an immediate subtransaction is submitted to
the Transaction Manager, the execution of the parent
transaction is suspended until the completion of the im-
mediate subtransaction. All the deferred subtransactions
triggered by a transaction are started to execute when
their parent completes its operations. We assume that
all the immediate and deferred subtransactions triggered
by a transaction share the locks. Therefore, although the
deferred subtransactions of a transaction are executed
concurrently with the same priority, deadlock is still
not possible with the High-Priority concurrency control
protocol because the subtransactions do not block each
other. When all the deferred subtransactions of a trans-
action complete their execution, the locks of the sub-
transactions and the parent transaction are released.
Some of the assumptions of this active transaction mod-
el are relaxed in the nested transaction execution scheme
described in Section 4.

2.2. Transaction processing architectures

We consider two di�erent architectures for processing
ARTDBS transactions: distributed transaction and mo-
bile data. Both architectures described brie¯y in the fol-
lowing 3 assume that there exists exactly one copy of
each data page in the system.

Distributed transaction (DT) architecture: Each trans-
action exists in the form of a master process that executes
at the originating site of the transaction and a collection
of cohort processes that execute at various sites where
the required data pages reside. This architecture (also
called function shipping or database-call shipping) was al-
ready studied for traditional distributed database man-
agement systems by a number of researchers (e.g.,
[7,20,31]). In our system, the priority of a transaction is
carried by all of the cohorts of the transaction to be used
in scheduling cohorts' executions. The Transaction Man-
ager is responsible for the creation of the master process
for each transaction. The master process coordinates the
execution of cohorts through communicating with the
Transaction Manager of each cohort's site. There can
be at most one cohort of a transaction at each data site.
If there exists any local data in the access list of the trans-
action, one cohort will be executed locally. For each op-
eration of the transaction a global data dictionary is
referred to ®nd out which data site stores the data page
referenced by the operation. A cohort process is initiated
at that site (if it does not exist already) by the master pro-
cess by sending an `initiate cohort' message to that site. If
a cohort of the transaction already exists at that site, it is
just activated to perform the operation. Before accessing
a data page, the cohort needs to obtain a lock on the
page. In the case of a lock con¯ict (i.e., the lock has al-
ready been obtained by another cohort), the High-Prior-
ity protocol is applied; i.e., if the lock-holding cohort has
higher priority than the priority of the cohort that is re-
questing the lock, the latter cohort is blocked. Otherwise,
the lock-holding cohort is aborted and the lock is grant-
ed to the high priority lock-requesting cohort.

For the atomic commitment of the distributed trans-
actions, we use the centralized two-phase commit proto-
col [3]. The blocking delay of two-phase commit (i.e., the
delay experienced at both the master process site and
each of the cohort process sites while waiting for mes-
sages from each other) is explicitly simulated in conduct-
ing the performance experiments.

Mobile data (MD) architecture: This architecture is
characterized by the movement of data pages among
the sites. With this approach each transaction is execut-
ed at a single site (the site it has been originated). When-
ever a remote data page is needed by a transaction, the
page is transferred to the site of the transaction. Besides
the global data dictionary which shows the origin of
each data page in the system, each data site also main-
tains a relocation table to keep track of the pages trans-
ferred from/to that site. More speci®cally, for each data
page P whose origin is site Si and the current location is
site Sj, a record is maintained in the relocation table of
each of the sites Si and Sj. The record in the relocation
table of Si shows that P has been sent to Sj, and the re-
cord in the relocation table of Sj shows that P has been
transferred from Si.

3 Further details on the transaction-processing architectures can be

found in Ref. [48].
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For each operation of a transaction T executed at site
Si, the data dictionary of Si is referred to ®nd out the or-
igin of the required data page P . If page P has been orig-
inated at site Si but currently being resided at another
site, a request message is sent to that site. If P has a re-
mote origin, say site Sj, and its current location is not Si,
then a request message is sent to Sj. The message in-
cludes the id of transaction T , its priority, the id of orig-
inating site Si, and the id of the requested data page P . If
P has been shipped to another site Sk, the request mes-
sage is forwarded to Sk.

