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Abstract In the present work, we generalize our previous
work (Heydarzade and Darabi in arXiv:1710.04485, 2018
on the surrounded Vaidya solution by cosmological fields to
the case of Bonnor–Vaidya charged solution. In this regard,
we construct a solution for the classical description of the
evaporating-accreting charged Bonnor–Vaidya black holes in
the generic dynamical backgrounds. We address some inter-
esting features of these solutions and classify them accord-
ing to their behaviors under imposing the positive energy
condition. Also, we analyze the timelike geodesics associ-
ated with the obtained solutions and show that some new
correction terms arise in comparison to the case of standard
Schwarzschild black hole. Then, we explore all these features
for each of the cosmological backgrounds of dust, radiation,
quintessence and cosmological constant-like fields in more
detail.

1 Introduction

In 1951, Vaidya introduced a new non-static solution,
describing a spherical symmetric object possessing an out-
going null radiation, for the Einstein field equations [1,2].
This solution is characterized by a dynamical mass func-
tion, depending on the retarded time coordinate. Based on
its dynamical nature, the Vaidya solution has been used for
studying the process of spherical symmetric gravitational
collapse and as a testing ground for the cosmic censorship
conjecture [3–7], and as a dynamical generalisation of the
Schwarzschild solution representing a spherically symmet-
ric evaporating black hole, as well as studying the Hawking
radiation [8–15]. This solution was generalized by Bonnor
and Vaidya to the charged case, well known as the Bonnor–
Vaidya solution [16]. This solution and its interesting fea-
tures and applications are studied in [17–20] as instances.
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Further generalization of the original Vaidya solution were
introduced in [21] by Husain for a null fluid with a partic-
ular equation of state, and in [22] by wang and Wu using
the fact that any linear superposition of particular solutions
is also a solution to the Einstein field equations. Using this
approach, one can find other general solutions such as the
Vaidya–de Sitter [23], Bonnor–Vaidya–de Sitter [18,24–27]
and radiating dyon solutions [28]. The Vaidya solution and
its generalizations are also studied in the context of modified
theories of gravity, see for examples [4,29–33].

Black holes have such an strong gravitational attraction
that their nearby matter, even light, cannot escape from
their gravitational field. Although, the black holes cannot
be observed directly but there are some different ways to
detect them in the binary systems as well as at the centers of
their host galaxies. The most promising way for this detec-
tion is the accretion process. In the language of astrophysics,
the accretion is defined as the inward flow of captured matter
fields by a gravitating object towards its centre which leads to
an increase of the mass and angular momentum of the accret-
ing body. The observation of supermassive black holes at the
center of galaxies represents that such massive black holes
could have been gradually developed through the appropriate
accretion processes. However, the accretion processes do not
always increase the mass of the accreting bodies but they can
also decrease their mass and lead them to shrink. It is shown
that the accretion of phantom energy can decrease the black
hole area [34–39]. For instance, in [34], it is shown that black
holes will gradually vanish as the universe approaches to a
cosmological big rip state. The shrink of the black hole area
during the accretion of a potentially surrounding field is an
interesting phenomena in the sense that it can be considered
as an alternative for the black hole evaporation through the
Hawking radiation or even as an auxiliary for speeding up
the evaporation process. One physical explanation for dimin-
ishing the black hole mass through the accretion process is
that the accreting particles of a phantom scalar field have
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a total negative energy [40]. Similar particles with negative
energies are created through the Hawking radiation process
as well as in the process of energy extraction from a black
hole by the Penrose mechanism. Thus, the accretion process
into the black holes is one of the most interesting research
fields in relativistic astrophysics to answer how black holes
affect their cosmological surrounding fields and what are the
consequences or what are the influences of these surrounding
fields on the features, dynamical behaviors and abundance of
black holes [41–49]. See also [50] for the accretion of dark
energy into black holes, and [38,39,51,52] for the accretion
into the charged black holes.

In the present work, following the approach of [53,54]
and [55,56], we construct a dynamical solution for the classi-
cal description of the evaporating-accreting Bonnor–Vaidya
black holes in generic dynamical backgrounds. The organi-
zation of the paper is as follows. In Sect. 2, the surrounded
Bonnor–Vaidya black hole solution and some of its general
features are introduced. In Sects. 2.1–2.4, the special classes
of this solution named as the Bonnor–Vaidya black hole sur-
rounded by the dust, radiation, quintessence and cosmolog-
ical constant fields, as well as their properties are studied
in detail. Finally, the Sect. 3 is devoted to the summary and
concluding remarks.

2 Surrounded evaporating-accreting Bonnor–Vaidya
black hole solution

In this section, we generalize our previous solution [55,56] to
the surrounded charged Bonnor–Vaidya black hole solution
by following the approach of [53,54]. There are two main
motivations for us for doing this generalization. The first one
is that the existence of the charge can drastically change the
global structure of the original spacetime [57]. For instance,
we know the Reissner–Nordström black hole has a very dis-
tinct causal structure relative to the Schwarzschild case such
that it predicts infinite series of parallel universes. The sec-
ond reason is that a charged black hole possesses a spacetime
structure almost similar to a rotating one, the Kerr black hole.
Regarding that the existing spherical symmetry in the charged
case makes it more easily analyzable, then understanding the
structure of a charged black hole may be a suitable ground to
better understanding the structure of a more realistic rotating
one.

We consider the general spherical symmetric spacetime
metric

ds2 = − f (u, r)du2 + 2εdudr + r2d�2, ε = ±1, (1)

where d�2 = dθ2 + sin2θdφ2 is the metric of two dimen-
sional unit sphere and f (u, r) is a generic metric func-
tion depending on both of the the radial coordinate r and

advanced/retarded time coordinate u. The cases ε = ± 1
associated with the possible outgoing-ingoing flows corre-
sponding to the effectively evaporating-accreting Bonnor–
Vaidya black hole. For the metric (1), the nonvanishing com-
ponents of the Einstein tensor are given by

G0
0 = G1

1 = εG01 = εG10 = 1

r2 ( f ′r − 1 + f ),

G1
0 = G00 + f G01 = − ḟ

r
,

G2
2 = 1

r2 G22 = 1

r2

(
r f ′ + 1

2
r2 f ′′

)
,

G3
3 = 1

r2sin2θ
G33 = 1

r2

(
r f ′ + 1

2
r2 f ′′

)
, (2)

where dot and prime signs denote the derivatives with respect
to the time coordinate u and the radial coordinate r , respec-
tively. Thus, one can find that the total energy–momentum
tensor supporting this spacetime must have the following
non-diagonal form

Tμ
ν =

⎛
⎜⎜⎜⎜⎜⎝

T 0
0 0 0 0

T 1
0 T 1

1 0 0

0 0 T 2
2 0

0 0 0 T 3
3

⎞
⎟⎟⎟⎟⎟⎠

, (3)

which must possess the same symmetries in the Einstein ten-
sor Gμ

ν . Then, regarding the equations in (2), the equalities
G0

0 = G1
1 and G2

2 = G3
3 in the Einstein tensor com-

ponents demand the equalities T 0
0 = T 1

1 and T 2
2 = T 3

3

for the energy–momentum tensor components, respectively.
Then, one may introduce an energy–momentum tensor obey-
ing these properties as in our previous work giving the sur-
rounded Vaidya black hole [55,56]. One possible general-
ization to [55,56] can be obtained by including the Maxwell
electromagnetic energy–momentum tensor. In the following,
we prove that the resulting total energy–momentum tensor
obeys all the symmetries inGμ

ν . Then, we show that this pro-
vides the possibility of finding the charged Bonnor–Vaidya
black hole solutions [16] in a general dynamical background
in the context of the Einstein–Maxwell theory. Thus, we
consider the Einstein field equations, corresponding to the
components of the Einstein tensor (2), with the total energy–
momentum tensor Tμ

ν given by

Tμ
ν = τμ

ν + Eμ
ν + T μ

ν, (4)

where τμ
ν is the energy–momentum tensor associated to the

Bonnor–Vaidya null radiation-accretion as

τμ
ν = σkμkν, (5)
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such that σ = σ(u, r) is the density of the “outgoing
radiation-infalling accretion” flow and kμ = δ0

μ is a null
vector field and Eμ

ν is the trace-free Maxwell tensor given
by

Eμν = 2

(
FμαFν

α − 1

4
gμνF

αβFαβ

)
, (6)

where Fμν is the antisymmetric Faraday tensor satisfying the
vacuum Maxwell equations

Fμν ;μ = J ν,

∂[σ Fμν] = 0. (7)

The spherical symmetry in the spacetime metric (1) dictates
the only non-zero components of Fμν tensor to be F01 =
−F10. Then, from the Eq. (7), one obtains

F01 = Q(u)

r2 , (8)

where Q(u) is the dynamical electric charge and its associ-
ated null current is

Jμ = Q̇(u)

r2 δμ
r , (9)

where Q̇(u) = dQ(u)
du . Using the Eqs. (1), (6) and (8), the

only non-vanishing components of Maxwell tensor Eμ
ν will

be

Eμ
ν = Q2(u)

r4 diag(− 1,− 1, 1, 1). (10)

Finally, T μ
ν in (4) is the energy–momentum tensor of the

surrounding perfect fluid defined as in [53]

T 0
0 = − ρs(u, r),

T i
j = − ρs(u, r)α

[
−(1 + 3β)

r ir j
rnrn

+ βδi j

]
. (11)

Here, the subscript “s′′ stands for the surrounding field which
generally can be a dust, radiation, quintessence and cosmo-
logical constant or even any complex field constructed by the
combination of these fields. From (11), it is seen that the spa-
tial profile of the surrounding energy–momentum tensor is
proportional to its time component, representing the dynam-
ical energy density ρs(u, r), with the arbitrary parameters
α and β which depend on the internal structure of the cor-
responding surrounding fields. The isotropic averaging over
the angles results in [53]

〈T i
j 〉 = α

3
ρsδ

i
j = psδ

i
j . (12)

The last equality follows from the fact that 〈r i r j 〉 = 1
3δi j rnrn

which results in the barotropic equation of state for the sur-
rounding field as

ps(u, r) = ωsρs(u, r), ωs = 1

3
α, (13)

where ps(u, r) and ωs are the dynamical pressure and the
constant equation of state parameter, respectively. Then,
regarding the Einstein tensor components in (2) and the total
energy–momentum tensor given by the Eqs. (3)–(5) and (11),
we find that T 0

0 = T 1
1 and T 2

2 = T 3
3. These exactly

provide us the principle of additivity and linearity condition
proposed in [53] for determining the free β parameter in the
energy momentum-tensor (11) as

β = −1 + 3ωs

6ωs
. (14)

Now, by substituting α and β parameters given in (13) and
(14) into (11), one obtains the non-vanishing components
of the surrounding energy–momentum T μ

ν in the following
forms

T 0
0 = T 1

1 = − ρs(u, r),

T 2
2 = T 3

3 = 1

2
(1 + 3ωs) ρs(u, r). (15)

Then, having the Einstein tensor components (2) and the cor-
responding general energy–momentum tensor Tμ

ν in (4), we
have the corresponding field equations. The G0

0 = T 0
0 and

G1
1 = T 1

1 components of the Einstein–Maxwell field equa-
tions give

1

r2

(
f ′r − 1 + f

) = − ρs − Q2

r4 . (16)

Similarly, from G1
0 = T 1

0 we have

− ḟ

r
= εσ, (17)

and G2
2 = T 2

2 and G3
3 = T 3

3 components lead to

1

r2

(
r f ′ + 1

2
r2 f ′′

)
= 1

2
(1 + 3ω)ρs + Q2

r4 . (18)

By simultaneous solving the differential equations (16) and
(18), one can find the following general solution for the metric
function

f (u, r) = 1 − 2M(u)

r
+ Q2(u)

r2 − Ns(u)

r3ωs+1 , (19)
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with the energy density of the surrounding filed in the form
of

ρs(u, r) = −3ωs Ns(u)

r3(ωs+1)
, (20)

in which M(u), Q(u) and Ns(u) are integration coeffi-
cients representing the black hole dynamical mass and charge
and dynamical surrounding field structure parameter, respec-
tively. The weak energy condition on the energy density (20)
of the surrounding field, i.e ρs ≥ 0, requires

ωs Ns(u) ≤ 0, (21)

implying that for the surrounding fields with ωs ≥ 0, it is
needed to have Ns(u) ≤ 0 and conversely for ωs ≤ 0 we
have Ns(u) ≥ 0.

