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Abstract—In nonlinear deterministic parameter estimation,
the maximum likelihood estimator (MLE) is unable to attain the
Cramér–Rao lower bound at low and medium signal-to-noise
ratios (SNRs) due the threshold and ambiguity phenomena. In
order to evaluate the achieved mean-squared error (MSE) at
those SNR levels, we propose new MSE approximations (MSEA)
and an approximate upper bound by using the method of interval
estimation (MIE). The mean and the distribution of the MLE are
approximated as well. The MIE consists in splitting the a priori
domain of the unknown parameter into intervals and computing
the statistics of the estimator in each interval. Also, we derive
an approximate lower bound (ALB) based on the Taylor series
expansion of noise and an ALB family by employing the binary
detection principle. The accuracy of the proposed MSEAs and
the tightness of the derived approximate bounds are validated by
considering the example of time-of-arrival estimation.

Index Terms—Nonlinear estimation, threshold and ambiguity
phenomena, maximum likelihood estimator, mean-squared error,
upper and lowers bounds, time-of-arrival.

I. INTRODUCTION

N ONLINEAR estimation of deterministic parameters suf-
fers from the threshold effect [2]–[11]. This effect means

that for a signal-to-noise ratio (SNR) above a given threshold,
estimation can achieve the Cramer-Rao lower bound (CRLB),
whereas for SNRs lower than that threshold, estimation dete-
riorates drastically until the estimate becomes uniformly dis-
tributed in the a priori domain of the unknown parameter.
As depicted in Fig. 1(a), the SNR axis can be split into three

regions according to the achieved mean-squared-error (MSE):
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Fig. 1. SNR regions: (a) a priori, threshold and asymptotic regions for non-os-
cillatingACRs and (b) a priori, ambiguity and asymptotic regions for oscillating
ACRs ( : CRLB, : MSE of uniform distribution in the a priori domain, :
achievable MSE, : a priori, begin-ambiguity, end-ambi-
guity and asymptotic thresholds).

1) A priori region: Region in which the estimate is uniformly
distributed in the a priori domain of the unknown param-
eter (region of low SNRs).

2) Threshold region: Region of transition between the a priori
and asymptotic regions (region of medium SNRs).

3) Asymptotic region: Region in which the CRLB is achieved
(region of high SNRs).

In addition, if the autocorrelation (ACR) of the signal carrying
the information about the unknown parameter is oscillating,
then estimation will be affected by the ambiguity phenomenon
([12], pp. 119) and a new region will appear so the SNR axis
can be split, as shown Fig. 1(b), into five regions:
1) A priori region.
2) A priori-ambiguity transition region.
3) Ambiguity region.
4) Ambiguity-asymptotic transition region.
5) Asymptotic region.
The MSE achieved in the ambiguity region is determined by the
envelope of the ACR. In Figs. 1(a) and (b), we denote by

and the a priori, begin-ambiguity, end-ambi-
guity and asymptotic thresholds delimiting the different regions.
The CRLB is not achieved asymptotically unless the used esti-
mator is asymptotically efficient. For example, the maximum
likelihood estimator (MLE) in [13] (with deterministic signals)
asymptotically achieves the CRLB whereas the MLE in [14]
(with random signals and finite snapshots) and the Capon algo-
rithm in [15] do not achieve it.
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The exact evaluation of the statistics, in the threshold region,
of some estimators such as the MLE has been considered as a
prohibitive task. Many lower bounds (LB) have been derived
for both deterministic and Bayesian (when the unknown pa-
rameter follows a given a priori distribution) parameters in
order to be used as benchmarks and to describe the behavior of
the MSE in the threshold region [16]. Some upper bounds (UB)
have also been derived like the Seidman UB [17]. It will suffice
to mention here [16], [18] the Cramer-Rao, Bhattacharyya,
Chapman-Robbins, Barankin and Abel deterministic LBs, the
Cramer-Rao, Bhattacharyya, Bobrovsky-MayerWolf-Zakai,
Bobrovsky-Zakai, and Weiss-Weinstein Bayesian LBs, the
Ziv-Zakai Bayesian LB (ZZLB) [2] with its improved ver-
sions: Bellini-Tartara [4], Chazan-Ziv-Zakai [19], Weinstein
[20] (approximation of Bellini-Tartara), and Bell-Stein-
berg-Ephraim-VanTrees [21] (generalization of Ziv-Zakai and
Bellini-Tartara), and the Reuven-Messer LB [22] for problems
of simultaneously deterministic and Bayesian parameters.
The CRLB [23] gives the minimum MSE achievable by an

