
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS: Vol. 93, No. 3, pp. 619-634, JUNE 1997

Piecewise-Linear Pathways to the Optimal
Solution Set in Linear Programming1

M. C. PlNAR2

Communicated by P. Tseng

Abstract. This paper takes a fresh look at the application of quadratic
penalty functions to linear programming. Recently, Madsen et al. (Ref.
1) described a continuation algorithm for linear programming based on
smoothing a dual l\ -formulation of a linear program with unit bounds.
The present paper is prompted by the observation that this is equivalent
to applying a quadratic penalty function to the dual of a linear program
in standard canonical form, in the sense that both approaches generate
continuous, piecewise-linear paths leading to the optimal solution set.
These paths lead to new characterizations of optimal solutions in linear
programming. An important product of this analysis is a finite penalty
algorithm for linear programming closely related to the least-norm algo-
rithm of Mangasarian (Ref. 2) and to the continuation algorithm of
Madsen et al. (Ref. 1). The algorithm is implemented, and promising
numerical results are given.

Key Words. Quadratic penalty functions, linear programming, piece-
wise-linear path-following algorithms, characterization of optimal
solutions, finiteness.

1. Introduction

In a recent paper (Ref. 1) Madsen et al. gave a new finite algorithm to
solve the problem

1This research was supported by Grant No. 11-0505 from the Danish Natural Science Research
Council SNF. The author is indebted to K. Madsen, H. B. Nielsen, and V. A. Barker for
their support. The careful work of two anonymous referees is also gratefully acknowledged.

2Assistant Professor, Department of Industrial Engineering, Bilkent University, Bilkent,
Ankara, Turkey.

619
0022-3239/97/0600-0619$12.50/0 © 1997 Plenum Publishing Corporation

620 JOTA: VOL. 93, NO. 3, JUNE 1997

where E is n x m , deR m , and feRm. The case where f=0 is precisely the
linear l1-estimation problem (Ref. 3). A smooth approximation of (AL1)
was considered by Madsen et al. (Ref. 1):

The function p is known as the Huber function in robust regression; see
Ref. 4. A finite Newton type algorithm was used by Madsen and Nielsen
(Ref. 5) to solve (SAL1). Later, Madsen et al. (Ref. 1) showed that the set
of minimizers of GY define continuous, piecewise-linear paths as a function
of 7 leading to the optimal solution set of (AL1). They established that
solutions to (AL1) and its dual (which is a linear program with unit upper
and lower bounds) can be found for a sufficiently small positive value of
the parameter j. By exploiting this property, a finite continuation algorithm
to solve linear programs was given in the same reference with encouraging
initial numerical results. Now, the present paper is prompted by the observa-
tion that the ideas summarized in the above paragraphs can be used to solve
the linear programming problem using quadratic penalty functions.

Consider the primal linear programming problem

where xeRn, A is an m x n matrix, beRm, ceRn . The dual problem to (P)
is given by

where yeRm . We define the dual penalty functional

where t is a positive scalar,

JOTA: VOL. 93, NO. 3, JUNE 1997 621

and W is a diagonal m x m matrix with entries:

In this paper, we study the unconstrained problem

for decreasing positive values of t.
All the results and the algorithm of the present paper are obtained by

combining the continuation viewpoint (Ref. 1) and a well-known duality
and perturbation result in linear programming (Refs. 2, 6-10) to study the
quadratic penalty problem (CD). This result states that, for t sufficiently
small, a dual optimal point to the penalty problem (CD) is a solution of
(P) with the least 2-norm. Using this result, we establish the piecewise linear
behavior of the solution set of (CD) as t is decreased, and give novel charac-
terizations of the solution set of (D). The main contribution of the paper is
the design of a finite algorithm as a modification of the least-norm algorithm
of Mangasarian (Ref. 2) using the ideas of Madsen et al. (Ref. 1). However,
the algorithm of the present paper differs from the continuation algorithm
of Ref. 1 in the strategy for reducing the parameter t and the stopping
criteria. The algorithm of Mangasarian (Ref. 2) computes a least-norm solu-
tion of linear programs based on the above perturbation result and using a
SOR (successive overrelaxation) algorithm. Our algorithm differs from this
algorithm in two important aspects: (i) we use a modified Newton algorithm
to compute a point on the paths; (ii) we use a new, effective reduction
strategy for t that exploits the piecewise-linear nature of solution paths and
yields primal-dual solutions in a finite calculation.

