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1 Introduction

For a given undirected graph G, the network loading problem (NLP) deals with the
design of a least cost network by allocating discrete units of capacitated facilities on
the links of G so as to support expected pairwise demands between some endpoints
of G. For a telephone company, the problem would be to lease digital facilities for
the exclusive use of a customer where there is a set of alternative technologies with
different transmission capacities. For example, DS0 is the basis for digital multi-
plex transmission with a signalling rate of 64 bits per second. Then, DS1 and DS3
correspond to 24 and 672 DS0s in terms of transmission capacities, respectively.
The cost of this private service is the total leasing cost of these facilities, which
is determined in a way to offer significant economies of scale. In other words, the
least costly combination of these facilities would be devoted to a single customer to
ensure communication between its sites. Then the customer would pay just a fixed
amount for leasing these facilities and would not make any additional payment in
proportion to the amount of traffic its sites exchange with each other. The structure
of the leasing cost, which offers economies of scale, complicates the problem [31].

Although the traditional approach is to assume that the customer would be able
to provide accurate estimates for point-to-point demands, this is not very likely to
happen in real life. Hence, we relax this assumption and study the robust NLP to
obtain designs flexible enough to accommodate foreseen fluctuations in demand.
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Our aim is to design least cost networks which remain operational for any feasible
realization in a prescribed demand polyhedron.

Efforts for incorporating uncertainty in data can be divided into two main cat-
egories. The first one is stochastic optimization(SO), where data are represented
as random variables with a known distribution and decisions are taken based on
expectations. However, it is computationally quite challenging to quantify these
expectations. Moreover, given that limited or no historical data are available most of
the time, it is not realistic to assume that exact distributions can be obtained reliably.
Besides, SO yields decisions that might become infeasible with some probability.
This latter issue might lead to undesirable situations especially when such a tol-
erance is not preferable. Alternatively, in robust optimization (RO) data are repre-
sented as uncertainty sets like polyhedral sets and the best decision is the one with
the best worst-case performance, i.e., the one to handle the worst-case scenario in the
uncertainty set in the most efficient way. Besides, RO is computationally tractable
for some polyhedral or conic quadratic uncertainty sets and for many classes of
optimization [36]. The interested reader can refer to [4, 6, 9–14, 33, 34, 40] for
several examples of RO models and methodology.

In network design, the most common component subject to uncertainty is the
traffic matrix, i.e., the traffic demand between some node pairs in the network. In this
chapter, we study the robust network loading problem under polyhedral uncertainty.
A few polyhedral demand models have found acceptance in the telecommunica-
tions network design society. The initial efforts belong to Duffield et al. [18] and
Fingerhut et al. [20], who propose the so-called hose model independently, for the
design of virtual private networks (VPNs) and broadband networks, respectively.
The hose model has become quickly popular since it handles complicated commu-
nication requests efficiently and scales well as network sizes continue to grow. This
is mainly because it does not require any estimate for pairwise demands but defines
the set of feasible demand realizations via bandwidth capacities of some endpoints
called terminals in the customer network.

Later, Bertsimas and Sim [13, 14] introduce an alternative demand definition
where they consider lower and upper bounds on the uncertain coefficients and allow
at most a fixed number of coefficients to assume their worst possible values. They
suggest to use this quota as a measure for the trade-off between the conservatism
and the cost of the final design. Their model, which we will refer to as the BS
model in the rest of the chapter, has also gained significant adherence in several
applications of network design. In our network design context, the Bertsimas–Sim
uncertainty definition amounts to specifying lower and upper bounds on the point-
to-point communication demands and to allowing at most a fixed number of pairs to
exchange their maximum permissible amount of traffic.

Finally, Ben-Ameur and Kerivin [8] propose to use a rather general demand poly-
hedron, which could be constructed by describing the available information for the
specific network using a finite number of linear inequalities. The common point for
all these demand models is that, no matter which definition you use, the concern is to
determine the least costly link capacity configuration that would remain operational
under the worst case. We will refer to the feasible demand realization which leads
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to the most costly capacity configuration for the optimal routing as the worst-case
scenario throughout this chapter.

