A TIMETABLING PROBLEM:
CONSTRAINT AND MATHEMATICAL
PROGRAMMING APPROACHES

A THESIS
SUBMITTED TO THE DEPARTMENT OF INDUSTRIAL ENGINEERING
AND THE INSTITUTE OF ENGINEERING AND SCIENCES
OF BILKENT UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF
MASTER OF SCIENCE

By
Ahmet Reha Botsali
June 2000



I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and i 1n quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Omer S. Benli (Principal Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

) )P
kk—a\fg 2y ol f /)7\
Assoc. Prof."Dr. Osénan Oguz

[

Nt

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the de

e of Master of Science.

/
Assigt. Prof-Dr. Cemal Akyel

Approved for the Institute of Engineering and Sciences:

M A ey

Prof! Mehmet Ba@/
Director of Institute of Engineering and Sciences

i



ABSTRACT

A TIMETABLING PROBLEM: CONSTRAINT AND
MATHEMATICAL PROGRAMMING APPROACHES

Ahmet Reha Botsal
M.S. in Industrial Engineering
Supervisor: Assoc. Prof. Dr. Omer S. Benli
June 2000

Constraint programming is a relatively new approach for solving combinatorial
optimization problems. This approach is especially effective for large scale
scheduling problems with side conditions. University course scheduling problem is
one of the hard problems in combinatorial optimization. Furthermore, the specific
requirements of each institution make it very difficult to suggest a generalized
model and a solution algorithm for this problem. The purpose of this study is to
design a system for scheduling courses at Bilkent University. This system utilizes
both constraint programming and mathematical programming techniques. The
problem is solved in three stages. The first two stages, in tandem, generate a
course schedule using constraint programming techniques, and in the last stage
classrooms are assigned to courses by means of a mixed integer programming
model. The proposed system is validated by experimental runs using Bilkent

University course offerings and classroom data from past semesters.
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OZET

BIR DERS CIZELGELEME PROBLEMI: KISIT VE
MATEMATIKSEL PROGRAMLAMA UYGULAMASI

Ahmet Reha Botsali
Endustri Mithendisligi Bolimi Yiksek Lisans
Tez Yoneticisi: Dog. Dr. Omer S. Benli
Haziran 2000

Kisit programlamasi kombinatoryal optimizasyon problemlerinin ¢ézimiinde
kullanilan oldukca yeni bir yontemdir. Bu yontem, 6zellikle yan kisitlar: olan
biylik olgekli ¢izelgeleme problemlerinde c¢ok etkin olmaktadir. Universite
ders ¢izelgelemesi problemi kombinatoryal optimizasyon problemlerinin en
zorlarindan biridir. Ek olarak, her kurumun 6zel gereksinimleri, bu problem
icin genel bir model ve ¢6zim algoritmasi 6nermeyi olanaksiz kilmaktadir.
Bu caligmanin amaci, Bilkent Universitesi icin ders cizelgelemesi olugturan bir
sistem tasarlamaktir. Bu sistem hem kisit programlamasi hem de matem-
atiksel programlama tekniklerinden yararlanmaktadir. Problem, li¢ agamada
coziilmektedir. [k iki agamada kisit programlamasi teknikleri kullanilarak bir
ders ¢izelgesi olugturulmakta, son agamada ise siniflar derslere tam say1 program-
lamast kullanilarak atanmaktadir. Onerilen sistemin uygulanabilirligi, Bilkent

Universitesi’nin gecmig donemlere ait verileri kullanilarak gosterilmigtir.
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Anahter Kelimeler: Universite ders cizelgelemesi, kisit programlamasi, mate-
matiksel programlama,
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Chapter 1

Introduction

The purpose of this study is to design a system for scheduling courses at Bilkent
University. The system utilizes both constraint programming and mathematical
programming techniques. In the next section, timetabling problem is discussed
in general and, then in the following sections, the course scheduling problem at
Bilkent University is described and an overview of the approaches to timetabling

problem is presented.

1.1 Timetabling Problems

Timetabling is one of the computationally difficult problems in scheduling. In
timetabling, the aim is to find suitable time slots for a number of tasks that require
limited resources. Depending on the nature of the problem, the constraints in the
problem can vary and there may be many different objectives. For example, in
some cases the objective may be to minimize the length of the total time period
over which the tasks are to be scheduled, in other cases the objective may be
to find a feasible solution subject to a fixed total time period and several other

constraints. Yet in others the objective can be to find a solution in which least

1



CHAPTER 1. INTRODUCTION 2

number of constraints are violated.

Timetabling problems can arise in many different settings, but generally it
refers to the timetabling at educational institutions. The significance of this
problem is mainly due to the difficulty of constructing a feasible timetable that
satisfies the preferences of the administration, the instructors, and the students.

In certain cases, it may be extremely difficult even to find a single feasible solution.

It is not possible to formulate a general model that is applicable for all cases,
since every educational institution has its own special constraints and objectives.
For example, for a secondary school, there should not be any gap between the
class meetings, on the other hand this is allowed, and in some cases encouraged,

in a university.

Timetabling problems can be grouped into two types: Examination and course
scheduling problems. Examination scheduling problems deal with assigning the
examinations over an examination period subject to several constraints. The
objective can be assignment of the examinations to a minimum number of periods
without any conflict. In other problems, the number of periods are fixed and the
objective is to optimize a preference function that is based on the preferences of
the administration, the instructors, and the students. Some of these preferences

may be:

e Maximizing the time interval between the two consecutive examinations of

a student.

e Scheduling the examinations with large number of students in earlier time

slots, to allow more time for grading.