We give computational results of our algorithm using a small subset of
the Netlib test set. The results indicate that the new dual penalty algorithm
exhibits a performance comparable to the algorithm of Ref. 1 and to the
dense linear programming system LSSOL from Stanford University Systems
Optimization Laboratory (Ref. 11) on the test set. For more details on
penalty and active set methods for linear programming, see Refs. 6, 12-16.

While the present paper was under review, we have developed an appli-
cation of the quadratic penalty functions to linear programs with mixed
inequality and equality constraints. This is both theoretically and computa-
tionally a nontrivial extension of the present paper and is described in detail
in Pinar (Ref. 17). This also relates our research to early work by Chebotarev
in the Russian literature (Ref. 14).

622 JOTA: VOL. 93, NO. 3, JUNE 1997

2. Pathways to Optimal Solutions

Let yt denote a solution to (CD) for some t > 0. It is well known (see,
e.g., Ref. 18) that every limit point of the sequence {y t} solves (D). Now,
define a binary vector seRn such that

Hence,

In the sequel, we drop the argument y when the meaning is clear from
context. We denote by Y the set of optimal solutions to (D). We assume
throughout the paper that A has rank m.

2.1. Structure of the Solution Set of (CD). In this section, we briefly
examine the properties and structure of the set of minimizers of H. The
results of this section follow immediately using some results of Refs. 8
and 9.

It is evident that H is composed of a finite number of quadratic
functions. In each domain DeRm where s(y) is constant, H is equal to a
specific quadratic function as seen from its definition. These domains are
separated by the following union of hyperplanes:

A binary vector s is feasible at y if,

If s is a feasible binary vector, H is given by a specific quadratic function
on the subset

We also call gs a Q-subset of Rm. The gradient of the function H is given
by

where W is the diagonal matrix obtained from a feasible binary vector s at
y. For yeRm\B, the Hessian of H exists and is given by

We also denote by Ut the set of minimizers of H(y, t).

JOTA: VOL. 93, NO. 3, JUNE 1997 623

It is well known (see for instance Refs. 2, 6-10) that the dual of the
quadratic penalty problem (CD) is given as

Let xt denote the unique optimal solution to the above perturbed
program, and let z+ denote a vector whose ith component is max{zi, 0}. It
is shown in Lemma 6 of Ref. 9 that

for any z teU t. That is, the right-hand side is constant regardless of the
choice of minimizer zt. Hence, we have the following characterizations of
the solution set of (CD) analogously to the solution set of (SAL1).

Lemma 2.1. s(y t) is constant for y teU t. Furthermore, rt (y t) is constant
for yeUt if st= 1.

Following the lemma, we let

as the sign vector corresponding to the solution set. Now, we can use Lemma
2.1 and the linearity of the problem to characterize the solution set Ut.

Corollary 2.1. Ut is a convex set which is contained in a Q-subset As,
where s=s(Ut).

Corollary 2.2. Let yt e Ut and s=s(Ut). Let Ns be the orthogonal com-
plement of Vs=span {aT\ si = 1}. Then,

2.2. Characterization of Optimal Solutions through Dual Paths. In
this section, we analyze the behavior of the solution set Ut as t approaches
zero. The main result of this section is given in Theorem 2.2.

Assume that y teU t and s=s(Ut), with W=diag(s 1 , . . . ,s n) . Then, yt

satisfies the following identity:

624 JOTA: VOL. 93, NO. 3, JUNE 1997

It follows from (13) that the following linear system is consistent:

Now, let x, denote the unique optimal solution to (PB). Then, we have
from Li and Swetits (Ref. 9) that

for any y teU t. From Theorem 2.1 of Mangasarian (Ref. 2), we have that,
for small enough t, for te(0, t0] say, xt is constant: it is the least 2-norm
solution of (P). This implies that

for 0 < < S < t . Let

Then, one can rewrite the above as

Combining (15) with (17), we have

Multiplying both sides by A, and since Axt = b, we get

Hence, using Corollary 2.2, we have the following theorem.