Regarding (19), the metric (1) takes the form of

ds2 = −
(

1 − 2M(u)

r
+ Q2(u)

r2 − Ns(u)

r3ωs+1

)
du2

+ 2εdudr + r2d�2, (22)

representing an effectively evaporating-accreting charged
black hole in a dynamical background.

Here, it is worth to discuss about the stability of this black
hole. The stability is achieved if the metric solution (22) be
time independent, namely ∂ugab = 0 or

(
−2Ṁ(u)

r
+ 2Q(u)Q̇(u)

r2 − Ṅs(u)

r3ωs+1

)
= 0. (23)

However, because of different powers of r which yields an
r -dependent differential equation, one cannot obtain a global
stability condition. In other words, this metric solution cannot
be stabilized unless in a local way. It seems this is the case
for any other metric solution, studied throughout this paper,
for which the corresponding differential equation of stability
condition is r -dependent.

Regarding (22), one may realize the following two distinct
subclasses for this general solution for the field equations (16)
and (18).

• The solution by setting f = f (u, r) and ρs = ρs(r)
These considerations lead to M = M(u), Q = Q(u)

and Ns = constant in the metric function f (u, r) and
σ(u, r) �= 0 for the energy density. Then, there is no
dynamics in the surrounding field and consequently the
accretion of the surrounding field by the black hole can-
not happen. Indeed, this case represents an evaporating
charged black hole solution in a static background. The
radiating charged black holes in an empty background
(ρs = 0) known as the original Bonnor–Vaidya solution
[16], and in (anti)-de Sitter space (ρs = ρ� = constant)

are special subclasses of this solution [18,58]. Some
interesting features of these black holes can be found
in [15,19,20,59].

• The solution by setting f = f (r) and ρs = ρs(r)
These considerations lead to M = constant , Q =
constant and Ns = constant in the metric function
f (u, r) and consequently σ(u, r) = 0 for the radiation-
accretion density. This case represents a static charged
back hole in a static background and consequently, there
is no radiation-accretion. The Reissner–Nordström black
hole as well as its generalization to (anti)-de Sitter back-
ground are special subclasses of this solution. For a gen-
eral background, not just the (anti)-de Sitter background,
it is interesting that for a constant mass and charge black
hole in a static non-empty background, using the coordi-
nate transformation

du = dt + εdr

1 − 2M
r + Q2

r2 − Ns
r3ωs+1

, (24)

one arrives at the solution of the Reissner–Nordström
black hole surrounded by a surrounding field as

ds2 = −
(

1 − 2M

r
+ Q2

r2 − Ns

r3ωs+1

)
dt2

+ dr2

1 − 2M
r + Q2

r2 − Ns
r3ωs+1

+ r2d�2. (25)

This solution is a generalization of the Kiselev solution
[53] to the charged case and its interesting properties are
studied in [60–63]. Then, the generalized Kiselev solu-
tion is a subclass of our general dynamical solution (22)
in the stationary limit.

Substituting f (u, r) given by (19) in (17) gives the radiation-
accretion density of the effectively evaporating-accreting
Bonnor–Vaidya black hole as

σ(u, r) = ε

(
2Ṁ(u)

r2 − 2Q(u)Q̇(u)

r3 + Ṅs(u)

r3ωs+2

)
. (26)

Then, we observe that the radiation-accretion density is
resulted not only from the change in the black hole mass
(σM ) and surrounding field (σNs ) but also from the change in
the charge of the black hole (σQ), representing the electro-
magnetic energy. In this case, the black hole may have just the
outgoing charged null radiation. Turning off the surrounding
field dynamics, i.e Ṅs(u) = 0, we recover the energy flux
associated to the mass and charge changes of the central black
hole corresponding to the Bonnor–Vaidya solution [16]. It is
seen that if Ṁ(u), Q(u)Q̇(u) and Ṅs(u) have a same order
of magnitude, the following distinct physical situations can
be realized.
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• For ωs < 0, the charge contribution is dominant near
the black hole. For the far distances (r �), the black
hole charge contribution falls down faster than the black
hole mass and the surrounding field contributions, respec-
tively, i.e |σQ | < |σM | < |σNs |. Then, at large distances
the surrounding field contribution is dominant.

• For 0 < ωs < 1/3, the charge contribution is domi-
nant near the black hole. For the far distances (r �),
the charge contributions falls down faster than the sur-
rounding field and mass contributions, respectively, i.e
|σQ | < |σNs | < |σM |. Then, at large distances the black
hole mass contribution is dominant.

• For ωs > 1/3, the surrounding field contribution is dom-
inant near the black hole. For the far distances (r �),
the the surrounding field contributions falls down faster
than the charge and mass contributions, respectively, i.e
|σNs | < |σQ | < |σM |. Then, at large distances the black
hole mass contribution is dominant again.

Considering the positive energy density condition on the total
radiation-accretion density σ(u, r) requires

ε

(
2Ṁ(u)

r2 − 2Q(u)Q̇(u)

r3 + Ṅs(u)

r3ωs+2

)
≥ 0. (27)

This inequality confines the dynamical behaviours of the
charged Bonnor–Vaidya black hole and its background at
arbitrary time and distance (u, r). In the case of a static back-
ground and neutral black hole, as in the Vaidya’s original
solution, it is required that ε and Ṁ(u) have the same signs.
In the presence of the black hole charge and background
field dynamics, it is not mandatory that ε and Ṁ(u) take the
same signs, and the satisfaction of the positive energy den-
sity condition can be achieved even by their opposite signs
depending on the dynamics of the black hole charge (Q̇(u))
and surrounding field parameters (Ṅs(u) and ωs). Then, the
dynamical behaviour of the surrounding field is governed by

{
Ṅs(u) ≤ 2r3ωs−1

(
Q(u)Q̇(u) − r Ṁ(u)

)
, ε = − 1,

Ṅs(u) ≥ 2r3ωs−1
(
Q(u)Q̇(u) − r Ṁ(u)

)
, ε = + 1.

(28)

Then, at an arbitrary distance r from the black hole, the
surrounding field must obey the above conditions. Interest-
ingly, for the special case of Ṅs(u) = 2r3ωs−1(Q(u)Q̇(u) −
r Ṁ(u)), there is no pure radiation-accretion density, i.e
σ(u, r) = 0. This case is associated with two possible phys-
ical situations. The first one corresponds to the situation
where for any particular distance r0, the background field
Ṅs(u) and black hole with Ṁ(u) and Q̇(u) behave such
that their contributions cancel out each others, leading to
σ(u, r0) = 0. The second situation corresponds to the case

where for the given dynamical behaviors of the black hole and
its background, one can find the particular distance r∗(u) =
Roots o f [2Ṁ(u)r3ωs −2Q(u)Q̇(u)r3ωs−1 + Ṅs(u)], which
is generally dynamical, possessing zero energy density
σ(u, r∗(u)). Generally, to have a particular distance at which
the density σ(u, r∗) is zero, the reality and positivity of r∗
also requires that Ṁ(u), Q̇(u) and Ṅs(u) obey some specific
conditions. Here, due to the fact that finding the location of
r∗(u) in its general form is very complicated, in comparison
to our previous solution [55,56], we discuss in this regard
by considering some specific surrounding fields through the
following subsections.

However, before we study the features of obtained solution
for some specific cosmological surrounding fields, we would
like to investigate the timelike geodesics corresponding to the
metric (22) in its general form. Due to the spherical symme-
try, the geodesics for this metric lie on a plane, in which one
may choose θ = π/2 for the sake of simplicity. Considering
the action

I =
∫

Ldτ = 1

2

∫ (
− f (u, r)

∗
u

2 + 2ε
∗
u

∗
r + r2 ∗

ϕ
2
)
dτ,

(29)

where the star sign denotes the derivative with respect to
the proper time τ , and using the variation, we arrive at the
following equations for the ϕ, r and u variables, respectively,
as

∗
ϕ = L

r2 , (30)

and

−1

2
f ′ ∗u

2 + r
∗
ϕ

2 − ε
∗∗
u = 0, (31)

and

ε
∗∗
r = 1

2
ḟ

∗
u

2 + f
∗∗
u + f ′ ∗u∗

r , (32)

where L is the conserved angular momentum per unit mass
and dot and prime signs denote the derivative with respect to
u and r coordinates, respectively. Substituting (30) in (31),
we have

f
∗∗
u = ε f

L2

r3 − 1

2
ε f f ′ ∗u

2
. (33)

Moreover, using the timelike geodesics condition, i.e
gμν ẋμ ẋν = −1, we obtain

f ′∗r ∗
u = −1

2
ε f ′ + 1

2
ε f f ′ − 1

2
ε f ′ L2

r2

∗
u

2
, (34)
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where we have used also the Eq. (30). Now, substituting (33)
and (34) in (32), we arrive at the following general equation
of motion

∗∗
r = 1

2
ε ḟ

∗
u

2 − 1

2
f ′ − 1

2
f ′ L2

r2 + f
L2

r3 . (35)

for the radial coordinate r . Substituting our metric function
(19), our equation of motion (35) takes the form of

∗∗
r = −M(u)

r2 + L2

r3 − 3M(u)L2

r4

+Q2(u)

r3 + 2Q2(u)L2

r5

− (3ωs + 1)Ns(u)

2r3ωs+2 − 3(ωs + 1)Ns(u)L2

2r3ωs+4

+1

2
ε ḟ

∗
u

2
. (36)

Consequently, we realize the following interesting points.

• The terms in the first line are exactly the same as that
of the standard Schwarzschild black hole solution except
the time dependance in the mass of the black hole. Here,
the terms represent the Newtonian gravitational force, the
repulsive centrifugal force and the relativistic correction
of general relativity (which accounts for the perihelion
advance of planets), respectively.

