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ABSTRACT

AN APPLICATION OF CLUSTERING R&D PROJECTS
BY USING THE ANALYTIC HIERARCHY PROCESS

Mehmet Tunç

M.S. in Industrial Engineering

Supervisor: Prof. Dr. Ülkü Gürler

July, 2004

Due to imprecision or uncertainty that is inherent in the design process, the

management of research and development projects is very challenging. With the

growing complexity of the design process and need for different specializations, it

is getting even more tougher. Especially, in an organization where tens of high-

tech, military R&D projects are carried out concurrently, management should be

supported with the state-of-the-art decision and operations research methods.

In this thesis, we consider an application of the classification of R&D projects.

More specifically, the problem discussed in this study is grouping N different

projects into groups based on a predetermined set of features. Since some fea-

tures are fuzzy, expert knowledge is needed to quantify the features. In order to

quantify the features successfully, Analytic Hierarchy Process is used. Finally, by

using various clustering algorithms the projects are clustered.

Keywords: Analytic Hierarchy Process, clustering projects, quantification, multi-

criteria clustering, project evaluation.
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ÖZET

ANALİTİK HİYERARŞİ YÖNTEMİNİ KULLANARAK
AR&GE PROJELERİNİN SINIFLANDIRILMA

UYGULAMASI

Mehmet Tunç

Endüstri Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Ülkü Gürler

Temmuz, 2004

Tasarım sürecinin doğasından kaynaklanan belirsizlikler sebebiyle, araştırma ve

geliştirme projelerinin yönetimi oldukça zordur. Tasarım çalışmalarının artmakta

olan karmaşıklığı ve farklı alan uzmanlıkları gereksinimi yönetilmelerini daha da

zorlaştırmaktadır. Özellikle, onlarca yüksek teknoloji içeren askeri Ar-Ge pro-

jelerinin bir arada yönetildiği bir organizasyonda yönetimin, modern karar verme

ve yöneylem araştırması yöntemleri ile desteklenmesi gerekmektedir.

Bu tezde, Ar-Ge projelerinin sınıflandırılmasına ilişkin bir uygulama ince-

lenmiştir. Bu çalışmada anlatılmakta olan problem, N farklı projenin önceden

belirlenmiş nitelik seti temel alınarak sınıflandırılmasıdır. Bazı niteliklerin belir-

siz olması sebebiyle bu niteliklerin ölçümlerinde uzman bilgisine ihtiyaç duyul-

maktadır. Bu nitelikleri başarıyla ölçmek için bu çalışmada “Analitik Hiy-

erarşi Yöntemi” kullanılmıştır. Son olarak nitelikleri ölçülmüş projeler çeşitli

sınıflandırma yöntemleri kullanılarak sınıflandırılmışlardır.

Anahtar sözcükler : Analitik Hiyerarşi Yöntemi, proje sınıflandırma, nice-

lendirme, çoklu kriter sınıflandırma, proje değerlendirme.
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Özsoy at Aselsan for their support, friendship, suggestions during all Aselsan

time. I also wish to express my thanks to MST (Microwave and System Tech-

nologies), one of the three divisions of Aselsan.

I would like to take this opportunity to thank Meray Y. İlhan for her help,

support and love, especially during this thesis completion process.

I would also express my gratitude to mom, dad, my brother Hüseyin for their
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Chapter 1

Introduction

Due to imprecision or uncertainty that is inherent in the design process, the

management of research and development projects is very challenging. With the

growing complexity of the design process and need for different specializations,

it is getting even more complicated. Especially, in an organization where tens

of high-tech, military R&D projects are carried out concurrently, management

should be supported with the state-of-the-art decision making and operations

research methods.

1.1 Motivation

Aselsan A.Ş. is one of the biggest companies in the military electronics sector

in Turkey. MST (Microwave and System Technologies) is one of the three di-

visions of Aselsan. In MST, there is a project-based structure, and it is one

of the examples of organizations where tens of high-tech military R&D projects

are carried out concurrently. As it is the case in MST, the projects may have

completely different characteristics. For example, in terms of design type, some

projects require breakthrough design, whereas some others require just redesign

or continuous design of previously designed systems. Hence, the ways that each

of the projects are managed and treated, may/should differ.

1



CHAPTER 1. INTRODUCTION 2

In this thesis, our aim is to form meaningful project clusters based on project

characteristics. In other words, the objective is to identify project groups with

common characteristics so that they can be managed in similar manners. This

work can be thought as the first step of determining key issues for administrative

processes of projects having same characteristics.

The features of projects have been determined beforehand for the case of

MST, and the question of what should be the features of R&D projects, is not

addressed in this thesis. The key point in this work is defining the projects in

terms of features, and measuring the amount of each of the features that each

project possesses. Some features are fuzzy, some others are not fuzzy, but their

effects to project management are fuzzy. Therefore, expert knowledge is the main

source. For this reason, Analytic Hierarchy Process (AHP) is used to define the

projects in terms of features.

1.2 Organization of the Thesis

The thesis is organized as follows: Chapter 2 summarizes the studies in the

literature on project classification, Analytic Hierarchy Process and multicriteria

clustering. In Chapter 3, the model, constructed for the clustering of projects, is

explained. Chapter 4 includes the application part of the study. Finally, Chapter

5 concludes the thesis.



Chapter 2

Related Work

2.1 Project Classification

A frequently used process by which products are created is the practice of project

management. In fact, projects have become one of the most common forms of

temporary organizations, and they are set for achieving a wide variety of organi-

zational goals. Yet, ironically, as an organizational concept, project management

is relatively new and probably not well understood. Most research literature on

the management of projects is relatively inchoate and still suffers from a scanty

theoretical basis and a lack of concepts [18].

One of the major barriers in understanding the nature of projects has been the

little distinction made between the project type and its strategic and managerial

problems. According to Pinto and Covin(1989) [12] “The prevailing tendency

among the majority of academics has been to characterize all projects as funda-

mentally similar, and the implicit view of many academics could be represented

by the axiom, a project is a project.” However, works related to some distinc-

tions among projects, based on levels change, exists (Blake (1978) [4], Hauptman

(1986) [7], Whellwright and Clark(1992) [21], Shenhar(2001) [18]). Shenhar [18]

noted that none of the typologies mentioned in the literature has developed into

3



CHAPTER 2. RELATED WORK 4

a standard, fully accepted theoretical framework. Moreover the proposed typolo-

gies are too general for MST’s projects such that majority of the projects come

together in the same grouping. In addition, there are some special factors of Asel-

san, that must be taken into account in project classification. For this reason we

have decided that we can not use the proposed typologies for the case of Aselsan.

2.2 Analytic Hierarchy Process (AHP)

The Analytic Hierarchy Process was developed by Thomas L. Saaty in 1970’s.

AHP provides a flexible and easily understood way to analyze and decompose the

decision problem. It is a multi-criteria decision making methodology that allows

subjective as well as objective factors to be considered in the evaluation process.

In its general form, it is a framework for performing both deductive and inductive

thinking. AHP was designed as a scaling procedure for measuring priorities in a

hierarchical goal structure. It requires pairwise comparison judgments of criteria

in terms of relative importance. These judgments can be expressed verbally and

enable the decision-maker to incorporate subjectivity, experience and knowledge

in an intuitive and natural way.

AHP’s power has been validated in empirical use, extended by research, and

expanded by new theoretical insights as reported in a series of annual international

symposia on AHP. AHP has been widely used as a powerful multiple-criteria de-

cision making tool. It has been applied to solve highly complex decision problems

in planning and resource allocation as well as conflict resolutions. Zahedi [23] and

Vargas [22] give comprehensive surveys of the method and its applications. In

later applications, AHP was found to be a powerful tool for selecting projects and

proposals, overcoming the limitations of other multiple-criteria decision making

techniques ([8],[11],[5]).

In this study, AHP is chosen to evaluate projects in terms of predetermined

features. In other words, for defining projects in terms of features, we use AHP.

Decision applications of the AHP are carried out in two phases: hierarchic
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design and evaluation. AHP requires the decision maker to first represent the

problem within a hierarchical structure. The purpose of constructing the hierar-

chy is to evaluate and prioritize the influence of the criteria on the alternatives to

attain or satisfy overall objectives. To set the problem in a hierarchical structure,

the decision maker should identify his/her main purpose in solving a problem.

In the most elementary form, a hierarchy is structured from the top level (objec-

tives), through intermediate levels (criteria on which subsequent levels depend)

to the lowest level (which is usually a list of alternatives). The evaluation phase

is based on the concept of paired comparisons. The elements in a level of the

hierarchy are compared in relative terms as to their importance or contribution

to a given criterion that occupies the level immediately above the elements being

compared. Two elements in the same level are pairwise compared only if they

are connected to at least one common criterion in the level immediately above

them. The structure of hierarchy designs the pairwise comparisons ([13],[15]).