unbiased estimator. However, it can be very optimistic at low
and moderate SNRs when the estimator is not efficient; further-
more, it is unable to model the threshold and ambiguity regions.
The Barankin LB (BLB) [24] gives the greatest LB of an un-
biased estimator. However, its general form is not easy to com-
pute for most interesting problems. A useful form of this bound,
which is much tighter than the CRLB, is derived in [25] and gen-
eralized to vector cases in [26]. As shown in [3], [27], as well as
in our numerical results in Section VII, the bound in [25] detects
the asymptotic region much below the true one. Some applica-
tions of the BLB can be found in [5], [8], [9], [28], [29].
The Bayesian ZZLB family [2], [4], [19]–[21] is based on the

minimumprobability of error of a binary detection problem. The
ZZLBs are very tight; they detect the ambiguity region roughly
and the asymptotic region accurately. Some applications of the
ZZLBs, discussions and comparison to other bounds can be
found in [10]–[12], [27], [30]–[35].
In ([36], pp. 627–637), Wozencraft considered time-of-ar-

rival (TOA) estimation with cardinal sine waveforms and em-
ployed the method of interval estimation (MIE) to approximate
the MSE of the MLE. The MIE ([18], pp. 58–62) consists in
splitting the a priori domain of the unknown parameter into in-
tervals and computing the probability that the estimate falls in
a given interval, and the estimator mean and variance in each
interval. According to [18], [37], the MIE was first used in [38],
[39] beforeWozencraft [36] and others introduced somemodifi-
cations later. The approach in [36] is imitated in [18], [37], [40],
[41] for frequency estimation and in [42] for angle-of-arrival
(AOA) estimation. The ACRs in [15], [18], [36], [37], [40]–[42]
have the special shape of a cardinal sine (oscillating baseband
with the mainlobe twice wider than the sidelobes); this limita-
tion makes their approach inapplicable on other shapes. In [1],
McAulay considered TOA estimation with carrier-modulated
pulses (oscillating passband ACRs) and used the MIE to derive
an approximate UB (AUB)1; the approach of McAulay can be
applied to any oscillating ACR. Indeed, it is followed (indepen-

1The derived magnitude is referred as “bound” because it is greater than the
MSE, and as “approximate” because an approximation is performed to obtain
it; the terminology “approximate bound” is adopted in our paper as well.

dently apparently) in [15], [43], [44] for AOA estimation and
in [41] (for frequency estimation as mentioned above) where
it is compared to Wozencraft’s approach. The ACR considered
in [43], [44] has an arbitrary oscillating baseband shape (due
to the use of non-regular arrays), meaning that it looks like a
cardinal sine but with some strong sidelobes arbitrarily located.
The MSEAs based on Wozencraft’s approach are very accu-
rate and the AUBs using McAulay’s approach are very tight in
the asymptotic and threshold regions. Both approaches can be
used to determine accurately the asymptotic region. Various es-
timators are considered in the previously cited references. More
technical details about the MIE are given in Section IV.
In this paper, we consider the estimation of a scalar determin-

istic parameter. Compared with the presented state-of-the-art,
our work makes the following main contributions:
• We employ the MIE to propose new approximations
(rather than AUBs) of the MSE achieved by the MLE
and a very tight AUB. The proposed MSEAs are highly
accurate. One of these approximations is expressed as the
sum of two terms. The mean and the probability density
function (PDF) of the MLE are approximated as well.
More details about the novelties with regards to the MIE
are given in Sections IV and V.

• We derive an approximate LB (ALB) tighter than the
CRLB based on the second order Taylor series expansion
of the noise.

• We utilize the binary detection principle to derive some
ALBs; the obtained bounds are very tight.

The theoretical results presented in this paper are applicable to
any estimation problem satisfying the system model introduced
in Section II. In order to illustrate the accurateness of the pro-
posed MSEAs and the tightness of the derived bounds, we con-
sider the example of TOA estimation with baseband and pass-
band pulses.
The materials presented in this paper compose the first part

of our work divided in two parts (see [45]).
The rest of the paper is organized as follows. In Section II

we introduce our system model. In Section III we describe the
threshold and ambiguity phenomena. In Section IV we deal with
the MIE. In Section V we propose an AUB and an MSEA. In
Section VI we derive some ALBs. In Section VII we consider
the example of TOA estimation and discuss the obtained numer-
ical results.

II. SYSTEM MODEL

In this section we consider the general estimation problem of
a deterministic scalar parameter (Section II.A) and the particular
case of TOA estimation (Section II.B).