Similar to DT, access to a data page is controlled on
the basis of the High-Priority protocol. Transaction T
can obtain a lock on a page only if either the page is
not being accessed by any other transaction or T 's prior-
ity is higher than the priority of the transaction currently
accessing the page 4. If the lock is granted, the reply mes-
sage contains both the grant and the requested page;
otherwise, the message will cause the transaction to be-
come blocked until the requested lock becomes avail-
able. When the execution of a transaction ®nishes
successfully, it can be committed locally. All updates
performed by the transaction are stored on the local
disk.

It is ensured by this transaction-processing architec-
ture that the current location of a data page can always
be found out by communicating with the originating site
of that page. Whenever a data page P with originating
site Si is transmitted to site Sj, the relocation tables at
both sites are updated to keep track of the relocation in-
formation. A record is inserted into the relocation table
of Si to store the current location of P (i.e., Sj). The cor-
responding record inserted into the relocation table of Sj

stores the origin of P (i.e., Si). If page P later needs to be
transmitted to another site Sk, the related record is re-
moved from the relocation table of Sj and the id of orig-
inating site Si is sent to Sk within the message containing
data page P . Upon receiving that message, a new record
is inserted into the relocation table of Sk. Another mes-
sage from site Sj is sent to site Si containing the new lo-
cation of P so that the related record of the relocation
table of Si can be updated appropriately.

2.3. Con®guration and workload parameters

The list of parameters described in Table 1 was used
in specifying the con®guration and workload of the dis-
tributed ARTDBS. It is assumed that each site has one
CPU and one disk.

The time spent at each disk access is chosen uniform-
ly from the range 0.5 � DiskAccessTime through 1.5 �
DiskAccessTime. The CPU spends DiskOverheadInst in-

structions for each I/O operation. A control message is a
non-data message like commit, abort, lock-request,
lock-grant messages etc., and the size of such messages
is speci®ed by ControlMsgSize.

The average transaction arrival rate at each of the
sites is determined by the parameter ArrivalRate. Arriv-
als are assumed to be Poisson. The slack time of a trans-
action speci®es the maximum length of time the
transaction can be delayed and still satisfy its deadline.
It is detailed in Appendix A how the Transaction Gen-
erator involves the parameter SlackRate in assigning
deadline to transactions.

3. Performance experiments

The simulation program, capturing the details of the
distributed ARTDBS model, was written in CSIM [39],
which is a process-oriented simulation language based
on the C programming language.

The default parameter values used in each of the ex-
periments are presented in Table 2. All data sites in
the system are assumed identical and operate under
the same parameter values. The settings used for con®g-
uration and transaction parameters were basically taken
from our earlier experiments [48]. It was intended by
those settings to provide a transaction load and data
contention high enough to bring out the di�erences be-
tween various alternative execution environments for
distributed ARTDBSs. The default values used for the
resource-related parameters can be accepted as reason-
able approximations to what can be expected from to-
day's systems.

The performance metric we used in our evaluations is
miss_ratio, which determines the fraction of transactions
that miss their deadlines. For each experiment, the ®nal
results were evaluated as averages over 20 independent
runs. Each run continued until 1000 transactions were
executed at each data site. 90% con®dence intervals were
obtained for the performance results. The width of the
con®dence interval of each data point is within 4% of
the point estimate. In displayed graphs, only the mean
values of the performance results are plotted.