The main motivation of the pairwise comparison approach is based on the

fact that humans have serious difficulties evaluating many entities simultaneously.

However, humans can perform rather well when they are asked to evaluate only

two entities at a time.

2.2.1 Theoretical Structure of AHP

The axioms of the theory are as follows:

Axiom 1: (Reciprocal Comparison). The decision maker must be able to make

comparisons and state the strength of his preferences. The intensity of

these preferences must satisfy the reciprocal condition: If A is x times more

preferred than B, then B is 1/x times more preferred than A.

Axiom 2: (Homogeneity). The preferences are represented by means of a

bounded scale.

Axiom 3: (Independence). When expressing preference, criteria are assumed

independent of the properties of the alternatives.
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Axiom 4: (Expectations). For the purpose of making a decision, the hierarchic

structure is assumed to be complete. That is, all the decision maker’s

intuition must be represented in terms of criteria and alternatives in the

structure.

The first axiom says that if a decision maker is able to say something is five times

more important than something else, then he should agree that the reciprocal

property holds. The relaxation of Axiom 1 indicates that the question used

to elicit the judgments or paired comparisons is not clearly or correctly stated.

Axiom 2 says that infinite preferences are not allowed. If Axiom 2 is not satisfied,

then the elements being compared are not homogeneous and clusters may need to

be formed. Axiom 3 implies that the weights of the criteria must be independent

of the alternatives considered. The weights of criteria can not be different for

different alternatives. If Axiom 4 is not satisfied, then the decision maker does

not use all the criteria and/or all the alternatives necessary to meet his reasonable

expectations and hence the decision is incomplete.([17],[14])

2.2.2 AHP Methodology

1. The overall goal (objective) is identified, and the issue is clearly defined.

2. After finding the objective, the criteria used to satisfy the overall goal are

identified. Then the sub-criteria under each criterion must be identified so

that a suitable solution or alternative may be specified. The hierarchical

structure is constructed.

3. Pairwise comparisons are constructed; elements of the problem are paired

(with respect to their common relative impact on a property) and then

compared.

4. Weights of the decision elements are estimated by using the eigenvalue

method. Consistency of judgments is checked.

5. Working downward through the hierarchy, hierarchical composition is used
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to combine the weight vectors and arrive at global and local relative con-

tributions (priorities) of each element.[17]

2.2.3 Pairwise Comparisons

In AHP, once the hierarchy has been constructed, the decision maker begins the

prioritization procedure to determine the relative importance of the elements on

each level of the hierarchy. Elements of a problem on each level are paired (with

respect to their common relative impact on a property) and then compared. The

comparisons are made in the following form: How important is element 1 when

compared to element 2 with respect to a specific element in the level immediately

higher? If two elements are not connected to a common element in the level im-

mediately higher, they are not pairwise compared. If two elements are connected

to more than one common element in the level immediately higher, these two el-

ements are pairwise compared for each common element in the level immediately

higher. The hierarchy determines the pairwise comparisons. Therefore, special

attention must be given to the form of the hierarchy.

For each common element in the level immediately higher, starting from the

top of the hierarchy and going down, the pairwise comparisons are reduced in the

square matrix form, A given in equation (2.1). Breaking a complex system into

a set of pairwise comparisons is the major characteristic of AHP.

A =




a11 a12 . . . a1n

a21 a22 . . . a2n

.

.

.

an1 . . . . ann




(2.1)

A is an n×n matrix in which n is the number of elements being compared. Entries

of A, aij’s are the judgments or the relative scale of alternative i to alternative j

with respect to a common element. They have the following characteristics:

aij = 1/aji for ∀i, j (2.2)
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Table 2.1: Scale of Relative Importance

Intensity or Rela-
tive Importance

Definition Explanation

1 Equal importance Two activities contribute equally to the
objective

3 Moderate importance
of one over another

Experience and judgment slightly favor
one activity over another

5 Essential or strong im-
portance

Experience and judgment strongly favor
one activity over another

7 Very strong impor-
tance

An activity is strongly favored and its
dominance demonstrated in practice

9 Extremely important The evidence favor one activity over an-
other is of the highest order of affirma-
tion

2,4,6,8 Intermediate values
between the two
adjacent judgments

When comparison is needed

Reciprocals of above non-zero numbers If the activity i has one of the above
none-zero numbers assigned to it when
compared with activity j, then j has the
reciprocal value when compared to i

To fill the matrix of A, Saaty [13] proposed the use of a one-to-nine scale to

express the decision maker’s preferences and intensity of that preference for one

element over another. Table 2.1 contains the recommended scale from 1-9, which

is used to assign a judgment in comparing pairs of elements at each level of the

hierarchy against a criterion in the next highest level. For example, if a12 = 5,

this means that the first alternative is strongly favored over the second alternative

based on experience and judgment.

An obvious case of a consistent matrix is one in which the comparisons are

based on exact measurements; that is, the weights w1, w2, w3, ..., wn are already

known. Then aij can be written as follows:

aij = wi/wj (2.3)

where wi is the relative weight of alternative i.
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2.2.4 Group Process

Higher complexity and need for different specializations necessitate the partic-

ipation of many individuals in the decision making process. AHP allows each

decision maker to specify a value and then combine the individual judgments

as follows: Use the geometric mean of the individual judgments to obtain the

group judgment for each pairwise comparison (see Figure 2.1). Aczel and Saaty

[1] showed that the geometric mean is the uniquely appropriate rule for combin-

ing judgments in the AHP because it preserves the reciprocal property in the

combined pairwise comparison matrix.

In Figure 2.1, a simple hierarchy is given, and matrix A which may be formed

by the evaluation of criterions or evaluation of alternatives with respect to a

criteria is shown. M is the number of decision makers and each of them evaluate

pairwise comparisons individually, so, for the same set of pairwise comparisons,

there are M different A matrices. The combined judgments are obtained as

shown in Figure 2.1, by taking geometric mean of each element of A matrices.

M different A matrices are transformed to one A matrix which is formed by

combined judgments. [6]
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Figure 2.1: Combined Judgments
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2.2.5 Deriving Relative Weights

The next step is to estimate the relative weights of the decision elements by using

the eigenvalue method. The mathematical basis for determining the weights has

been determined by Saaty [13] based on matrix theory. The procedure is called an

eigenvector approach, which takes advantage of characteristics of a special type

of matrix called a reciprocal matrix.

The entries aij are defined by equation 2.2 and according to 2.3 the consistent

pairwise comparison matrix, A in 2.1, can be represented in the form shown in

2.4

A =




w1

w1

w1

w2

w1

w3
. . w1

wn

w2

w1

w2

w2

w2

w3
. . w2

wn

w3

w1

w3

w2

w3

w3
. . w3

wn

. .

. .
wn

w1

wn

w2

wn

w3
. . wn

wn




(2.4)

The objective is to find eigenvector w corresponding to maximum eigenvalue

λmax which is the relative weights of the objects:

w = (w1, w2, w3, ..., wn) (2.5)

If the pairwise comparison matrix is not consistent as stated above, the weights

of the objects obtained by using eigenvalue method may not be valid. For this

reason we should check the consistency of the matrix A.

2.2.6 Checking Consistency of the Results

In decision-making, it is important to know how good the consistency is. Con-

sistency in this case means that the decision procedure is producing coherent

judgments in specifying the pairwise comparison of the criteria or alternatives.
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The cardinal consistency rule is:

aijajk = aik for i, j, k = 1, ...n. (2.6)

When A is consistent, and

aij =
wi

wj

⇒ wi = aijwj for i, j = 1, ....n. (2.7)

Aw =




a11 a12 . . . a1n

a21 a22 . . . a2n

.

.

.

an1 an2 . . . ann







w1

w2

.

.

.

wn




=




w1
w1

w1
w2

w1
w3

. . w1
wn

w2
w1

w2
w2

w2
w3

. . w2
wn

w3
w1

w3
w2

w3
w3

. . w3
wn

. .

. .
wn
w1

wn
w2

wn
w3

. . wn
wn







w1

w2

.

.

.

wn




Aw =




w1 + w1 + ... + w1

w2 + w2 + ... + w2

.

.

.

wn + wn + ... + wn




=




nw1

nw2

.

.

.

nwn




Aw = nw (2.8)

In matrix theory, equation (2.8) is satisfied only if w is an eigenvector of A

with eigenvalue of n.

All the rows in the represented matrix are constant multiplies of the first row.