A. Deterministic Scalar Parameter Estimation

Let be a deterministic unknown parameter with
denoting its a priori domain. We can write the th,

observation as:

(1)
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where is the th useful signal carrying the information
on is a known positive gain, and is an additive white
Gaussian noise (AWGN) with two-sided power spectral density
(PSD) of are independent.
Denote by the sum of the

energies of , by and the first and second
derivatives of w.r.t. , and by and the expectation,
real part and probability operators respectively. From (1) we can
write the log-likelihood function of as:

(2)

where denotes a variable associated with , and

(3)

is the crosscorrelation (CCR) with respect to (w.r.t.) , with

(4)

denoting the ACR w.r.t. and

(5)

being a colored zero-mean Gaussian noise of covariance

(6)

1) MLE, CRLB and Envelope CRLB: By assuming
in (2), that is, is independent of (true for many

estimation problems such as the ones mentioned at the end of
Section II.A), we can write the MLE and the CRLB of
as ([23], pp. 39):

(7)

(8)

where

(9)

(10)

denote the SNR and the normalized curvature of at
respectively. Unlike may depend on

(e.g., AOA estimation [46]). The CRLB in (8) is inversely
proportional to the curvature of the ACR at . Sometimes

is oscillating w.r.t. . Then, if the SNR is sufficiently
high (resp. relatively low) the maximum of the CCR in (3) will

fall around the global maximum (resp. the local maxima) of
and the MLE in (7) will (resp. will not) achieve the

CRLB. We will see in Section VII that the MSE achieved at
medium SNRs is inversely proportional to the curvature of the
envelope of the ACR instead of the curvature of the ACR itself.
To characterize this phenomenon known as “ambiguity” [47]
we will define below the envelope CRLB (ECRLB).
Denote by the frequency2 relative to and define the

Fourier transform (FT), the mean frequency and the complex
envelope w.r.t. of respectively by

(11)

(12)

(13)

In Appendix A we show that:

(14)

Now, we define the ECRLB as:

(15)

where

(16)

denotes the normalized curvature of at . From
(10), (14) and (16), we have:

(17)

2) BLB: The BLB can be written as [25]:

(18)

where

with ( ) denoting
testpoints in the a priori domain of , and3

3) Maximum MSE: The maximum MSE

(19)

2E.g, is in seconds (resp. Hz) for frequency (resp. TOA) estimation.
3We can show that if is independent from .
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Fig. 2. Normalized ACR and 1000 realizations of
per SNR ( 10, 15 and 20 dB); Gaussian pulse modulated by 0 ns,

0.6 ns, . (a) GHz. (b) GHz. (c)
GHz.

TABLE I
CRLB SQRT (PS), SIMULATED RMSE (PS), RMSE TO

CRLB SQRT RATIO , AND NUMBER ( ) OF THE
SAMPLES FALLING AROUND THE MAXIMA NUMBER 0 AND 1,

FOR 0, 4 AND 8 GHZ, AND 10, 15 AND 20 dB

with and is achieved when the
estimator becomes uniformly distributed in [30], [34].
The system model considered in this subsection is satisfied

for various estimation problems such as TOA, AOA, phase, fre-
quency and velocity estimation. Therefore, the theoretical re-
sults presented in this paper are valid for the different mentioned
parameters. TOA is just considered as an example to validate
the accurateness and the tightness of our MSEAs and upper and
lowers bounds.

B. Example: TOA Estimation

With TOA estimation based on one observation
in (1) becomes where denotes

the transmitted signal and represents the delay introduced
by the channel. Accordingly, we can write the ACR in (4) as

where ,
and the CCR in (3) as:

(20)

The CRLB in (8), ECRLB in (15), mean frequency
in (12), normalized curvatures in (10) and

in (16) become now all independent of . Furthermore, and
denote now the mean quadratic bandwidth (MQBW) and the

envelope MQBW (EMQBW) of respectively.
The CRLB in (8) is much smaller than the ECRLB in (15)

because the MQBW in (17) is much larger than the EMQBW in
(16). In fact, for a signal occupying the whole band from 3.1 to
10.6 GHz4 ( GHz, bandwidth GHz), we ob-
tain GHz and

. Therefore, the estimation performance seriously dete-
riorates at relatively low SNRs when the ECRLB is achieved
instead of the CRLB due to ambiguity.

III. THRESHOLD AND AMBIGUITY PHENOMENA

In this section we explain the physical origin of the threshold
and ambiguity phenomena by considering TOA estimation with
UWB pulses5 as an example. The transmitted signal