In course scheduling, the time period is fixed and, in general, it is one week.
The objective is to find a course schedule that is feasible with respect to a number

of constraints. Course scheduling and examination scheduling problems have both



CHAPTER 1. INTRODUCTION 3

similar and differing characteristics. For example, in both problems a student
cannot take more than one examination or attend more than one class meeting
at a time. On the other hand, in examination scheduling problems there may
not have a fixed time period, however all course scheduling problems are for fixed

time periods.

Regardless of the differences among problem types, similar solution ap-
proaches are used in all. In this thesis, the focus is on the course scheduling

problems. In the next section the characteristics of the problem are discussed.

1.2 Characteristics of Course Scheduling Prob-

lems

In course scheduling problems, some constraints are case specific, but there are
some constraints which should be satisfied in every course scheduling problem.

These are called hard constraints. For example,

The class meetings of two courses with the same student enrollment cannot

be assigned to the same time slot.

An instructor cannot teach more than one class meeting at the same time

slot.

The assigned number of class meetings that are scheduled for the same time

slot cannot exceed the number of available classrooms.

All class meetings should be assigned to a time slot.

Hard constraints cannot be violated, since violation of any one of them results
in an infeasible timetable. On the other hand, there are soft constraints. It is

not desirable to violate a soft constraint, but if it is violated, the timetable is still
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feasible, but not as good as a timetable in which that constraint is not violated.

Among such soft constraints are:

An instructor may not want to teach more than, say, four class meetings in

a day.

It is undesirable to have a class meeting during the lunch hour.

Students may not want to have class meetings in early and late time slots.

There should be at least one day between the two class meetings of a course.

As mentioned earlier, timetabling problem is computationally very difficult.
The basic timetabling problem is reducible to graph coloring problem. Since
in 1972, Karp [22] showed that the graph coloring problem is NP-Complete,
it consequently follows that timetabling problem is NP-Complete. In addition
to this, the varied nature of constraints for each institution makes timetabling
problem even more complicated. The next section discusses these specific

constraints in the case of Bilkent University.

1.3 The Course Scheduling Problem at Bilkent

University

Bilkent is a large university having two campuses, several schools and around
ten thousand students. The course scheduling problem is becoming considerably
more demanding each year and thus, there is a need to use advanced techniques

for course timetabling.

At Bilkent, the classes can meet during the weekdays from 08:40 to 17:30.
Each day there are nine time slots in which a class meeting can be scheduled.

Each meeting lasts 50 minutes with a ten minute break in between classes. So the
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class meetings start at {8:40, 9:40,...,16:40} and end at {9:30, 10:30,...,17:30}.
A course that requires two time slots is called a 2-hour course. In the similar
manner, there are 3-, 4-, and 5-hour courses which requires three, four and five

time slots, respectively.

Other than the 2-hour courses, all other courses are to be scheduled on two
separate days, that is:

3-hour courses One class meeting requires one time slot and the other one

requires two consecutive time slots.
4-hour courses Both class meetings require two consecutive time slots.

5-hour courses One class meeting requires two consecutive time slots and the

other one requires three consecutive time slots.

A course may have several sections depending upon the student enrollment in
the course. If a course is to meet on two separate days, then the class meetings
cannot be assigned to two consecutive days. For example, if the first class meeting
is scheduled on Monday, the second class meeting can be scheduled at the earliest

on Wednesday.

Each section of a course may have different class sizes ranging from 10 to 65
students. The variety in section sizes requires scheduling of class meetings in an
appropriate classroom which has sufficient capacity to accommodate all students.

Currently, the classrooms can be grouped into four types based on their capacity:

Type-1 classrooms Maximum capacity of 25 students.
Type-2 classrooms Maximum capacity of 30 students.
Type-3 classrooms Maximum capacity of 40 students.

Type-4 classrooms Maximum capacity of 65 students.
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Thus, as an example, if a section has 35 students, then its class meetings can

take place in a type-3 or a type-4 classroom.

Although in some other institutions instructor and course section assignments
may be done by timetabling programs [4], the number of sections for each course
and the instructor of each course section are known in advance at Bilkent. Further
more, each course section is reserved for a specific student group. That is, for
each course section, the students who can enroll are known in advance. This
makes it possible to compute the number of required sections for each course

prior to the course scheduling process at each semester.

Summing-up, following eight constraints are needed to comply with the
conditions and requirements of Bilkent University. All these constraints are

treated as if they are hard constraints at Bilkent.

1. All class meetings will be assigned to a feasible time slot.

2. Two class meetings belonging to the same course section cannot be

scheduled on two consecutive days .
3. All class meetings should be assigned to an appropriate size classroom.
4. There are limited number of classrooms in each classroom type.
5. The course sections assigned for specific student groups cannot overlap.

6. Sections of the courses that are taught by the same instructor cannot

overlap.

7. An instructor cannot teach more than a fixed number of class meeting hours

per day.

8. A student can attend at most eight hours of class meetings per day.
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1.4 Review of Approaches to Timetabling Prob-

lem

In this thesis, constraint programming (CP) and mathematical programming
(MP) techniques are used for solving the course scheduling problem. There are
other solution approaches besides these for course scheduling problem. Usually,
it is not possible to decide beforehand which solution approach is the best. Since
the constraints vary from one institution to another, a solution procedure that
performs well in one case may perform very poorly in another. Sometimes
combination of several approaches can give better results. The following is a

brief review of approaches to modeling and solution of timetabling problems.

Graph coloring heuristics are one of the earliest approaches used to solve
timetabling problems. The graph coloring problem can be described as finding
a coloring for the vertices of a graph in such a way that no two vertices have
the same color if they have an edge connecting them. In a graph coloring model
of a timetabling problem, courses are represented by vertices. For any course
pair, if there exists a constraint which states that they cannot be scheduled
simultaneously, then there exists an edge in between the two vertices representing
those courses. Such constraints may exist if the same instructor is teaching both
courses (“instructor clash”) or same set of students may have to enroll in both

courses (“curriculum clash”).