From linear algebra all the eigenvalues λi, i=1,...n are zero except one. Since A

is a reciprocal matrix and all the entries are positive, all the eigenvalues of A are

non-negative. Therefore λi which is greater than zero can be called λmax.

n∑

i=1

λi = Trace(A) = n (2.9)
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Table 2.2: Random Indices (RI)[13]

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
RI 0 0 0.52 0.89 1.11 1.25 1.35 1.4 1.45 1.49 1.51 1.48 1.56 1.57 1.59

The trace of a matrix is a summation of the diagonal entries. Since all the

diagonal elements of A are one, the trace of A is n.

Since all the eigenvalues λi are zero except λmax,
n∑

i=1

λi = λmax (2.10)

This implies that λmax = n and λmax can be used as an approximation for n.

An index is needed to measure the consistency of weights. The following

index, the consistency index (CI ), was suggested by Saaty [13]:

Consistency Index, CI =
λmax − n

n− 1
(2.11)

This is an index to assess how much the consistency of pairwise comparisons

differs from the perfect consistency. The numerator signifies the deviation of

maximum eigenvalue (λmax) from perfect consistency, which is n. The denomina-

tor is needed to compute an average of each pairwise comparison from perfectly

consistent judgment. A value of one subtracted from the order of matrix n, be-

cause one of the pairwise comparisons is a self-comparison, and there should be

no inconsistency involved in self-comparison.

The consistency check of pairwise comparison is done by comparing the com-

puted consistency index with the average consistency index of randomly generated

reciprocal matrices using one-to-nine scale . Table 2.2 shows the random indices

(RI) for matrices of order 1 through 15. RI values are taken from Saaty [13].

AHP measures the overall consistency of judgments by means of a consis-

tency ratio (CR). The consistency ratio is obtained by dividing the computed

consistency index by the random index.

CR =
CI

RI
(2.12)
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Saaty [13] stated that a consistency ratio of 0.10 or less can be considered

acceptable; otherwise the judgments should be improved.

2.2.7 Synthesis of Priorities

After finding normalized eigenvectors (sum up to 1) that corresponds to λmax’s

for each evaluation, and verifying that the pairwise comparisons are acceptable in

terms of consistency criteria, the last step is the synthesis of priorities. Priorities

are synthesized from the top level down by multiplying local priorities by the

priority of their corresponding criterion in the level above, and adding them for

each element in a level according to the criteria it affects. (The second level

elements are each multiplied by unity, the weight of the single top level goal.)

This gives the composite or global priority of that element which is then used

to weigh the local priorities of elements in the level below compared by it as

criterion, and so on to the bottom level. [13]

2.2.8 A Numerical Example

To clarify AHP methodology, it is appropriate to investigate a numerical example.

We take an example from Triantaphyllou and Mann’s [20] work. Suppose that the

best computer system is tried to be chosen among three alternative configurations

(configuration A, configuration B, configuration C). We have four criteria which

are ‘hardware expandability’, ‘hardware maintainability’, ‘financing available’,

and ‘user friendly’. The hierarchical structure can be seen from Figure 2.2. For

this hierarchical structure, the evaluation process has five main parts:

1. Evaluation of criteria with respect to the objective

2. Evaluation of alternative configurations with respect to criterion ‘hardware

expandability’

3. Evaluation of alternative configurations with respect to criterion ‘hardware

maintainability’
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4. Evaluation of alternative configurations with respect to criterion ‘financing

available’

5. Evaluation of alternative configurations with respect to criterion ‘user

friendly’

In case there is only one decision-maker, for each evaluation part we form an A ma-

trix as in Figure 2.3. For each A matrix we estimate the relative weights/priorities

by using the eigenvalue method, and then we check the consistency. In Figures

2.4, 2.5, 2.6, 2.7 you can see A matrices for other evaluation parts with priority

vectors and consistency ratios (CR). The priority vectors are used to form the en-

tries of the decision matrix. The decision matrix and the resulted final priorities

are in Figure 2.8. The final priority for each alternative configuration is obtained

by multiplying the columns of the decision matrix (each column corresponds to

a criterion) with the corresponding criterion’s weight, then by taking summation

of the elements for each row (each row corresponds to an alternative), and finally,

by normalizing the resulting vector such that summation of the vector is equal

to one.
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Figure 2.2: Hierarchical Structure of Numerical Example

Objective: Find the best

computer system


Hardware

Expandability


Hardware

Maintaina
bility


Financing

Available


User Friendly


Configuration A
 Configuration B
 Configuration C


Figure 2.3: A Matrix for Criterion ‘Hardware Expandability’

Figure 2.4: A Matrix and Priority Vector for Objective
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Figure 2.5: A Matrix and Priority Vector for Criterion ‘Hardware Maintainability’

Figure 2.6: A Matrix and Priority Vector for Criterion ‘Financing Available’

Figure 2.7: A Matrix and Priority Vector for Criterion ‘User Friendly’
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Figure 2.8: Decision Matrix and Solution of Numerical Example
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2.2.9 Criticisms of AHP and a Variant of AHP

The AHP and its use of pairwise comparisons has inspired the creation of many

other decision-making methods. Beside, its wide acceptance, it also created some

considerable criticism. Belton and Gear(1983) [2] observed that the AHP may

reverse the ranking of the alternatives when an alternative identical to one of the

already existing alternatives is introduced (well-known rank reversal problem).

In order to overcome this deficiency, Belton and Gear proposed that each column

of the AHP decision matrix to be divided by the maximum entry of that column.

Thus, they introduced a variant of the original AHP, called the revised-AHP.

Later, Saaty [16] accepted the previous variant of the AHP and now it is called

the Ideal Mode AHP. The following guidelines were developed by Millet and

Saaty [10] to reflect the core differences in translating performance measures to

preference measures of alternatives. The original AHP should be used when the

decision maker is concerned with the extent to which each alternative dominates

all other alternatives under the criterion. The Ideal Mode AHP should be used

when the decision maker is concerned with how well each alternative performs

relative to a fixed benchmark. For example, consider selecting a car:

Two different decision makers may approach the same problem from two dif-

ferent points of view even if the criteria and standards are the same. The one who

is interested in “getting a well performing car” should use the Ideal Mode. The

one who is interested in “getting a car that stands out” among the alternatives

should use the original AHP. [17]

Another main drawback of AHP, is the high number of pairwise comparisons,

especially for large hierarchies. Assigning a numerical value for each pairwise

comparison is also not easy. For this reason, for large number of pairwise com-

parisons, considerable amount of effort is needed.
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2.3 Multicriteria Clustering

Projects are evaluated in terms of features by using a multicriteria decision mak-

ing methodology, AHP. The next step is the clustering of projects.

The two mostly used technique for grouping objects with similar properties

are: classification and clustering. Generally both names are used interchangeably

but some important differences exist between them. Classification techniques use

supervised learning; which means that the objects are assigned to pre-defined

classes. On the contrary, clustering is an unsupervised technique that finds po-

tential groups in data such that the objects within a cluster are more similar to

each other than to objects in other clusters [19].

In literature, the research related to grouping objects with respect to multiple

criteria are mainly focused on the assignment of actions to pre-defined classes; in

other words multicriteria classification field [19]. Since the model studied in this

thesis requires a multicriteria clustering method, only clustering part of the field

is given.

In the context of AHP, so far we have found three different applications in

literature, related to multicriteria clustering field. Two of them can be considered

as extensions of AHP method. The third one is a kind of generic method that

can be applied by using the results of any multicriteria decision methodology.

2.3.1 AHP Based Clustering

Ben-Arieh and Triantaphyllou [3] used the AHP in the group technology appli-

cation. The problem discussed in the paper is grouping N different part types

based on a predetermined set of features. In the proposed methodology, parts’

data about different features are expressed in terms of membership values. That

is, for each part, the membership value of a given feature in the part is determined.

The hierarchy of the model can be seen at Figure 2.9. As it can be seen from
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the hierarchy, the features are considered as criteria, and the parts are considered

as the alternatives. Membership values are the weights of the parts for each

feature. In this work, the method used for determining membership values is

based on Ideal Mode AHP.

Three types of features are identified in the paper:

1. Quantitative features. Such features represent properties of parts that can

be expressed numerically.

2. Qualitative(fuzzy) features. These features describe the part attributes in

fuzzy terms such as ‘large, medium, small’ or other terms agreed upon by

the system users.

3. Quantitative features with subjective meaning. Features of this type have

numerical values which do not quantitatively represent the actual meaning

of these features in the relevant environment. Therefore these features are

also fuzzy.

The method presented in the paper treat the fuzzy features and quantitative

features differently. For the fuzzy features, the membership values are determined

by using Ideal Mode AHP. The membership values for the quantitative features

are determined by normalizing the values such that the maximum one is equal

to one. The membership matrix can be seen in Table 2.3 where wfk
represents

the weight of Feature k (where k = 1....m), and wpsr represents the membership

value of Feature r (where r = 1....m) in the Part s (where s = 1....n).