(21)

is a Gaussian pulse of width modulated by a carrier . We
consider three values of ( , 4 and 8 GHz) and three
values of the SNR ( , 15 and 20 dB) per considered .
We take ns, and .
In Figs. 2(a)–(c) we show the normalized ACR

for (baseband pulse), 4 and 8 GHz (passband
pulses) respectively, and 1000 realizations per SNR of the max-
imum of the normalized CCR .
Denote by , ( is the number of local
maxima in ), ( ), ( corresponds to the
global maximum) the number of samples of falling around
the th local maximum (i.e., between the two local minima adja-
cent to that maximum) of . In Table I, we showw.r.t.
and the number of samples falling around the maxima number
0 and 1, the CRLB square root (SQRT) of , the root MSE
(RMSE) obtained by simulation and the RMSE to CRLB
SQRT ratio .
Consider first the baseband pulse. We can see in Fig. 2(a) that

the samples of are very close to the maximum of
for dB, and they start to spread progressively along

for and 10 dB. Table I shows that the CRLB
is approximately achieved for and 15 dB, but not for

dB. Based on this observation, we can describe the
threshold phenomenon as follows. For sufficiently high SNRs
(resp. relatively low SNRs), the maximum of the CCR falls in
the vicinity of the maximum of the ACR (resp. spreads along
the ACR) so the CRLB is (resp. is not) achieved.

4The ultra wideband (UWB) spectrum authorized for unlicensed use by the
US federal commission of communications in May 2002 [48].
5We chose UWB pulses because they can achieve the CRLB at relatively low

SNRs thanks to their relatively high fractional bandwidth (bandwidth to central
frequency ratio).
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Consider now the pulse with GHz. Fig. 2(b) and
Table I show that for dB all the samples of fall
around the global maximum of and the CRLB is
achieved, whereas for and 10 dB they spread along the
local maxima of and the achievedMSE is much larger
than the CRLB. Based on this observation, we can describe the
ambiguity phenomenon as follows. For sufficiently high SNRs
(resp. relatively low SNRs) the noise component in the
CCR in (20) is not (resp. is) sufficiently high to fill the
gap between the global maximum and the local maxima of the
ACR. Consequently, for sufficiently high SNRs (resp. relatively
low SNRs) the maximum of the CCR always falls around the
global maximum (resp. spreads along the local maxima) of the
ACR so the CRLB is (resp. is not) achieved. Obviously, the am-
biguity phenomenon affects the threshold phenomenon because
the SNR required to achieve the CRLB depends on the gap be-
tween the global and the local maxima.
We examine now the RMSE achieved at dB for

and 8 GHz; it is 3.5 times smaller with GHz than
with GHz whereas the CRLB SQRT is 2 times smaller
with the latter. In fact, the samples of do not fall all around
the global maximum for GHz. This amazing result (ob-
served in [49] from experimental results) exhibits the signifi-
cant loss in terms of accuracy if the CRLB is not achieved due
to ambiguity. It also shows the necessity to design our system
such that the CRLB be attained.
Let us finally note that due to the spread along the ACR, the

MLE is only unbiased asymptotically (except for an even ACR
with located at the middle of ). For the sake of concise-
ness, we have not shown numerical results regarding the mean.

IV. MIE-BASED MLE STATISTICS APPROXIMATION

We have seen in Section III that the threshold phenomenon is
due to the spreading of the estimates along the ACR. To char-
acterize this phenomenon we split the a priori domain into
intervals , (

) and write the PDF, mean and MSE of as

(22)

where

(23)

denotes the interval probability (i.e., probability that falls in
), and and rep-

resent, respectively, the PDF, mean and variance of the interval
MLE ( given )

(24)

The approximation of the mean is investigated because, as al-
ready mentioned, the MLE is only unbiased asymptotically. De-
note by a testpoint selected in and let

with and . Using (3),
in (23) can be approximated by

(25)

where

represents the PDF of with
being its

mean and its covariance
matrix.
The accuracy of the approximation in (25) depends on the

choice of the intervals and the testpoints. For an oscillating ACR
we consider an interval around each local maximum and choose
the abscissa of the local maximum as a testpoint, whereas for
a non-oscillating ACR we split into equal intervals and
choose the center of each interval as a testpoint.
For both oscillating and non-oscillating ACRs, contains the
global maximum and is equal to .
The testpoints are chosen as the roots of the ACR (except

for ) in [18], [36], [37], [40]–[42], as the local extrema
abscissa in [1], and as the local maxima abscissa in [15], [41],
[43], [44].

A. Computation of the Interval Probability

We consider here the computation of the approximate interval
probability in (25).
1) Numerical Approximation: To the best of our knowledge

there is no closed form expression for the integral in (25)
for correlated . However, it can be computed numerically
using for example the MATLAB function QSCMVNV (written
by Genz based on [50]–[53]) that computes the multivariate
normal probability with integration region specified by a set of
linear inequalities in the form . Using
QSCMVNV, can be approximated by:

(26)

where is the number of points used by the algorithm
(e.g., ), and

two -column

vectors, and an ma-

trix with

and 6.

6We denote by the identity matrix of rank , and and
the zero and one matrices of dimension .
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Fig. 3. Simulated interval probability , the approximations and
, and the AUB for w.r.t. the SNR.

