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Abstract—We propose a contextual multi-armed bandit (CMAB)
model for cross-layer learning in heterogeneous cognitive radio
networks (CRNs). We consider the scenario where application
adaptive modulation (AAM) is implemented in the physical (PHY)
layer for heterogeneous applications in the application (APP)
layer, each having dynamic packet error rate (PER) requirement.
We consider the bit error rate (BER) constraint as the context
to mode selector determined by the PHY layer based on the
PER requirement, and propose a learning algorithm that learns
the modulation with the highest expected reward online over
an unknown dynamic wireless channel without channel state
information (CSI), where the reward is taken as the Quality
of Service (QoS) provided by the PHY layer to upper layers.
We show numerically that the proposed algorithm’s expected
cumulative loss with respect to an oracle which knows the channel
distribution perfectly grows sublinearly in time, and hence, the
average loss asymptotically approaches to zero, which in turn
yields optimal performance.

Keywords—BER, SNR, regret, PHY layer, AAM, mode selector,
feedback, no CSI.

I. INTRODUCTION

A typical wireless system consists of various layers attached

in a protocol stack, where each layer performs a specific

network function through limited interaction with the other

layers [1]. Generally, each layer optimizes its own parameters

locally without considering the parameters of the other layers,

which results in a suboptimal solution. This motivates joint op-

timization across layers referred to as cross-layer optimization.

While cross-layer optimization violates the traditional layered

structure, it provides substantial performance improvement [2].

Many prior works on cross-layer optimization assume com-

plete knowledge of the system dynamics, and propose efficient

optimization methods using tools such as convex optimiza-

tion, Lagrange duality, sophisticated scheduling methods for

nonconvex problems and combinatorial optimization [3]. For

instance, [4] considers spectral efficiency from an optimization

perspective with complete knowledge of wireless channel, and

proposes cross-layer solution. However, in practice, wireless

channel is highly dynamic due to user mobility, multipath and

shadowing. Furthermore, obtaining accurate CSI is expensive

in terms of system resources. This motivates us to investigate

optimal cross-layer learning in the absence of such informa-

tion.
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In this paper, we consider learning the optimal transmission

parameters through repeated interaction with an unknown

environment. In our model, the APP layer serves numerous

applications with dynamic PER requirements. For each data

frame, the PHY layer calculates the target BER based on the

target PER, and then the target BER is provided to mode

selector as a context. Then, the transmitter chooses an AAM,

which is used to transmit the data frame over an unknown

wireless channel. After the transmission is complete, the BER

is calculated at the receiver end, and communicated to the

mode selector. Based on this information and its previous ob-

servations, the mode selector calculates a reward that depends

on the achieved BER and the target BER, and adapts its AAM

selection strategy to maximize its long-term performance. The

selected AAM is communicated back to the transmitter via an

error-free channel.

We propose a reinforcement learning model and a learn-

ing algorithm for the cross-layer learning problem described

above. Specifically, we cast this problem as a CMAB [5],

which is a generalization of the multi-armed bandit (MAB)

[6]. The goal in this problem is to maximize the cumulative

reward (or equivalently minimize the regret) by learning the

best actions through a process that involves exploration and

exploitation. In the MAB, the reward is a random variable

that depends on the chosen action. In the CMAB, the reward

also depends on the context (side-information) that is revealed

before action selection takes place. Thus, the regret in the

MAB is defined with respect to the best fixed action, while

the regret in the CMAB is defined with respect to the best

sequence of actions given the contexts. In prior works, MAB

methods are used for opportunistic spectrum access in CRNs

to optimize the performance in unknown and dynamically

changing environments [7].