According to Ben-Arieh and Triantaphyllou [3], once the features that are

used for the part grouping are described in terms of their membership values,

and their relative importance, it is possible to cluster the parts into groups. Two

different ways are proposed to conduct grouping process:

1. Matrix-based clustering: By multiplying the membership values of the fea-

tures by the features’ weight (importance), a new matrix is generated. In

this matrix, each part is represented as an m dimensional point in Euclidean
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Table 2.3: Membership Table

Feature Feature
Weight

Part 1 Part 2 . . . Part n

1 wf1 wp11 wp21 . . . wpn1

2 wf2 wp12 wp22 . . . wpn2

. . . . .

. . . . .

. . . . .
m wfm wp1m wp2m . . . wpnm

space(each feature is a different dimension). Using this matrix, grouping is

accomplished by using any clustering method.

2. Aggregate-value clustering: Each part represented by an aggregate value

which is

vi =
m∑

j=1

wfj
wpij

for i = 1, ....n. (2.13)

Then parts are clustered based on these single values.
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Figure 2.9: Hierarchy of the AHP Model in Ben-Arieh and Triantaphyllou’s Work
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2.3.2 VAHP Based Clustering

Zahir [25] has developed a Euclidean version of the AHP in a vector space

(VAHP). Due to the fact that AHP uses summation normalization, using such nu-

merical data in a subsequent clustering procedure that uses Euclidean distance as

the similarity measure may be problematic. However, the VAHP based approach

allows obtaining representations of objects that satisfy Euclidean normalization

and thus is consistent with the use of Euclidean distance in the clustering tech-

nique. [26]

The VAHP has the same decision hierarchy as the conventional AHP and uses

the same eigenvector method. The decision space is assumed to be a linear vector

space spanned by the number of objects to decide from and each eigenvector

is defined with an Euclidean norm. However, here Zahir [25] introduces the

preference operator P obtained by taking the square roots of each element of A,

where A is the corresponding preference matrix of the conventional AHP. If A is

consistent, P is also consistent and λmax = n for both. If the eigenvector w of

A, such that
∑

wi = 1, the eigenvector v of P is normalized such that vT v = 1

or
∑n

i=1 v2
i = 1. According to ‘Eigenvalue Power Law’ theorem [15] only when A

satisfies the generalized consistency condition, we have vi =
√

wi or wi = v2
i . This

preserves the validation successes of conventional AHP. Thus, as we interpret wi

as the relative priority for A, v2
i is taken as the relative priority for P .

To sum up, the VAHP uses the same structure, the same decision hierarchy,

the same eigenvector method, and it makes it possible to develop a meaningful

grouping or clustering technique based on Euclidean distance.

2.3.3 An extension of the k-means algorithm

Smet and Guzman [19] proposed an extension of the well-known k-means algo-

rithm to the multicriteria framework. This extension relies on the definition of a

multicriteria distance based on the preference structure defined by the decision
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maker. With the proposed multicriteria distance two alternatives will be simi-

lar if they are preferred, indifferent, and incomparable to more or less the same

actions.

The method proposed by Smet and Guzman [19] can be applied by using the

results of any multicriteria decision making method. It just needs the preference

structure as the input to partition the set of alternatives into classes that are

meaningful from the multicriteria perspective.

2.3.4 General Clustering Algorithms

2.3.4.1 K-Means Clustering Algorithm

The k-means clustering algorithm is one of the simplest and the most commonly

used algorithms. It employs squared error similarity criteria, which is widely

used criterion function in clustering. It starts with predefined number (k) of

initial set of clusters and at each iteration, patterns/objects, that are tried to

be clustered, are reassigned to the nearest cluster based on the distance based

similarity measure, this process is repeated until a converge criterion is met such

as no reassignment of any pattern to a new cluster or predefined error value. [9]

In detail, the algorithm of the method is as follows:

There are n input patterns and patterns are denoted by P1, P2, ., Pn. The

pattern Pi (ith pattern) consists of a tuple of describing features where features

are denoted by fi1, fi2, . , fid. A dimension represents each feature, where d is

the number of dimensions of the value space. The second input of the algorithm

is the predefined number of clusters, denoted by k. The number of the clusters

cannot be changed during the execution of the algorithm. Let C1, C2,., Ck be the

clusters, and each cluster is represented by its centroid. Let c1, c2, . , ck be the

centroids of the clusters.

First, the initial cluster centroids are formed randomly. The distances between

pattern Pi and all clusters are calculated and pattern Pi is assigned to the closest
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cluster Cd. This process is repeated for all patterns and all patterns are assigned

to a unique cluster. At the end of the iteration all centroids (c1,c2, . , ck)

are updated. In the next iteration, distance calculations between patterns and

clusters are repeated with the updated centroids. The algorithm will iterate until

predefined number of iteration is reached or no pattern is moved to a different

cluster. At the end of the algorithm, quality of the clustering is measured by the

error function:

E =
k∑

d=1

∑

Pi∈Cd

‖Pi − Cd‖2 (2.14)

Moreover, we need a measure of how good the clusters, so that we can choose

the right value of k. The silhouette value for each object is a measure of how

similar that object is to objects in its own cluster compared to objects in other

clusters, and ranges from -1 to +1. It is defined as

s(Pi) =
b(Pi)− a(Pi)

max(a(Pi), b(Pi))
(2.15)

where

a(Pi) = average dissimilarity of Pi to all other objects of A

d(Pi, C) = average dissimilarity of Pi to all objects of C

b(Pi) = min
C 6=A

d(Pi, C)

where A is the first assigned cluster of object Pi, and C is any cluster different

from A. As the s(Pi) value comes close to 1, it means that object i is at the right

cluster. The average of the s(Pi) for i = 1, 2, ....., n which is called the average

silhouette width for the entire data set can be used for the selection of a ‘best’

value of k, by choosing that k for which the average silhouette width for the entire

data set is as high as possible. [9]

The objective of the k-means clustering algorithm is to select the best clus-

tering with k groups.
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2.3.4.2 Hierarchical Clustering Algorithm

Hierarchical algorithms do not construct a single partition with k clusters, but

they deal with all values of k in the same run. That is, both the partition with

k = 1 and the partition with k = n are part of the output. The output is in the

form of dendrogram, where nested partitions and similarity levels at partitions

change are presented. [9]

There are two basic approaches in hierarchical clustering:

• Agglomerative (starts when all objects are apart, the case where there are

n clusters, and merges two clusters at each step until only one is left.)

• Divisive (starts with when all objects are together, the case where there is

one cluster, and splits up clusters at each step, until there are n clusters.)

Due to its advantages and easy to implement speciality, agglomerative hier-

archical clustering algorithms are used frequently. It starts when all objects are

apart and in all succeeding steps, the two closest clusters are merged.

Hierarchical methods suffer from the defect that they can never repair what

was done in previous steps. Indeed, once an agglomerative algorithm has joined

two objects, they can not be separated anymore. Also, a cluster that has been

split up by a divisive algorithm can not be reunited. [9]

The objective of hierarchical clustering algorithms is not finding the best

clusterings but to describe the objects in a totally different way.
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Model and The Analysis

Based on the studies related to project management in literature, we observed

that “a project is a project” is the dominating idea. However the idea that dif-

ferent projects must be managed in different ways, comes out from the real-life

applications at MST, one of the three divisions of Aselsan, as a need. What we

need is basically a framework to distinguish projects that have common char-

acteristics that are meaningful in terms of project management concept. Then

practical guidelines on how to manage projects in different ways can be estab-

lished. However creating such a framework which has substantial importance for

the company, Aselsan, requires great effort.

Our strategy for creating the framework can be summarized as follows:

1. Firstly, we look at the clustering of projects for which data is available. The

natural groupings among the projects hopefully come out.

(a) The features that can reveal the differences between the projects in

terms of project management concept are determined.

(b) The projects for which data is available, and there is no problem to be

evaluated for the clustering work are determined.

(c) After obtaining the related data of the projects, projects are clustered

by using appropriate methods.

28
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2. Secondly, the project groupings are examined to see whether they are mean-

ingful and they can be used for creating the framework.

3. By benefiting the proposed frameworks in the literature and the project

groupings that come out in previous steps, the framework is created.

In this thesis we focused on (1c), “After obtaining the related data of the projects,

projects are clustered by using appropriate methods.”

The problem discussed in this study is grouping N different projects based on

a predetermined set of features. It is a multicriteria clustering problem. Basically,

the problem has two parts:

Defining the projects in terms of features: The amount of each of the fea-

tures that each project possesses is measured by using a multicriteria deci-

sion method. In other words, if we think each feature as a fuzzy set, we are

trying to find membership values of projects for each fuzzy set.

Clustering the projects: The projects are clustered based on the representing

vectors that are formed with the amount of each of the features that each

project possesses.