Against this background, our main contribution is to introduce a new demand
model called the hybrid model, which specifies lower and upper bounds on the
point-to-point communication demands as well as bandwidth capacities as in the
hose model. In other words, the hybrid model aims to make the hose model more
accurate by incorporating additional information on pairwise demands. The advan-
tage of extra information in the form of lower and upper bounds is to avoid redun-
dant conservatism.

NLP is an important problem, which can be applied to different contexts like
private network design or capacity expansion in telecommunications, supply chain
capacity planning in logistics, or truck loading in transportation. Existing studies
on the deterministic problem can be grouped under several classes. One source
of variety is the number of facility alternatives. Single-facility [5, 16, 30, 32, 35]
and two-facility [17, 21, 31] problems are the most common types. On the other
hand, NLP with flow costs [17, 21, 35] and without flow costs [7, 16, 29–31] are
also widely studied. Although static routing is always used, the multi-path routing
[5, 7, 16, 17, 21, 29–31, 35] and single-path routing [5, 15, 22] lead to a technical
classification of the corresponding literature.

Although the deterministic NLP is widely studied, the Rob-NLP literature is
rather limited. Karaşan et al. [27] study DWDM network design under demand
uncertainty with an emphasis on modelling, whereas Altın et al. [3] provide a
compact MIP formulation for Rob-NLP and a detailed polyhedral analysis of
the problem for the hose model as well as an efficient branch-and-cut algo-
rithm. Atamtürk and Zhang [6] study the two-stage robust NLP where the capac-
ity is reserved on network links before observing the demands and the routing
decision is made afterwards in the second stage. Furthermore, Mudchanatongsuk
et al. [33] study an approximation to the robust capacity expansion problem with
recourse, where the routing of demands (recourse variables) is limited to a lin-
ear function of demand uncertainty. They consider transportation cost and demand
uncertainties with binary capacity design variables and show that their approx-
imate solutions reduce the worst-case cost but incur sub-optimality in several
instances.

In addition to introducing the hybrid model, we initially give a compact mixed
integer programming model of Rob-NLP with an arbitrary demand polyhedron [3].
Then we focus on the hybrid model and discuss two alternative MIP models for
the corresponding Rob-NLP. Next, we compare them in terms of the computational
performance using an off-the-shelf MIP solver and mention the differences in terms
of the polyhedral structures of their feasible sets. Moreover, we provide an exper-
imental economic analysis of the impact of robustness on the design cost. Finally,
we compare the final design cost for the hybrid model with those for the hose and
BS models.

In Section 2 we first define our problem briefly. Then in Section 2.1, we intro-
duce the hybrid model as a new, general-purpose demand uncertainty definition
and present alternative MIP models. We present results of computational tests in
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Section 3. Then, we conclude the chapter with Section 4, where we summarize our
results and mention some future research directions.

2 Problem Definition

For a given undirected graph G = (V, E) with the set of nodes V and the set of
edges E , we want to design a private network among the set of customer sites W ⊆
V . Let Q be the set of commodities where each commodity q ∈ Q corresponds to
a potential communication demand from the origin site o(q) ∈ W to the destination
site t (q) ∈ W \ {o(q)}. In this chapter, our main concern is to allocate discrete
number of facilities with different capacities on the edges of G to design a least-cost
network viable for any demand realization in a prescribed polyhedral set.

Let L be the set of facility types, Cl be the capacity of each type l facility, pl
e be

the cost of using one unit of type l facility on link e, and yl
e be the number of type

l ∈ L facilities reserved on link e. Moreover, dq is the estimated demand from node
o(q) to node t (q) whereas f q

hk is the fraction of dq routed on the edge {h, k} ∈ E in
the direction from h to k. Throughout the chapter, we will sometimes use {h, k} in
place of edge e if we need to mention the end points of e. Using this notation, the
MIP formulation for the traditional NLP is as follows:

min
∑
e∈E

∑
l∈L

pl
e yl

e (1)

s.t.
∑

k:{h,k}∈E

(
f q
hk − f q

kh

) =
⎧⎨
⎩

1 h = o(q)
−1 h = t (q)