• The terms in the second line are new correction terms, in
comparison to the standard Schwarzschild case, due to
the charge of the central object. Here, the first term rep-
resents the Coulomb force while the second one repre-
sents a relativistic-like correction of GR through the cou-
pling between the charge Q(u) and L angular momen-
tum. These new correction terms may be small in general
in comparison to their Schwarzschild counterparts. How-
ever, one can show that there are possibilities that these
terms can be comparable or equal to them. Then, for find-
ing the situations where these forces are comparable to
the Newtonian gravitational force and the GR correction
term in (36), we define the distances Dq1 and Dq2 cor-
responding to

∣∣ aq1
aN

∣∣ 
 1 and
∣∣ aq2
aL

∣∣ 
 1, respectively, in
which aN , aL are the Newtonian and the relativistic cor-
rection accelerations, respectively, and aq1 and aq2 are
defined as

aq1 = Q2(u)

r3 , aq2 = 2Q2(u)L2

r5
. (37)

Accordingly, we obtain the distances Dq1 and Dq2 cor-
responding to

∣∣ aq1
aN

∣∣ 
 1 and
∣∣ aq2
aL

∣∣ 
 1, respectively, as

Dq1 = Q2(u)

M(u)
, Dq2 =

√
2Q2(u)

3M(u)
. (38)

• In the third line, we have two new correction terms due to
the presence of the surrounding field. Here, the first term
is similar to that of Newtonian gravitational term and
the second term is similar to the relativistic correction of
GR through the coupling between the background filed
parameter Ns(u) and angular momentum L . Then, we
see that for the more realistic non-empty backgrounds,
the geodesic equation of any object depends strictly not
only on the mass of the central object of the system and
the conserved angular momentum of the orbiting body,
but also on the background field nature. Similar to the
previous case, one can show that there are possibilities
that the background correction terms can be comparable
to their Schwarzschild counterparts. Thus, for this case,
we define the distances Ds1 and Ds2 which correspond to∣∣ as1
aN

∣∣ 
 1 and
∣∣ as2
aL

∣∣ 
 1, respectively, in which as1 and
as2 are

as1 = (3ωs + 1)N (u)

2r3ωs+2 , as2 = 3(ωs + 1)N (u)L2

2r3ωs+4 .

(39)

Then, we obtain the distances Ds1 and Ds2 as

Ds1 

( |(3ωs + 1)Ns(u)|

2M(u)

) 1
3ωs

,

Ds2 

( |(ωs + 1)Ns(u)|

2M(u)

) 1
3ωs

. (40)

• The term in the fourth line is also a new non-Newtonian
correction resulting from the dynamics of black hole and
its surrounding field. It is associated with the radiation-
accretion power of the black hole and its surrounding
field.1 Calling this acceleration as the induced accelera-
tion ai by the dynamics, where the subscript i stands for
“induced”, we have

ai = 1

2
ε ḟ

∗
u

2 = − ε

(
Ṁ(u)

r
− Q(u)Q̇(u)

r2 + Ṅ (u)

2r3ωs+1

)
∗
u

2
,

(41)

in which, following Lindquist, Schwartz and Misner [64],
we define the generalized “total apparent flux” as AF =
ε
(
Ṁ(u) − Q(u)Q̇(u)

r + Ṅ (u)

2r3ωs

) ∗
u

2 = L−Q
r + N

2r3ωs where

L,Q andN are the apparent fluxes associated to the black
hole mass, charge and its surrounding field, respectively.

1 In the case of stationary limit, where the black hole and its surrounding
field has no dynamics, this term vanishes while the terms in the first,
second and third lines in (36) still remain and affect the motion of the
objects.
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Using these definitions, we can rewrite (41) as

ai = −L

r
+ Q

r2 − N

2r3ωs+1 . (42)

This new correction term may also be small in general
in comparison to the Newtonian term [64]. However, one
can show that there are also possibilities that these two
terms can be comparable. Then, we define the distance
Di which satisfies ai 
 aN , and it will be given by the
solutions of the following equation for different values
of M , ωs and apparent fluxes L,Q and N as

LD3ωs
i − QD3ω−1

i + 1

2
N 
 MD3ωs−1

i . (43)

It is hard to find the general solutions to this equation in
terms of its generic parametersL,Q,N, M and ωs . How-
ever, we will show that there are possible solutions for
the various backgrounds of dust, radiation, quintessence
and cosmological constant-like fields for some particular
ranges of the parameters.

As we see from (40), the distances Dq1 and Dq1 depend
only on the parameters of the black hole, and not on the
background parameters, while Ds1, Ds2 and Di depend on
both the black hole and its background parameters. Then,
in the following we give some plots denoting the possibility
of having Dq1 and Dq1 representing

∣∣ aq1
aN

∣∣ 
 1 and
∣∣ aq2
aL

∣∣ 

1, respectively, and postpone the studying of the remaining
cases (Ds1, Ds2 and Di ) till the following subsections. In
Fig. 1, the possibility of having

∣∣ aq1
aN

∣∣ 
 1 and
∣∣ aq2
aL

∣∣ 
 1, for
some typical values of M(u) and Q(u) parameters are shown.
Then, one can realize that there are possibilities for the phase
space of our parameters such that the charge contributions
can be comparable to their Schwarzschild counterparts.

In the following subsections, we consider the cosmolog-
ical surrounding fields of dust, radiation, quintessence and
cosmological constant-like fields as the special classes of the
obtained general solution (22), and we will investigate some
of their interesting features in more detail.

2.1 Evaporating-accreting Bonnor–Vaidya black hole
surrounded by the dust field

For the dust surrounding field, we set ωd = 0 [53,65]. Then,
the metric (22) appears in the following form

ds2 = −
(

1 − 2M(u) + Nd(u)

r
+ Q2(u)

r2

)
du2

+ 2εdudr + r2d�2. (44)

It is seen that a charged black hole in the dust background
appears as an effectively evaporating-accreting charged black

hole with an effective mass 2Mef f = 2M(u)+Nd(u). Then,
the presence of effective mass term changes the thermody-
namics, causal structure and Penrose diagrams of the original
Bonnor–Vaidya black hole up to a mass re-scaling.

The total radiation-accretion density in the dust back-
ground is given by

σ(u, r) = ε

(
2Ṁ(u) + Ṅd(u)

r2 − 2Q(u)Q̇(u)

r3

)
, (45)

and consequently dynamical behaviour of the background
dust field at (u, r) is governed by

{
Ṅd(u) ≤ 2

r

(
Q(u)Q̇(u) − r Ṁ(u)

)
, ε = − 1,

Ṅd(u) ≥ 2
r

(
Q(u)Q̇(u) − r Ṁ(u)

)
, ε = + 1.

(46)

Then, at an arbitrary distance r from the black hole, the
background dust field must obey the above conditions. Inter-
estingly, for the special case of Ṅd(u) = 2

r (Q(u)Q̇(u) −
r Ṁ(u)), there is no pure radiation-accretion density, i.e
σ(u, r) = 0, and then the total energy–momentum tensor
(4) will be diagonalized. The case σ(u, r) = 0 corresponds
to two possible physical situations. The first one is related to
the situation where for any particular distance r0, the back-
ground dust field (Ṅd(u)) and black hole (Ṁ(u) and Q̇(u))
behave such that their contributions cancel out each others,
leading to σ(u, r0) = 0. The second situation is associated
with the case where for the given dynamical behaviors of the
Bonnor–Vaidya black hole and its surrounding dust field, one
can find the particular distance

r∗(u) = 2Q(u)Q̇(u)

2Ṁ(u) + Ṅd(u)
, (47)

possessing zero energy density, i.e σ (u, r∗(u)) = 0. Then,
regarding (45)–(47), the following points can be realized for
a Bonnor–Vaidya black hole surrounded by the dust field.

• Regarding (45), for Ṅd(u) �= 2
r (Q(u)Q̇(u) − r Ṁ(u)),

we find that the radiation-accretion density vanishes only
for r∗ → ∞. This means that for the emission case, the
outgoing charged radiation can penetrate through the dust
background so far from the black hole horizon and for the
accretion case by the black hole, the black hole affects
the so far surrounding dust field.

• Regarding (47), for the case of constant rate for Ṅd(u),
Ṁ(u) and Q̇(u), the distance r∗ is fixed to a particular
value. In general case where Ṅd(u) and Ṁ(u) and Q̇(u)

have no constant rates, the r∗ is a dynamical position with
respect to the time coordinate u, i.e r∗ = r∗(u).

• Regarding (47), to have a particular distance at which the
energy densityσ(u, r∗) is zero, the positivity of r∗(u) also
requires that Q(u)Q̇(u) and 2Ṁe f f = 2Ṁ(u) + Ṅd(u)
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Fig. 1 Dq1 and Dq2 for some typical values of M(u) and Q(u) representing the possibility of
∣∣ aq1
aN

∣∣ 
 1 and
∣∣ aq2
aL

∣∣ 
 1, respectively

have the same signs. For the cases in which r∗(u) is not
positive, the lack of a positive value radial coordinate is
interpreted as follows: the total radiation-accretion den-
sity σ(u, r) never and nowhere vanishes.

• Regarding (47), demanding that Q̇(u) and Ṁ(u) have
the same signs for both of the radiation and accretion
processes, the positivity condition of r∗(u) requires the
condition |2Ṁ(u)| ≥ | Ṅd(u)| when Ṅd(u) takes oppo-
site sign.

• In the case of r∗(u) being the positive radial distance,
for the given radiation-accretion behaviors of the black
hole and its surrounding dust field, i.e Ṁ(u), Q̇(u) and
Ṅd(u), it is possible to find a distance at which we have
no any radiation-accretion energy density contribution. In
other words, it turns out that the rate of outgoing radiation
energy density of the black hole is exactly balanced by
the rate of ingoing absorption rate of surrounding field at
the distance r∗ and vice versa.

• Regarding (47), for the case of |Q(u)Q̇(u)| 
 |Ṁe f f |,
we have r∗ → ∞. Considering the unit charge gauge,
for the extremal case Q̇(u) ≈ Ṁ(u), for r∗ → ∞, we
find that black hole evolves very slow relative to its back-
ground. Then, by satisfaction of these dynamical condi-
tions to have r∗ → ∞, the positive energy density con-
dition is respected everywhere in the spacetime. In other
cases, the positive energy density is respected in some
regions while it is violated beyond those regions.

• Another interesting situation happens when Ṁe f f = 0,
i.e 2Ṁ(u) = − Ṅd(u). In this case, regarding (45)
and (47), the radiation-accretion density is only resulting

from the charge contribution in the form of σ(u, r) =
− ε

2Q(u)Q̇(u)

r3 and consequently r∗ → ∞. Also, in order
to respect to the positive energy condition here, it is
required that ε and Q(u)Q̇(u) have opposite signs.

• Regarding (45), for both of the cases of neutral black hole
(Q(u) = 0) and black hole with static charge (Q̇(u) =
0), if Ṁe f f �= 0, we have r∗ → ∞.

In the following, we demonstrate the various general situ-
ations which can be realized for the Bonnor–Vaidya black
hole surrounded by a dust field in the Tables 1 and 2. Here,
we assume that the radiation case corresponds to Ṁ(u) < 0,
Q̇(u) ≤ 0 and the accretion case corresponds to Ṁ(u) > 0,
Q̇(u) ≥ 0.

Regarding Table 1, we see that for the cases I, II, VII
and VIII, there are regions in spacetime that the positive
energy condition is respected, while beyond these regions
it is violated. The cases IV, V, VIIII and XII are not physical
in the sense that the positive energy condition is violated in
the whole spacetime. The cases III, VI and XI as well as X
represent the situations that the positive energy condition is
respected in the whole spacetime with and without a priory
condition on the black hole and its surrounding dust field
dynamics, respectively.