3.1 Defining The Projects In Terms of Features

The choice of method for defining the projects in terms of features, closely related

with the features characteristics. For this reason, we first look at the features.

3.1.1 Features

There are five predetermined features. Each of them is explained below.
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3.1.1.1 Technological Uncertainty

In general, technological uncertainty is associated with the degree of using new

(to the company) versus mature technology within the product or process. Since

most projects employ a mixture of technologies, our interpretation is based on the

share of new technology within the product. In addition; as a project progresses,

the related technological uncertainty of project tends to change; therefore, tech-

nological uncertainty of a project implies the related uncertainty at the time of

project initiation.

3.1.1.2 Platform Type

Platform type defines the working environment of product(s). Platform types

can be grouped under two main titles. One of them is commercial platforms, and

the other one is military platforms. In general form, platform types are:

• Commercial Platforms

– Stationary Ground

– Mobile Wheel Drive Ground

– Airborne

– Naval

• Military Platforms

– Stationary Ground

– Mobile Wheel Drive Ground

– Mobile Tracked Ground

– Airborne

– Naval

Platform types are directly related with the standards and specifications that

must be obeyed. Therefore it is a crucial parameter for a project.
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3.1.1.3 Work and Test Environment

Efficiency is strongly dependent on the work and test environment. Due to struc-

tural and operational characteristics of systems, the work and test environment

has to be sometimes a military area in battlefield conditions, sometimes a con-

struction facility which does not belong to Aselsan for a considerable time in-

terval. For this reason, work and test environment is the feature that should be

incorporated into the evaluation of projects.

3.1.1.4 System Scope

Products are composed of components and systems of subsystems. Every product

has its own hierarchy with different design and managerial implications. Projects

can be classified as follows in terms of their hierarchies in its most general form :

1. Assembly project: dealing with either a single component or with a com-

plete assembly (collection of components and modules combined into a sin-

gle unit).

2. System project: a collection of interactive elements functioning together

within a single product.

3. Array project: dispersed collection of systems that function together to

achieve a common purpose.

3.1.1.5 Amount of Resource (Labor)

Human resources are extremely important for an organization like MST where

tens of R&D projects are carried out concurrently. In addition, the amount of

human resources (man*hour) needed for a project is an appropriate indicator

about the size of the project.

We can classify the features by using the Ben-Arieh and Triantaphyllou’s [3]

classification.
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• Quantitative features:

– Amount of resource (labor): The numerical data of amount of resource

(labor) is available for all projects.

• Qualitative fuzzy features:

– Technological Uncertainty: There is no numerical data related to tech-

nological uncertainty of projects. Technological uncertainty of the

projects are described by the terms low, medium, high, super high.

– Platform Type: There is no numerical data related to platform types

of projects. Although each of the projects’ platform type is known, its

effects to project management should be quantified.

– Work and Test Environment: There is no numerical data related to

work and test environment of projects.

– System Scope: There is no numerical data related to system scope

of projects. The general classification of projects as assembly, system

and array is known.

As it can be seen above, four features out of five are characterized as ‘quali-

tative fuzzy feature’. These features can be considered as subjective feature, be-

cause for these features, projects’ related attributes may be evaluated differently

by different experts. The other one, amount of resource (labor), is character-

ized as ‘quantitative feature’ or objective feature. For this reason, the choice of

method for defining the projects in terms of features should permit the evaluation

of both objective features and subjective features.

One of the most appropriate method to quantify subjective features is using

expert knowledge, so the method should aim to get expert knowledge as good as

possible. Moreover, the method should permit a group of people to realize the

evaluation together and/or one by one, since subjective evaluations may change

from person to person and the best way to reach more accurate results is to get

data from a group of people who are experts in the related area.
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To sum up, we need a multicriteria decision making method, which supports

subjective and objective evaluations, gets expert knowledge in an effective way, to

determine the membership value of each feature in the projects. For this reason,

Analytic Hierarchy Process is chosen since it is a powerful multicriteria decision

making method which meets the requirements of the problem.

3.1.2 AHP Model

The model is constructed in the way that AHP methodology proposes. For this

reason, the model is explained based on AHP methodology:

Overall goal (objective): The objective is to evaluate the projects in terms of

project management concept.

Hierarchical structure: Hierarchical structure can be seen in Figure 3.1. The

hierarchy starts with the objective at the top level. The second level is

formed by the features determined previously. The third level, which is the

final one, is formed by the projects.

Pairwise comparisons: The elements in a level of the hierarchy are compared

in relative terms with respect to a given criterion that occupies the level

immediately above the elements being compared. In this model, we can

distinguish two main groups of pairwise comparisons. One group is the

features’ pairwise comparisons with respect to objective. The other group

consists of pairwise comparisons of projects with respect to each feature.

For the features’ pairwise comparisons, the question that is tried to answer

for each comparison is like “Which one of the Feature A and Feature B is

more important/effective than the other one with respect to project man-

agement concept and how much relatively?”. For projects’ comparisons,

the questions should be identified for each feature:

• For Technological Uncertainty: Which one of the Project A and

Project B has a higher degree of technological uncertainty and by how

much relatively?
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• For Platform Type: Which one of the Project A’s platform type and

Project B’s platform type has a stronger effect in the way to complicate

the management activities and by how much relatively?

• For Work and Test Environment: Which one of the Project A’s work

and test environment and Project B’s work and test environment has

a stronger effect in the way to complicate the management activities

and by how much relatively?

• For System Scope: Which one of the Project A’s system scope and

Project B’s system scope has a stronger effect in the way to complicate

the management activities and by how much relatively?

• For Amount of Resource (Labor): Which one of the Project A’s

amount of resource (labor) and Project B’s amount of resource (la-

bor) is larger and how much relatively?

Estimation of Weights: Weights of the elements are estimated by using the

eigenvalue method. Consistency of judgments is checked.

The AHP model that is described above has to conform to axioms of AHP.

Below, the model is checked whether it conforms to the axioms or not.

• Axiom 1 (Reciprocal Comparison): Since the questions used to elicit the

judgments or paired comparisons are clearly, correctly stated and asking for

a reciprocal relation. This axiom is conformed.

• Axiom 2 (Homogeneity): The elements of the model that are evaluated with

pairwise comparisons are comparable and they do not differ by too much

in the property being compared. Both features’ set and projects’ set are

homogeneous. The model conforms to Axiom 2.

• Axiom 3 (Independence): In expressing preferences, the features’ impor-

tance are independent of the properties of projects. Features are evaluated

with respect to their importance/effectiveness to project management ac-

tivities in general, and the model conforms Axiom 3.
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Figure 3.1: Hierarchical Structure

• Axiom 4 (Expectations): For the purpose of evaluating projects in terms

of project management activities, the hierarchy is assumed to be complete.

Axiom 4 is conformed.

In literature, as it is mentioned, there are two versions of AHP. One of them

is the original AHP which is called “Distributive Mode” and the other one is

called “Ideal Mode”. By following the guidelines developed by Saaty and Millet

[10], the one, which fits best to the case, must be chosen. The guideline states

that the original AHP, Distributive Mode AHP, should be used when the decision
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Table 3.1: Output Table

Feature Feature
Weight

Project 1 Project 2 . . Project m

1- Technological Un-
certainty

wf1 wp11 wp21 . . wpm1

2- Platform Type wf2 wp12 wp22 . . wpm2

3- Work and Test En-
vironment

wf3 wp13 wp23 wpm3

4- System Scope wf4 wp14 wp24 wpm4

5- Amount of Resource
(Labor)

wf5 wp15 wp25 . . wpm5

maker is concerned with the extent to which each alternative dominates all other

alternatives under the criterion. On the other hand, Ideal Mode AHP should

be used when the decision maker is concerned with how well each alternative

performs relative to a fixed benchmark. In our case, main objective is to construct

a general framework for projects, so the aim here is not to find the dominating

project. The aim is to define projects in terms of features, and to evaluate projects

relative to a fixed benchmark. For this reason, Ideal Mode AHP seems to fit best

to the needs of the problem.

The output of the model explained above constitutes the features weights, and

weights/membership values of projects in terms of each one of the features. In a

table format, the output is like Table 3.1, where wfa defines the weight of feature

numbered ‘a’, wpab
defines the weight of project numbered ‘b’ with respect to the

feature numbered ’a’ for a = 1, 2....5 and b = 1, 2...m.

Ben-Arieh and Triantaphyllou [3] proposed a different way to evaluate alter-

natives with respect to objective features. Since quantitative data is available for

objective features, the alternatives do not need to be evaluated with pairwise com-

parisons. By just normalizing the quantitative data such that the largest number

in the vector is equal to one, the membership values of projects in terms of an

objective feature are obtained. Therefore, smaller number of pairwise compar-

isons have to be evaluated and experts can focus on the evaluations where expert
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knowledge is the inevitable source. In our model, amount of resource (labor) is

the only objective feature, and it is appropriate to obtain membership values of

projects in terms of this feature by using the method proposed in Ben-Arieh and

Triantaphyllou [3] work. In the output table 3.1, only wp15 wp25 . . . wpm5 values

are obtained by normalizing the available quantitative data.