Theorem 2.1. There exists t0>0 such that s = s(Ut) is constant for
0<t<t0. Furthermore, let d be a solution to (14) such that s (y t + Sd) = s
for 0<8<t<t0 . Then,

In general, it follows from the linearity of the problem that the set
of minimizers Ut has a piecewise-linear structure. Combining this with
Corollary 2.2, we have the following corollary.

JOTA: VOL. 93, NO. 3, JUNE 1997 625

Corollary 2.3. Let y teU t and let s = s(U t). Let d solve (14). If
s(y t + ed)=s for e>0, then s (y t+ 8d)=s and

Since the number of distinct binary vectors is finite, we also have the
following corollary.

Corollary 2.4. s(Ut) is a piecewise constant function of t > 0.

Combining the study of the piecewise-linear paths generated by the
minimizers of H with Theorem 2.1 of Mangasarian (Ref. 2), Theorem 2.2
below gives a new characterization of the optimal solution set Y of (D).

Theorem 2.2. Let 0<t<t0, where t0 is given in Theorem 2.1, and let
s=s(Ut). Let yteUt, and let d solve (14). Then, U0 = Y, where

with

Proof. First, x t =-Wr(y t) / t is an optimal solution to (P) with least
norm by Theorem 2.1 of Ref. 2. Let ye Y. By the complementary slackness
theorem, Wr(y) = 0. Now, let y teU t. Then using (13), we have

Hence, there exists a solution d to (14) such that y = y t + td. Since any
solution d to (14) can be expressed as d=d+n, where n e N (A W A T) ,

for any solution d to (14). Now, assume y0e U0. Then, there exists a solution
d0 to (14) such that y0=y t + td0. Therefore, we have

Now, y0 is complementary to x, and is feasible in (D) by definition of U0

and (21). Therefore, y0 is an optimal solution to (D). Since this holds for
any y0eU0, U0< Y.

626 JOTA: VOL. 93, NO. 3, JUNE 1997

If Y is a singleton, the proof is complete. Therefore, assume otherwise.
Let ye Y. Using (20) again, it follows that (y - y t) / t solves (14) for any
y t€U t . Therefore, we have shown that yey t + td+N s . Now, by virtue of
feasibility, yEDs for any ye Y. Hence, ye U0. D

3. Dual Penalty Algorithm

We now construct a penalty algorithm for linear programming similar
to the finite continuation algorithm of Madsen et al. (Ref. 1) and to the
least-norm algorithm of Mangasarian (Ref. 2). This algorithm is different
from the continuation algorithm in two important aspects: (i) the choice of
the reduction strategy for t; (ii) the stopping criteria. These differences make
the algorithm a finite variant of the algorithm of Mangasarian. The algo-
rithm of Mangasarian consists of solving the dual to (PB) using a SOR
iterative scheme to compute a least-norm solution to (P). Our algorithm
computes both a least-norm solution to (P) and an optimal solution to (D)
in a finite calculation using the piecewise linear dependence of unconstrained
minimizers on t. In contrast to the algorithm of Mangasarian, we use a finite
Newton-type method to solve (CD), which is more accurate than the SOR
method. On the other hand, the algorithm of Mangasarian is very simple,
since it does not involve any matrix factorizations.

The algorithm is initiated by choosing values t0 and y0. A minimizer
y0, of H using t0 is found. The general step k+ 1 for k>0 is given below.

Step k +1. Let yk denote a minimizer of H for tk. Choose tk+1 and a
starting point for subsequent iterations based on yk, and compute a mini-
mizer yk+1 of H.

The algorithm stops when the duality gap is zero (within roundoff) and
both primal and dual feasibility are observed. Otherwise, t is decreased
according to some criteria; see Section 3.2. To complete the description, we
need an algorithm to compute a minimizer of H. Such an algorithm is
adapted from the Newton algorithm of Madsen and Nielsen (Ref. 5) for
robust linear regression using Huber functions; see Section 3.1.