Regarding Table 2, we see that for the cases I, II, VII and
VIII, there are regions in spacetime that the positive energy
condition is respected, while beyond these regions it is vio-
lated. The cases III, VI, X and XI are not physical in the
sense that the positive energy condition is violated in the
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Table 1 General Bonnor–Vaidya BH and its dust SF parameters for ε = − 1. ECM denotes external charged matter which may contribute to the
accretion

Ṁ Q̇ Ṅd r∗ σ(r<r∗) σ(r=r∗) σ(r>r∗) Condition Physical process

I + + + + + 0 − No Accretion of BH-SF and ECM

II + + − + + 0 − |2Ṁ | > |Ṅd | Accretion of SF-ECM by BH

III + + − − + + + |2Ṁ | < |Ṅd | Accretion of SF-ECM by BH

IV + 0 + ∞ − − − No Not physical

V + 0 − ∞ − − − |2Ṁ | > |Ṅd | Not physical

VI + 0 − ∞ + + + |2Ṁ | < |Ṅd | Accretion of SF by BH

VII − − − + − 0 + No Accretion/decay of SF by evaporating/vanishing BH

VIII − − + + − 0 + |2Ṁ | > |Ṅd | Absorbtion of BH’s radiation by SF

VIIII − − + − − − − |2Ṁ | < |Ṅd | Not physical

X − 0 − ∞ + + + No Accretion/decay of SF by evaporating/vanishing BH

XI − 0 + ∞ + + + |2Ṁ | > |Ṅd | Absorbtion of BH’s radiation by SF

XII − 0 + ∞ − − − |2Ṁ | < |Ṅd | Not physical

Table 2 General Bonnor–Vaidya BH and its dust SF parameters for ε = + 1

Ṁ Q̇ Ṅd r∗ σ(r<r∗) σ(r=r∗) σ(r>r∗) Condition Physical process

I + + + + − 0 + No Accretion of BH-SF and ECM

II + + − + − 0 + |2Ṁ | > |Ṅd | Accretion of SF-ECM by BH

III + + − − − − − |2Ṁ | < |Ṅd | Not physical

IV + 0 + ∞ + + + No Accretion of BH and SF

V + 0 − ∞ + + + |2Ṁ | > |Ṅd | Accretion of SF by BH

VI + 0 − ∞ − − − |2Ṁ | < |Ṅd | Not physical

VII − − − + + 0 − No Accretion/decay of SF by evaporating/vanishing BH

VIII − − + + + 0 − |2Ṁ | > |Ṅd | Absorbtion of BH’s radiation by SF

VIIII − − + − + + + |2Ṁ | < |Ṅd | Absorbtion of BH’s radiation by SF

X − 0 − ∞ − − − No Not physical

XI − 0 + ∞ − − − |2Ṁ | > |Ṅd | Not physical

XII − 0 + ∞ + + + |2Ṁ | < |Ṅd | Absorbtion of BH’s radiation by SF

whole spacetime. The cases IV as well as V, VIIII and XII
represent the situations that the positive energy condition is
respected in the whole spacetime without and with a pri-
ory condition on black hole and its surrounding dust filed
dynamics, respectively.

Regrading the conditions in the Tables 1 and 2 for ε = − 1
and ε = + 1, the behaviour of radiation-accretion density
σ(u, r) in (45) is plotted for some typical values of Ṁ(u),
Q̇(u) and Ṅd(u) in the Figs. 2 and 3, respectively. Using
these plots, one can compare the radiation-accretion density
values for the various situations.

Finally, considering the timelike geodesic equations, for
this case, we have Ds1 = Ds2 and both the situations of∣∣ as1
aN

∣∣ 
 1 and
∣∣ as2
aL

∣∣ 
 1 can be met for M(u) = |Nd (u)|
2 in the

whole spacetime. In the Fig. 4, we have plotted the possibility
of being these particular situations for some typical ranges
of M(u) and Nd(u) parameters. Then, regarding this figure,

we realize the possibility of the equality of the Newtonian
force as well as GR correction terms to the corresponding
contributions of the dust background.

Also, the Eq. (55) associated with ai 
 aN takes the form
of

DiL − Q + 1

2
DiN 
 M, (48)

which has the solution

Di 
 2(M + Q)

2L + N
. (49)

Then, we see that how this particular distance depends on
the parameters L,Q,N and M . In Fig. 5, we have plotted
the solutions of (48) for some typical ranges of L,Q and N

parameters. This figure indicates that in the dust background,
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Fig. 2 Radiation-accretion density σ versus the distance r for some typical constant Ṁ , Q̇ and Ṅd values for ε = − 1 in the dust background.
Here, we have set Q = 1 for simplicity

Fig. 3 Radiation-accretion density σ versus the distance r for some typical constant Ṁ , Q̇ and Ṅd values for ε = + 1 in the dust background.
Here, we have set Q = 1 for simplicity

Fig. 4 The variation of Ds1 and Ds2 versus typical values of the M(u)

and Nd (u) parameters for the dust background

and depending the values of our parameters, there are loca-
tions where the induced force resulting from the radiation-
accretion phenomena can be equal to the Newtonian force.

2.2 Evaporating-accreting Bonnor–Vaidya black hole
surrounded by the radiation field

For the radiation surrounding field, we set ωr = 1
3 [53,65].

Then, the metric (22) appears in the following form

ds2 = −
(

1 − 2M(u)

r
+ Q2(u) − Nr (u)

r2

)
du2

+ 2εdudr + r2d�2. (50)

The positive energy condition on the surrounding radiation
field, represented by the relation (21), requires Nr (u) � 0. By
defining the positive structure parameter Nr (u) = − Nr (u),
the metric (50) reads as

ds2 = −
(

1 − 2M(u)

r
+ Q2(u) + Nr (u)

r2

)
du2

+ 2εdudr + r2d�2. (51)
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Fig. 5 The variation of Di versus typical values of the L,Q and N
parameters in (48) for the dust background. We have set M = 1 with-
out loss of generality in all these plots. The plots a–c represent the cases

of Q = −1, 0 and +1, respectively. The plots d–f represents the case
of L = −1, 0 and +1. The plots g–i represent of N = − 1, 0 and + 1

This metric is the metric of a charged Bonnor–Vaidya black
hole with the effective dynamical charge of Qef f (u) =√
Q2(u) + Nr (u). This result can be interpreted as the posi-

tive contribution of the characteristic feature of the surround-
ing radiation field to the effective charge of the black hole.
As the consequence of arising the effective charge, the causal
structure and Penrose diagrams for this black hole solution
differs from the original Bonnor–Vaidya black hole up to a
charge re-scaling.

The total radiation-accretion density is given by

σ(u, r) = ε

(
2Ṁ(u)

r2 − 2Q(u)Q̇(u) + Ṅr (u)

r3

)
, (52)

and consequently, the dynamical behaviour of the back-
ground radiation field is governed by the following conditions

123



1004 Page 12 of 27 Eur. Phys. J. C (2018) 78 :1004

⎧⎨
⎩
Ṅr (u) ≥ 2

(
r Ṁ(u) − Q(u)Q̇(u)

)
, ε = − 1,

Ṅr (u) ≤ 2
(
r Ṁ(u − Q(u)Q̇(u)

)
, ε = + 1.

(53)

Then, at an arbitrary distance r from the black hole, the
background field must obey the above conditions regarding
the ε values. Interestingly, for the specific case of Ṅr (u) =
2

(
r Ṁ(u) − Q(u)Q̇(u)

)
, there is no pure radiation-accretion

density, i.e σ(u, r) = 0, and the energy–momentum tensor
(4) will be diagonalized. The case of zero energy density cor-
responds to two possible physical situations. The first one is
related to the situation where the observer can be located
at any distance r0 such that the background radiation field
(Ṅr (u)), and black hole (Ṁ(u) and Q̇(u)) contributions can-
cel out each others, leading to σ(u, r0) = 0 for a moment
or even a period of time. The second situation is associated
with the case where for the given dynamical behaviors of
the charged black hole and its background, one can find the
particular distance

r∗(u) =
(

2QQ̇(u) + Ṅr (u)

2Ṁ(u)

)
, (54)

possessing zero energy density, i.e σ(u, r∗(u)) = 0. Then,
regarding (52)–(54), the following points can be realized for a
Bonnor–Vaidya black hole surrounded by the radiation field.

• Regarding (52), for Ṅr (u) �= 2(r Ṁ(u) − Q(u)Q̇(u)),
we find that the radiation-accretion density vanishes only
for r∗ → ∞. This means that for the emission case,
the outgoing charged radiation can penetrate through the
radiation background so far from the black hole horizon
and for the accretion case by the black hole, the black
hole affects the so far surrounding radiation.

• Regarding (54), for the case of constant rate for Ṅr (u),
Ṁ(u) and Q̇(u), the distance r∗ is fixed to a particular
value. In general case where Ṅr (u) and Ṁ(u) and Q̇(u)

have no constant rates, the r∗ is a dynamical position with
respect to the time coordinate u, i.e r∗ = r∗(u).

• Regarding (54), for having a particular distance at which
the density σ(u, r∗) is zero, the positivity of r∗ also
requires that Ṁ(u) and 2Qef f (u)Q̇e f f (u) = 2QQ̇(u)+
Ṅr (u) have the same signs. For the cases in which r∗ is
not positive, the lack of a positive value radial coordinate
is interpreted as follows: the radiation-accretion density
σ(u, r) never and nowhere vanishes.

• Regarding (54), demanding that Q̇(u) and Ṁ(u) have
the same signs for both of the radiation and accretion
processes, the positivity condition of r∗(u) requires the
condition |2Q(u)Q̇(u)| ≥ |Ṅr (u)| when Ṅr (u) takes
opposite sign.

• In the case of r∗ being the positive radial distance, for the
given radiation-accretion behaviors of the black hole and

its surrounding field, i.e Ṁ(u), Q̇(u) and Ṅr (u), it is pos-
sible to find a distance at which we have no any radiation-
accretion energy density contribution. In other words, it
turns out that the rate of outgoing radiation energy density
of the black hole is exactly balanced by the rate of ingo-
ing absorption rate of surrounding field at the distance r∗
and vice versa.

• Regarding (54), for the case of |Ṁ(u)| 
 |Qef f (u)Q̇e f f

(u)|, we have r∗ → ∞. Considering the unit charge
gauge, for the extremal case Q̇(u) ≈ Ṁ(u), we find
that black hole evolves very slow relative to its radia-
tion background. Then, by satisfaction of these dynami-
cal conditions to have r∗ → ∞, the positive energy den-
sity is respected everywhere in the spacetime. In other
cases, the positive energy density will be respected in
some regions, while it is violated beyond those regions.

• Another interesting situation happens for two different
cases as Qef f (u) = 0 and Q̇e f f (u) = 0 corresponding to
Q = Nr = 0 and 2Q(u)Q̇(u) = −Ṅr (u), respectively.
In these cases, regarding (52) and (54), the radiation-
accretion density is only resulting from the black hole

mass contribution in the form of σ(u, r) = ε
2Ṁ(u)

r2 and

consequently ε must have the same sign as Ṁ(u) to
have a positive energy density. In this case, the radiation-
accretion density looks like the original neutral Vaidya
solution in an empty space, while the black hole and its
background here is completely different, and vanishes as
r∗ → ∞.

• Regarding (52), for both of the cases of neutral black hole
(Q(u) = 0) and black hole with static charge (Q̇(u) =
0), we have

r∗(u) = Ṅr (u)

2Ṁ(u)
. (55)

Then, the positivity of r∗ demands that Ṅr (u) and Ṁ(u)

have same signs, and for |2Ṁ(u)| 
 |Ṅr (u)|, we have
r∗ → ∞.

In the following, we demonstrate the various general situ-
ations which can be realized for the Bonnor–Vaidya black
hole surrounded by the radiation field in the Tables 3 and 4.

