
On the Size of Full Element-Indexes

for XML Keyword Search

Duygu Atilgan1,�, Ismail Sengor Altingovde2, and Özgür Ulusoy1

1 Computer Engineering Department, Bilkent University, Ankara, Turkey
{atilgan,oulusoy}@cs.bilkent.edu.tr

2 L3S Research Center, Hannover, Germany
altingovde@L3S.de

Abstract. We show that a full element-index can be as space-efficient as
a direct index with Dewey ids, after compression using typical techniques.

1 Full Element-Index for XML Keyword Search

Keyword search is a crucial operation that has to be supported on XML data.
Earlier works attacking this problem from information retrieval (IR) perspective
essentially consider disjunctive query semantics (e.g., see [2]); whereas works
representing the database (DB) perspective mainly concentrate on Web-style
conjunctive semantics (e.g., [1,4]). Typically, an inverted index is the preferred
data structure for XML keyword search in both communities. In this respect, a
straightforward approach is indexing each element in the XML data as a separate
document, which is formed of the text contained in the element itself and that
in all of its descendants [2]. This is called a full (element-)index.

While a full index can support both disjunctive and conjunctive keyword
search semantics1, the nested structure of XML data poses some efficiency chal-
lenges on its use in practice [1]. Most crucially, in a full index, a term t that
is directly contained in an element at depth n is indexed n times, i.e., for each
ancestor of that particular element (see Figure 1). This implies a non-trivial
overhead in terms of storage space and query processing time.

To cope with the above problems of a full element-index, a key decision is
indexing only direct textual content for each element, excluding the contents of
its descendants. This so-called direct index remedies the redundancy inherent
in the full index, and allows disjunctive query processing with a certain level
of success (e.g., see [2]). However, for Web-style conjunctive query processing,
such a direct index (in contrast to a full index) needs to explicitly capture the
ancestor-descendant relationships among the elements. To this end, one of the
most widely accepted solutions is labeling each element with Dewey IDs [1,4]. In
Dewey ID representation, the label of a given node encodes the path from the
document root down to the node so that the ancestor-descendant relationships
between the nodes could be determined directly (see Figure 1).

� Currently affiliated with Google Ireland.
1 In this study, we focus on simple keyword queries without structural constraints.

R. Baeza-Yates et al. (Eds.): ECIR 2012, LNCS 7224, pp. 556–560, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

On the Size of Full Element-Indexes for XML Keyword Search 557

Fig. 1. An example XML tree and corresponding full and Dewey-encoded indexes

In this paper, we question one of the most important arguments against a full
element-index, namely, index size. We advocate that, although a raw full index
may be larger than a Dewey-encoded index, the size disadvantage may disap-
pear after compression. Our claim is based on two key observations. First, the
upper-level nodes of an XML document would be usually shared by many lower-
level nodes, which would reduce redundancy in posting lists (e.g., in Fig. 1, since
nodes 3 and 4 share the ancestor 5, it is enough for the posting list of term “lan-
guage” to include only two ancestor nodes, namely, 5 and 7). Second, for typical
tree-traversal orders, elements with ancestor-descendant relationships would be
assigned very close ids, yielding smaller id gaps and higher compression ratio for
a full index. In what follows, we justify our claims by a formal discussion and
experimental results for three large datasets and different compression methods.

2 A Formal Comparison of Space Complexities

We provide a formal analysis for the space complexities of the full element-
index and Dewey-encoded index. Without loss of generality, we use the well-
known Elias-γ compression method [3] and restrict our discussion to compressing
element ids (as they occupy the majority of the space in an index). We assume
that the input XML tree to be indexed is a complete k-ary tree of depth d.

Space Complexity of the Dewey-Encoded Index (ID). Dewey ID of a
node at level m consists of m integers (where 1 ≤ m ≤ d). That is, a node at
level m is represented with the Dewey ID a = a1.a2.a3.am. In the worst
case, only leaf nodes of an XML tree includes text, i.e., m = d. This is a viable
assumption, since in a k-ary tree (k − 1)/k of the nodes are indeed leaves.