3.2 Clustering The Projects

Once the projects are defined in terms of features, and the features’ weights are

determined, it is possible to cluster the projects into groups. However, due to the

multicriteria nature of the problem, there are different views related to distance

concept.

As it is mentioned, there are three applications related to multi-criteria clus-

tering. The crucial differences between the applications result from different

distance concepts. Ben-Arieh and Triantaphyllou [3] assumed that the matrix

formed by multiplication of the features’ weights with weight/membership vec-

tors of projects can be used to form representative vectors of projects. With these

vectors, each project can be represented in Euclidean space where each feature is

a different dimension. Hence, the distance between two projects can be calculated

as the Euclidean distance of two points (representing vectors of two projects).

On the other hand, Zahir [26] states that in order to obtain a meaningful

pattern discovery, the underlying similarity measure cannot be independent of

the type of normalization imposed on the data. In addition, since the AHP uses

summation normalization, using such numerical data in a subsequent clustering

procedure that uses Euclidean distance as the similarity measure may be prob-

lematic. For this reason, Zahir [25] developed a Euclidean version of the AHP in

a vector space (VAHP). The VAHP based approach allows obtaining representa-

tions of objects that satisfy Euclidean normalization and thus is consistent with

the use of Euclidean distance in clustering technique.
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In Smet and Guzman’s work [19], a multicriteria distance, based on the pref-

erence structure defined by the decision maker, is proposed. This multicriteria

distance is based on the idea that two alternatives will be similar if they are pre-

ferred and indifferent to more or less the same features. In preference modelling,

usually the following relations are considered:





aiPaj if ai is preferred to aj,

aiIaj if ai is indifferent to aj,

aiJaj if ai is incomparable to aj.

The multicriteria distance definition proposed by Smet and Guzman [19] is:

d(ai, aj) = 1−
∑4

k=1 |Pk(ai) ∩ Pk(aj)|
n

(3.1)

where

• P1(ai) = {aj ∈ A|aiJaj},

• P2(ai) = {aj ∈ A|ajPai},

• P3(ai) = {aj ∈ A|aiIaj},

• P4(ai) = {aj ∈ A|aiPaj},

In AHP, since there is no incomparable relation, the J relation remains empty

and the comparison between pairs of actions are restricted to P and I relations.

In this thesis, all the distance concepts mentioned above are applied in project

clustering application by using well-known clustering algorithms: k-means and

hierarchical clustering.
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Application of Project Clustering

In this section, we present the details of the application performed in Aselsan.

We look at the clustering of projects, and we expect that the natural groupings

among the projects come out. Based on the model, the projects are evaluated

with respect to predefined features by using AHP, and the representing vectors

are formed for each project. Then, by using well-known clustering algorithms,

k-means and hierarchical clustering, the projects are clustered.

For this study, fourteen projects are chosen to be evaluated. The set of four-

teen projects is assumed to represent the full set of MST’s applications. Since

Aselsan is in military electronic sector, and most of its projects have high se-

crecy, we can not give the names of the projects in this study. However, we will

mention the characteristics of the projects while the project clusters are being

investigated.

Experts, as being the main source of projects’ data, are the most important

actors of the model. The projects are evaluated by experts with respect to all

features except ‘Amount of Resource (Labor)’ feature which was identified as

objective feature in the model. Moreover, project clusters coming out of the

model are investigated by the experts to see whether they are meaningful or not.

For this reason, two issues gain importance:

39
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• Selection of experts

• Common understanding of the concepts used in the model

The vital characteristic for experts is to have enough knowledge about the set

of fourteen projects such that for each subjective feature, pairwise comparisons of

projects can be realized consciously. Since some of the projects out of the set of

fourteen projects started at the beginning of 1990s, the number of possible experts

possessing the vital characteristic is small. Among the possible candidates, four

managers of MST kindly accept to provide data about the projects and to be

part of the study.

Lack of common understanding of the concepts causes high group inconsis-

tency and getting low quality of data which harms the quality of output, project

clusters. For this reason, before initializing the process, we have worked together

with the experts to give a common meaning to each concept in the model. The

projects have also been discussed.

Expert Choice is the most well-known AHP software. In fact, Expert Choice

is a software which has accelerated the wide-spread use of AHP. However, Expert

Choice software is unavailable at Aselsan and the trial version of it restricts the

number of alternatives to eight. For this reason, we create a software called

‘ProTer ’. ProTer is a stand-alone AHP software that is capable of group decision

making. The model’s AHP part is conducted by using ProTer (Figure 4.1). You

can find more information related to ProTer in Appendix.
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Figure 4.1: ProTer
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4.1 Application of AHP

In application of AHP, there are two main parts:

• Evaluation of Features

• Evaluation of Projects

All four experts perform both evaluation of features and evaluation of projects.

4.1.1 Evaluation of Features

In this part of the study, all the features including both the subjective features

• Technological Uncertainty

• Platform Type

• Work and Test Environment

• System Scope,

and the objective feature

• Amount of Resource (Labor)

are evaluated with pairwise comparisons by the experts. Since there are 5 features,

each expert evaluate 10 pairwise comparisons. (Number of Pairwise Comparisons

= n×(n−1)
2

, where n is the number of elements being evaluated.) You can find

input values in Appendix.

After all the pairwise comparisons are evaluated by all the experts, the weights

of the features can be calculated by using the AHP methodology. The results are

as in Table 4.1.
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Table 4.1: Features’ Weights

Feature Weight of the Feature
Technological Uncertainty 0.41
Platform Type 0.12
Work and Test Environment 0.20
System Scope 0.14
Amount of Resource(Labor) 0.13

As it can be seen from Table 4.1, ‘Technological Uncertainty’ feature is the

dominant feature such that its weight nearly equals to two times of the weight of

the second important feature of all, ‘Work and Test Environment’.

The final weights of features are approved by the experts.

4.1.2 Evaluation of Projects

In this part of the study, all fourteen projects are evaluated pairwise by the

experts in terms of the subjective features. For the objective feature, since we

have the quantitative data, there is no need for the projects to be evaluated with

pairwise comparisons.

Each expert, for each of the feature (subjective ones), has to evaluate 91

(Number of Pairwise Comparisons = 14×(14−1)
2

) pairwise comparisons which is

quite a high number. Totally, experts evaluated 364 (91×4) pairwise comparisons.

(You can find input values in Appendix.) High number of pairwise comparisons

is one of the weak points of AHP.

After all the pairwise comparisons are evaluated by all experts, the weights of

the projects for each subjective feature can be calculated by using the eigenvalue

method. The results are as in Table 4.2.

As it is seen at Table 4.2, for each feature, the weight vectors are normalized

such that the max value is equal to one. This type of normalization is the result
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Table 4.2: Projects’ Weights for Subjective Features

Technological
Uncertainty

Platform Type Work and Test
Environment

System Scope

Project 1 0.0555 0.0777 0.2287 0.1010
Project 2 0.0830 1.0000 0.4400 0.3473
Project 3 0.0709 0.9356 0.4045 0.1098
Project 4 0.1978 0.1922 0.1635 0.2611
Project 5 0.1741 0.1514 0.0685 0.1235
Project 6 0.0946 0.1544 0.1574 0.0954
Project 7 0.8074 0.9730 1.0000 0.6161
Project 8 0.3646 0.2906 0.6380 1.0000
Project 9 0.1109 0.2665 0.1999 0.1513
Project 10 0.2287 0.0787 0.7037 0.1912
Project 11 0.4170 0.2856 0.2519 0.2862
Project 12 0.0649 0.1598 0.0647 0.0947
Project 13 0.6298 0.1514 0.1167 0.1513
Project 14 1.0000 0.1996 0.2878 0.1697

of the usage of Ideal Mode AHP.

For the objective feature, ‘Amount of Resource (Labor)’, the vector is formed

by normalizing the related quantitative data of projects such that the max value

is equal to one. The weight vector for the ‘Amount of Resource (Labor)’ feature

is shown at Table 4.3.

The final weights of the projects for each feature are approved by the experts.

The output table of AHP application can be seen at Table 4.4.