Regarding Table 1, we see that for the cases I, II, IV, VI, VII
and VIIII, there are regions in spacetime where the positive
energy condition is respected, while beyond these regions it
is violated. The cases IV, V, VIIII and XII are not physical
in the sense that the positive energy condition is violated
in the whole spacetime. The cases VIII and X represent the
situations where the positive energy condition is respected in
the whole spacetime with and without a priory condition on
the black hole and its surrounding radiation field dynamics,
respectively.
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Table 3 General Bonnor–Vaidya BH and its radiation SF parameters for ε = − 1

Ṁ Q̇ Ṅr r∗ σ(r<r∗) σ(r=r∗) σ(r>r∗) Condition Physical process

I + + + + + 0 − No Accretion of BH-SF and ECM

II + + − + + 0 − |2Q(u)Q̇(u)| ≥ |Ṅr (u)| Accretion of SF-ECM by BH

III + + − − − − − |2Q(u)Q̇(u)| ≤ |Ṅr (u)| Not physical

IV + 0 + + + 0 − No Accretion of BH and SF

V + 0 − − − − − No Not physical

VI − − − + − 0 + No Accretion/decay of SF by evaporating/vanishing BH

VII − − + + − 0 + |2Q(u)Q̇(u)| ≥ |Ṅr (u)| Absorbtion of BH’s radiation by SF

VIII − − + − + + + |2Q(u)Q̇(u)| ≤ |Ṅr (u)| Absorbtion of BH’s radiation by SF

VIIII − 0 − + − 0 + No Accretion/decay of SF by evaporating/vanishing BH

X − 0 + − + + + No Absorbtion of BH’s radiation by SF

Table 4 General Bonnor–Vaidya BH and its radiation SF parameters for ε = + 1

Ṁ Q̇ Ṅr r∗ σ(r<r∗) σ(r=r∗) σ(r>r∗) Condition Physical process

I + + + + − 0 + No Accretion of BH-SF and ECM

II + + − + − 0 + |2Q(u)Q̇(u)| ≥ |Ṅr (u)| Accretion of SF-ECM by BH

III + + − − + + + |2Q(u)Q̇(u)| ≤ |Ṅr (u)| Accretion of SF-ECM by BH

IV + 0 + + − 0 + No Accretion of BH and SF

V + 0 − − + + + No Accretion of SF by BH

VI − − − + + 0 − No Accretion/decay of SF by evaporating/vanishing BH

VII − − + + + 0 − |2Q(u)Q̇(u)| ≥ |Ṅr (u)| Absorbtion of BH’s radiation by SF

VIII − − + − − − − |2Q(u)Q̇(u)| ≤ |Ṅr (u)| Not physical

VIIII − 0 − + + 0 − No Accretion/decay of SF by evaporating/vanishing BH

X − 0 + − − − − No Not physical

Fig. 6 Radiation-accretion
density σ versus the distance r
for some typical constant Ṁ , Q̇
and Ṅr values for ε = − 1 in
the dust background. Here, we
have set Q = 1 for simplicity

Regarding Table 2, we see that for the cases I, II, IV, VI, VII
and VIIII, there are regions in spacetime where the positive
energy condition is respected, while beyond these regions it
is violated. The cases VIII, X are not physical in the sense
that the positive energy condition is violated in the whole
spacetime. The cases IIII as well as V represent the situ-

ations where the positive energy condition is respected in
the whole spacetime with and without a priory condition on
the black hole and its surrounding radiation filed dynamics,
respectively.

Regrading the conditions in the Tables 3 and 4 for ε = − 1
and ε = + 1, the behaviour of radiation-accretion density
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Fig. 7 Radiation-accretion
density σ versus the distance r
for some typical constant Ṁ , Q̇
and Ṅr values for ε = + 1 in
the dust background. Here, we
have set Q = 1 for simplicity

Fig. 8 The variation of Ds1 (green plot) and Ds2 (yellow plot) ver-
sus typical values of the M(u) and Nr (u) parameters for the radiation
background

σ(u, r) in (52) is plotted for some typical values of Ṁ(u),
Q̇(u) and Ṅd(u) in the Figs. 6 and 7, respectively. Using
these plots, one can compare the radiation-accretion density
values for the various situations.

Finally, considering the timelike geodesics, for this case,
the distances Ds1 and Ds2 corresponding to

∣∣ as1
aN

∣∣ 
 1 and∣∣ as2
aL

∣∣ 
 1, respectively, are given by

Ds1 = |Nr (u)|
M(u)

, Ds2 = 2|Nr (u)|
3M(u)

. (56)

In Fig. 8, the particular distances Ds1 and Ds2 versus some
typical ranges of M(u) and Nr (u) parameters are plotted.
Then, we see that the possibility of the equality of Newtonian
force and GR correction terms to the corresponding radiation
background field contributions are provided.

Also, the Eq. (55) associated with ai 
 aN takes the fol-
lowing form

LDi − Q + 1

2
N 
 M. (57)

Then, it admits the following solution

Di 
 2M − N + 2Q
2L

. (58)

We see that how this particular distance depends on the val-
ues of parameters L,Q,N and M . In Fig. 9, we have plotted
the solutions of (57) for some typical ranges of L,Q and N

parameters. According to this figure, depending the parame-
ter values, there are locations where the induced force, result-
ing from the radiation-accretion phenomena in the radiation
background, can be equal to the Newtonian force.

2.3 Evaporating-accreting Bonnor–Vaidya black hole
surrounded by the quintessence field

In the context of cosmology, the quintessence filed is known
as the simplest scalar field dark energy model free of the theo-
retical problems such as Laplacian instabilities or ghosts. The
energy density and the pressure profile of the quintessence
field are generally supposed as time varying quantities and
depend on the scalar field and its associated potential given by
ρ = 1

2 φ̇2 + V (φ) and p = 1
2 φ̇2 − V (φ), respectively. Thus,

the corresponding quintessence equation of state parameter
lies in the range − 1 < ωq < − 1

3 . The static Schwarzschild
black hole solution surrounded by a quintessence field was
first introduced by Kiselev [53]. Then, this solution was gen-
eralized to the Reissner–Nordström case and investigated in
[60–62].
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Fig. 9 The variation of Di versus typical values of the L,Q and N
parameters in (48) for the radiation background. We have set M = 1
without loss of generality in all the plots. The plots a–c represent the

cases of Q = − 1, 0 and +1, respectively. The plots d, e represents the
case of L = −1, 0 and +1. The plots f–h represent of N = − 1, 0 and
+ 1

For the quintessence surrounding field, we set ωq = − 2
3

[53,65]. Then, the metric (1) takes the following form

ds2 = −
(

1 − 2M(u)

r
+ Q2(u)

r2 − Nq(u)r

)
du2

+ 2εdudr + r2d�2. (59)

This result is interpreted as the non-trivial contribution of the
characteristic feature of the surrounding quintessence field to
the metric of the Bonnor–Vaidya black hole. The presence of
the background quintessence filed changes the causal struc-

ture and Penrose diagrams of this black hole solution in com-
parison to the charged Vaidya black hole in an empty back-
ground. A rather similar effect happens when one immerses
an static Schwarzschild in a (anti)-de Sitter background
with the difference that here the spacetime tends asymptoti-
cally to quintessence rather than (anti)-de Sitter asymptotic
state.

Regarding the positive energy density condition for this
case, represented by the relation (21), it is required that
Nq(u) � 0. In this case, the radiation density is given by
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Table 5 General Bonnor–Vaidya BH and its quintessence SF parameters for ε = − 1

Ṁ Q̇ Ṅq r∗ σ(r<r∗) σ(r=r∗) σ(r>r∗) Condition Physical process

I + + − + + 0 + No Accretion of SF-ECM by BH

II + 0 + Imaginary − − − No Not physical

III + 0 − + − 0 + No Accretion of SF by BH

IV − − + + − 0 − No Not physical

V − 0 + + + 0 − No Absorbtion of BH’s radiation by SF

VI − 0 − Imaginary + + + No Accretion/decay of SF by evaporating/vanishing BH

Table 6 General Bonnor–Vaidya BH and its quintessence SF parameters for ε = + 1

Ṁ Q̇ Ṅq r∗ σ(r<r∗) σ(r=r∗) σ(r>r∗) Condition Physical process

I + + − + − 0 − No Not physical

II + 0 + Imaginary + + + No Accretion of BH and SF

III + 0 − + + 0 − No Accretion of SF by BH

IV − − + + + 0 + No Absorbtion of BH’s radiation by SF

V − 0 + + − 0 + No Absorbtion of BH’s radiation by SF

VI − 0 − Imaginary − − − No Not physical

Fig. 10 Radiation-accretion
density σ versus the distance r
for some typical constant Ṁ , Q̇
and Ṅq values for ε = − 1 in
the dust background. Here, we
have set Q = 1 for simplicity

σ(u, r) = ε

(
2Ṁ(u)

r2 − 2Q(u)Q̇(u)

r3 + Ṅq(u)

)
. (60)

Based on this relation, the dynamical behaviour of the sur-
rounding quintessence field is governed by

⎧⎪⎨
⎪⎩
Ṅq(u) ≤ 2

r3

(
Q(u)Q̇(u) − r Ṁ(u)

)
, ε = − 1,

Ṅq(u) ≥ 2
r3

(
Q(u)Q̇(u) − r Ṁ(u)

)
, ε = + 1.

(61)

Then, at an arbitrary distance r from the black hole, the
surrounding quintessence field must obey the above con-
ditions. Interestingly, for the special case of Ṅq(u) =
2
r3 (Q(u)Q̇(u)−r Ṁ(u)), there is no pure radiation-accretion
density, i.e σ(u, r) = 0, and the total energy–momentum ten-
sor (4) will be diagonalized. This means that the black hole
and its surrounding quintessence field completely cancel out

the effects of each others. This case corresponds to two possi-
ble physical situations. The first one is related to the situation
where the observer can be located at any distance r0 such that
the background Ṅq(u), and black hole Ṁ(u) and Q̇(u) con-
tributions cancel out each others, leading to σ(u, r0) = 0 for
a moment or even a period of time. The second situation is
related to the case where for the given dynamical behaviors
of the charged black hole and its quintessence background,
one can find the particular distance

r∗(u) = 3Q(u)Q̇(u)

2Ṁ(u)
, (62)

possessing zero energy density (σ(u, r∗(u)) = 0), see the
Appendix A for more details. Then, regarding (60)–(62), the
following points can be realized for a Bonnor–Vaidya black
hole surrounded by the quintessence field.
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• Regarding (60), for Ṅq(u) �= 2
r3 (Q(u)Q̇(u) − r Ṁ(u)),

we find that in contrast to the cases of the Bonnor–Vaidya
black hole surrounded by the dust and radiation fields,
here the radiation-accretion density does not vanish at
r∗ → ∞. This is due to the fact that the spacetime here
has the quintessence asymptotic rather than an empty
Minkowski.

• Regarding (62), for the case of constant rates for Ṅq(u),
Ṁ(u) and Q̇(u), the distance r∗ is fixed to a particular
value. In general case which Ṅq(u) and Ṁ(u) and Q̇(u)

have no constant rates, the r∗ has a dynamical position
with respect to the time coordinate u, i.e r∗ = r∗(u).

• Regarding (62), to have a particular distance at which the
density σ(u, r∗) is zero, the positivity of r∗ also requires
that Ṅq(u) takes an opposite sign of Ṁ(u) (and Q̇(u)), see
(78). This is in agreement with our primary consideration
for the signs of dynamical parameters (Ṅq(u), Ṁ(u) and
Q̇(u)) for the radiation and accretion processes in the
previous sections. For the cases in which r∗ is not positive,
the lack of a positive value radial coordinate is interpreted
as follows: the radiation-accretion density σ(u, r) never
and nowhere vanishes.