As each ai is smaller than k, by using Elias-γ compression, a Dewey ID can
be represented by at most d(2 lg k + 1) bits2. Let’s assume that the posting list
of a term t in the direct index ID consists of e number of elements. Then, the
compressed size of the posting list of t would be e× d(2 lg k+1) bits. Hence, the
space complexity of a Dewey-encoded index is O(ed lg k).

2 Recall that an integer x is encoded in 2 lg x+ 1 bits in Elias-γ compression [3].

558 D. Atilgan, I.S. Altingovde, and Ö. Ulusoy

Table 1. Dataset characteristics

No. of Docs. No. of Elem. Max. Depth Avg. Depth Max Fan-out

DBLP 1 4.9 million 4 1.9 479,426

Wikipedia 659,388 7.4 million 47 2.6 5,621

XMark 1 1.6 million 11 4.5 10,000

Space Complexity of the Full Element-Index (IF). Without loss of gener-
ality, the nodes of the input XML tree T are labeled with respect to the some tree
traversal order of T . If T is a complete k-ary tree, these labels are smaller than
the number of nodes in T , which is K = 1+k+k2+ ...+kd−1 = (kd−1)/(k−1).

Assume that there are e elements in a term t’s posting list in the Dewey-
encoded index ID, and e′ elements in corresponding list in the full index IF . As
before, we also assume that all of the elements in a posting list of ID are leaf
elements at depth d. To compare the sizes of Dewey-encoded and full indexes,
we have to estimate e′. We begin by analyzing two extreme cases: (i) If none of
the leaf elements has a common ancestor except the root node, then they would
have e(d− 1) + 1 distinct ancestors. In this case, the corresponding posting list
in IF would have e′ = e(d−1)+1+e = ed+1 elements. (ii)All ancestors of these
e leaf nodes are common. In this case, leaf elements would have d− 1 ancestors
and the corresponding posting list in IF would have e′ = e+ d− 1 elements.

However, both of these cases are quite rare. Therefore, we make an average
case analysis and try to estimate a decay factor, α, which symbolizes the propor-
tion of decrease in the number of ancestor nodes in consecutive levels. Assume
that there are e� number of nodes at depth � which contain term t directly and
these elements have e�−1 = αe� number of ancestors at depth � − 1. Note that
α ≤ 1 and hence, e�−1 ≤ e�.

Let’s consider a practical case where α ≤ 1/2. In this case, since e + e/2 +
e/4 + ... + e/2d ≤ 2e, e′ is in the order of e. Recall that, for IF , element id
gaps are compressed instead of the actual element ids. Since the element ids are
between 1 and K and there are e′ elements in t’s list in IF , the average gap
would be K/e′. Using Elias-γ method, a gap can be encoded in 2 lg (K/e′) bits.
Since e′ ≤ 2e, the compressed size of t’s list with e′ elements is:

e′2 lg
K

e′
= e′2 lg

(kd − 1)/(k − 1)

e′
< 2e2 lg

(kd − 1)

2e
< 4ed lg k = O(ed lg k).

Hence, we conclude that for a typical XML tree where α ≤ 1/2, the space
complexity of full and Dewey-encoded indexes are both O(ed lg k).