As a simple example, suppose there are five courses A, B, C, D, E. Courses
A and B are taught by the same instructor, and D and E are taught by
another. Suppose further that same students enrolled in courses B, C, D. The

corresponding graph is shown in Figure 1.1.

Since the graph coloring problem is NP-Complete, heuristic procedures are
needed for its effective solution. Since early 1960s, different graph coloring

heuristics are suggested for solving timetabling problem. As reported in Weare



CHAPTER 1. INTRODUCTION 8

Figure 1.1: A Simple Graph Representation for Course Scheduling

[27], Broder [7] and Cole [12] presented different graph coloring heuristics to
solve the same timetabling problem. Broder used a sequential algorithm that
schedules exams on the first available time period and this idea was adapted to
course scheduling case by scheduling the courses at the period with least number
of student conflicts, where the number of periods is restricted. On the other
hand, Cole’s algorithm was selecting the exams that did not have conflict on
the current time period instead of selecting the exams randomly. These are
among the first studies for solving the timetabling problem by graph coloring
heuristics. Later, there have been other studies that related graph coloring
techniques to timetabling problem. A survey of the graph coloring techniques

used in timetabling can be found in [10].

Today, graph coloring still attracts interest. For example, Burke et al. [9]
discuss the role of graph coloring techniques in automatic timetable generation.
Dowsland [16] represents timetabling problem as a graph coloring problem
and assigns weights to the edges according to the importance of the conflict
represented by that edge. The problem, then reduces to finding a coloring in
which the total weight of edges that connects the vertices of the same color is

minimized.

Mathematical programming is another approach that is used for solving

timetabling problems. Let the index sets be,

j =1,2,...,M for the courses, and
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t =1,2,...,T for the time slots.

The decision variables are

1, ifcourse j=1,2,...,M is assigned to timeslot ¢t = 1,2, ... ,T;
Tive =
Y 0, otherwise.

Suppose there are n classrooms and let P denote the set of course pairs that
cannot be scheduled at the same time slot, then a simple timetabling problem
can be formulated as minimizing or maximizing an objective function subject to

the following constraints:

1) Tiizg=1, Vie{l,2...,M}
(2) Tz <n, vie{l,2,...,T}
() L, (mij +zi) <1, V(j,k) €P.

In this model, the constraint set (1) ensures that all courses assigned to a
time slot. The constraint set (2) ensures that for all time slots, there cannot be
more courses than the available number of classrooms and the constraint set (3)
ensures that if two courses j and k£ cannot be scheduled at the same time because
of a clash constraint, then at a time slot, at most one of these courses can be

scheduled. This clash constraints may be due to a number of reasons, such as:
e Same students enroll in courses j and k.
e Courses j and k are taught by the same instructor.
e Courses j and k share a single resource, such as a special equipment or

laboratory.

The objective function is not needed when only a feasible solution is needed.

Badri et al. [4] discuss the objective functions that combine several preference
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functions. Generally, these preferences have different weights according to their

importance and the objective is maximizing (or minimizing) the total weight.

The above model is the simplest representation of a timetabling problem,
naturally the models representing real applications are more complicated.
Depending on the institution, the requirements can change, consequently it is
necessary to append other constraints. In a timetabling problem, if there are
T periods and M courses, then the number of binary variables, z;;’s, will be
equal to M x T. Mathematical programming approach can solve fairly small size
problems, but when the number of courses increases, the resulting mathematical
programming model becomes computationally intractable. It may be necessary
to intervene the solution process using relaxation as Tripathy [24] did in his study.
Another approach may be to find ways to decrease the number of variables. For
example, if two courses should be scheduled on the same time slot, then they can

be considered as a single variable as in [25)].

Simulated Annealing (SA) and Tabu Search (TS) are relatively newer
approaches for solving timetabling problem compared to graph coloring and
MP techniques. They are iterative improvement algorithms that are designed
to search for the optimal solution without being trapped at a local optimum.
In these algorithms, an initial solution is iteratively modified. These iterative
modifications on the solutions generally cause improvement on the objective
function value, but in order not to get stuck at a local optimum point,
sometimes the modifications can deteriorate the objective function value. For

an introductory discussion of these approaches, see Appendix A.

Hertz [19] proposed a model that uses TS to find a course schedule where
the length of class meetings is not known in advance. Different than academic
timetabling problems, Wright [28] investigates the timetabling problem for sports
events. He tests three techniques experimentally and develops a computerized
system that uses a form of TS for timetabling. He also claims that this approach

may have applicability in large, complex, multi-objective combinatorial problems.
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Johnson [21] gives an MP model for examination timetabling and he suggests an
approach that uses simulated annealing algorithm instead of solving the MP

model with a large number of binary variables.

Use of Genetic Algorithms (GA) is yet another heuristic approach for
producing acceptable timetables. In order to apply GA, initially there should be
a set of solutions and a fitness (or evaluation) function that is used to measure
the quality of the solutions. GA is an iterative algorithm and the aim is to obtain
good solutions with respect to the preference function by modifying or combining
the solutions in the solution set of the previous iteration. Since these algorithms
mimick the natural selection process, they are called genetic algorithms. An
introductory discussion of this approach is given in Appendix B. There is a large
number of studies that use GA to solve timetabling problems. Burke et al. {8]
develop an automated timetabling system based on GA. Abramson and Abela [2]
solve a timetabling problem by using GA. However, they include a parallel mating
scheme and use shared processors to solve the problem in less time compared to
other studies that use GA with sequential breeding. Corne et al. [13] give an

overview of GA approaches for solving timetabling problems.

Another solution approach for timetabling problem is considering the problem
as a network flow model. Chahal and Werra [11] used this idea to construct
an interactive system for timetabling. They validate this system for a small size
timetable problem of an adult education school in Geneva. Network flow models
for timetabling problem and a discussion of other methods related to timetabling

problem are discussed in Werra’s review paper [15].