• In the case of r∗ being the positive radial distance, for the
given radiation-accretion behaviors of the black hole and
its surrounding field, i.e Ṁ(u), Q̇(u) and Ṅq(u), it is pos-
sible to find a distance at which we have no any radiation-
accretion energy density contribution. In other words, it
turns out that the rate of outgoing radiation energy density
of the black hole is exactly balanced by the rate of ingo-
ing absorption rate of surrounding field at the distance r∗
and vice versa.

• Regarding (62) and (78), for both of the black holes with
|Ṁ(u)| 
 |Q(u)Q̇(u)| and Ṁ(u) → 0, we have r∗ →
∞ and Ṅq(u) → 0. This means that for a black which is
almost active only due to its dynamical charge, one can
find that (i) there is a non-zero radiation density even at
far distance from the black hole and (ii) positive energy
condition is respected everywhere.

• Regarding (62) and (78), working in the unit charge
gauge, for the extremal case Q̇(u) ≈ Ṁ(u), we find

r∗ → 3

2
, Ṅq(u) → − 8

27
Ṁ(u). (63)

• Regarding (60), for both of the cases of neutral black hole
(Q(u) = 0) and black hole with static charge (Q̇(u) =
0), we have

r∗(u) =
(

−2Ṁ(u)

Ṅq(u)

) 1
2

. (64)

Then, for |Ṅq(u)| 
 |2Ṁ(u)|, we have r∗ → ∞. This
means that for an almost static background (the back-

ground with negligible dynamics relative to the black hole
mass), the zero of the radiation-accretion density lies at
infinity and the positive energy density is respected every-
where in the spacetime. In other cases, one can find a finite
value for r∗ representing the zero radiation-accretion den-
sity in which the positive energy density will be respected
in some regions while it is violated beyond those regions,
see our previous work on the neutral black hole case for
more details [55,56].

• Regarding both the solutions (62) and (64), the signs
of Ṁ(u) and Ṅq(u) should be opposite to have a zero
radiation-accretion density for both of the radiation-
accretion processes.

In the following, regarding the obtained solutions and the
above discussions, we demonstrate the various situations
which can be realized for the Bonnor–Vaidya black hole sur-
rounded by the quintessence field in the Tables 5 and 6.

Regarding Table 5, we see that for the cases III and V, there
are regions is spacetime that the positive energy condition is
respected, while beyond these regions it is violated. The case
II is not physical in the sense that the positive energy condi-
tion is violated in the whole spacetime. The case IV is also
not physical in the sense that the positive energy condition is
violated in whole spacetime except at the zero density point.
The cases I and VI represent the situations that the positive
energy condition is respected in the whole spacetime with-
out a priory condition on the black hole and its surrounding
quintessence filed dynamics.

Regarding Table 6, we see that for the cases III and V,
there are regions in spacetime that the positive energy con-
dition is respected, while beyond these regions it is violated.
The cases I and VI are not physical in the sense that the
positive energy condition is violated in whole spacetime.
The cases II and IV represent the situations that the positive
energy condition is respected in the whole spacetime with-
out a priory condition on the black hole and its surrounding
quintessence filed dynamics. Regrading the conditions in the
Tables 5 and 6 for ε = −1 and ε = +1, respectively, the
behaviour of radiation-accretion density σ(u, r) in (60) is
plotted for some typical values of Ṁ(u), Q̇(u) and Ṅq(u)

in the Figs. 10 and 11, respectively. Using these plots, one
can compare the radiation-accretion density values for the
various situations.

Considering the timelike geodesics for this case, the dis-
tances Ds1 and Ds2 associated with

∣∣ as1
aN

∣∣ 
 1 and
∣∣ as2
aL

∣∣ 
 1,
respectively, are given as

D2
s1

= 2M(u)

| − Nq(u)| , D2
s2

= 6M(u)

|Nq(u)| . (65)

In Fig. 12, we have plotted the location of these particular
distances versus some typical ranges of the black hole mass
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Fig. 11 Radiation-accretion
density σ versus the distance r
for some typical constant Ṁ , Q̇
and Ṅq values for ε = − 1 in the
quintessence background. Here,
we have set Q = 1 for simplicity

Fig. 12 The variation of Ds1 (green plot) and Ds2 (yellow plot) versus
typical values of the M(u) and Nr (u) parameters for the quintessence
background

M(u) and background quintessence field Nq(u) parameters.
Then, one finds that there are possibilities for the equality of
the Newtonian force and GR correction terms to the corre-
sponding quintessence background field contributions.

Also, the Eq. (55) associated with ai 
 aN for this case
takes the following form

LDi − Q + 1

2
ND3

i 
 M. (66)

The solutions to (66) in general are complicated and are given
in the Appendix B. However, we can demonstrate those solu-
tions in Fig. 13 for some typical values of ourL,Q,N and M
parameters. This figure represents that depending on the val-
ues of our parameter, we can find locations where the induced
force, resulting from the radiation-accretion phenomena in
the quintessence background, can be equal to the Newtonian
force.

2.4 Evaporating-accreting Bonnor–Vaidya black hole
surrounded by the cosmological field

For the cosmological surrounding field, we set ωc = − 1
[53,65]. Then, the metric (1) takes the following form

ds2 = −
(

1 − 2M(u)

r
+ Q2(u)

r2 − Nc(u)r2
)
du2

+ 2εdudr + r2d�2. (67)

This result is interpreted as the non-trivial contribution of
the characteristic feature of the surrounding cosmological
field to the metric of the charged Bonnor–Vaidya black hole.
The presence of the background cosmological filed changes
the causal structure and Penrose diagrams of this black hole
solution in comparison to the black hole in an empty back-
ground. The similar effect happens when one immerse an
static Schwarzschild black hole in a (anti)-de Sitter back-
ground.

The positive energy density condition on the surrounding
cosmological field, represented by the relation (21), requires
Nc(u) � 0. Then, in this case, Nc(u) plays the role of a
positive dynamical cosmological field. This case may repre-
sents the dynamical black holes in more general cosmologi-
cal models proposing a time varying cosmological term. The
main purpose of these cosmological scenarios is to provide
an explanation for the recent observed accelerating expan-
sion of the universe, see [66–72] as some instances. For the
case of Nc = constant = � > 0, we recover the Bonnor–
Vaidya black hole embedded in a de Sitter space obtained by
Patino and Rago [18]. The solution in [18] was generalized
to the case of the rotating radiating charged black hole in a
static de Sitter space in [25]. In [73], the causal structure of
the solution obtained in [25] is studied.

In this case, the total radiation-accretion density is given
by

σ(u, r) = ε

(
2Ṁ(u)

r2 − 2Q(u)Q̇(u)

r3 + Ṅc(u)r

)
. (68)
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Fig. 13 The variation of Di versus typical values of the L,Q and N
parameters in (48) for the quintessence background. We have set M = 1
without loss of generality in all the plots. The plots a–c represent the

cases of Q = − 1, 0 and + 1, respectively. The plots d–f represents the
case of L = − 1, 0 and + 1. The plots g–i represent of N = − 1, 0 and
+ 1

Then, the dynamical behaviour of the surrounding cosmo-
logical field is governed by the following conditions

⎧⎪⎨
⎪⎩
Ṅc(u) ≤ 2

r4

(
Q(u)Q̇(u) − r Ṁ(u)

)
, ε = −1,

Ṅc(u) ≥ 2
r4

(
Q(u)Q̇(u) − r Ṁ(u)

)
, ε = +1.

(69)

This represents that at an arbitrary distance r from the black
hole, the surrounding cosmological field must obey the above
conditions. Interestingly, for the special case of Ṅc(u) =

2
r4 (Q(u)Q̇(u)−r Ṁ(u)), there is no pure radiation-accretion
density, i.e σ(u, r) = 0, and the total energy–momentum
tensor (4) will be diagonalized. This case corresponds to two
possible physical situations. The first one is associated with
the situation where the observer can be located at any distance
r0 such that the background cosmological field (Ṅc(u)), and
the black hole (Ṁ(u) and Q̇(u)) contributions cancel out
each others leading to σ(u, r0) = 0 for a moment or even a
period of time. The second situation is related to the case that
for the given dynamical behaviors of the charged black hole
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and its cosmological background, one can find the particular
distance

r∗(u) = 4Q(u)Q̇(u)

3Ṁ(u)
, (70)

possessing zero energy density, i.e σ(u, r∗(u)) = 0, see the
Appendix C for more details. Then, regarding (68)–(70), the
following points can be realized for a Bonnor–Vaidya black
hole surrounded by the cosmological field.

• Regarding (68), for Ṅc(u) �= 2
r4 (Q(u)Q̇(u) − r Ṁ(u)),

we find that in contrast to the cases of Bonnor–Vaidya
black hole surrounded by dust and radiation fields, the
radiation-accretion density does not vanish for r∗ → ∞.
This is due to the fact that here the spacetime has the de
Sitter asymptotic rather than an empty Minkowski.

• Regarding (70), for the case of constant rates for Ṅc(u),
Ṁ(u) and Q̇(u), the distance r∗ is fixed to a particular
value. In general case which Ṅc(u) and Ṁ(u) and Q̇(u)

have no constant rates, the r∗ has a dynamical position
with respect to the time coordinate u, i.e r∗ = r∗(u).

• Regarding (70) and (84), to have a particular distance at
which the density σ(u, r∗) is zero, the positivity of r∗ also
requires that Ṅc(u) takes an opposite sign of QQ̇(u) (and
Ṁ(u)). This is in agreement with our primary considera-
tion for the signs of dynamical parameters (Ṅc(u), Ṁ(u)

and Q̇(u)) for the radiation and accretion processes in the
previous sections. Similarly, for the cases in which r∗ is
not positive, the lack of a positive value radial coordinate
is interpreted as follows: the radiation-accretion density
σ(u, r) never and nowhere vanishes.

• In the case of r∗ being a real and positive radial dis-
tance, for the given radiation-accretion behaviors of the
black hole and its surrounding field, i.e Ṁ(u), Q̇(u) and
Ṅc(u), it is possible to find a distance at which we have
no any radiation-accretion energy density contribution.
In other words, it turns out that the rate of outgoing radi-
ation energy density of the black hole is exactly balanced
by the rate of ingoing absorption rate of surrounding cos-
mological field at the distance r∗ and vice versa.

• Regarding (70) and (84), for both of the black holes with
|Ṁ(u)| 
 |Q(u)Q̇(u)| and Ṁ(u) → 0, we have r∗ →
∞ and Ṅc(u) → 0. This means that for a black which is
almost active only due to its dynamical charge, one can
find (i) a non-zero radiation density even at far distance
from the black hole and (ii) the respected positive energy
condition at everywhere.

• Regarding (70) and (84), working in the unit charge
gauge, for the extremal case Q̇(u) ≈ Ṁ(u), we find

r∗ → 4

3
, Ṅc(u) → − 27

128
Ṁ(u). (71)

Then, regarding (63) and (71), comparing the
quintessence and cosmological background fields for the
extremal case, we have

r∗c < r∗q , |Ṅc(u)| < |Ṅq(u)|. (72)

• Regarding (68), for both of the cases of neutral black hole
(Q(u) = 0) and black hole with static charge (Q̇(u) =
0), we have

r∗(u) =
(

−2Ṁ(u)

Ṅc(u)

) 1
3

. (73)

Then, for |Ṅc(u)| 
 |2Ṁ(u)|, we have r∗ → ∞. This
means that for an almost static background (the back-
ground with negligible dynamics relative to the black
hole), the zero of the radiation-accretion density lies at
infinity and the positive energy density is respected every-
where in the spacetime. In other cases, one can find a finite
value for r∗ representing the total zero accretion density
in which the positive energy density will be respected
in some regions while violated beyond those regions, see
our previous work on the neutral black hole case for more
details [55,56].