Now, we define an extended binary vector j such that

We denote by W the diagonal matrix derived from s. We also define the
following active set of indices:

JOTA: VOL. 93, NO. 3, JUNE 1997 627

This extended definition of binary vector is used in the detailed description
of the algorithm and in proving its finite convergence.

3.1. Computing an Unconstrained Minimizer. Let y be the current iter-
ate with W the diagonal matrix derived from s(y). A search direction h is
computed by solving the Newton system

For ease of notation, let

Furthermore, let N(C) denote the null space of C. If C has full rank, then
h is the solution to (24). Otherwise, if the system of equations (24) is consist-
ent, a minimum-norm solution is computed. If the system is inconsistent,
the projection of g on N(C) is computed. These choices are motivated and
justified in Madsen and Nielsen (Ref. 5). The next iterate is found through
a line search aiming for a zero of the directional derivative. This procedure
is computationally cheap as a result of the piecewise-linear nature of H'. It
can be shown that the iteration is finite; i.e., after a finite number of itera-
tions, we have that y + h is a minimizer of H; see Ref. 5 for details.

3.2. Reducing the Penalty Parameter. Let y, be a minimizer of H(y, t)
for some t>0 and s=s(y t). Consider the system

Let d be a solution to (25). We distinguish between two cases.

Case 1. The duality gap cTx + bT(y t + td) is zero, but yt + td is infeas-
ible in (D); i.e., there exists j such that r j (y t + td)<0 . In this case, we reduce
t as follows. Let o = {ak, k= 1, 2 , . . . , q} be the set of positive kink points
where the components of r (y t + td) change sign, i.e., the set

where

If o is nonempty, we choose a* = mink ak and we let

Otherwise, we set

628 JOTA: VOL. 93, NO. 3, JUNE 1997

Notice that

where either B<0.9 or b = 1-a*, with 0 < a * < 1 , so that tnext<t. In both
cases, ytnext is used as the starting point of the modified Newton algorithm
of Section 3.1 with the reduced value of t.

Case 2. The duality gap is not zero. In this case, we reduce t as follows.
Let c((1 — €)t) denote the number of changes in the active set from I (y t) to
I (y t + etd). We use bisection to find a value e of e such that c ((1 - e)t) x
1/2c(t), and use

For robustness, we search only in the interval [0.1t, t) so that tnext<0.9t.

3.3. Finite Convergence. Let S(Ut) denote the set of all distinct binary
vectors corresponding to the elements of Ut. That is, for any yteUt,
s (y t) e S (U t) .

The following results are obtained as consequences of the linearity of
the problem, Lemma 2.1, and the finiteness of the extended binary vectors.

Lemma 3.1. If S (Ut 1) = S (U t 2) , where 0<t 2 < t 1 , then S(Ut) =
S(Ut1) = S(U t 2)for t 2 <t<t 1 .

Theorem 3.1. There exists t such that S(Ut) is constant for te(0, t),
where 0 < t < t0.

The following theorem is crucial for the finite convergence analysis.
Since the proof is lengthy, we refer the reader to the more general analysis
of Ref. 17.

Theorem 3.2. Let te(0, t) and yteUt, with s = s(y t) and x* =
-(1/ t)Wr(y t) . Then,

for any solution d to (25). Furthermore, if d is unique, yt + td solves (D).

JOTA: VOL. 93, NO. 3, JUNE 1997 629

Lemma 3.2. Assume te(0, t). Let yeU t , with s = s(y). Let d solve (25),
and let ynext be generated by one iteration of the penalty algorithm. Then,
either

and the algorithm stops, or

where a* is as defined in Case 1 of the reduction procedure, and I(Ynext) is
an extension of I (y) .