2) Analytic Approximation: Denote by

the Q function. As ,

we can upper bound in (25) by:

(27)

where

(28)

with denoting the normalized ACR.
is obtained (28) from (3) and (6) by noticing that

7. If approaches infinity, then both
and the MSEA in (22) will approach infinity.
Using (27), we propose the following approximation:

(29)

In this subsection we have seen that the interval probability
in (23) can be approximated by in (26) or in (29),

and upper bounded by in (27).
The UB is adopted in [1], [15], [41], [43], [44] with

minor modifications; in fact, is approximated by one in [1]
and by in [15], [41], [43], [44]. In the spe-
cial case where are independent
and identically distributed such as in [18], [36], [37], [40]–[42]
thanks to the cardinal sine ACR, then , and

( is the approximate probability of ambiguity);
consequently, the MSEA in (22) can be written as the sum of
two terms: can be calculated by per-
forming one-dimensional integration. If
and , like in [18], [36], [37], [41]
then can be upper bounded using the union bound [36].
As an example, to evaluate the accurateness of in (26)

and in (29) and to compare them to in (27), we con-
sider the pulse in (21) with GHz, ns,

7 stands for the normal distribution of mean and variance .

and . In Fig. 3 we show for and 1,
the interval probability obtained by simulation based on
10000 trials, and , all versus the SNR. We can
see that converges to at low SNRs for all intervals; how-
ever, it converges to 1 at high SNRs ( for dB)
for (probability of non-ambiguity) and to 0 for .
Both and are very accurate and closely follow .
The UB is not tight at low SNRs; it converges to
instead of due to (28). However, it converges to 1 (resp. 0)

for (resp. ) at high SNRs simultaneously with
so it can be used to determine accurately the asymptotic region.

B. Statistics of the Interval MLE

We approximate here the statistics of the interval MLE in
(24). We have already mentioned in Section IV that for an os-
cillating (resp. a non-oscillating) ACR we consider an interval
around each local maximum (resp. split the a priori domain
into equal intervals); the global maximum is always contained
in . Accordingly, the ACR inside a given interval is either
increasing then decreasing or monotone (i.e., increasing, de-
creasing or constant).
As the distribution of should follow the shape of the ACR

in the considered interval, the interval variance is upper bounded
by the variance of uniform distribution in .
Therefore, the interval mean and variance can be approx-
imated by

(30)

(31)

For intervals with local minima (not considered here), the ACR
decreases then increases so is upper bounded by the variance
of a Bernoulli distribution of two equiprobable atoms:

(32)

In [1], it is assumed that is upper bounded by in (31)
even for intervals with local minima. See [54], [55] for further
information on the maximum variance.
The CCR in (3) can be approximated inside by

its Taylor series expansion about limited to second order:

(33)

where and
. Let be the correlation coefficient of and .

Then, from (5), we can show that

(34)

(35)

with

(36)

(37)
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(38)

Let us first consider an interval with monotone ACR. By ne-
glecting and in (33) (linear approximation), we can ap-
proximate the interval MLE by:

(39)

As , the latter approximation follows
a two atoms Bernoulli distribution with probability, mean and
variance given from (9), (34) and (36) by:

(40)

where is upper bounded by in (32) and reaches it
for just means that is uniformly
distributed in (because can fall anywhere inside );
therefore, and can be approximated by:

(41)

(42)

By neglecting in (33) and (39) (because
for , see (22)) we obtain the following approximation:

(43)

(44)

Consider now an interval with a local maximum. By ne-
glecting in (33), and taking into account that (local
maximum), can be approximated by:

(45)

which follows a normal distribution whose PDF, mean and vari-
ance can be obtained from (8), (34), (36) and (45):

(46)

(47)

(48)

For is equal to the CRLB in (8) since
. To take into account that is finite, we propose from

(46), (47) and (48) the following approximation:

(49)

(50)

where . By neglecting in (33)

and (45), we obtain the following approximation:

(51)

(52)

For both oscillating and non-oscillating ACRs, contains
the global maximum. To guarantee the convergence of the
MSEA in (22) to the CRLB, and should always be
approximated using (49) and (50) by:

(53)

(54)

For TOA estimation, we can write (40) and (48) as

and .
We have seen in this subsection that the interval mean and

variance can be approximated by
• in (53) and in (54) for .
• in (30) and in (31), in (41) and in
(42), or in (43) and in (44) for intervals with
monotone ACR.

• and in (49) and in (50), or
in (51) and in (52) for intervals with local maxima.