CRNs with heterogeneous applications/users usually require

different AAM strategies for each user, since each user has

a different QoS requirement [8]. For instance, [9] considers

heterogeneous CRNs, and proposes dynamic resource alloca-

tion schemes for these. Prior works on adaptive modulation

selection consider two different types of block-fading channel

models based on the coherence time of channel fades [10]:

slow block-fading and fast block-fading. In slow block-fading,

channel fades remains constant during the transmission of a

data frame [11]. This enables channel state estimation at the

receiver, which is used for selecting the right transmission

mode for the next data frame. In fast block-fading, channel978-1-5386-1501-0/18/$31.00 c© 2018 IEEE



fades vary even during the transmission of a single data

frame, and change from packet to packet. Hence, channel state

estimation is not beneficial in choosing the right transmission

mode [12]. Several solutions are proposed for the fast block-

fading model, such as [13], which uses joint MAP equalization

and channel estimation. In this paper, we assume that the

unknown channel is a fast block-fading channel, and aim at

learning the optimal context dependent AAM without CSI.
The main contributions of this paper are summarized as

follows:

• We consider a cross-layer learning problem in a fast

block-fading channel, where the current channel condi-

tion cannot be accurately observed. Then, we propose a

learning algorithm that learns the best QoS dependent

AAM by solely using the past BER observations and

target BER requirements provided by the PHY layer.

• We compare the performance of the proposed algorithm

with an oracle that always chooses the best QoS de-

pendent AAM using perfect knowledge of the channel

distribution. As the performance measure, we use the

regret, and show via experiments that the regret of the

proposed algorithm increases sublinearly over time.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

The system model is shown in Fig 1. There are three layers

in the stack: the PHY layer, the media access control (MAC)

layer, and the APP layer. The APP layer serves multiple

applications sequentially over time. Each application has a

dynamic PER constraint, which is used to determine the target

BER at the PHY layer denoted by BERtarget. We also refer to

this as the context. The conversion from PER to BER is given

in [4] for uncoded QAM modulations, which is dependent

on the application in hand and error correction algorithm,

for instance forward error coding (FEC) at the PHY layer

or automatic repeat request (ARQ) at the MAC layer. When

an application runs, it continuously sends its context to the

PHY layer. Since there can be multiple applications running

at the same time, we order the contexts based on their arrival

times, thus in our setting, each context arrival corresponds to

a decision epoch. At the PHY layer, the data is transmitted

frame by frame through an unknown channel. Each frame

may contain multiple packets from the MAC layer. The PHY

layer adapts its modulation based on the application and its

context. Hence, we call the modulation chosen by the PHY

layer for the frame that corresponds to a particular context as

the application adaptive modulation (AAM).
We consider a very general channel model and assume that

neither the channel statistics nor the CSI is available. Thus,

the system aims at learning the best AAM on average for each

context, where the best AAM is the one that maximizes the

expected bits per symbol (BPS) rate conditioned on having

a BER lower than the BER constraint of the corresponding

application.
After the transmission of a data packet is complete, the

receiver calculates BER and communicates it to the mode
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Fig. 1: System Model

selector. We assume that perfect CRC-based error detection

is used at the receiver end via reliable codes, and hence,

this computation is error-free. Since the mode selector is at

the receiver end, it calculates the instantaneous reward of the

packet based on the BER. At the end of each data frame, the

mode selector updates the expected reward of the chosen AAM

using the average rewards of packets inside the transmitted

data frame. Then, the mode selector observes the next context,

calculates the estimated best AAM and feeds it back to the

transmitter via a fast link feedback channel, after which, the

transmitter selects the fed back AAM for the next data frame.

B. Action Space

Let t denote the transmission time of the tth data frame

and tp denote the transmission time of the tpth data packet.

At each time t PHY layer chooses an AAM from its AAM

set A := {a1, . . . , aA}, where A is the number of AAMs. In

our setup, AAM ai corresponds to uncoded QAM modulation

with constellation size 4i, and A = 5. The BPS rate of AAM

a is denoted by Ra, which is equal to 2i for a = ai. Quality of

the channel is represented by its signal-to-noise ratio (SNR).

At the MAC layer, each packet contains NP bits. At the PHY

layer, AAM a maps each packet to a symbol-block containing

NP /Ra symbols. Multiple such blocks constitute one frame

containing NF symbols. The number of symbol blocks in a

data frame varies for each AAM a ∈ A, and is calculated as

Na
b = NFRa/NP . This also corresponds to the number of

data packets in the data frame. NP /Ra and NFRa/NP are

assumed to be integers.