• Regarding both the solutions (70) and (73), the signs
of Ṁ(u) and Ṅc(u) should be opposite to have a zero
radiation-accretion density for both of the radiation-
accretion processes.

• Regarding (64) and (73), in the case that the quintessence
and cosmological backgrounds have a same behavior
(|Ṅq(u)| = |Ṅc(u)|), for |Ṅc,q(u)| < |2Ṁ(u)|, we have
r∗c(u) < r∗q(u) while for |Ṅc,q(u)| > |2Ṁ(u)|, we have
r∗c(u) > r∗q(u).

• Regarding (64) and (73) for both of the cases of neutral
black hole (Q(u) = 0) and black hole with static charge
(Q̇(u) = 0), when Ṁ(u) and Ṅq(u) as well as Ṅc(u) have
the same signs, r∗(u) is imaginary and negative for the
quintessence and cosmological fields, respectively. Then,
for these cases, the radiation-accretion density never be
zero and the positive energy condition is respected or
violated in the whole spacetime.

In the following, regarding the obtained solutions and the
above discussions, we demonstrate the various situations
which can be realized for the Bonnor–Vaidya black hole sur-
rounded by the cosmological field in the Tables 7 and 8.

Regarding Table 7, we see that for the cases III and V,
there are regions in spacetime that the positive energy con-
dition is respected, while beyond these regions it is violated.
The case II is not physical in the sense that the positive energy
condition is violated in the whole spacetime. The case IV is
also not physical in the sense that the positive energy con-
dition is violated in the whole spacetime except at the zero
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Table 7 General Bonnor–Vaidya BH and its cosmological SF parameters for ε = − 1

Ṁ Q̇ Ṅc r∗ σ(r<r∗) σ(r=r∗) σ(r>r∗) Condition Physical process

I + + − + + 0 + No Accretion of SF-ECM by BH

II + 0 + − − − − No Not physical

III + 0 − + − 0 + No Accretion of SF by BH

IV − − + + − 0 − No Not physical

V − 0 + + + 0 − No Absorbtion of BH’s radiation by SF

VI − 0 − − + + + No Accretion/decay of SF by evaporating/vanishing BH

Table 8 General
Bonnor–Vaidya BH and its
cosmological SF parameters for
ε = + 1

Ṁ Q̇ Ṅc r∗ σ(r<r∗) σ(r=r∗) σ(r>r∗) Condition Physical process

I + + − + − 0 − No Not physical

II + 0 + − + + + No Accretion of BH and SF

III + 0 − + + 0 − No Accretion of SF by BH

IV − − + + + 0 + No Absorbtion of BH’s radiation by SF

V − 0 + + − 0 + No Absorbtion of BH’s radiation by SF

VI − 0 − − − − − No Not physical

density point. The cases I and VI represent the situations
that the positive energy condition is respected in the whole
spacetime without a priory condition on the black hole and
its surrounding cosmological filed dynamics.

Regarding Table 8, we see that for the cases III and V,
there are regions in spacetime that the positive energy con-
dition is respected, while beyond these regions it is violated.
The cases I and VI are not physical in the sense that the
positive energy condition is violated in the whole spacetime.
The cases II and IV represent the situations that the positive
energy condition is respected in the whole spacetime with-
out a priory condition on the black hole and its surrounding
cosmological filed dynamics.

Regrading the conditions in the Tables 7 and 8 for ε = − 1
and ε = + 1, the behaviour of radiation-accretion density
σ(u, r) in (68) is plotted for some typical values of Ṁ , Q̇
and Ṅc in the Figs. 14 and 15, respectively. Using these plots,
one can compare the radiation-accretion density values for
the various situations.

Concerning the timelike geodesics, the distances Ds1 and
Ds2 associated with

∣∣ as1
aN

∣∣ 
 1 and
∣∣ as2
aL

∣∣ 
 1, respectively,
read as

D3
s1

= M(u)

| − Nc(u)| , Ds2 → ∞. (74)

According to (39), the case of Ds2 → ∞ is resulting from
the fact that, in contrast to black hole itself, the cosmological
constant-like field does not couple to angular momentum L ,
see as2 . Then, there is no similar effect to the GR correc-
tion term for the cosmological constant-like field. The loca-
tion of the particular distance Ds1 for some typical ranges

of the black hole mass M(u) and background cosmologi-
cal constant-like field Nc(u) parameters is plotted in Fig.
16. Thus, we realize that the possibilities for the equality
of the Newtonian force to the corresponding cosmological
constant-like background field contributions are provided

Moreover, the Eq. (55) associated with ai 
 aN takes the
form of

LDi − Q + 1

2
ND4

i 
 M. (75)

The solutions to (75) in general are complicated and are
given in the Appendix D. However, we can demonstrate those
solutions in Fig. 17 for some typical values of our L,Q,N

and M parameters. From this figure, we see that, depending
on the values of our parameter, we can find locations where
the induced force of the radiation-accretion phenomena in
the cosmological background can be equal to the Newtonian
one.

3 Summary and concluding remarks

By generalizing our previous work [55,56], we have con-
structed a general solution for the classical description of
the evaporating-accreting charged black holes in the generic
dynamical backgrounds of dust, radiation, quintessence and
cosmological constant, namely as the surrounded Bonnor–
Vaidya black holes. We have shown that (i) the original
Bonnor–Vaidya solution can be recovered by turning off the
background field, and (ii) the charged Kiselev static solution
can be obtained as another subclass of our general solution in
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Fig. 14 Radiation-accretion
density σ versus the distance r
for some typical constant Ṁ , Q̇
and Ṅc values for ε = − 1 in the
dust background. Here, we have
set Q = 1 for simplicity

Fig. 15 Radiation-accretion
density σ versus the distance r
for some typical constant Ṁ , Q̇
and Ṅc values for ε = − 1 in the
quintessence background. Here,
we have set Q = 1 for simplicity

Fig. 16 The variation of Ds1 versus typical values of the M(u) and
Nc(u) parameters for the cosmological background

the stationary limit. Regarding the obtained total radiation-
accretion density for these solutions, if Ṁ(u), Q̇(u) and
Ṅs(u) have a same order of magnitude, the following dis-

tinct physical situations can be realized for the various back-
grounds with the equation of state parameter ωs .

• For ωs < 0, the charge contribution is dominant near
the black hole while for the far distances, we have
|σQ | < |σM | < |σNs |, meaning that the surrounding field
contribution is dominant at large distances.

• For 0 < ωs < 1/3, the charge contribution is dominant
near the black hole while for the far distances, we have
|σQ | < |σNs | < |σM |, meaning that the black hole mass
contribution is dominant at large distances.

• For ωs > 1/3, the surrounding field contribution is dom-
inant near the black hole while for the far distances, we
have |σNs | < |σQ | < |σM | meaning that the black hole
mass contribution is dominant again at large distances.

We have addressed some interesting features of these solu-
tions and classified them according to their behaviors under
imposing the positive energy condition. We have discussed
that this condition gives some severe restrictions on the black
hole and its background field dynamics. Using this condition,
we have found a particular distance possessing zero effec-
tive radiation-accretion density. For all the Bonnor–Vaidya
black holes surrounded by the dust, radiation, quintessence
and cosmological constant fields, we have found a corre-
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Fig. 17 The variation of Di versus typical values of the L,Q and N
parameters in (48) for the cosmological constant-like background. We
have set M = 1 without loss of generality in all the plots. The plots a–c

represent the cases of Q = − 1, 0 and + 1, respectively. The plots d–f
represents the case of L = − 1, 0 and + 1. The plots g–i represent of
N = − 1, 0 and + 1, respectively

sponding particular distance r∗(u) possessing zero effective
radiation-accretion density, i.e σ(u, r∗) = 0. This distance
has a dynamical location in general, except for the case of
constant rates for the black hole and its surrounding field
parameters, i.e Ṁ(u), Q̇(u) and Ṅs(u). For the cases in which
there is no real and positive r∗(u), the interpretation is that the

total radiation-accretion density σ(u, r) never and nowhere
vanishes. Also, we have studied the timelike geodesics for the
obtained solutions and have found that three new correction
terms arise relative to the case of the standard Schwarzschild
black hole. The first kind of corrections is due to the charge of
the central black hole which includes two terms in which its
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first term is rather similar to the term of Newtonian gravita-
tional force, while its second term is similar to the relativistic
correction of GR due to the coupling of charge and angu-
lar momentum. The second kind of our correction terms is
resulting from the presence of the background fields which
surround the black hole. This corrections also include two
terms in which the first term looks like to Newtonian gravita-
tional term, while the second term is similar to the relativis-
tic correction of GR due to the coupling of background field
parameter to the angular momentum. We have discussed that
for the various background fields, there are possibilities for
the equality of Newtonian and GR correction terms to the cor-
responding charge and background field contributions. We
have given some plots denoting these possibilities for each
case. The third type of new corrections, as a non-Newtonian
correction, is resulting from the dynamics of the central black
hole and its surrounding field. For this case also, it is shown
that depending on the dynamical features of black hole and its
background, one can find possibilities that this new dynam-
ical correction can be compared with the Newtonian case.
We have given some plots denoting these particular situa-
tions. Accordingly, we realize that for more realistic cases
which are non-static and possess non-empty backgrounds in
nature, the geodesic equation of any object depends strictly
not only on the (i) mass of the central object of the system, (ii)
the angular momentum of the orbiting body, but also on (iii)
background field features and (iv) black hole-background
field dynamics. We have summarized our obtained results
for the various surrounding fields as follows.

• For the dust background, we have the Bonnor–Vaidya
black hole with the effective dynamical mass 2Mef f =
2M(u) + Nd(u). To have a particular distance r∗ at
which σ(u, r∗) = 0, the condition |2Ṁ(u)| ≥ | Ṅd(u)|
is required. For the case of |Q(u)Q̇(u)| 
 |Ṁe f f |, we
have r∗ → ∞. In the unit charge gauge, for the extremal
case (Q̇(u) ≈ Ṁ(u)), for r∗ → ∞, we find that black
hole evolves very slow relative to its dust background.
Then, by satisfaction of these dynamical conditions to
have r∗ → ∞, the positive energy density condition is
respected everywhere in the spacetime. In other cases,
the positive energy density is respected in some regions
while it is violated beyond those regions. Another inter-
esting situation happens when Ṁe f f = 0. In this case,
the radiation-accretion density is only resulting from the
charge contribution with r∗ → ∞.