Proof. Let

Clearly,

from Theorem 3.2. Hence, we are in Case 1 of the reduction procedure of
Section 3.2. If r(y + td)>0 , then ynext=y + td is a solution to (D) by Theorem
3.2, and the algorithm stops. Otherwise, Theorem 3.2 implies that
I (y) < I (y + td). Hence, using the definition of a*, we have

Since there exists jE{1,. . . , n}\I(y) such that rj(y + a*td) = 0,I(y + a*td)
is an extension of I (y) . Furthermore, y + a* tdeEs. Therefore, using the
continuity of the gradient H', (10), and the definition of d, have

Thus, Ynext minimizes H(y, (1 -a*)t).

Let y e U t for some t>0. Unless the stopping criteria are met and the
algorithm stops with a primal-dual optimal pair, t is reduced by a nonzero
factor (tnext = Bt) as discussed in Section 3.2. Hence, {tk} is a strictly decreas-
ing sequence converging to 0. Since the modified Newton iteration of Section
3.1 is a finite process, t reaches the range (0,t). where t is as defined in
Theorem 3.1, in a finite number of iterations unless the algorithm stops.
Now, assume that te(0, t). From Lemma 3.2, either the algorithm terminates
or the active set I is expanded. Repeating this argument, in a finite number
of iterations the matrix AWAT will finally have rank m, since A has rank

m. When AWAT has full rank, the solution d to the system (25) is unique,
and ynext = y + td solves (D) by Theorem 3.2. Therefore, we have proved the
following theorem.

Theorem 3.3. The dual penalty algorithm defined in Section 3 termin-
ates in a finite number of iterations with a primal-dual optimal pair.

4. Implementation and Numerical Results

In this section, we report our numerical experience with a Fortran 77
implementation of the dual algorithm, which does not exploit sparsity. The
purpose of the experiments is to test the viability of the algorithm in solving
problems of practical interest, and to compare it with the code LPASL1 of
Madsen et al. with the package LSSOL from Stanford Systems Optimization
Library. LSSOL is a Fortran 77 package for constrained linear least-square
problems, linear programming, and convex quadratic programming; see Ref.
11. It does not exploit sparsity. Hence, it provides a fair comparison to our
numerical results. We refer to the implementation of the penalty algorithm
as LPPEN.

4.1. Numerical Linear Algebra. The major effort in the Newton algo-
rithm of Section 3.1 is spent in solving the systems (24). We use the AAFAC
package of Nielsen (Ref. 18) to perform this. The solution is obtained via
an LDLT factorization of the matrix Ck = AWAT. Let us recall that Wu= 1
for the columns of A corresponding to indices in the active set / as defined
in (23). Based on this observation, D and L are computed directly from the
active columns of A, i.e., without squaring the condition number as would
be the case if Ck was first computed. It is essential for the efficiency of the
penalty algorithm to observe that, normally, only a few entries of the
diagonal matrix W change between two consecutive iterations. This implies
that the factorization of Ck can be obtained by relatively few updates and
downdates of the LDLT factorization of C k - 1 . Therefore, the computational
cost of a typical iteration step is O(m2). Occasionally, a refactorization is
performed. Details are given in Ref. 18.

For the solution of (25), the matrix A WAT is identical to the last Ck

used in the Newton iteration. Thus, the LDLT factorization is available. In
order to enhance accuracy, we use one step of the iterative refinement when
solving (25). All the results reported in this study were obtained under
identical algorithmic choices without fine tuning LPPEN for any particular
problem.

630 JOTA: VOL. 93, NO. 3, JUNE 1997

JOTA: VOL. 93, NO. 3, JUNE 1997 631

Table 1 . Solution statistics of LPPEN on the test set.