0 otherwise
∀h ∈ V, q ∈ Q, (2)

∑
q∈Q

( f q
hk + f q

kh)dq ≤
∑
l∈L

Cl yl
e ∀e = {h, k} ∈ E, (3)

yl
e ≥ 0 integer ∀l ∈ L , e ∈ E, (4)

f q
hk, f q

kh ≥ 0 ∀{h, k} ∈ E, q ∈ Q. (5)

The main motivation of the current work is to incorporate some robustness and flex-
ibility into the capacity configuration decision. Accordingly, we consider the possi-
bility of changes in demand expectations and determine the least-cost design based
on a polyhedral set of admissible demands rather than a single matrix of average esti-
mates. Let D = {d ∈ R

|Q| :∑q∈Q aq
z dq ≤ αz ∀z = 1, . . . , H, dq ≥ 0 ∀q ∈ Q} be

the polyhedron containing non-simultaneous demand matrices, which are admissi-
ble given the available information about the network. The most significant impact
of such an extension is observed in constraint (3), which has to be replaced with

∑
q∈Q

( f q
hk + f q

kh)dq ≤
∑
l∈L

Cl yl
e ∀d ∈ D, e = {h, k} ∈ E, (6)
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since we want the final capacity configuration to support any feasible realization
d ∈ D. However, this leads to a semi-infinite optimization problem since we need
one constraint for each of the infinitely many feasible demand matrices in D. To
overcome this difficulty, we use a common method in robust optimization [1, 11, 13]
and obtain a compact MIP formulation of the problem. This method which was also
used in [3] is now briefly summarized for the sake of completeness.

First, observe that any one of the infinitely many non-simultaneous feasible com-
munication request d ∈ D would be routed safely along each link if the capacity
of each link is sufficient to route the most capacity consuming, i.e., the worst-case,
admissible traffic requests. As a result, we can model our problem using the follow-
ing semi-infinite MIP formulation (NLPpol):

min
∑
e∈E

∑
l∈L

pl
e yl

e

s.t (2), (4), (5)

max
d∈D

∑
q∈Q

( f q
hk + f q

kh)dq ≤
∑
l∈L

Cl yl
e ∀e = {h, k} ∈ E, (7)

where we replace (3) with (7) to ensure (6). Notice that given a routing f , we can
obtain the worst-case capacity requirement for each link e ∈ E by solving the linear
programming problem on the left-hand side of (7). Hence for each link e = {h, k} ∈
E , we can apply a duality-based transformation to the maximization problem in (7)
and reduce NLPpol to the following compact MIP formulation (NLPD):

min
∑
e∈E

∑
l∈L

pl
e yl

e (8)

s.t. (2), (4), (5)
H∑

z=1

αzλ
z
e ≤

∑
l∈L

Cl yl
e ∀e ∈ E, (9)

f q
hk + f q

kh ≤
H∑

z=1

aq
z λ

z
e ∀e = {h, k} ∈ E, q ∈ Q, (10)

λz
e ≥ 0 ∀z = 1, . . . , H, q ∈ Q, (11)

where λ ∈ �H |E | are the dual variables used in the transformation. The interested
reader can refer to Altın et al. [2] for a more detailed discussion of this approach.

The above duality transformation motivates two important contributions. First,
we obtain a compact MIP formulation, which we can solve for small-to-medium-
sized instances using off-the-shelf MIP solvers. Moreover, we get rid of the bun-
dle constraints (3), which complicate the polyhedral studies on traditional NLP.
In Altın et al. [3], we benefit from this single-commodity decomposition property
and provide a thorough polyhedral analysis for the so-called symmetric hose model
of demand uncertainty. In the next section, we will introduce the hybrid model as
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a new general-purpose polyhedral demand definition and study Rob-NLP for this
uncertainty set.