In [18], [36], [37], [40], [42] (resp. [15], [41], [43], [44]) is
approximated by (resp. ). They all approximate
by and by the asymptotic MSE (equal to the CRLB if the
considered estimator is asymptotically efficient).
To evaluate the accurateness of in (31) and in

(50), we consider the pulse in (21) with GHz,
ns, and dB. In Fig. 4 we

show the approximate interval standard deviations (STD)
and , and the STD obtained by simulation based on
50000 trials, w.r.t. the interval number . We can
see that is upper bounded by as expected and that

follows closely. The smallest variance corresponds
to because the curvature of reaches its max-
imum at .
Before ending this section, we would like to highlight our

contributions regarding the MIE. We have proposed two ap-
proximations for the interval probability when
are correlated. We have shown in Fig. 3 how our approxima-
tions are accurate. To the best of our knowledge all previous
authors adopt the McAulay probability UB (except for the case
where are independent thanks to the cardinal
sine ACR). We have proposed two new approximations for the
interval mean and variance, one for intervals with monotone



5670 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 21, NOVEMBER 1, 2014

Fig. 4. Simulated interval STD and approximations and
w.r.t. the interval number for dB.

ACRs and one for intervals with local maxima. We have seen
in Fig. 4 how our approximations are accurate. To the best of
our knowledge all previous authors either upper bound the in-
terval variance or neglect it. Thanks to the proposed probability
approximations our MSEAs (e.g., in Fig. 6) are highly ac-
curate and outperform the MSE UB of McAulay ( in Fig. 7)
and thanks to the proposed interval variance approximations the
MSEA is improved ( and outperform in Fig. 6).
We have applied the MIE to non-oscillating ACRs. To the best
of our knowledge this case is not considered before.

V. AN AUB AND AN MSEA BASED ON THE INTERVAL
PROBABILITY

In this section we propose an AUB (Section V.A) and an
MSEA (Section V.B), both based on the interval probability ap-
proximation in (29).

A. An AUB

As approximates the probability that falls in ,
the PDF of can be approximated by the limit of as
(number of intervals) approaches infinity (so that the width of

approaches zero). Accordingly we can write the approxi-
mate PDF, mean and MSE of as

(55)

(56)

(57)

We will see in Section VII that acts as an UB and also con-
verges to a multiple of the CRLB. In fact, overestimates
the true PDF of in the vicinity of because it is obtained from

which is in turn obtained from the interval probability UB
in (27).

Fig. 5. Decision problem with two equiprobable hypotheses:
and .

B. An MSEA

To guarantee the convergence of the MSEA to the CRLB, we
approximate the PDF of inside
by in (46) ( is the mean and is the MSE) and
outside by (the cor-
responding mean and MSE are and

), and propose the following
approximation:

(58)

(59)

(60)

where approximates the probability that
falls outside .With oscillating ACRs, is the abscissa of the
first local maximum after the global one; thus, .
With non-oscillating ACRs, the vicinity of the maximum is not
clearly marked off; so, we empirically take .
The first contribution in this section is the AUB which is

very tight (as will be seen in Figs. 7 and 9) and also very easy to
compute. The second one is the highly accurate MSEA (as
will be seen in Figs. 6 and 8); to the best of our knowledge, this is
the first approximation expressed as the sum of two terms when

are correlated (see [1], [15], [41], [43], [44]).

VI. ALBS

In this section we derive an ALB based on the Taylor series
expansion of the noise limited to second order (Section VI.A)
and a family of ALBs by employing the principle of binary de-
tection which is first used by Ziv and Zakai [2] to derive LBs
for Bayesian parameters (Section VI.B).

A. An ALB Based on the Second Order Taylor Series
Expansion of Noise

From (33), the MLE of can be approximated by:

(61)

where is a ratio of two normal variables. Sta-
tistics of normal variable ratios are studied in [56]–[58].
Let (resp. ) for (resp. ),

. We can
show from [57] that in (61) is distributed as:

(62)
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Fig. 6. Baseband: SQRTs of the max. MSE , the CRLB , the MSEAs
and , and the simulated MSE , w.r.t. the SNR.

where the PDF of is given by:

(63)

From (63) we can approximate the PDF, mean, variance and
MSE of by

(64)

(65)

(66)

(67)

Note that the moments (infinite
domain) are infinite like with Cauchy distribution [57]. We will
see in Section VII that behaves as an LB; this result can be
expected from the approximation in (33) where the expansion
of the noise is limited to second order.