3 Experiments

We use two large real datasets, DBLP and Wikipedia, as well as a synthetically
generated XMark dataset (Table 1). DBLP dataset contains a single XML docu-
ment of size 207 MB obtained from the DBLP website. English Wikipedia XML
collection is employed in INEX campaigns (in 2006-2008) and includes 52 million

On the Size of Full Element-Indexes for XML Keyword Search 559

Table 2. Storage requirements (in MBs) of full (IF) and Dewey encoded (ID) index
files for DBLP, Wikipedia and XMark datasets (E-id: element id, D-id: document id,
D: depth, F: term frequency fields as stored in the index)

DBLP Wikipedia XMark
E-id D F Sum D-id E-id D F Sum E-id D F Sum

Elias-γ
IF 32.2 0 3 35.2 0 389.8 0 103.4 493.2 40.1 0 6.9 47.0
ID 68.7 5.2 1.8 75.7 184.1 257.5 67.2 32.4 541.2 58.3 7.9 1.5 67.7

Elias-δ IF 28.5 0 3 31.5 0 351.2 0 114.6 465.8 36.7 0 7.1 43.8
ID 53.6 6.9 1.8 62.2 163.8 299.3 83.1 35.7 581.9 53.0 8.2 1.5 62.7

LT ID 50.3 5.3 7.1 62.9 441.3 443.1 132.4 264.8 1281.6 71.0 6.0 5.9 82.9

elements, from which 7.4 million retrievable (i.e., non-formatting) elements are
indexed. We also generated an XMark dataset of around 100 MB.

We compare the storage requirements of the full element-index and Dewey-
encoded index built for each dataset using three different compression methods.
Elias-γ and Elias-δ are two well-known bit-aligned compression methods for com-
pressing typical inverted files [3]. Level table (LT) method is specifically proposed
for Dewey-encoded indexes [4].

In the experiments, we create index files only including pairs of <element id,
frequency>. For full indexes, element id is assigned with postorder traversal of
XML trees. We compress gaps between element ids, as usual. For Dewey encoded
index, before each element id, we also store the depth, i.e., number of components
in the following element id. Note that, for Wikipedia dataset, the first component
of each Dewey id is the document id. In this case, we compress the gaps between
the document id components of Dewey ids in a list. The succeeding components
of the Dewey id (that correspond to the path within a document) are, of course,
compressed as-is. Term frequency and depth values are also compressed as-is.

The compressed sizes are given for each dataset in Table 2. The results reveal
that for both datasets, size of the full index is considerably smaller (ranging
from 9% to 53%) than the corresponding Dewey-encoded index. The full index
reserves more space for term frequencies, as they are repeated for ancestor nodes.
Still, the element ids are compressed more efficiently for the full index than that
for the Dewey-encoded index. This indicates that our assumptions used in the
previous section hold for both datasets with different characteristics. That is,
although a posting list in a full index stores ancestor elements redundantly,
the gaps between their ids are small; and more crucially, an ancestor node at an
upper level is indeed the ancestor of several nodes in the lower levels that include
a particular term (i.e., implying a small decay factor as discussed in Section 2).

To sum up, our formal and experimental analyses show that a compressed full
index can be as compact as a compressed Dewey-encoded index, and it can be
safely employed in XML keyword search scenarios, which is our future work.

Acknowledgments. This work is partially supported by EU FP7 Project
CUBRIK (contract no. 287704) and The Scientific and Technological Research
Council of Turkey (TÜBİTAK) under the grant no 108E008.

560 D. Atilgan, I.S. Altingovde, and Ö. Ulusoy

References

1. Guo, L., Shao, F., Botev, C., Shanmugasundaram, J.: XRANK: Ranked keyword
search over XML documents. In: Proc. ACM SIGMOD, pp. 16–27 (2003)

2. Lalmas, M.: XML Retrieval. Synthesis Lectures on Information Concepts, Retrieval,
and Services. Morgan & Claypool Publishers (2009)

3. Witten, I.H., Moffat, A., Bell, T.C.: Managing Gigabytes: Compressing and Indexing
Documents and Images, 2nd edn. Morgan Kaufmann (1999)

4. Xu, Y., Papakonstantinou, Y.: Efficient keyword search for smallest LCAs in XML
databases. In: Proc. ACM SIGMOD, pp. 537–538 (2005)

	On the Size of Full Element-Indexes for XML Keyword Search

	Full Element-Index for XML Keyword Search
	A Formal Comparison of Space Complexities
	Experiments
	References