2.1 The Hybrid Model

Due to the dynamic nature of the current business environment, the variety of com-
munication needs keeps increasing and hence it gets harder to accurately estimate
point-to-point demands. Therefore, designing networks that are flexible enough to
handle multiple demand scenarios efficiently so as to improve network availability
has become a crucial issue. Although considering a finite number of potential sce-
narios is a well-known approach in stochastic optimization, Duffield et al. [18] and
Fingerhut et al. [20] introduced the hose model as a first effort to use polyhedral
demand uncertainty sets in telecommunications context. In its most general form,
that is called the asymmetric hose model, outflow (b+s ) and inflow (b−s ) capacities
are set for each customer site s ∈ W as

∑
q∈Q:o(q)=s

dq ≤ b+s ∀s ∈ W, (12)

∑
q∈Q:t (q)=s

dq ≤ b−s ∀s ∈ W. (13)

Then the corresponding polyhedron is DAsym = {dq ∈ R
|Q| : (12), (13), dq ≥

0 ∀q ∈ Q}. There are also the symmetric hose model with a single capacity bs for
the total flow that can be incident to node s ∈ W , and a sum-symmetric hose model
with

∑
s∈W b+s =

∑
s∈W b−s .

The hose model has several strengths. To name a few, the transmission capacities
can be estimated more reliably and easily than individual point-to-point demands
especially if sufficient amount of statistical information is not available. Moreover,
it offers resource-sharing flexibility and hence improved link utilization due to mul-
tiplexing. Basically, the size of an access link can be smaller if we use hose model
rather than point-to-point lines with fixed resource sharing. These and several other
competitive advantages helped the hose model to prevail within the telecommunica-
tions society [1, 3, 19, 23–26, 28, 39].

On the other hand, Bertsimas and Sim [13, 14] proposed the BS model or the
restricted interval model, which defines an applicable interval for each pairwise
demand such that at most a fixed number of demands can take their highest values,
simultaneously. For our problem, this implies that dq ∈ [d̄q , d̄q + d̂q ] for all q ∈ Q
and at most � of these demands differ from d̄q ≥ 0 at the same time. If we define
each demand q ∈ Q as dq = d̄q + d̂qβq with βq ∈ {0, 1}, then the BS model
requires

∑
q∈Q βq ≤ �. Bertsimas and Sim [14] use � to control the conservatism

of the final design.
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In this section, we introduce the hybrid model. Although we study a private net-
work design problem, the hybrid model can certainly be used in any context where
parameter uncertainty is a point at issue.

We call this new model as hybrid since a demand matrix d ∈ R
|Q| has to satisfy

the slightly modified symmetric hose constraint

∑
q∈Q:o(q)=s

∨
t (q)=s

dq ≤ bs ∀s ∈ W, (14)

as well as the interval restrictions

dq ≤ uq ∀q ∈ Q, (15)

d̄q ≤ dq ∀q ∈ Q (16)

to be admissible. As a result, the corresponding demand polyhedron for the hybrid
model is Dhyb = {d ∈ R

|Q| : (14), (15), (16)}. We should remark here that (14)
should not be considered as analogous to the conservatism level restriction in the
BS model. Actually, the conservatism dimension is not articulated explicitly in the
hybrid model, where the main purpose is to incorporate more information into the
hose definition so as to avoid overly conservative designs taking care of unlikely
worst-case demand realizations. Hence, notice that the hybrid model is a hybrid of
the hose model and the interval uncertainty model but not the BS model. Finally, we
are interested in the case where Dhyb �= ∅ and hence

∑
q∈Q:o(q)=s

∨
t (q)=s d̄q ≤ bs

for all s ∈ W to have a meaningful design problem.
Let Dsym = {d ∈ R

|Q| : (14), dq ≥ 0 ∀q ∈ Q}. Notice that, Dhyb = Dsym

if d̄q = 0 and uq ≥ min{bo(q), bt (q)} for all q ∈ Q whereas Dhyb ⊆ Dsym other-
wise. This is because we can avoid over-conservative designs and hence redundant
investment by using additional information and our provisions about the specific
topology.