B. Binary Detection Based ALBs

Let be an estimator of the estimation
error given the PDF of , and the
probability that . For , the MSE of can be
written as [59]:

(68)

Fig. 7. Baseband: SQRTs of the max. MSE , the AUBs and , the
CRLB , the BLB , the ALBs and , and the simulated MSE , w.r.t.
the SNR.

where . By assuming
and constant , we can write8:

(69)

(70)

where and denote the probabilities of error of the nearest
decision rule

(71)

of the two-hypothesis decision problems (the decision problem
in (73) is illustrated in Fig. 5):

(72)

(73)

and and the minimum proba-
bilities of error obtained by the optimum decision rule based on
the likelihood ratio test ([36], pp. 30):

(74)

with denoting the log-likelihood function in (2). The prob-
ability of error of an arbitrary detector is given by

(75)

8The obtained bounds are “approximate” due to this assumption; the assump-
tion is valid when is not very close to the extremities of .
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Fig. 8. Passband: SQRTs of the max. MSE , the CRLB , the ECRLB ,
the MSEAs and , and the simulated MSEs of the passband
and baseband pulses, w.r.t. the SNR.

From (68) and (70) we obtain the following ALBs:

(76)

(77)

where and
. The integration limits are set

to and to make the two hypotheses in (72) and (73) fall
inside . As is a decreasing function, tighter bounds
can be obtained by filling the valleys of and

(as proposed by Bellini and Tartara in [4]):

(78)

(79)

where denotes the valley-filling
function. When is a function of (e.g., TOA
estimation) we can write the bounds in (76)–(79) as :

(80)

(81)

If , then ; hence, and become
tighter than and , respectively. From (2), (28), (74) and (75)
we can write the minimum probability of error as

(82)

Fig. 9. Passband: SQRTs of the max. MSE , the AUBs and , the
CRLB , the ECRLB , the BLB , the ALBs and , and the simu-
lated MSE , w.r.t. the SNR.

There are two main differences between our bounds (deter-
ministic) and the Bayesian ones: i) with the former we integrate
along the error only whereas with the latter we integrate along
the error and the a priori distribution of (e.g., see (14) in [21]);
ii) all hypotheses (e.g., and in (73)) are
possible in the Bayesian case thanks to the a priori distribution
whereas only one hypothesis is possible in the deter-
ministic case. So in order to utilize the minimum probability of
error we have approximated in (69) by
(see Fig. 5).
In this section we have two main contributions. The first

one is the ALB whereas the second one is the deterministic
ZZLB family. These bounds can from now on be used as bench-
marks in deterministic parameter estimation (like the CRLB)
where it is not rigorous to use Bayesian bounds. Even though
the derivation of was a bit complex, the final expression is
now ready to be utilized.

VII. NUMERICAL RESULTS AND DISCUSSION

In this section we discuss some numerical results about the
derivedMSEAs, AUB, and ALBs.We consider TOA estimation
using baseband and passband pulses. Let ns,
GHz, and . With the baseband (resp.
passband) pulse we consider 9 equal duration intervals (resp. we
consider an interval around each of the 48 local maxima). Let

(83)

be the MSEA based on (22) and using the interval probability
approximation ( , see (26), (27), (29)) and
interval mean and variance approximations and
( in (30), (31), and in
(41)–(44), (49)–(52)).



MALLAT et al.: STATISTICS OF THE MLE AND APPROXIMATE UPPER AND LOWER BOUNDS—PART I 5673

A. Baseband Pulse

Consider first the baseband pulse. In Fig. 6 we show the
SQRTs of the maximum MSE in (19), the CRLB in (8),
five MSEAs: in (83) and in
(60), and the MSE obtained by simulation based on 10000
trials, versus the SNR. In Fig. 7 we show the SQRTs of , two
AUBs: in (83) and in (57), , the BLB in (18), two
ALBs: in (67) and in (80) (equal to in (81) because a
non-oscillating ACR), and .
We can see from that, as cleared up in Section I, the SNR

axis can be divided into three regions: 1) the a priori region
where is achieved, 2) the threshold region and 3) the asymp-
totic region where is achieved. We define the a priori and
asymptotic thresholds by [7]:

(84)

(85)

We take and . From , we have
dB and dB. Thresholds are defined in literature w.r.t.
two magnitudes at least: i) the achieved MSE [7], [9], [21] like
in our case (which is the most reliable because the main concern
in estimation is to minimize the MSE) and ii) the probability of
non-ambiguity [15], [37] (for simplicity reasons). Note that the
RMSE achieved in the a priori region increases with the width
of the a priori domain as can be seen from (19). This explains
why the RMSE is relatively small at low SNRs (1.9 ns at
dB) in our numerical example; in fact, the considered is
relatively narrow ( is 3.5 times the pulse width).
The MSEAs obtained from the MIE