• For the radiation background, we have the Bonnor–
Vaidya black hole with the effective dynamical charge
Qef f (u) = √

Q2(u) + Nr (u). To have a particular
distance r∗ at which σ(u, r∗) = 0, the condition
|2Q(u)Q̇(u)| ≥ |Ṅr (u)| is required. For the case of
|Ṁ(u)| 
 |Qef f (u)Q̇e f f (u)|, we have r∗ → ∞. In the
unit charge gauge, for the extremal case (Q̇(u) ≈ Ṁ(u)),

we find that black hole evolves very slow relative to
its radiation background. Then, by satisfaction of these
dynamical conditions to have r∗ → ∞, the positive
energy density is respected everywhere in the space-
time. In other cases, the positive energy density will be
respected in some regions, while it is violated beyond
those regions. Another interesting situation happens for
two different cases as Qef f (u) = 0 and Q̇e f f (u) = 0 cor-
responding to Q = Nr = 0 and 2Q(u)Q̇(u) = − Ṅr (u),
respectively. In these cases, the radiation-accretion den-
sity is only resulting from the black hole mass contribu-
tion. For both of the cases of neutral black hole (Q(u) =
0) and black hole with static charge (Q̇(u) = 0), for
|2Ṁ(u)| 
 |Ṅr (u)|, we have r∗ → ∞.

• For the quintessence background, the positive energy
density condition demands Nq(u) � 0. To have a par-
ticular distance r∗ at which σ(u, r∗) = 0, the positivity
of r∗ requires that Ṅq(u) takes an opposite sign of Ṁ(u)

(and Q̇(u)). For both of the black holes with |Ṁ(u)| 

|Q(u)Q̇(u)| and Ṁ(u) → 0, we have r∗ → ∞ and
Ṅq(u) → 0. This means that for a black which is almost
active only due to its dynamical charge, one can find
that (i) there is a non-zero radiation density even at far
distance from the black hole and (ii) positive energy con-
dition is respected everywhere. Here, in the unit charge
gauge, for the extremal case (Q̇(u) ≈ Ṁ(u)), we find
r∗ → 3

2 and Ṅq(u) → − 8
27 Ṁ(u). For both of the cases

of neutral black hole (Q(u) = 0) and black hole with
static charge (Q̇(u) = 0), for |Ṅq(u)| 
 |2Ṁ(u)|, we
have r∗ → ∞. This means that for an almost static back-
ground (the background with negligible dynamics rela-
tive to the black hole mass), the zero of the radiation-
accretion density lies at infinity and the positive energy
density is respected everywhere in the spacetime.

• For the cosmological background, the positive energy
density condition demands Nc(u) � 0 representing
(dynamical) de Sitter space. To have a particular distance
r∗ at which σ(u, r∗) = 0, the positivity of r∗ requires that
Ṅc(u) with respect to QQ̇(u) (and Ṁ(u)) takes an oppo-
site sign. For both of the black holes with |Ṁ(u)| 

|Q(u)Q̇(u)| and Ṁ(u) → 0, we have r∗ → ∞ and
Ṅc(u) → 0. This means that for a black which is almost
active only due to its dynamical charge, one can find (i) a
non-zero radiation density even at far distance from the
black hole and (ii) the respected positive energy condition
at everywhere. In the unit charge gauge, for the extremal
case (Q̇(u) ≈ Ṁ(u)), we find r∗ → 4

3 and Ṅc(u) →
− 27

128 Ṁ(u). Then, comparing the quintessence and cos-
mological background fields for the extremal case, we
have r∗c < r∗q and |Ṅc(u)| < |Ṅq(u)|. Also, for both of
the cases of neutral black hole (Q(u) = 0) and black hole
with static charge (Q̇(u) = 0), for |Ṅc(u)| 
 |2Ṁ(u)|,
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we have r∗ → ∞. This means that for an almost static
background (the background with negligible dynamics
relative to the black hole), the zero of the radiation-
accretion density lies at infinity and the positive energy
density is respected everywhere in the spacetime. In
the case that the quintessence and cosmological back-
grounds have a same behavior (|Ṅq(u)| = |Ṅc(u)|), for
|Ṅc,q(u)| < |2Ṁ(u)|, we have r∗c(u) < r∗q(u) while for
|Ṅc,q(u)| > |2Ṁ(u)|, we have r∗c(u) > r∗q(u). Finally,
for both of the cases of neutral black hole (Q(u) = 0)
and black hole with static charge (Q̇(u) = 0), when Ṁ(u)

and Ṅq(u) as well as Ṅc(u) have the same signs, r∗(u)

is imaginary and negative for the quintessence and cos-
mological fields, respectively. Then, for these cases, the
radiation-accretion density never be zero and the positive
energy condition is respected or violated in the whole
spacetime.

For all of the mentioned surrounding fields, by classifying
the possible situations in Tables 1, 2, 3, 4, 5, 6, 7 and 8, we
find that (i) there are situations possessing regions in space-
time that the positive energy condition is respected, while
beyond these regions it is violated. (ii) there are some other
situations that are not physical in the sense that the positive
energy condition is violated in the whole spacetime, and (iii)
there are also possible situations such that the positive energy
condition is respected in the whole spacetime with or with-
out a priory condition on black hole and its surrounding filed
dynamics. To depict these situations, we have given some
plots (Figs. 2 and 3 for dust, 6 and 7 for radiation, 10 and 11
for quintessence as well as 14 and 15 for the cosmological
constant-like background) for the radiation-accretion density
versus the distance r for some typical values of Ṅs(u), Ṁ(u)

and Q̇(u) in the different backgrounds. Also, considering the
timelike geodesics, the possibility of (i) the equality of the
Newtonian force as well as GR correction terms to the corre-
sponding contributions of various backgrounds, and (ii) the
equality of the induced force resulting from the radiation-
accretion phenomena to the Newtonian force are shown in
the Figs. 4 and 5 for the dust background, in 8 and 9 for the
radiation background, in 12 and 13 for the quintessence back-
ground, and in 16 and 17 for the cosmological constant-like
background.

In our next work, we aim to report elsewhere on the causal
structures, horizon and thermodynamical properties of our
obtained solutions.
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Appendix A

For the Bonnor–Vaidya black hole in the quintessence back-
ground, we have the following solutions

r1(u) = − 2Ṁ(u)

3
1
3 x

1
3 (u)

+ x
1
3 (u)

3
2
3 Ṅq(u)

,

r2(u) = (1 + i
√

3)Ṁ(u)

3
1
3 x

1
3 (u)

− (1 − i
√

3)x
1
3 (u)

2 × 3
2
3 Ṅq(u)

,

r3(u) = (1 − i
√

3)Ṁ(u)

3
1
3 x

1
3 (u)

− (1 + i
√

3)x
1
3 (u)

2 × 3
2
3 Ṅq(u)

, (76)

where

x(u) = 9Ṅq(u)
2
Q(u)Q̇(u)

+√
3
√

8Ṁ3(u)Ṅ 3
q (u) + 27Ṅ 4

q (u)Q2(u)Q̇2(u),

(77)

for σ(u, r) = 0 where σ(u, r) is given by (60). Due to the
complexity of these solutions, one may consider the special
case of

Ṅq(u) = − 8Ṁ3(u)

27Q2(u)Q̇2(u)
. (78)

Then, Eq. (77) simplifies to

x(u) = 9Ṅq(u)
2
Q(u)Q̇(u), (79)

and the solutions (76) reduce to

r1(u) = −3Q̇(u)Q(u)

Ṁ(u)
,

r2(u) = r3(u) = 3Q̇(u)Q(u)

2Ṁ(u)
. (80)

Finally, regarding the fact that Q̇(u) and Ṁ(u) have the same
signs in both of the radiation and accretion processes, the
only positive solution representing a zero radiation-accretion
energy density will be r∗(u) = r2(u) = r3(u). Note that here,
the presence of negative solution r1(u) does not change the
total physical properties of the solution, because there is a
positive solution r∗(u) = r2(u) = r3(u) for radial distance
which possesses zero energy density.
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Appendix B

The solutions to the Eq. (66) are as follows.

Di1 
 − 2
4
3 L(

54M + 54N + √
864L3 + (54M + 54Q)2

) 1
3

+
(

54M + 54N + √
864L3 + (54M + 54Q)2

) 1
3

3 × 2
1
3

,

Di2 
 2
1
3 (1 + i

√
3)L(

54M + 54N + √
864L3 + (54M + 54Q)2

) 1
3

−
(1 − i

√
3)

(
54M + 54N + √

864L3 + (54M + 54Q)2
) 1

3

6 × 2
1
3

,

Di3 
 2
1
3 (1 − i

√
3)L(

54M + 54N + √
864L3 + (54M + 54Q)2

) 1
3

−
(1 + i

√
3)

(
54M + 54N + √

864L3 + (54M + 54Q)2
) 1

3

6 × 2
1
3

(81)

Appendix C

For the Bonnor–Vaidya black hole in the cosmological field
background, we have the following solutions

r1(u) = 1

2

√
x(u) − 1

2

√
−x(u) − 4Ṁ(u)

Ṅc(u)
√
x(u)

,

r2(u) = 1

2

√
x(u) + 1

2

√
−x(u) − 4Ṁ(u)

Ṅc(u)
√
x(u)

,

r3(u) = −1

2

√
x(u) − 1

2

√
−x(u) + 4Ṁ(u)

Ṅc(u)
√
x(u)

,

r4(u) = −1

2

√
x(u) + 1

2

√
−x(u) + 4Ṁ(u)

Ṅc(u)
√
x(u)

, (82)

where

x(u) = − 2
8
3 Q(u)Q̇(u)

3
1
3 Ṅc(u)

(
9Ṁ2(u)

Ṅ2
c (u)

+
√

3
√

27Ṁ4(u)+128Ṅc(u)Q3(u)Q̇3(u)

Ṅ2
c (u)

) 1
3

+
2

1
3

(
9Ṁ2(u)

Ṅ2
c (u)

+
√

3
√

27Ṁ4(u)+128Ṅc(u)Q3(u)Q̇3(u)

Ṅ2
c (u)

) 1
3

3
2
3

,

(83)

for σ(u, r) = 0 where σ(u, r) is given by (68). Due to the
complexity of these solutions, one may consider the special

case of

Ṅc(u) = − 27Ṁ4(u)

128Q3(u)Q̇3(u)
. (84)

Then, Eq. (88) simplifies to

x(u) =
(

8Q(u)Q̇(u)

3Ṁ(u)

)2

, (85)

and the solutions (82) reduce to

r1(u) = r2(u) = 4Q̇(u)Q(u)

3Ṁ(u)
,

r3(u) = −
4i

(√
2Q(u)Q̇(u) − i Q(u)Q̇(u)

)
3Ṁ(u)

,

r4(u) =
4i

(√
2Q(u)Q̇(u) + i Q(u)Q̇(u)

)
3Ṁ(u)

. (86)

Finally, regarding the fact that Q̇(u) and Ṁ(u) have the same
signs in both of the radiation and accretion processes, the
only positive solution representing a zero radiation-accretion
energy density will be r∗(u) = r1(u) = r2(u). Note that here,
the presence of complex solutions r3(u) and r4(u) do not
change the total physical properties of the solution, because
there is a positive solution r∗(u) = r1(u) = r2(u) for radial
distance which possesses zero energy density.

Appendix D

The solutions to (75) are

Di1 = 1

2

√
E − 1

2

√
−E − 4L

N
√
E

,

Di2 = 1

2

√
E + 1

2

√
−E − 4L

N
√
E

,

Di3 = −1

2

√
E − 1

2

√
−E − 4L

N
√
E

,

Di4 = −1

2

√
E + 1

2

√
−E − 4L

N
√
E

, (87)

where

E = − 8 × 2
1
3 (M + Q)(

108L2N + √
11664L4N2 + 55296N3(M + Q)3

) 1
3

+
(

108L2N + √
11664L4N2 + 55296N3(M + Q)3

) 1
3

3 × 2
2
3 N

.

(88)
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