3.1. Summary of results obtained for two di�erent
transaction-processing architectures without any trigger-
ing transactions

When we evaluated the transaction-processing archi-
tectures DT and MD in a distributed real-time database
system environment without any active capabilities (i.e.,
in the absence of triggering transactions), we obtained
the following results [48]. The relative performance of
the architectures is primarily determined by the resource
requirements of transactions processed under each of

4 This leads to a priority abort; the low priority transaction currently

accessing the page is aborted.
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the architectures. With a slow network, the overhead of
messages for each transaction did not show much di�er-
ence under two di�erent architectures. Although the av-
erage message volume with MD was much higher, DT
was not able to outperform MD because the cost of
transferring a message is primarily due to the CPU time
to initiate sending/receiving the message and not the
transmission time; and DT was characterized by the
larger number of messages (compared to MD) issued
for each transaction. When a fast network was used,
on the other hand, the average volume of messages did
not have much in¯uence on the performance, and MD
demonstrated superior performance. MD was also ob-
served to produce less I/O delay in storing the updated
pages on stable storage. With MD, the pages with re-
mote origin that are updated by a transaction can be
consecutively placed on the local disk preventing the de-
lay of separate seek time for each stored page.

3.2. Results obtained with an active workload

3.2.1. Impact of transaction load
This experiment was conducted to observe the perfor-

mance of the system under di�erent levels of transaction
load. Average transaction arrival rate at a site (i.e., Ar-
rivalRate) was varied from 0.5 to 1.5 transactions per
second in steps of 0.25. This range of ArrivalRate values
corresponds to an average CPU utilization of about
0.93±0.55 at each data site.

It can be observed from Fig. 2 that as the transaction
load is increased, more transactions miss their deadlines.
Obviously, the increasing load leads to more data and
resource con¯icts among transactions, and therefore
more blockings and priority aborts are experienced.
The involvement of active workload does not change
the general conclusions obtained for performance of
the transaction-processing architectures. The discussion

Table 1

Distributed ARTDBS model parameters

Con®guration parameters

NrOfSites Number of sites

DBSize Size of the database in pages

MemSize Number of pages that can be held in memory

PageSize Page size in bytes

CPURate Instruction rate of CPU at each site (MIPS)

DiskAccessTime Average disk access time

DiskOverheadInst CPU overhead for performing disk I/O

NetworkBandwidth Network Bandwidth

ControlMsgSize Control message size in bytes

FixedMsgInst Fixed number of instructions to process a message

PerByteMsgInst Additional number of instructions per message byte

Transaction parameters

ArrivalRate Average arrival rate of transactions at each site

TransSize Average number of pages accessed by each transaction

SubTransSize Average number of pages accessed by each subtransaction

RemoteAccessRate Probability of accessing a page with a remote origin

StartTransInst Number of instructions to initialize a transaction

EndTransInst Number of instructions to terminate a transaction

ProcessPageInst Number of CPU instructions to process a page

WriteProb Probability of writing to a page

ImmediateProb Probability of triggering an immediate subtransaction following a page update

DeferredProb Probability of triggering a deferred subtransaction following a page update

DetachedProb Probability of triggering a detached subtransaction following a page update

SlackRate Average rate of slack time of a transaction to its processing time
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provided in Section 3.1 for the relative performance re-
sults of architectures is applicable here as well. When a
slow network is employed (i.e., NetworkBandwidth� 10
Mbps), the performance results obtained with DT and
MD are comparable to each other. With a fast network
(i.e., NetworkBandwidth� 100 Mbps), MD is the clear
winner, especially under high levels of transaction load.
DT experiences higher CPU delay due to processing
larger number of messages and higher I/O delay in stor-
ing the updated pages on disk, as we discussed in the
preceding section. The larger volume of messages expe-
rienced with MD does not have a considerable impact
on the relative performance when a fast network is em-
ployed.

3.2.2. Impact of triggering probabilities
In this experiment, we examined the system behavior

while the probability of triggering a subtransaction was

varied for each of the three coupling modes: detached,
immediate, and deferred. While evaluating the perfor-
mance impact of a coupling mode, the parameter values
used to determine the probabilities of the other coupling
modes were kept constant at 0.5.