Constraint programming (CP) is a relatively new technique that is
effective in solving large scale combinatorial problems. In CP approach, the
timetabling problem is modeled as constraint satisfaction problem (CSP). A CSP

consists of three main elements:

1. Variables,
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2. Set of values that each variable can take (the “variable domain”),

3. Constraints restricting the values that the variables can take simultaneously.

In timetabling problems solved by CP, generally class meetings are defined
as the variables and time slots are the domains of the variables. The typical
timetabling constraints form the constraint set. The problem is to find values
for all the variables that satisfy the constraints. In its optimization version, the
problem is to find the value assignment of variables that minimizes or maximizes

an objective function.

There are various reasons for CP to be an attractive candidate approach
for solving timetabling problems. For example, in these problems, there is a
large number of constraints that restrict the values that two variables can take
simultaneously. CP makes use of this fact in constraint propagation. Constraint
propagation is a mechanism in the solution process that generates new constraints
on the values that the variables can take depending on the current set of
constraints. Domain reduction is another technique that makes CP powerful.
When a variable is assigned to a value in its domain, by domain reduction, the

value domains of the other variables are reduced.

Such features of CP provide pruning of the search space while assigning values
to the variables. This is important for a timetabling problem, because large
number of courses and time slots cause a very large search space which results
in excessive computation. Besides pruning the search space, the ability to define
a search strategy in CP makes it more attractive. An introductory discussion of
CP can be found in Appendix C.

Frangouli et al. [17] use an instance of the constraint logic programming class
of languages, the Eclipse System [31], to construct a timetabling system called
UTSE at University of Athens. They also provide a user interface that allows user
to specify the features of the timetable such as distance of class meetings, room

utilization, etc. Henz and Wiirtz [18] solve the timetabling problem of a German
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university by using Oz which is a concurrent constraint language providing for
functional, object oriented and constraint programming [23] . (Recently Mozart
[32] has replaced Oz). Azevedo and Barahona [3] first give a MP model for
the timetabling problem for the Faculty of Science and Technology of the New
University of Lisbon and show that the problem has a large number of binary
variables to find a solution. Then, instead of MP model, they suggest a CP
model that is solved by using system DOMLOG which is a constraint logic
programming system for finite domain variables. Deris et al. [14] again used
a CP system to solve a timetabling problem involving 536 courses, 45 time slots
and 21 classrooms. However, as different from other studies, they implement CP

using their own C++ code instead of using a general CP software.

1.5 Outline of the Thesis

In the previous sections, after introducing the timetabling problem and discussing
the characteristics of course scheduling problem, the course scheduling problem
at Bilkent University is presented in detail; followed by a brief overview of the

previous approaches to this problem, emphasizing the major contributions.

The rest of the thesis is organized as follows. Chapter 2 develops the main
constraint programming and mathematical programming models that are used
in the course scheduling system that is presented in Chapter 3. The system is
validated using the data of past course offerings at Bilkent University. This and

the final conclusions are given in Chapter 4.



Chapter 2

Modeling of the Timetabling

Problem

Since course scheduling problem is NP-Complete, the increase in the size of the
problem makes it computationally very difficult to find a solution in a reasonable
time. To overcome this problem, the constraint set is decomposed into subsets.
By this way, the overall course scheduling problem can be represented as a union

of three subproblems (see Figure 2.1):

1. Allocation of class meetings to days,
2. Construction of course schedule for each day,

3. Assigning classrooms to class meetings.

Note that, in its current version, there is no objective function to optimize,
hence the above sequential approach does not cause any degradation in the quality
of the resulting solution. The course schedule is generated in three stages. In the

first two stages, the respective problem is modeled as a constraint program. In

14
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First Stage Allocation of Class Meetings to Days
Y Y Y Y [
Monday Tuesday Wednesday Thursday Friday
Second Stage Construction of Daily Course Schedules
Y / ' | Y
Monday Tuesday Wednesday Thursday Friday
Third Stage Class Meeting - Classroom Assignment

Figure 2.1: Stages of the Solution Process

the third stage, the problem of class meeting - classroom assignment is formulated

as a mathematical program.

These same three stages can all be formulated as mathematical programs, as
is done in Appendix E. But CP modeling of the first two stages give considerable
flexibility for future inclusion of other constraints with minimal increase in the

computational requirements.

2.1 Allocation of Class Meetings to Days

The class meetings are allocated to days considering only the following

constraints:

1. All class meetings should be assigned to a day.

2. Daily classroom capacity should not be exceeded.
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3. Number of class meeting hours that a student can attend in a day should

be taken into account.

4. Number of class meeting hours that an instructor can teach in a day should

be taken into account.

5. Two class meetings of the same course section should not be scheduled on

consecutive days.

In Chapter 1, it was stated that each class meeting requires a classroom
of a specific type. In this problem the classroom types can be considered as
resources which are used by class meetings. The daily resource capacities depend
on the number of classrooms belonging to the classroom type represented by that
resource. For example, having 25 type-1 classrooms means that the daily class
hour capacity of type-4 resource is 25 x 9 = 225 (number of classrooms X number
of time slots in a day). At a day where a class meeting is allocated, this class
meeting requires a classroom of its type for £ number of hours where z is the

length of the class meeting.

During the allocation of class meetings to days, it should be recalled that
the total hours of the class meetings that a student attend per day can at most
be eight (one out of nine time slots should be left for lunch break). Similar to
students, there is a limit for the total hours of the class meetings taught by an

instructor. It is possible to change this limit for an instructor upon her request.

The last constraint of this stage is about the time between the two class
meetings of a course section. Such class meeting pairs cannot be scheduled on

consecutive days.