2.2 Robust NLP with the Hybrid Model

In this section, we will briefly discuss two alternative MIP models for Rob-NLP
with the hybrid model of demand uncertainty. The first formulation follows directly
from the discussions in Section 2. On the other hand, we slightly modify our Dhyb so
as to express it in terms of deviations from the nominal values to obtain the second
formulation.

First, notice that NLPD reduces to the following compact MIP formulation
(NLPhyb) for the hybrid model:
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min
∑
e∈E

∑
l∈L

pl
e yl

e

s.t. (2), (4), (5)∑
s∈W

bsw
s
e +

∑
q∈Q

(uqλ
q
e − d̄qμ

q
e ) ≤

∑
l∈L

Cl yl
e ∀e ∈ E, (17)

w
o(q)
e + wt (q)

e + λq
e − μq

e ≥ f q
hk + f q

kh ∀q ∈ Q, e = {h, k} ∈ E, (18)

λ
q
e , μ

q
e ≥ 0 ∀q ∈ Q, e ∈ E, (19)

ws
e ≥ 0 ∀s ∈ W, e ∈ E, (20)

where w, λ, and μ are the dual variables used in the duality transformation corre-
sponding to constraints (14), (15), and (16), respectively.

2.3 Alternative Flow Formulation

Given the hybrid model, we know that the best-case scenario would be the one where
all demands are at their lower bounds. Then the total design cost would increase as
the deviation from this best case increases. Consequently, we can restate the hybrid
model in terms of the deviations from lower bounds, which requires us to modify
NLPpol by replacing link capacity constraints (7) with

∑
q∈Q

( f q
hk + f q

kh)d̄q + max
d̂∈D̂hyb

∑
q∈Q

( f q
hk + f q

kh)d̂q ≤
∑
l∈L

Cl yl
e ∀e = {h, k} ∈ E,

(21)

where D̂hyb = {d̂ ∈ R
|Q| : 0 ≤ d̂q ≤ �q ∀q ∈ Q; ∑q∈Q:o(q)=s

∨
t (q)=s d̂q ≤

ḃs ∀s ∈ W } such that �q = uq − d̄q for all q ∈ Q and ḃs = bs −∑
q∈Q:o(q)=s

∨
t (q)=s d̄q for all s ∈ W . This observation leads to the following result.

Proposition 1 NLPD reduces to the following compact linear MIP formulation
(NLPalt ) for the hybrid model:

min
∑
e∈E

∑
l∈L

pl
e yl

e

(2), (4), (5)∑
q∈Q

( f q
hk + f q

kh)d̄q +
∑
s∈W

ḃsν
s
e +

∑
q∈Q

�qη
q
e ≤

∑
l∈L

Cl yl
e ∀e = {h, k} ∈ E,

ν
o(q)
e + νt (q)

e + ηq
e ≥ f q

hk + f q
kh ∀q ∈ Q, e = {h, k} ∈ E,

ν
o(q)
e , ν

t (q)
e , η

q
e ≥ 0 ∀q ∈ Q, e ∈ E .
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Proof For link e = {h, k} ∈ E , the capacity assignment y = (y1
e , . . . , y|L|e ) should

be sufficient to route the worst-case demand as in (21). Then, we can model the
maximization problem on the left-hand side of (21) as

max
∑
q∈Q

( f q
hk + f q

kh)d̂q (22)

s.t.
∑

q∈Q:o(q)=s
∨

t (q)=s

d̂q ≤ ḃs ∀s ∈ W, (23)

d̂q ≤ �q ∀q ∈ Q, (24)

d̂q ≥ 0 ∀q ∈ Q. (25)

Notice that for a given routing f , this is a linear programming problem. Since it is
feasible and bounded, we can apply a duality transformation similar to Soyster [38].
So, we associate the dual variables νs

e and ηq
e with (23) and (24), respectively, and

obtain the equivalent dual formulation

min

⎛
⎝∑

s∈W

ḃsν
s
e +

∑
q∈Q

�qη
q
e

⎞
⎠ (26)

s.t. νo(q)
e + νt (q)

e + ηq
e ≥ f q

hk + f q
kh ∀q ∈ Q, (27)

νs
e , η

q
e ≥ 0 ∀s ∈ W, q ∈ Q. (28)

Next, we can complete the proof by equally replacing the maximization problem in
(21) with (26), (27), (28) and removing min since the facility capacities Cl and the
reservation costs pl

e are nonnegative for all l ∈ L .