We ®rst varied the probability of triggering a de-
tached subtransaction following each page update (i.e.,
DetachedProb) from 0.0 to 1.0. The overall shapes of
the curves presented in Fig. 3 remain the same as those
in Fig. 2. Again, MD provides better performance with
a fast network, and there is no considerable di�erence in
performances of MD and DT with a slow network. The
similarity of the performance results to those presented
in the preceding section is not surprising as detached
subtransactions are treated as new submissions (i.e.,
they are executed independent of their triggering trans-
actions), and therefore increasing the number of de-
tached subtransactions can be considered as another
way of increasing the transaction load in the system.
However, this argument is not applicable to the other
coupling modes. As the subtransactions created in im-
mediate or deferred modes are executed as a part of
the triggering transaction, increasing the number of such
subtransactions has an implication of increasing the av-
erage length of transactions, rather than directly increas-
ing the transaction load. Fig. 4 displays the miss_ratio
results obtained by varying the amount of immediate
subtransactions. For the small number of triggered sub-
transactions (i.e., when the triggering probability is less
than 0.5), the trends observed with varying probabilities
of detached and immediate subtransactions are similar.
However, when the system is characterized by a high
volume of triggered subtransactions, an increase in the
number of immediate subtransactions leads to a much
sharper increase in the number of missed deadlines com-
pared to that observed with the increase in the number
of detached subtransactions. We contribute this result
to the fact that extending the lifetime of transactions
by involving some extra operations has more crucial ef-
fects on the real-time performance than executing those
operations in the form of separate transactions. Fig. 5
presents the average number of data con¯icts experi-
enced by a transaction as a function of the probability
of both immediate and detached coupling modes. The
results for each coupling mode were obtained by setting
the triggering probabilities of the other coupling modes
to 0.5. The results presented were obtained with DT and
a fast network. Similar trends were observed with the
other possible combinations of the transaction-process-
ing architecture and the network speed. A data con¯ict
results in either transaction abort or blocking, and in
any case the execution of a transaction is delayed. With
both DT and MD architectures, increasing the number
of immediate subtransactions has more adverse e�ects
on the real-time performance compared to the e�ects
of detached subtransactions; and this observation is

Table 2

Distributed ARTDBS model parameter values

Con®guration parameters

NrOfSites 10

DBSize 2500 pages

MemSize 20% of the DBSize

PageSize 4096 bytes

CPURate 50 MIPS

DiskAccessTime 20 ms

DiskOverheadInst 5000 instructions

NetworkBandwidth 10 Mbps (e.g., Ethernet) or 100 Mbps

(e.g., FDDI)

ControlMsgSize 256 bytes

FixedMsgInst 20,000 instructions

PerByteMsgInst 10,000 instructions per 4 Kbytes

Transaction parameters

ArrivalRate 1 transaction per second

TransSize 10 pages

SubTransSize 4 pages

RemoteAccessRate 0.5

StartTransInst 30,000 instructions

EndTransInst 40,000 instructions

ProcessPageInst 30,000 instructions

WriteProb 0.5

ImmediateProb 0.5

DeferredProb 0.5

DetachedProb 0.5

SlackRate 10
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more apparent with DT architecture. The di�erence be-
tween the performances of DT and MD becomes more
pronounced as the amount of immediate subtransac-
tions increases. Data con¯ict aborts, that are experi-
enced more with the immediate coupling mode, lead to
much more message overhead with DT than that with
MD. When a cohort of a transaction is aborted, DT ar-
chitecture requires the master process of the transaction
send control messages to the sites executing the cohorts
of the transaction to notify them about the abort deci-
sion. Also, when the aborted transaction is restarted,
the master process should again communicate with the
other sites to perform remote accesses although it might
already have communicated with them before being
aborted. With MD, on the other hand, a restarted trans-
action can ®nd the previously accessed data pages in lo-
cal bu�ers, thus it does not require to generate new
request messages.

The performance results we obtained by varying the
probability of triggering deferred subtransactions on
each data update are displayed in Fig. 6. Similar to im-
mediate subtransactions, deferred subtransactions are
also executed as a part of the triggering transaction.