If all the constraints are considered, it will be seen that this problem is a
constraint satisfaction problem (CSP) where class meetings are variables and
days are the domains of the variables. This problem is formulated as a CP

model. The following definitions and notation are needed to describe the model.
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Group is a set of students. For each student group, there is a set of course
sections. A student from a student group can attend course sections in
that group’s set of course sections. For this reason, the class meetings
belonging to the course sections from the same set cannot be scheduled
at the same time slots and such class meetings’ total hours cannot exceed

eight in a day, since a student cannot attend more than eight class hours.

Resource The classroom types are the resources. In this problem there are four

classroom types, {type-1, type-2, type-3, type-4}.

Sets

S Set of class meetings, {m1,...,m,}

I Set of instructors, {I,..., I}

Sy, Set of class meetings given by instructor I;

G Set of student groups, {g1,-.., 9%}

Sg; Set of class meetings belonging to student group g;
R Set of resources, {ry,...,7r4}

Sy, Set of class meetings that require resource r;

P Set of class meeting pairs m;, my that belong to the same course section

Parameters
hm; Hours of class meeting m;
lm; Resource requirement of class meeting m; per day

¢r, Maximum capacity of resource rj per day



CHAPTER 2. MODELING OF THE TIMETABLING PROBLEM 18

Variables

T; Assigned day of class meeting m;

Constraints

The objective is to find a solution satisfying the following constraints:

(1)  Tm; €A0,...,4}, Vm; €S

(2)  Zmes., (Trm; = 1) X lm; < Cry,s Vri € Rt €{0,...,4}
B)  Lmjes, (Tm; =1) X hm; <8, Vg€ G,te{0,...,4}
4)  Zmjes;,(Tm; = 1) X hm; <5, VI e I,t€{0,...,4}
(5) Ty — Ty =2V Tpyy — Ty > 2, VY (m;, m;) € P.

When this problem is solved, the output will indicate which class meeting
will take place on which day. The constraints ensure that the daily classroom
capacities, the instructors’ and the students’ daily class hour limits are not

exceeded.

2.2 Construction of Daily Course Schedules

In this model, the class meetings that are assigned to a specific day by the previous

stage are given a specific time slot of the day, subject to the constraints :
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1. Every class meeting on that day should be scheduled to a time slot ensuring
that it ends at 5:30 p.m at the latest.

2. At each time slot, the total capacity requirement of the class meetings
for a specific classroom type cannot exceed the available capacity of that

classroom type.

3. Two class meetings taught by the same instructor cannot be scheduled on

overlapping time slots.

4. Two class meetings of a student group cannot be scheduled on overlapping

time slots.

The first constraint ensures that if a class meeting is allocated to a day by first
stage, then it should be scheduled on a time slot on that day. The classroom types
are, again, considered as resources. However, this time the maximum hourly
resource capacities are used that is equal to the number of classrooms in that
resource type. For any time slot, the class meetings using a specific classroom

type cannot exceed the number of classrooms in that classroom type.

Finally, the instructors cannot teach more than one class meeting and a
student cannot attend to more than one class meeting at a time slot. In other
words, the class meetings taught by the same instructor cannot be scheduled to

overlapping time slots, nor the class meetings taken by the same student group.

This problem is a CSP and to find a daily course schedule it is possible to
construct a CP model for each day by using the following notation.
Sets

S Set of class meetings, {mi, ..., My}

I Set of instructors, {I,..., I}
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S, Set of class meetings given by instructor I;

G Set of student groups, {g1,..., 9%}

S, Set of class meetings belonging to student group g;
R Set of resources, {rq,...,74}

Sr, Set of class meetings that require resource r;

Parameters

hm; Hours of class meeting m;
lm; Resource requirement of class meeting m; per hour

¢r, Maximum capacity of resource 7 per hour

Variables

Ty, Start time of class meeting m;

Constraints

20

The objective is finding a feasible solution subject to the following constraints:

(1)  Tm €{0,...,9— hm; }, Vm,; €S

ham; —1 .
(2) Yomjese, 2i=0 (Trm; =t = 1) X lm; < Crys Vry € R, t € {0,...,8}

(3)  Tmyesy, Timd Ty =t—1) <1, VL el te{o,...,8)
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hm,—1 .
(4) ijesgi Zz:(.)’ (Tm] =t- 1’) S 1, ng € G, te {0, ey 8}.

This model schedules the class meetings of each day resulting in the
weekly course schedule. However, this schedule contains only course and time
information, but no classroom assignments are made. Next model assigns

classrooms to the scheduled class meetings.

2.3 Assignment of Class Meetings to Class-

rooms

There are four type of classrooms type-1, type-2, type-3 and type-4 with
capacities 25, 30, 40, 65 students, respectively. In previous models, it was
assumed that a class meeting requires a classroom of only a specific type, but
this assumption is not applied to the meetings requiring type-1 classrooms. Since
the number of classrooms in this resource type cannot meet the demand, while
running the previous models, it was allowed that class meetings requiring type-1
classrooms can take place in every kind of classroom. This is valid, because type-1
classrooms are for 25 students and if a class meeting has 25 students, then it can
be placed in a classroom with 30, 40 or 65 students capacity. In fact every class
meeting can be assigned to a classroom having sufficient student capacity. For
example a class meeting with 35 students can be assigned to a type-4 classroom
instead of a type-3 classroom. This is made possible by the current model. The
problem is to find appropriate classrooms for class meetings scheduled on that

day satisfying the constraints:

1. Every class meeting should be assigned to a classroom.

2. There can be at most one class meeting in a classroom during a time slot.
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3. For all class meetings that are two hours long, first and second hours should

be assigned to the same classroom.

4. For all class meetings that are three hours long, first, second and third

hours should be assigned to the same classroom.

This problem is formulated as an MP model by using the following notation.