We show in Section 3, off-the-shelf MIP solvers can handle NLPalt better than
NLPhyb in some instances.

3 Experimental Results

In this section, we focus on the single-facility multi-commodity problem where just
one type of facility with C units of capacity is available. We perform our analysis in
two stages. First, we compare the performance of ILOG Cplex for the two compact
MIP formulations NLPhyb and NLPalt in terms of solution times and bounds they
provide at the end of 2-h time limit. The instances polska, dfn, newyork, france,
janos, atlanta, tai, nobel-eu, pioro, and sun are from the SNDLIB web site [37]
whereas the remaining are used in Altın et al. [1] for a virtual private network design
problem. For the SNDLIB instances [37], we have the average demand estimates d̃q .
In order to generate the bandwidth values as well as the lower and upper bounds on
pairwise communication demands, we have used the following relations:
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• bs =∑q∈Q:o(q)=s
∨

t (q)=s d̃q ;

• d̄q = d̃q
1+p ;

• uq = (1+ p)d̃q .

In our tests, we choose p = 0.2. This parameter can be determined based on the
available information about the demand pattern, past experience, etc. We should
note that Dhyb would not get smaller as p increases and hence the optimal design
would never get less conservative. By defining bs , uq , and d̄q as a function of p, we
can interpret the trade-off between the conservatism of a design and its cost. The
interested reader can refer to Altın et al. [3] for an analogous parametric analysis of
the symmetric hose model.

We have used AMPL to model the formulations and Cplex 11.0 MIP solver for
numerical tests and set a 2-h solution time limit for all instances. We present the
results of the initial comparison for two MIP models in Table 1 where we provide
the following information:

• zhyb : best total design cost for NLPhyb at termination,
• tcp : solution time in CPU seconds for NLPhyb,
• Ghyb : the gap at termination for NLPhyb,
• #hyb : number of B&C nodes for NLPhyb, which is 0 if no branching takes place,
• zalt : best total design cost for NLPalt at termination,
• tcp : solution time in CPU seconds for NLPalt,
• Galt : the gap at termination for NLPalt,
• #alt : number of B&C nodes for NLPalt, which is 0 if no branching takes place,
• ∗ indicates the best upper bound at termination,
• INF means that we have no integer solution at termination,
• ‘–’ under the z columns shows that even the LP relaxation cannot be solved in

2-h time limit.

We could solve both NLPhyb and NLPalt for 7 out of 17 instances to optimality
within 2-h time limit. In addition to that, Cplex could also solve NLPalt for polska
with C = 1000. For the same instance, Cplex could reduce the integrality gap to
2.16% with NLPhyb.

We will analyze our results in two stages. Initially, in Fig. 1, we show the reduc-
tion in solution times when NLPalt rather than NLPhyb is solved for the first seven

instances in Table 1. We measure this improvement as
thyb−talt

thyb
×100 and thus positive

values show the instances that are easier to solve using the alternative formulation.
We see that except bhv6c and pdh, NLPalt is easier to solve for Cplex.

On the other hand, for the remaining 10 instances, we see that Cplex achieved
better upper bounds with NLPalt in 6 cases. Figure 2 displays the termination gaps
for both models. Note that for newyork, nobel-eu, and sun, Cplex could not solve
even the LP relaxation of NLPhyb whereas we have some upper bounds for NLPalt.
We let gaphyb = 105% in Fig. 2 for these three instances just for convenience. On
the other hand, we see that the upper bounds on total design cost at termination are
smaller with NLPhyb for tai and janos whereas there is a tie for polska (C = 155)
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Table 1 A comparison of the projected formulation and the alternative flow formulation