Therefore, the rapid increase in the number of missed
deadlines is again a result of increasing the size of trans-
actions by involving more deferred subtransactions.
However, as a di�erence from the results obtained by
varying the number of immediate subtransactions, we
have a little bit better results for DT architecture. The
performance results of DT and MD are closer to each
other compared to those presented in Fig. 4. This result
is due to the fact that while the deferred subtransactions
of a transaction are started to execute at the end of the
transactions, there is a chance with DT architecture to
execute some of those subtransactions in parallel if they
are accessing data pages stored at di�erent sites.

The large number of deadline misses experienced with
immediate and deferred subtransactions con®rms the ob-
servation of Branding and Buchmann [5] that immediate
and deferred coupling modes have some negative proper-
ties to be supported by real-time database systems.

3.2.3. Impact of subtransaction length
Fig. 7 provides the performance results obtained un-

der di�erent levels of data contention by varying the
length of (i.e., number of data pages accessed by) each

Fig. 2. Real-time performance in terms of the fraction of missed deadlines as a function of transaction load.
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type of subtransactions. While conducting the experi-
ment for di�erent lengths of the subtransactions (i.e.,
SubTransSize) of a coupling mode, the length of sub-
transactions triggered in other coupling modes was set
to 4 pages. The results were obtained by employing
DT architecture with a fast network. For small lengths
of subtransactions, the performance results obtained
for di�erent coupling modes are about the same. The
di�erence between the performance results starts to ap-
pear when the length of a subtransaction triggered in a
coupling mode is increased beyond 4. This di�erence be-
comes more pronounced with each additional data page
accessed by a subtransaction. The real-time performance
of the system is a�ected much more negatively when the
size of immediate or deferred subtransactions is in-
creased, compared to the performance degradation ob-
served by increasing the detached subtransaction size.
This result is due to, as explained in the preceding sec-
tion, executing immediate and deferred subtransactions
as a part of the triggering transaction. Data contention
increases much faster when the lifetime of triggering
transactions, which are larger than detached subtransac-
tions, is extended further, compared to the increase in

data contention due to increasing the size of detached
subtransactions.

4. Adapting a nested transaction model

In this section we present the performance results ob-
tained by adapting a nested transaction execution model
to our ARTDBS. This model enables us to execute im-
mediate subtransactions concurrently with their trigger-
ing transactions; in other words, a triggering transaction
needs not to be suspended during the execution of its im-
mediate subtransactions. In this case, we do not assume
that immediate and deferred subtransactions triggered
by a transaction share the locks. Again, a transaction
and its subtransactions 5 are associated with the same
priority, and a subtransaction does not trigger further
subtransactions. The locking rules proposed by Harder
and Rothermel [25] for nested transactions are adapted
to our system as follows. Besides holding a lock, a

5 For the remainder of this section, we use the term subtransaction to

denote either immediate or deferred subtransaction.

Fig. 3. Real-time performance in terms of the fraction of missed deadlines as a function of the probability of triggering detached subtransactions.
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transaction can retain a lock. When a subtransaction
commits, the triggering parent transaction inherits the
locks of the subtransaction and retains them. A retained
lock does not give the right to its owner to access the
locked page, rather it indicates that only the subtransac-
tions of the retainer or the retainer itself can potentially
acquire the lock.

When a subtransaction S requests a lock, the follow-
ing protocol is executed:

if there exists any (sub)transaction S0 that holds the
lock

if priority(S) > priority(S0)
S 0 is aborted;
The lock is granted to S;

else

S is blocked;
else if there exists any transaction T that retains the
lock and is not the parent of S

if priority(S) > priority(T )
T is aborted;
The lock is granted to S;

else

S is blocked;
else

The lock is granted to S;

The lock request of a transaction is handled similarly;
the only di�erence is that the phrase ``and is not the par-
ent of S'' should be replaced by ``and is not the lock-re-
questing transaction itself''.