Sets

S Set of class meetings, {m1,...,my}

R Set of classroom types, {r1,72,73,74}

Sy, Set of class meetings that need a classroom of type 7y
H; Set of class meetings that are ¢ hour long, ¢ € {1, 2,3}

C., Set of classrooms that are in type 7y

Parameters

start(m;) Start time of class meeting m;, start(m;) € {0,...,8}

Variables

1, if class meeting m; is assigned to
X1 (m, k,1) =< k** element of C,, at time slot [;

0, otherwise.

1, if class meeting m; is assigned to
Xa(my, k1) =< k* element of C,, at time slot [;

0, otherwise.
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1, if class meeting m; is assigned to
Xs(mj, k,1) = k* element of C,, at time slot [;

0, otherwise.

1, if class meeting m; is assigned to
Xa(myj, k,1) =< k™ element of C,, at time slot [;

0, otherwise.

Constraints

The objective function is formulated according to the scheduler’s preferences,
such as maximizing classroom utilization, minimizing the distance traveled by

the students, etc. The constraints are:

(1) ke, Xalmy, k, start(m;)) =1, Vm; € 5,

Ykec,, Xa(my, k, start(m;))+
Y kECn, Xs(mj, k, start(m;)) =1, Vm; € Sy,

Ykec,, Xa(my, k, start(m;))+
Y kecy, X3(my, k, start(m;))+
Y kecy, Xo(my, k, start(my)) = 1, Vm; €5,

kec,, Xa(mj, k, start(m;))+
Ykecy, X3(my, k, start(m;))+
kec,, X2(mj, k, start(m;))+
Yrec,, X1(mj, k , start(m;)) = 1, Vm; € Sy,

(2) Emje(sr1USr2USr3Usr4) X4(mj, k, l) S ]., Vk S C’I‘47 l € {0, . ,8}

ijG(Sr1U512U5r3) X3(mj, k‘, l) S 1, Vk c Cr:;’ l € {0, ey 8}
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ijE(STIUSTZ) XQ(mj,k, l) S 1, Vk € 072, le {0, . ,8}
ijes,1 Xl(mjaka l) S 17 Vk € Crw l & {0, ,8}

(3)  Xu(my, k, start(m;)) = X4(mj, k, start(m;) + 1),V m; € ((Sr, U Spy U S, U Sy,) N Ha),
VkeC,,

X3(my;, k, start(m;)) = Xs(my, k, start(m;) + 1), Ym; € ((Sry U S, U Syy) N Hy),
Vke G,

Xo(mj, k, start(m;)) = Xo(my, k, start(m;) + 1),V m; € ((Sr, U Sy,) N Ha),
Vke G,

X1 (mj, k, start(m;)) = X1(mj, k, start(m;) 4+ 1),V m; € (S, N Hy),
Vk e Cp
(4)  Xa(my, k, start(m;)) = Xa(mj, k, start(m;) +1),Ym; € ((Sr, U Sy U Sy, U Sy,) N Hy),

VkeC,

X4(mj, k, stafrt(mj)) = X4(mj, k‘, stafrt(mj) + 2), ij € ((31-4 U S7-3 U S,,-2 U Srl) N H3),
VkeC,,

X3(my, k, start(m;)) = Xs(mj, k, start(m;) 4+ 1),Y'm; € ((Sry U Sr, U Spy) N Ha),
VkeCpy

X3(my, k, start(m;)) = Xs(my, k, start(m;) + 2),Vm; € ((Sps U Sr, U Spy) N Ha),
Vk e,



CHAPTER 2. MODELING OF THE TIMETABLING PROBLEM 25

Xo(mj, k, start(m;)) = Xa(my, k, start(m;) +1),Ym; € ((Sr, USy,) N Hs),
VkeC,

Xo(mj, k, start(m;)) = Xa(my, k, start(m;) +2),Ym; € ((Sp, U Sy,) N Hs),
Yk e C,,

X1(mj, k, start(m;)) = X1(m;, k, start(m;) +1),Ym; € (S, N H),
Vk e C,

X1(mj, k, start(m;)) = X1(mj, k, start(m;) + 2),Ym; € (S, N H;),
Vk e Cp

(5) X4a X37 X27 Xl € {0, 1}



Chapter 3

A Course Scheduling System

The models formulated in the last chapter are now to be used as parts of the
course scheduling system (CSS) for Bilkent University. This CSS is designed to
help the timetabler for generating feasible course schedules. As seen in Figure 3.1,
it uses both data and model interactively and the software used in this system,

as explained in §3.2, provides the necessary user interface.

3.1 Data Transfer in CSS

The proposed system is composed of a number of models and data transfer among
these models is necessary, since the output of a model is required as the input
data to another. In CSS, data manipulations and transfers can be grouped into

three classes:

1. Preparation of input data for allocation of class meetings to days,
2. Input data for construction of daily course schedules, and

3. Input data for class meeting - classroom assignment.

26
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Construction of Daily Schedule

«Course Daia
«Instructor Data Second Model | T
»Student Data T
*Classroom Data — n
" DATABASE
\aﬁj i“____:
v v
First Model Third Model

Allocation of Class Mestings to Days Classroom - Class Meeting Aszignment

Figure 3.1: Model and Data Interaction in Proposed CSS

These are explained in detail in the following subsections.

3.1.1 Preparation of Input Data for Allocation of Class
Meetings to Days

First, the student groups and the course sections reserved for each student group
are determined. To simplify the problem and to prevent infeasibilities, some
class meetings belonging to the sections of the same courses are combined and
considered as a single class meeting. This is necessary, because the total hours for
the class meetings of the course sections reserved for each student group can be
at most 40 in a week. However, initially for some student groups the total hours
can be more than 40. By considering different class meetings as a single class
meeting, the infeasibilities for such student groups are eliminated. During these

modifications, the resource and instructor requirements are considered and if a
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new class meeting is generated, its classroom requirement is set as the total of the
classroom requirements of the class meetings that it includes, and it requires all
the instructors required by the previous class meetings. This modification results
in a course schedule in which class meetings of the combined sections start at the

same time.