4.2 Application of VAHP

As it has been mentioned previously, VAHP is a variation of AHP. VAHP uses

the same input, same hierarchical model, same structure. For this reason, the

input entered for the AHP model by the experts can be used without any change

for VAHP model. By modifying ProTer, we manage to run VAHP algorithm for
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Table 4.3: Projects’ Weights for Objective Feature

Amount of Re-
source (Labor)

Project 1 0.02
Project 2 0.14
Project 3 0.08
Project 4 0.07
Project 5 0.05
Project 6 0.01
Project 7 1.00
Project 8 0.42
Project 9 0.09
Project 10 0.31
Project 11 0.47
Project 12 0.16
Project 13 0.14
Project 14 0.34

Table 4.4: Output Table of AHP

Technological
Uncertainty

Platform
Type

Work and
Test Envi-
ronment

System Scope Amount of
Resource
(Labor)

Features’
Weight

0.41 0.12 0.20 0.14 0.13

Project 1 0.0555 0.0777 0.2287 0.1010 0.02
Project 2 0.0830 1.0000 0.4400 0.3473 0.14
Project 3 0.0709 0.9356 0.4045 0.1098 0.08
Project 4 0.1978 0.1922 0.1635 0.2611 0.07
Project 5 0.1741 0.1514 0.0685 0.1235 0.05
Project 6 0.0946 0.1544 0.1574 0.0954 0.01
Project 7 0.8074 0.9730 1.0000 0.6161 1.00
Project 8 0.3646 0.2906 0.6380 1.0000 0.42
Project 9 0.1109 0.2665 0.1999 0.1513 0.09
Project 10 0.2287 0.0787 0.7037 0.1912 0.31
Project 11 0.4170 0.2856 0.2519 0.2862 0.47
Project 12 0.0649 0.1598 0.0647 0.0947 0.16
Project 13 0.6298 0.1514 0.1167 0.1513 0.14
Project 14 1.0000 0.1996 0.2878 0.1697 0.34
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Table 4.5: Output Table of VAHP

Technological
Uncertainty

Platform
Type

Work and
Test Envi-
ronment

System Scope Amount of
Resource
(Labor)

Features’
Weight

0.6411 0.3451 0.4515 0.3733 0.3559

Project 1 0.2357 0.2783 0.4808 0.3192 0.13
Project 2 0.2915 1.0000 0.6664 0.5870 0.38
Project 3 0.2692 0.9678 0.6387 0.3324 0.29
Project 4 0.4496 0.4378 0.4043 0.5094 0.26
Project 5 0.4210 0.3897 0.2619 0.3517 0.22
Project 6 0.3113 0.3934 0.3982 0.3101 0.09
Project 7 0.9065 0.9871 1.0000 0.7807 1.00
Project 8 0.6095 0.5394 0.8022 1.0000 0.65
Project 9 0.3364 0.5165 0.4496 0.3895 0.30
Project 10 0.4826 0.2797 0.8419 0.4383 0.56
Project 11 0.6532 0.5343 0.5041 0.5334 0.68
Project 12 0.2560 0.3996 0.2551 0.3090 0.40
Project 13 0.7995 0.3899 0.3432 0.3903 0.38
Project 14 1.0000 0.4453 0.5382 0.4128 0.58

the same input. The output table of the VAHP is at Table 4.5.

There is one point that should be identified related to ‘Amount of Resource

(Labor)’ feature. For AHP, we reach the weight vector of projects for ‘Amount

of Resource (Labor)’ feature by normalizing the quantitative data such that the

maximum element is equal to one. However, for VAHP, we form the weight vector

of projects for ‘Amount of Resource (Labor)’ feature by employing the proposed

normalization method of VAHP to related quantitative data.

4.3 Application of Clustering Algorithms

Once the projects are described in terms of weight vectors which are five di-

mensional (each dimension represents each one of the features) and the features’

relative importance are determined, we can continue with the clustering part of
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the study.

4.3.1 AHP Based Clustering

By using the AHP results as the input, Ben-Arieh and Triantaphyllou [3] proposed

two different ways to conduct clustering process:

1. Matrix-based clustering: By multiplying the membership values of the fea-

tures by the features’ weight (importance), a new matrix is generated. In

this matrix, each part (project) is represented as an m dimensional point in

Euclidean space (each feature is a different dimension). Using this matrix,

grouping is accomplished by using any clustering method.

2. Aggregate-value clustering: Each part (project) represented by an aggregate

value which is

vi =
m∑

j=1

wfj
wpij

for i = 1, ....n. (4.1)

Then parts (projects) are clustered based on these single values.

4.3.1.1 Matrix-based Clustering

By multiplying the membership values of the features by the features’ weight

(importance), we form a new matrix which is input of the clustering algorithms.

We employed two well-known clustering algorithms: k-means and agglomerative

hierarchical clustering.

The dendrogram coming out of the application of hierarchical clustering al-

gorithm can be seen at Figure 4.2. In the dendrogram, the numbers on the X

axis represent the project numberings, and the numbers on the Y axis represent

the distances between clusters. By determining a limit distance, we can define

the clusters. Limit distance is the maximum distance between two elements in

the same cluster. For example, if we set distance limit to 20, there will be three
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clusters. It is like drawing a horizontal line that intersects the Y axis at 20. The

clusters formed just below the line are the clusters that we are looking for.

In order to apply k-means clustering algorithm, we should determine the pos-

sible k values. As it is mentioned, there is a measure called the average silhouette

width for the entire data set. The higher the value of the measure is, the more

appropriate the value of k is.

Also, there are both an intuitive lower limit and an upper limit of k such that

k ≥ 3 and k ≤ 5, (4.2)

since for fourteen projects, two clusters can not reveal enough details. In addition,

with six or more clusters, the clustering study is getting meaningless. For this

reason, we should find the k value in between 3 and 5 for which the average

silhouette width for the entire data set is the highest.

The desired k value comes out as 5 and the resulting silhouette values are at

Figure 4.3. The clusters are at Table 4.6.
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Table 4.6: Matrix-Based Clustering: Use of K-means Clustering Algorithm (k =
7)

Cluster
Number

Project

4 Project 1
3 Project 2
3 Project 3
4 Project 4
4 Project 5
4 Project 6
1 Project 7
5 Project 8
4 Project 9
5 Project 10
5 Project 11
4 Project 12
2 Project 13
2 Project 14

Figure 4.2: Matrix-Based Clustering: Use of Hierarchical Clustering Algorithm
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Figure 4.3: Matrix-Based Clustering: Silhouette Graph for k = 5
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Table 4.7: Aggregate-value Clustering: Input Data

Project Aggregate
Value

Project 1 2.3791
Project 2 7.6195
Project 3 6.2760
Project 4 4.5268
Project 5 3.1752
Project 6 2.6716
Project 7 19.2448
Project 8 11.6544
Project 9 3.6259
Project 10 7.0132
Project 11 7.7718
Project 12 1.8887
Project 13 8.5061
Project 14 13.6468

4.3.1.2 Aggregate-value clustering

Each project is represented by an aggregate value, which is the ultimate output

of AHP. The aggregate values can be seen at Table 4.7.

The dendrogram coming out of the application of hierarchical clustering al-

gorithm can be seen at Figure 4.4.

The desired k value for k-means clustering algorithm comes out as 4 for

aggregate-value clustering, and the resulting silhouette values are at Figure 4.5.

The clusters are at Table 4.8.
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Table 4.8: Aggregate-value Clustering: Use of K-means Clustering Algorithm
(k = 4)

Cluster
Number

Project

4 Project 1
3 Project 2
3 Project 3
4 Project 4
4 Project 5
4 Project 6
2 Project 7
1 Project 8
4 Project 9
3 Project 10
3 Project 11
4 Project 12
3 Project 13
1 Project 14

Figure 4.4: Aggregate-value Clustering: Use of Hierarchical Clustering Algorithm

 2 11 13  3 10  1  6 12  4  5  9  7  8 14
0

2

4

6

8

10

12

14

16

18



CHAPTER 4. APPLICATION OF PROJECT CLUSTERING 53

Figure 4.5: Aggregate-value Clustering: Silhouette Graph for k = 4
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Table 4.9: VAHP Based Clustering: Use of K-means Clustering Algorithm (k =
5)

Cluster
Number

Project

2 Project 1
3 Project 2
3 Project 3
2 Project 4
2 Project 5
2 Project 6
1 Project 7
5 Project 8
2 Project 9
5 Project 10
5 Project 11
2 Project 12
4 Project 13
4 Project 14

4.3.2 VAHP Based Clustering

By using the VAHP results as the input, the clustering process is conducted.

By multiplying the membership values of the features by the features’ weight

(importance), we form a new matrix which is input of the clustering algorithms.

We employed two well-known clustering algorithms: k-means and agglomerative

hierarchical clustering.