When a subtransaction is aborted, its parent transac-
tion is also aborted only if it retains at least one of the
locks that have been held by the aborted subtransaction.
All the locks that have been retained/held by an aborted
(sub)transaction are released.

When we repeated the experiment that evaluates the
performance impact of immediate subtransactions by in-
volving the nested locking protocol described above, we
observed some noticeable changes in the results. As dis-
played in Fig. 8, increasing the probability of triggering
immediate subtransactions does not lead to as steep in-
crease in missed deadlines as we can see in Fig. 4. Exe-
cution of immediate subtransactions and their
triggering transactions in a concurrent manner can re-
duce the adverse e�ects of subtransactions on satisfying

Fig. 4. Real-time performance in terms of the fraction of missed deadlines as a function of the probability of triggering immediate subtransactions.
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deadlines that we discussed in the preceding sections.
Also, the nested execution model su�ers much less from
the overhead of priority aborts of subtransactions. A
subtransaction abort does not always lead to the abort
of the whole triggering transaction, as discussed above.
Another di�erence from the previous performance re-
sults is that the transaction-processing architecture
MD does not seem to be clearly preferable to DT in this
case. The advantage of DT with the nested execution
model is the possibility of executing the operations of
a transaction and its immediate subtransactions in par-
allel if the operations require to access data pages at dif-
ferent sites. With MD, although a transaction and its
subtransactions can be executed concurrently, their par-
allel execution is not possible because they are required
to be executed together at their originating site. 6 The
trend observed about the relative performance of MD
and DT with the nested transaction model was con-
®rmed by reconducting the transaction load experiment

of Section 3.2.1. It is shown in Fig. 9 that the perfor-
mance results of MD and DT are fairly close to each
other even when a fast network is employed.

We also observed through another experiment that
the nested execution scheme reduces the negative perfor-
mance impact of deferred subtransactions as well. We
do not display the results here as the performance trends
are similar to those obtained for immediate subtransac-
tions.

5. Conclusions

In this paper, by modeling the semantics of rule exe-
cution in the form of a transaction, we provided a per-
formance analysis of various transaction execution
strategies in a distributed active real-time database sys-
tem (ARTDBS) environment. Using a detailed AR-
TDBS simulation model, we conducted a series of
experiments to investigate various performance issues
involved in processing distributed transactions. The per-
formance metric we used in evaluations is the fraction of
transactions that violate their timing constraints.6 Remember that, at each site we assume a uniprocessor system.

Fig. 5. Average number of data con¯icts experienced by a transaction as a function of the probability of triggering detached/immediate subtrans-

actions.
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Main results of our experiments can be summarized
as follows. Increasing the probability of triggering im-
mediate/deferred subtransactions led to a steep increase
in the number of missed deadlines. The negative impact
of detached subtransactions on the real-time perfor-
mance was not that crucial. Since detached subtransac-
tions are executed independent of their triggering
transactions, increasing the number of detached sub-
transactions e�ectively corresponds to increasing the
transaction load in the system. The direct e�ect of in-
creasing the number of immediate or deferred subtrans-
actions, on the other hand, is an increase in the average
length of triggering transactions. Extending the lifetime
of transactions by triggering such subtransactions was
observed to result in much more data con¯icts (and
therefore more priority aborts and blockings) compared
to increasing the transaction load by triggering detached
subtransactions.

The performance results obtained with mobile data
(MD) transaction-processing architecture were more
satisfactory in general, compared to those obtained with
distributed transaction (DT) architecture, under various
types of active workload. When a fast network was em-
ployed, MD was observed to be the clear performance

winner. Data con¯ict aborts lead to much more message
overhead with DT than that with MD. The di�erence
between the performances of DT and MD became more
pronounced as the amount of immediate subtransac-
tions was increased. However, the performances of DT
and MD were comparable to each other under a high
volume of deferred subtransactions. The deferred sub-
transactions triggered by a transaction have a chance
to be executed in parallel with DT, if they access data
pages stored at di�erent sites.