C. Reward Structure

We consider fixed transmission power and a fast block-

fading channel, where the channel fades are considered to

be nearly the same as the packet length, and hence, the

instantaneous received SNR Γ remains constant during the

transmission of a packet. We assume that Γ comes from an

unknown distribution pΓ, and is independently sampled at each

packet transmission time tp. While typically SNR ranges from

0 to 50dB, for technical analysis we linearly rescale the SNR

such that it lies in [0, 1].
Let N(tp) be the number of bits of packet tp received in

error, when the instantaneous SNR is γ(tp) under the selected
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Fig. 2: Bit Error Probability vs SNR for AWGN channel

AAM. The BER for the tpth transmitted packet is calculated

by the receiver as BER(tp) = N(tp)/NP . Similarly, let Na,Γ

denote the number of bits of an NP bit packet received in

error and BERa,Γ = Na,Γ/NP denote the BER of AAM

a given instantaneous SNR Γ. We have BERa,Γ ∈ W :=
{0/NP , 1/NP . . . , NP /NP }. Also, let BERa,γ denote the bit

error probability (BEP) of AAM a when Γ = γ. It is known

for a wide class of SNR distributions (including Gaussian,

Nakagami-m, Rayleigh, Rician) that the BEP monotonically

decreases with SNR. Moreover, as shown in Fig. 2, for a fixed

SNR the BEP increases when a higher order modulation is

selected. For a fixed SNR, the BEP is the expectation of the

BER. However, we cannot use BEP curves in Fig. 2 since

both the SNR and its distribution are unknown. The (random)

reward of AAM a given target BER w is

ra(w) =

{

Ra/Rmax BERa,Γ ≤ w
0 otherwise

(1)

where Rmax = maxa∈A Ra is the maximum BPS rate. This

normalization allows us to bound the reward within [0, 1]. The

expected reward of AAM a for target BER w is given as

µa(w) = E[ra(w)] =
Ra

Rmax
Fa(w). (2)

where Fa(w) = Pr(BERa,Γ ≤ w) is the CDF of BERa,Γ.
It is assumed that the PHY layer provides the target BER

w to mode selector from set Wtarget := {w ∈ W : w ≥
BERtarget

min } ⊂ [0, 1], where BERtarget
min denotes the mini-

mum target BER. We assume that Fa satisfies the similarity

information with respect to w ∈ Wtarget for all a ∈ A, which

is stated in the following assumption.

Assumption 1. ∃L > 0, such that ∀a ∈ A, wc, wd ∈ W
target

we have

|Fa(wd)− Fa(wc)| ≤ L|wd − wc|.

Next, we show that this assumption holds for an example

channel model, where NP = 1080, BERtarget
min = 2

1080 and

the distribution of Γ is given as pΓ(γ) =
1
γ̄ exp(−γ

γ̄ ), where

γ̄ := 1/5 is the average SNR. Fa, a ∈ A, for this example

are given in Fig. 3(i). For this case, it is observed that L = 21
satisfies Assumption 1. In addition, µa(w), a ∈ A also satisfies

Assumption 1.

Algorithm 1 Application Adaptive Modulation (AAM)

1: Input: A, T, Ra ∀a ∈ A
2: Initialize: Partition the context set [0, 1] ⊃ Wtarget into

mT equal length intervals denoted by PT

3: Tp,a = 0, µ̂p,a = 0, ∀a ∈ A, ∀p ∈ PT

4: t = 1, tp = 1, h(0) = 0
5: Rmax = maxa∈A Ra, A = |A|
6: while t ≥ 1
7: Observe w(t) = BERtarget(t)
8: Find a set p(t) in PT that contains w(t)

9: µ̄p(t),a = µ̂p(t),a +
√

2(1+2 log(2AmTT 3/2))
Tp(t),a

, ∀a ∈ A

10: a(t) = argmaxa∈A µ̄p(t),a

11: h(t) = h(t− 1) +N
a(t)
b

12: r = 0, τ = 0
13: while tp ≤ h(t)
14: Transmit packet tp using AAM a(t)
15: Observe BER(tp)
16: rp = I(BER(tp) ≤ w(t))Ra(t)/Rmax