Instance (|V |,|E |,|W |,C) zhyb thyb(Ghyb) #(hyb) zalt talt(Galt) #(alt)

metro (11,42,5,24) 768 23.02 428 768 13.28 486
nsf1b (14,21,10,24) 86,600 246 2293 86,600 134.95 1470
at-cep1 (15,22,6,24) 47,840 1.61 66 47,840 1.41 90
pacbell (15,21,7,24) 10,410 49.1 1216 10,410 28.06 1199
bhv6c (27,39,15,24) 810,368 669.09 13,148 810,368 725.19 10,960
bhvdc (29,36,13,24) 952,664 657.09 1210 952,664 149.52 481
pdh (11,34,6,480) 2,467,983 318.41 4796 2,467,983 827.58 10,961
polska (12,18,12,155) 44,253∗ (0.77%) 25,871 44,253∗ (1.14%) 19,144
polska (12,18,12,1000) 7478∗ (2,16%) 12,742 7478 4591.14 7961
dfn (11,47,11,155) 51,572∗ (3.85%) 4993 51,572∗ (7.32%) 281
newyork (16,49,16,1000) – INF 0 1,318,400∗ (54.10%) 100
france (25,45,14,2500) 21,600∗ (3.22%) 915 22,600∗ (9.40%) 151
atlanta (15,22,15,1000) 458,020,000∗ (0.11%) 16,023 458,040,000∗ (0.36%) 7620
tai (24,51,19,504k) 28,702,323.54∗ (20.37%) 140 27,611,428.86∗ (17.85%) 157
janos (26,42,26,64) 1,289,931,888 (99.8%) 0 1,289,911,204∗ (99.8%) 37
nobel-eu (28,41,28,20) – INF 0 14,718,917,910∗ (99.97%) 26
sun (27,51,24,40) – INF 0 62,938,898.76∗ (99.99%) 1

–200%

–150%
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Fig. 1 Reduction in solution times when we solve NLPalt rather than NLPhyb with Cplex

and dfn. Based on the overall comparison of the two models that we show in Fig. 3,
we can say Cplex can solve NLPalt more efficiently since solution times, termination
gaps, and upper bounds are better with NLPalt. On the other hand, we suppose that
we can make a better use of NLPhyb so as to develop efficient solution tools like a
branch-and-cut algorithm. We suppose NLPhyb to be more advantageous than NLPalt

since the latter does not have the nice single commodity decomposition property.
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Fig. 2 Comparison of termination gaps when we solve NLPalt and NLPhyb with Cplex
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Fig. 3 A general comparison of solving NLPalt and NLPhyb with Cplex

Next, we display how the design cost has changed according to the demand
uncertainty model in Fig. 4. To this end, we consider three models: the interval
uncertainty model with Dint = {dq ∈ R

|Q| : d̄q ≤ dq ≤ uq ∀q ∈ Q}, the
symmetric hose model with Dhose = {dq ∈ R

|Q| : (14), dq ≥ 0 ∀q ∈ Q}, and
the hybrid model. Notice that the interval model is a special case of the BS model
with � = |Q| and thus the corresponding worst case would be dworst

q = uq for all
q ∈ Q. We consider six instances, which we could solve to optimality in reasonable
times for all demand models. We should remark here that we had to terminate the
test for the bhvdc and bhv6c instances under interval uncertainty model after 60,000
CPU seconds with 0.21% and 0.3% gaps since the best solutions have not changed
for a long while and the gaps are relatively small.

Let zdet be the total design cost for the deterministic case if we consider the
best-case scenario with dq = d̄q for all q ∈ Q. Then for the three demand models,

we show the percent of increase in design cost, which is
zhyb−zdet

zdet
∗ 100 for the

hybrid model and similar for the other models, in Fig. 4. For each instance such
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Fig. 4 Increase in design cost with respect to the deterministic case for different demand models

an increase can be interpreted as the cost of robustness or the price that we should
be ready to pay so as to have a more flexible network and hence increased service
availability. We see that as we shift from the interval model to the hose model and
then to the hybrid model, the total design cost decreases significantly, namely, the
average increase rates are 44.89%, 29.33%, and 18.31% for these six instances with
three models, respectively. Given that these instances are constructed using the same
parameters (b, d̄, u) ∈ R

|W |+2∗|Q|
+ , we can interpret this decreasing trend in cost as

a consequence of using more informative demand uncertainty sets and hence being
protected against practically and technically more realistic worst-case scenarios.