Increasing the size of immediate and deferred sub-
transactions also caused a steep degradation in real-time
performance due to rapidly increasing data and resource
contention among larger-sized transactions.

In order to reduce the negative impact of immediate
and deferred subtransactions on the real-time perfor-
mance, we described a nested transaction execution
model for the active workload. In that model, immediate
and deferred subtransactions triggered by a transaction
do not share the locks any more. The locks are managed
on the basis of a nested locking protocol. Also, a trigger-
ing transaction needs not to be suspended during the ex-
ecution of its immediate subtransactions. The results of
the experiments involving the proposed nested execution

Fig. 6. Real-time performance in terms of the fraction of missed deadlines as a function of the probability of triggering deferred subtransactions.
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model con®rmed our intuition that the system su�ers
less with this model from the overhead of executing a
high volume of triggered subtransactions. Providing a
higher level of concurrency among immediate subtrans-
actions and their parent, and reducing the overhead of
subtransaction aborts played the major roles in improv-
ing the performance.
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Appendix A

A.1. Deadline calculation

In our system, the Transaction Generator chooses the
slack time of a transaction randomly from an exponen-
tial distribution with a mean of SlackRate times the es-

timated minimum processing time of the transaction.
Although the Transaction Generator uses the estimation
of transaction processing times in assigning deadlines,
we assume that the system itself lacks the knowledge
of processing time information.

The deadline DT of a transaction T is determined by
the following formula.

DT � AT � PTT � ST ;

where

ST � exp�SlackRate � PTT �:
AT , PTT , and ST denote the arrival time, estimated mini-
mum processing time, and slack time of transaction T ,
respectively.

The estimated minimum processing time formula actu-
ally determines the processing time of a transaction under
an ideal execution environment in which the system is un-
loaded (i.e., no data and resource con¯icts occur among
transactions), and the transaction does not require any
data page that is remotely placed. To satisfy the deadline,
the delay that will be experienced by the transaction due
to con¯icts and remote accesses should not exceed the
slack time included in the deadline formula.

Fig. 7. Real-time performance in terms of the fraction of missed deadlines as a function of the length of a subtransaction triggered in a speci®c cou-

pling mode.
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PTT � PTTÿParent � PTTÿChildren;

where PTTÿParent denotes the processing time spent due to
the operations of T itself, and PTTÿChildren denotes the
processing time due to the operations of immediate
and deferred subtransactions triggered by T .

PTTÿParent � CPU delayTÿParent � I=O delayTÿParent;

CPU delayTÿParent � 10ÿ3

CPURate
� �StartTransInst

� �1� WriteProb� � TransSize � ProcessPageInst

� EndTransInst�;

I=O delayTÿParent � 1ÿMemSize
DBSize

� �
� TransSize

�
� DiskOverheadInst

CPURate
� 10ÿ3

�
�DiskAccessTime

��
� WriteProb � TransSize � DiskOverheadInst

CPURate
� 10ÿ3

��
�DiskAccessTime

��
:

The expression contained in the second pair of square
brackets corresponds to the delay experienced while
writing updated pages back into the disk. The unit of
both CPU delayTÿParent and I=O delayTÿParent is millisec-
onds.

The computation of PTTÿChildren involves the probabil-
ities of triggering immediate and deferred subtransac-
tions.

PTTÿChildren � TransSize � WriteProb � �ImmediateProb

� DeferredProb� � �CPU delayTÿChildren

� I=O delayTÿChildren�:

The computations of CPU delayTÿChildren and
I=O delayTÿChildren are similar to those of
CPU delayTÿParent and I=O delayTÿParent, respectively, ex-
cept that TransSize is replaced by SubTransSize in both
formulas.

In determining the deadline of a transaction, de-
tached subtransactions that could be triggered by the
transaction are not considered since such subtransac-
tions are treated as independent transactions.

Fig. 8. Performance impact of immediate subtransactions when a nested transaction execution model is employed.
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