17: r = (rτ + rp)/(τ + 1)
18: τ ← τ + 1, tp ← tp + 1
19: end while

20: µ̂p(t),a(t) = (µ̂p(t),a(t) Tp(t),a(t) + r)/(Tp(t),a(t) + 1)
21: Tp(t),a(t) = Tp(t),a(t) + 1
22: t← t+ 1
23: end while

D. Regret of Learning

We denote the target BER at time t with w(t). The optimal

AAM at time t is a∗(t) = argmaxa∈{a1,...,aA} µa(w(t)).
Computing a∗(t) requires knowledge of pΓ. In our case, it

is impossible to learn pΓ since there is no CSI. Nevertheless,

we compare our algorithm with an oracle that always selects

the optimal AAM. We define the performance loss of our

algorithm with respect to this oracle as the expected regret,

which is given as

E[Reg(T )] :=

T
∑

t=1

µa∗(t)(w(t))− E

[

T
∑

t=1

µa(t)(w(t))

]

. (3)

III. AAM ALGORITHM

The proposed algorithm (Algorithm 1) is based on a

contextual bandit algorithm [14], which uniformly partitions

[0, 1] ⊃ Wtarget into mT equal length intervals. This partition

is denoted by PT . The algorithm keeps and updates two

parameters for each a ∈ A and p ∈ PT : (i) Tp,a which is the

number of times AAM a is selected for contexts in p, and (ii)
µ̂p,a which is the sample mean of the rewards that corresponds

to times when AAM a is selected for contexts in p. At each

time t, the algorithm identifies p(t) ∈ PT which contains w(t)
(if there are multiple such sets, then one of them is randomly

selected), and then, chooses the AAM a(t) that maximizes

µ̄p(t),a, which is the sum of the sample mean reward µ̂p(t),a

and an uncertainty term given in line 8 of Algorithm 1. This
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Expected regrets of the fixed modulation selection, random selection and AAM

way, µ̄p,a + L/mT forms an upper confidence bound (UCB)

for µa(w(t)). This method allows us to exploit the similarity

of the AAM rewards given in Assumption 1.

The algorithm also keeps a counter h(t) for the total number

of packets to be transmitted up to time t. Since, instantaneous

SNR changes from packet to packet, the reward for each packet

is first calculated individually using (1), and then, the reward

for the tth data frame is obtained by averaging the rewards of

the packets inside that frame. Finally, the empirical reward of

the chosen AAM is updated.

IV. ILLUSTRATIVE RESULTS

We set T = 104, NP = 1080, mT = ⌈T 1/3⌉. w(t)
takes values in four different intervals that correspond to very

low, low, medium and high BER constraints, and is randomly

selected from one of these intervals independently from the

other times. For simplicity, we assume that the frame that

corresponds to AAM a contains exactly Na
b = Ra/Ra1

packets. Hence, for AAM a1 data frame contains 1 packet,

for AAM a2 data frame contains 2 packets and so on.

The distribution of Γ is given as pΓ(γ) = 1
γ̄ exp(−γ

γ̄ ),
where γ̄ := 1/5 is the average SNR. For packet-level fades,

each packet essentially experiences an AWGN channel. The

expected regret is calculated based on (3), and reported results

correspond to regret averages over 100 runs. In addition,

the uncertainty term in the algorithm is scaled with 1/10 to

provide a better exploration and exploitation ratio, which is

observed to work well in practice. The total expected regret

and the time averaged expected regret are shown in Fig. 3(ii).

We also compare the regret of our algorithm with applying

a fixed modulation at all times and random selection in Fig.

3(iii). Since AAM exploits contextual information, best action

varies for different contexts, which results in a substantially

lower regret.

V. CONCLUSION

In this paper, we propose an online algorithm for cross-layer

optimization in heterogeneous CRNs. The proposed algorithm

learns the expected best transmission strategy given a dynamic

BER constraint in an unknown fast block-fading channel. We

compare this algorithm with an oracle that knows the channel

distribution and always selects the best transmission strategy

for each context. Via numerical results, we show that the regret

is sublinear in T for an example setup.
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