(Section IV) are very accurate and follow closely; is
more accurate than which slightly overestimates be-
cause uses the probability approximation in (26) that
considers all testpoints during the computation of the proba-
bility, whereas uses the approximation in (29) based
on the probability UB in (27) that only considers the 0th
and the th testpoints; is more accurate than which
slightly overestimates , and than which slightly un-
derestimates it, because uses the variance approximation

in (42) obtained from the first order Taylor series expan-
sion of noise, whereas uses in (31) assuming theMLE
uniformly distributed in (overestimation of the noise), and

uses in (44) neglecting the noise. The MSEA
proposed in Section V.A based on our probability approxima-
tion is very accurate as well.
The AUB proposed in [1] is very tight and converges

to the asymptotic region simultaneously with . However, it is
less tight in the a priori and threshold regions because it uses
the probability UB which is not very tight in these re-
gions (see Fig. 3). Moreover, when . The
AUB (Section V.A) is very tight. However, it converges to
2.68 times the CRLB at high SNRs. This fact was discussed in
Section V.A and also solved in Section V.B by proposing
(examined above). Nevertheless, can be used to compute the
asymptotic threshold accurately because it converges to its own
asymptotic regime simultaneously with .

Both the BLB and the ALB (Section VI.A) outperform
the CRLB. Unlike the passband case considered below, out-
performs the BLB. The ALB (Section VI.B) is very tight and
converges to the CRLB simultaneously with .

B. Passband Pulse

Consider now the passband pulse. In Fig. 8 we show the
SQRTs of the maximum MSE , the CRLB , the ECRLB
in (15) (equal to CRLB of the baseband pulse), three MSEAs:

and in (83) and in (60), and theMSEs obtained
by simulation for both the passband and the baseband
pulses. In Fig. 9 we show the SQRTs of , two AUBs: in
(83) and in (57), , the BLB , three ALBs: in (67),
in (80) and in (81), and .
By observing , we identify five regions: 1) the a priori

region, 2) the a priori-ambiguity transition region, 3) the
ambiguity region where the ECRLB is achieved, 4) the ambi-
guity-asymptotic transition region and 5) the asymptotic region.
We define the begin-ambiguity and end-ambiguity thresholds
marking the ambiguity region by [7]

(86)

(87)

We take and . From we have
dB, dB, dB and dB.
The MSEAs (Section IV) and

(Section V.B) are highly accurate and follow closely.
The AUB [1] is very tight beyond the a priori region.

The AUB (Section V.A) is very tight. However, it converges
to 1.75 times the CRLB in the asymptotic region.
The BLB detects the ambiguity and asymptotic regions

much below the true ones; consequently, it does not determine
accurately the thresholds ( dB, dB and

dB instead of 15, 28 and 33 dB). The ALB
(Section VI.A) outperforms the CRLB, but is outperformed by
the BLB (unlike the baseband case). The ALB (Section VI.B)
is very tight, but (Section VI.B) is tighter thanks to the valley-
filling function. They both can calculate accurately the asymp-
totic threshold and to detect roughly the ambiguity region.
Let us compare theMSEs and achieved by the base-

band and passband pulses (Fig. 8). Both pulses approximately
achieve the same MSE below the end-ambiguity threshold of
the passband pulse ( dB) and achieve the ECRLB
between the begin-ambiguity and end-ambiguity thresholds.
The MSE achieved with the baseband pulse is slightly smaller
than that achieved with the passband pulse because with the
former the estimates spread in continuous manner along the
ACR whereas with the latter they spread around the local
maxima. The asymptotic threshold of the baseband pulse (16
dB) is approximately equal to the begin-ambiguity threshold
of the passband pulse (15 dB). Above the end-ambiguity
threshold, the MSE of the passband pulse rapidly converges to
the CRLB while that of the baseband one remains equal to the
ECRLB.
To summarize we can say that for a given nonlinear esti-

mation problem with an oscillating ACR, the MSE achieved
by the ACR below the end-ambiguity threshold is the same
as that achieved by its envelope. Between the begin-ambiguity
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and end-ambiguity thresholds, the achieved MSE is equal to the
ECRLB. Above the latter threshold, the MSE achieved by the
ACR converges to the CRLB whereas that achieved by its en-
velope remains equal to the ECRLB.

VIII. CONCLUSION

We have considered nonlinear estimation of scalar determin-
istic parameters and investigated the threshold and ambiguity
phenomena. The MIE is employed to approximate the statis-
tics of the MLE. The obtained MSEAs are highly accurate and
follow the true MSE closely. A very tight AUB is proposed
as well. An ALB tighter than the CRLB is derived using the
second order Taylor series expansion of noise. The principle of
binary detection is utilized to compute some ALBs which are
very tight.

APPENDIX A
CURVATURES OF THE ACR AND OF ITS ENVELOPE

In this Appendix we prove (14). From (11) and (13) we can
write the FT of the complex envelope as

(88)

where . Form (13) we can write

(89)

As from (13) , (89) gives

(90)

To prove (14) from (90) we must prove that is
null. Using (88) and the inverse FT, we can write

so . Using (12)
and the last equation, becomes

Hence, (14) is proved.
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