Problem
name

Afiro
Sc50b
Sc50a
Sc105
Adlittle
Scagr7
Stocfor 1
Blend
Sc205
Share2b
Plate

Iter

24
17
25
37
68
77
88
63
61
99
21

Refac

2
1
2
3
8
5
5
8
5
5
3

Reduc

9
4

f*
-4.647531429 x 102

-7.000000000x102

8 -6.457507706x101

7
7

14
15
13
14
24

3

-5.220206121 x 101

2.254949632 x 105

-2.331 389824 x106

-4.113197622x104

-3.081214985x101

-5.220206121 x 101

-4.157322407 x102

2.400000000x101

t*

6.07 x 10-4

7.62 x10-5

7.71 x 10-5

8.11x10 - 6

3.28x10 -4

4.94 x 10-7

3.48 x10-5

7.02 x10-4

6.17 x 10-7

2.89 x10-5

1.84 x10-3

CPU

1.09
1.59
1.70
6.37
5.60

17.36
16.20
7.80

31.26
12.19
2.69

To initiate the algorithm, we choose a starting point y0 and t0 as follows.
We let y0 be a solution to

where ke(0, 1). Then, t0 is chosen using the following formula:

where Be(0, 1), r0 = ATy0 + c, and MINRES is a function that returns the mth
smallest element of r0.

4.2. Test Results. We consider ten problems from the Netlib collec-
tion. We also used a test problem from a civil engineering application at the
Technical University of Denmark, referred to as Plate. The characteristics
of the test problems can be found in Ref. 1. We do not use any preprocessing
on the test problems prior to solution. In Table 1, we show the solution
statistics of the LPPEN. The tests were performed on an IBM PS/2-486.
The Salford F77 compiler was used. The columns Iter, Reduc, and Refac
refer to the number of iterations, number of reductions of the parameter t,
and number of refactorizations. The columns f* and t* report the objective
function value reported on termination and the final value of t, respectively.
Finally, we report the solution time in seconds exclusive of input/output
under CPU. We stop when

and the largest negative component of the residuals r = ATy + c is less than
n||c||ooeM in absolute value, where eM denotes the computer unit roundoff.
In connection with the initialization, we used K = B = 10-1 for all the prob-
lems. We observe that, although the final value of the penalty parameter

varies in the range between O(10 -7) and O(10-3), the penalty algorithm
yields very accurate optimal solutions. This is a very encouraging result,
since quadratic penalty function methods have been well known for their
potential numerical instability. These experimental findings corroborate our
analytical results that the penalty parameter t is decreased to zero in a well-
conditioned manner by solving a linear system of equations and taking a
step along the solution.

In Table 2 below, we provide a comparison of LPPEN with LPASL1
and LSSOL. We consider only the solution time in CPU seconds. For details
on the results of LPASL1 and LSSOL, the reader is directed to Ref. 1.
These results were obtained on the same computer under identical compiler
settings. The results of Table 2 clearly demonstrate that, on the test set,
LPPEN and LPASL1 display very similar numerical performances. Both
codes also deliver a solution in times competitive with LSSOL.

4.3. Relation to Interior-Point Methods. Interior point methods solve
a weighted least-square system of the form

Table 2. Comparison of solution times for LPPEN,
LPASL1, and LSSOL on the test set.

Problem name

Afiro
Sc50b
Sc50a
Sc105
Adlittle
Scagr7
Stocfor1
Blend
Sc205
Share2b
Plate

LPPEN

1.09
1.59
1.70
6.37
5.60

17.36
16.20
7.80

31.26
12.19
2.69

LPASL1

0.49
0.93
1.64
9.78
8.13

19.06
19.01
7.25

107.63
11.86
2.47

LSSOL

0.60
3.07
2.47

14.28
14.56
58.07
15.93
12.96

122.74
13.07
9.23

632 JOTA: VOL. 93, NO. 3, JUNE 1997

where D is diagonal positive-definite matrix and p,f are vectors of appropri-
ate dimensions. Since the numerical values of the entries of D change from
one iteration to the next, a numerical refactorization of the matrix ADAT is
performed at each iteration of these methods. However, we do only occa-
sional refactorizations of the matrix AWAT. As a preliminary test, we ran
some randomly generated dense problems to force CPLEX to use dense
linear algebra on a SUN SPARC 4 using the CPLEX Barrier optimizer and

JOTA: VOL. 93, NO. 3, JUNE 1997

Table 3. Comparison of solution times for
LPPEN and CPLEX Barrier optimizer
on dense problems on a SUN SPARC 4
(25 MHz).

n, m

200, 100
320, 160
400, 200
600, 300

LPPEN

5.32
11.52
25.07

117.50

CPLEX Barrier

16.95
67.84

140.39
451.79

LPPEN. The results are given above in Table 3. The times are in CPU
seconds.