The dendrogram coming out of the application of hierarchical clustering al-

gorithm can be seen at Figure 4.6. The desired k value for k-means clustering

algorithm comes out as 5 for VAHP based clustering, and the resulting silhouette

values are at Figure 4.7. The clusters are at Table 4.9.
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Figure 4.6: VAHP Based Clustering: Use of Hierarchical Clustering Algorithm
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Table 4.10: Projects’ Rankings

Rankings Projects
13 Project 1
7 Project 2
8 Project 3
9 Project 4
11 Project 5
12 Project 6
1 Project 7
3 Project 8
10 Project 9
6 Project 10
4 Project 11
14 Project 12
5 Project 13
2 Project 14

4.3.3 Extension of K-means Algorithm for Multicriteria

Clustering

As mentioned earlier, Smet and Guzman [19] proposed an extension to k-means

clustering algorithm to the multicriteria framework by defining a multicriteria

distance. The pairwise distances between the projects are calculated based on

the AHP’s resulting ranking of projects. The rankings of projects can be seen at

Table 4.10.

The desired k value for k-means clustering algorithm comes out as 5 and the

clusters are at Table 4.11.

4.4 Investigation of Project Clusters

If we look at the outputs of the different methods conducted to cluster the

projects, we can see that the results of some methods are the same. These are
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Table 4.11: Extension of K-means Algorithm for Multicriteria Clustering (k = 5)

Cluster
Number

Project

1 Project 1
2 Project 2
3 Project 3
3 Project 4
5 Project 5
1 Project 6
4 Project 7
4 Project 8
5 Project 9
2 Project 10
4 Project 11
1 Project 12
4 Project 13
4 Project 14

• Matrix Based Clustering by using K-means Clustering Algorithm (Table

4.6)

• VAHP Based Clustering by using Hierarchical Clustering Algorithm (cut

off point = 0.25), (Figure 4.6)

• VAHP Based Clustering by using K-means Clustering Algorithm (Table

4.9)

In fact, the clusterings coming out of these methods are prescribed by the experts

as the most appropriate groupings of the projects among all the resulting project

groupings. We should also note that the resulting clustering structure coming out

of ‘Matrix Based Clustering by using K-means Clustering Algorithm’ is similar

to the output of methods stated above.

This results are not so surprising, because the methods mentioned above are

using detailed data of projects and features for clustering the projects. Each

project is represented by five dimensional vector, each dimension corresponds to

each feature, and these vectors are the input of clustering algorithms. The other
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methods are using aggregate data, which causes loss of information.

Moreover, we see that VAHP based approach gives the same results for hi-

erarchical and k-means clustering algorithms. On the other hand, AHP based

approach (matrix based clustering) gives different results for hierarchical and k-

means clustering algorithms. This also supports the Zahir [26]’s claim that ‘in

order to obtain a meaningful pattern discovery, the underlying similarity mea-

sure can not be independent of the type of normalization imposed on the data’.

According to the results of this application based study, VAHP based approach

seems to be the best one.

The clustering of projects considered as the one representing the reality best,

is in the following form:

Group 1: Project 1, Project 4, Project 5, Project 6, Project 9, and Project 12

are in Group 1. The common characteristic of these projects is that they

are somehow simple projects for all of the features. These projects have a

homogeneous structure such that each project possesses approximately the

same amount of each feature characteristics.

Group 2: Project 2, and Project 3 are in Group 2. The common characteristic of

the projects in this group is that they have quite a high degree of ‘Platform

Type’ characteristics but a small degree of other features’ characteristics.

Group 3: Project 7 is in Group 3. The cluster having only Project 7 represents

the projects such that they are quite difficult projects in terms of all features.

Group 4: Project 8, Project 10, and Project 11 are in Group 4. The common

characteristic of the projects in this group is that they are moderately dif-

ficult in terms of all the features.

Group 5: Project 13, and Project 14 are in Group 5. Group 5 shows a charac-

teristic such that the projects that belong to this cluster have quite a high

degree of ‘Technological Uncertainty’ characteristics but a small degree of

other features’ characteristics.
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Conclusions and Future Work

In this thesis, we try to solve a real life problem which is the clustering of R&D

projects based on predetermined set of features. We are motivated to solve this

problem, since formally differentiating the processes for different projects showing

different characteristics comes out as a crucial need for MST, one of the three

divisions of Aselsan.

Firstly, by using both AHP and VAHP, we evaluate the projects with respect

to predefined features, and we obtain representing values and vectors for each

projects. Then by employing several approaches existing in the literature we

manage to cluster the projects. At the end of the study, we reach 5 project

clusters, which shows different characteristics. The clusters are also approved

by the experts and they think that these clusters can be used for constructing

the general framework in order to classify the projects. From the results of this

application based study, VAHP based approach comes out as the best one.

This study is constructed on two main fields: multicriteria decision making

field and clustering field. In fact, the combination of these fields, multicriteria

clustering area, is nearly untouchable. This study is important for bringing to-

gether the clustering applications of multicriteria decision making methodology

(AHP) and applying the methods in a real life problem.
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Since multicriteria clustering field is quite a new area, it is very appropriate

for future works. In addition, the general accepted idea of ‘a project is a project’

in project management literature is being weakened, and the researches related

to classifying projects is gaining importance.



Appendix A

Input Data: Pairwise

Comparisons

Figure A.1: Evaluation of Features by Pairwise Comparisons: Matrix A of Expert
1
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Figure A.2: Evaluation of Features by Pairwise Comparisons: Matrix A of Expert
2

Figure A.3: Evaluation of Features by Pairwise Comparisons: Matrix A of Expert
3

Figure A.4: Evaluation of Features by Pairwise Comparisons: Matrix A of Expert
4
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Figure A.5: Evaluation of Projects by Pairwise Comparisons With Respect to
”Technological Uncertainty”: Matrix A of Expert 1
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Figure A.6: Evaluation of Projects by Pairwise Comparisons With Respect to
”Technological Uncertainty”: Matrix A of Expert 2
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Figure A.7: Evaluation of Projects by Pairwise Comparisons With Respect to
”Technological Uncertainty”: Matrix A of Expert 3
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Figure A.8: Evaluation of Projects by Pairwise Comparisons With Respect to
”Technological Uncertainty”: Matrix A of Expert 4
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Figure A.9: Evaluation of Projects by Pairwise Comparisons With Respect to
”Platform Type”: Matrix A of Expert 1
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Figure A.10: Evaluation of Projects by Pairwise Comparisons With Respect to
”Platform Type”: Matrix A of Expert 2
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Figure A.11: Evaluation of Projects by Pairwise Comparisons With Respect to
”Platform Type”: Matrix A of Expert 3
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Figure A.12: Evaluation of Projects by Pairwise Comparisons With Respect to
”Platform Type”: Matrix A of Expert 4
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Figure A.13: Evaluation of Projects by Pairwise Comparisons With Respect to
”Work and Test Environment”: Matrix A of Expert 1
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Figure A.14: Evaluation of Projects by Pairwise Comparisons With Respect to
”Work and Test Environment”: Matrix A of Expert 2
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Figure A.15: Evaluation of Projects by Pairwise Comparisons With Respect to
”Work and Test Environment”: Matrix A of Expert 3
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Figure A.16: Evaluation of Projects by Pairwise Comparisons With Respect to
”Work and Test Environment”: Matrix A of Expert 4
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Figure A.17: Evaluation of Projects by Pairwise Comparisons With Respect to
”System Scope”: Matrix A of Expert 1
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Figure A.18: Evaluation of Projects by Pairwise Comparisons With Respect to
”System Scope”: Matrix A of Expert 2
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Figure A.19: Evaluation of Projects by Pairwise Comparisons With Respect to
”System Scope”: Matrix A of Expert 3
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Figure A.20: Evaluation of Projects by Pairwise Comparisons With Respect to
”System Scope”: Matrix A of Expert 4



Appendix B

ProTer

ProTer is a stand-alone AHP software that is capable of group decision making.

It is created as part of this thesis work. However, it is not created to meet only

the thesis’s model requirements. By using ProTer, it is possible to apply AHP

method to any multicriteria decision problem. With its user interface, everyone

that is familiar with AHP methodology, and has watched a short demonstration

can use ProTer easily.

ProTer is created by using Matlab. ProTer makes it possible to save a work,

and open it.

The user interface of ProTer has seven main parts, Figure B.1. Part 1 is the

list-box, where hierarchy of criteria are entered into the program. The objective

is also entered in Part 1, as the top of the hierarchy. Part 2 is the list-box where

local weights (before synthesis of priorities) of criteria are shown. Part 3 is the

list-box where global weights (after synthesis of priorities) of criteria are shown.

Part 4 is the list-box where both alternatives and the alternatives’ weights for

each criterion are shown. Part 5 is the list-box where the group of experts are

shown. Part 6 is the list-box where pairwise comparisons are shown. Part 7 is

formed for evaluating each pairwise comparisons by either using sliding bar or

text boxes.
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Figure B.1: ProTer’s Parts
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