Our worst-case definition over a polyhedron is clearly quite different from simply
determining the worst-case scenario a priori. Since we exploit the hybrid model
information, we can avoid over-conservative designs. Suppose that we have not
done so and we determine a worst case that can happen using the available infor-
mation (b, d̄, u) ∈ R

|W |+2∗|Q|
+ . Obviously, the safest approach would be to set

dq = min{bo(q), bt (q), uq} for all q ∈ Q and then solve the nominal problem (1),
(2), (3), (4), and (5) to get the optimal design cost zworst. When we compare the
design cost zhyb with zworst for the six instances we have mentioned above, we see
that the design costs have reduced by 18.27% on the average. On the other hand,
the average savings is around 10.61% for the hose model. Figure 5 displays the
percentage of savings in cost for each instance with both models. We also compare
the design costs for the hybrid model and the BS model for � = #0.1|Q|$ and
� = #0.15|Q|$. We show the relative savings the hybrid model provide in Fig. 6. We
see that when � = #0.1|Q|$, using the hybrid model yields a less costly design for
all instances except nsf1b, where it is only 0.12% worse. On the average, the hybrid
model provides 6.53% and 10.69% savings, respectively, for these six instances and
the difference increases rapidly as � grows larger.

Finally, we consider the metro, at-cep1, and pacbell instances so as to compare
the robust designs for the BS model (� = #0.15|Q|$) and the hybrid model in
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Fig. 5 Reduction in design cost with respect to the worst-case scenario determined without exploit-
ing the demand model
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Fig. 6 Savings in design cost by using the hybrid model rather than the BS model

terms of their routing performances. For this purpose, we first generate 20 demand
matrices ḋ1, ḋ2,..,ḋ20 for each instance where the demand ḋ j

q for each commodity
q ∈ Q is normally distributed with mean d̃q and standard deviation 0.5d̃q . Then
given the optimal capacity configurations y(BS) and y(hyb), we determine the
maximum total flow F j (BS) and F j (hyb) we can route for the demand matrix
ḋ j for all j = 1, . . . , 20 by solving a linear programming problem. For each
demand matrix, we calculate the fraction of demand routed for both demand models
as F j (BS)/

∑
q∈Q ḋ j

q and F j (hyb)/
∑

q∈Q ḋ j
q , respectively. Finally, we take the

average over the 20 demand matrices to evaluate the two robust designs. We present
our test results in Table 2 where Rhyb and RBS are the average routing rates for the
hybrid and BS models, respectively, whereas�cost shows the increase in design cost
if the BS model rather than the hybrid model is used. We see that the average routing
rates are quite close for metro and at-cep1, whereas they are equal for pacbell. On
the other hand, y(BS) is clearly more costly than y(hyb) in all instances. Hence,
we can suggest the hybrid model to provide almost the same level of availability at
a much lower cost.
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Table 2 Routing rate and cost comparison between the hybrid model and the BS model

Instance Rhyb(%) RBS(%) �cost(%)

metro 95.7 97.3 9.4
at-cep1 96.6 97.7 14.1
pacbell 99.9 99.9 7.4

4 Conclusion

In this chapter, we introduced the hybrid model as a new demand uncertainty defi-
nition. It inherits the strengths of the two well-known and frequently used demand
models: it is easy to specify like the hose model and it avoids over-conservatism like
the BS model.

We provided two compact MIP formulations, i.e., NLPhyb and NLPalt, for robust
NLP under the hybrid model and compared them in terms of their computational
performances. Finally, we discussed how the optimal design cost changes for dif-
ferent demand models. When compared with the interval model, the hose model,
and the BS model, we observed that the hybrid model provides significant cost sav-
ings by exploiting additional information to exclude overly pessimistic worst-case
scenarios. Our test results are encouraging for undertaking further studies on robust
network design problems.
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