These results clearly show that LPPEN is well suited for dense problems.
In the light of the observations, we believe that the penalty method deserves
further research.

References

1. MADSEN, K., NIELSEN, H. B., and PINAR, M. C., A New Finite Continuation
Algorithm for Linear Programming, SIAM Journal on Optimization, Vol. 6, pp.
600-616, 1996.

2. MANOASARIAN, O. L., Normal Solutions of Linear Programs, Mathematical
Programming Study, Vol. 22, pp. 206-216, 1984.

3. MADSEN, K., and NIELSEN, H. B., A Finite Smoothing Algorithm for Linear l1-
Estimation, SIAM Journal on Optimization, Vol. 3, pp. 223-235, 1993.

4. HUBER, P. J., Robust Statistics, John Wiley, New York, New York, 1981.
5. MADSEN, K., and NIELSEN, H. B., Finite Algorithms for Robust Linear Regres-

sion, BIT, Vol. 30, pp. 682-699, 1990.
6. BERTSEKAS, D. P., Necessary and Sufficient Conditions for a Penalty Method to

Be Exact, Mathematical Programming, Vol. 9, pp. 87-99, 1975.
7. MANOASARIAN, O. L., and MEYER, R. R., Nonlinear Perturbations of Linear

Programs, SIAM Journal on Control and Optimization, Vol. 17, pp. 745-752,
1979.

8. Li, W., PARDALOS, P., and HAN, C. G., Gauss-Seidel Method for Least-Distance
Problems, Journal of Optimization Theory and Applications, Vol. 75, pp. 487-
500, 1992.

9. Li, W., and SWETITS, J., Linear l1-Estimator and Huber M-Estimator, Technical
Report, Old Dominion University, Norfolk, Virginia, 1995.

10. MICHELOT, C., and BOUGEARD, M., Duality Results and Proximal Solutions
of the Huber M-Estimator Problem, Applied Mathematics and Optimization,
Vol. 30, pp. 203-221, 1994.

633

11. GILL, P. E., HAMMARLINO, S., MURRAY, W., SAUNDERS, M. A., and WRIGHT,
M. H., User's Guide for LSSOL (Version 1.0): A Fortran Package for Con-
strained Linear Least Squares and Convex Quadratic Programming, Report
SOL 86-1, Department of Operations Research, Stanford University, Stanford,
California, 1986.

12. BARTELS, R. H., A Penalty Linear Programming Method Using Reduced-Gradient
Basis-Exchange Techniques, Linear Algebra and Its Applications, Vol. 20,
pp. 17-32, 1980.

13. CONN, A. R., Linear Programming via a Nondifferentiable Penalty Function,
SIAM Journal on Numerical Analysis, Vol. 13, pp. 145-154, 1976.

14. CHEBOTAREV, S. P., Variation of the Penalty Coefficient in Linear Programming
Problems, Automation and Remote Control, Vol. 7, pp. 102-107, 1973.

15. CLARK, D. I., and OSBORNE, M. R., Finite Algorithms for Huber's M-Estimator,
SIAM Journal on Scientific Computing, Vol. 7, pp. 72-85, 1986.

16. DAX, A., Linear Programming via Least Squares, Linear Algebra and Its
Applications, Vol. 111, pp. 313-324, 1988.

17. PINAR, M. C., Linear Programming via a Quadratic Penalty Function, Zeitschrift
fur Operations Research, Vol. 44, pp. 345-370, 1996.

18. LUENBERGER, D., Linear and Nonlinear Programming, Addison-Wesley,
Reading, Massachusetts, 1984.

19. NIELSEN, H. B., AAFAC: A Package of Fortran 77 Subprograms for Solving
ATAx = c, Report NI-90-11, Institute for Numerical Analysis, Technical Univer-
sity of Denmark, Lyngby, Denmark, 1990.

634 JOTA: VOL. 93, NO. 3, JUNE 1997