After generating the course data, a database file with the following column

names is constructed:

Group | Meeting | Section | Hour | Resource Req. | Classroom Type | Instructor

A specific row of the above database file gives the following information under

each column:

Group Name of the student group attending to class meeting,

Meeting Class meeting for which the information is supplied by that row,
Section Course section of class meeting that it belongs to,

Hour Length of class meeting,

Resource Requirement The total classroom hours required by class meeting

in a day,
Classroom Type The type of the classroom that is required by class meeting,

Instructor Identity number of the instructor who teaches the class meeting.

For storing the resource (classroom) data, another database file is constructed

with column names:

Resource | Capacity | Daily Capacity
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In this database file, the columns represent the following information:

Resource The classroom type (type-1, type-2, type-3, type-4),

Capacity Number of classroom hours available in an hour for each classroom

type or in other words resource capacity per hour,

Daily Capacity Number of classroom hours available in a day for each resource

Finally, a third database file is required to keep the information about class

meeting pairs belonging to the same course sections with column names:

Meeting | Next

The above three database files keep the necessary input data for allocation
of class meetings to days. After the run of the first model, the day for each
class meeting is determined and the output is again stored in a database file with

column names:

Meeting | Day

Where each row shows the class meeting’s day in terms of integers {0, ...,4}
respectively instead of {Monday, ..., Friday}.

3.1.2 Input Data For Construction of Daily Course
Schedules

For constructing daily course schedules, the input file is retrieved from a new
database file constructed by combining the result of first model and initial course

data as seen in Figure 3.2
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Group Meeting | Section | Hour Resource Req. Classroom Type Instructor
Meeting Day
— Group Meeting Section Hour | Resource Req. Classroom Type Instructor | Day

Figure 3.2: Input Data for Constructing Daily Course Schedules

The model for construction of daily course schedules is run for each day. At

each run, input data is retrieved from the new database file and the resource file.

After each run, the output is stored in a database file with columns:

Meeting | Time Slot

Where time slot column stores the information about the start time of the

class meeting in terms of integers {0,...,8} respectively instead of {8:40, ...,

16:40}.

3.1.3 Input Data for Class Meeting - Classroom Assign-

ment

In this stage, by using the outputs of previous stages, new database files for each

day are constructed with columns:

Section

Hour

Classroom Type

Time Slot

and a new classroom file is constructed with columns:
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Classroom Name | Classroom Type

For each day, meeting - classroom assignment is done by retrieving input data
from the above files. The outputs are stored in a database file. By using these

outputs, a final database file is generated with columns:

Group | Course Section | Hour | Day | Time Slot | Classroom | Instructor

in which all the information about the course schedule is stored. All data

storage and retrieval processes are done using Oracle8 Release 8.0.5 server.

3.2 ILOG OPL Studio

All the models in this CSS are run by using the software ILOG OPL Studio 2.1.3.
OPL Studio [29] is an integrated development environment for combinatorial
optimization applications. It can be effectively used for constructing and solving
linear programming, integer programming, and constraint programming models.
The model codes are written in optimization programming language (OPL)

developed by Pascal Van Hentenryck [26].

OPL Studio has several tools including CPLEX 6.5.3 (mathematical pro-
gramming solver), SOLVER 4.4 (solver for constraint programming) and
SCHEDULER 4.4 (a tool developed for constraint based scheduling). Once a
model is constructed, after compilation, OPL Studio automatically detects the

the problem type and determines the most convenient solver to solve it.

ILOG OPL Studio has a user friendly graphical environment (Figure 3.3).
Unlike most other programming environments, the compilation errors are
displayed clearly. By using menus, it is possible to change parameter settings

(iteration limit, tolerance level, etc), search procedures (dept first search, limited
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discrepancy search, etc). The display of solution in graphical format is possible
such as resource utilizations, and charts for resource constrained scheduling

problems.

Another feature of OPL Studio is its ability to decide on the most efficient
solver for a model. It is able to solve both mathematical programming and
constraint programming models. Since in CSS, the solution is obtained by
utilizing both constraint programming and mathematical programming, OPL

Studio is very convenient single system.

In this course scheduling problem, the size of the course, student, instructor
data is very large and it is not easy to manipulate the data without a database. At
the same time, in CSS data is retrieved and stored several times that necessitates
a database. Since OPL Studio has database connection capability, the data can

easily retrieved and stored by OPL Studio before and after running the models.

OPL Studio has a special tool called scheduler that contains efficient algo-
rithms for solving the constraints of resource constrained scheduling problems.
This option makes it possible to define and solve the constraints related to the
resources and the activities very easily. Without using complicated mathematical
expressions, it is possible to define constraints for resources, resource capacities,
activities, resource requirements of activities as simple as writing a sentence
in an ordinary language. Since the course scheduling problem is a type of
resource constrained scheduling problem, the classroom types can be represented
as resources with available capacities and the class meetings are the activities to

be scheduled whose durations equal to length of class meetings.

All these features make ILOG OPL Studio the ideal tool for CSS of Bilkent

University.
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Figure 3.3: User Interface in ILOG OPL Studio
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3.3 OPL Formulations of Constraint Program-

ming Models

CP models that are used in the first and second stages of CSS can easily

be represented by using OPL’s special constraint definitions.

subsections, OPL representation of CP models is described.

In the following
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3.3.1 OPL Model for Allocation of Class Meetings to
Days

Sets and Parameters

S Set of class meetings, {m,...,m,}

I Set of instructors, {Iy,...,In}

Sy, Set of class meetings taught by instructor I;

G Set of student groups, {gi,.-., 9k}

Sg; Set of class meetings belonging to student group g;

R Set of resources, {r1, s, 73,74}

Sy, Set of class meetings that require resource 7y,

P Set of class meeting pairs m;, m;, that belong to the same course section
hm; Hours of class meeting m;

lm; Resource requirement of class meeting m; per day

¢, Maximum capacity of resource 7 per day

Constraints
(1) Schedule horizon is from 0 to 4,
(2) my; is an activity with duration 1, Vm; €S

(3) Tk 1S a resource with capacity ¢, Vry € R
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(4) mj requires l,,; amount of resource ry, Vry € {re,rs, s}, Vm; € S;,
(5) m; requires ln,, amount of a possible
resource 1 € R, Vm; € 5,
(6) mj.start — mg.start > 2 V my.start — mj.start > 2,
V(m;,mg) € P
(7) Ymjes,, (Mj-start =t) X hm, < 8, Vg, € G, te{0,...,4}
(8) Yomjesy, (mj.start =1t) X hp, <5, VeI, teA{0,...,4}.

A class meeting requiring type-1 classroom can be placed in every type of
classroom (constraint 4). This is provided in OPL Studio by using the special
constraint type alternative resource. Alternative resource is defined as a set of
resources and an activity which requires alternative resource can be scheduled on

any of the possible resources in the set of alternative resource.

Constraint 6 ensures that there should be at least one day between the two
class meetings of a course section. Constraints 7 and 8 control the daily course

load of students and instructors respectively.

3.3.2 OPL Model for Construction of Daily Course
Schedules

Sets and Parameters

S Set of class meetings, {m1,...,my}
I Set of instructors, {I1,...,In}

S, Set of class meetings taught by instructor I;
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G Set of student groups, {g1,..., 9%}

Sy, Set of class meetings belonging to student group g;
R Set of resources, {r1,72,73,74}

Sy, Set of class meetings that require resource 7y,

hm; Hours of class meeting m;

36

lm; Resource requirement of class meeting m; per hour

¢, Maximum capacity of resource r; per hour

Constraints

(1) Schedule horizon is from 0 to 8,

(2) m; is an activity with duration Ay,
(3) Tt is a resource with capacity ¢,,,
(4) I; is a resource with capacity 1,

(5) g; is a resource with capacity 1,

(6) m; requires g,

(7) m; requires instructor I,

(8) m; requires [, amount of resource 7,

Vm; €S

Vriy € R

Vijel

Vg €G

Vg € G,Vm; € S,
VI;eI,VYm; €Sy

Vry € {7’2,7"3,""4}, Vm; € Sy,
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(9) m; requires [, amount of a possible

resource 7 € R, Vm; € Sy,.

As seen in the formulation, the instructors and the student groups are thought
as resources with capacities one. This is valid, because to have a class meeting
both the instructor and the students should be available. Since OPL Studio’s
resource constraints provide efficiency in solution process, defining the student

groups and instructors as resources makes the problem easier to solve.

Again as in the previous model, constraint 9 ensures that the class meetings

requiring type-1 classrooms can be scheduled on any of the classrooms.

3.4 Solving Course Scheduling Problem

One of the main features of decision support systems is “friendly” interaction
with the user. This is also true for the CSS proposed in this study. During

program runs, the timetabler makes adjustments to have a balanced schedule, by

1. Balancing the distribution of class meetings over days,
2. Generating a feasible daily course schedule,

3. Providing lunch breaks to students.
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3.4.1 Balancing the Distribution of Class Meetings over
Days

One problem that may require timetabler’s adjustment in the first stage may be
the non-uniform distribution of class meetings over the days of the week. This

has two disadvantages:

1. The course schedule .will not be balanced,

2. There may be no feasible daily course schedule for the days on which too

many course meetings are allocated.

An unbalanced course schedule, although it is feasible, generally undesirable,

but there are ways for the timetabler to avoid such a situation.

Reduction of Capacity:

One solution to avoid non-uniform course distribution over days is to decrease the
daily capacity of resources. A capacity decrease in a resource corresponds to a
decrease in the number of classrooms represented by that resource. Consequently,
this will bound the maximum number of class meetings that can be scheduled on
a day for each resource type and force the program to have a uniform distribution

of class meetings over days.

Adding Extra Constraints:

By adding new constraints, it is possible to have a uniform distribution of class
meetings. If there is a large number of class meetings scheduled for a student
group or a resource on a day, this may cause an infeasible course schedule on that

day. An example for this case is given in OPL Studio’s resource utilization graph
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(Figure 3.4). As it is seen, on Monday and Wednesday, there is an overload of
class meetings for type-3 resource. To avoid such a situation, extra constraints
can be added that limit the maximum number of class meetings allocated on
Monday and Wednesday for the student groups or type-3 resource’s capacity can

be decreased for Monday and Wednesday.

‘; 140
128

Figure 3.4: Utilization of Type-3 Resource in First Stage

Another way for having a uniform distribution of courses all over the days
may be adding constraints limiting the maximum number of class meeting hours
a student group can attend in a day. Ensuring that for the new daily lecture
hour limit, all the class meetings of the student group can be scheduled, then
instead of eight hours, the maximum number of class meeting hours for a student
group can be taken as a lesser number. For example, in this study, the maximum
number of class meeting hours for the third and fourth year student groups is

taken as six.
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3.4.2 Generating a Feasible Daily Course Schedule:

In second stage, during the run of CP model for construction of daily course
schedules, although it is highly unlikely, sometimes there may be no feasible
course schedule for a day. Such a problem may arise, because some class
meetings are reserved for more than one student group and there may be schedule
conflicts because of the joint constraints concerning class meetings, instructors,

and student groups.

In such a case, the timetabler can find a solution by running the first model
again with extra constraints. These extra constraints are useful for removing the
student group, class meeting and instructor constraints on the day where schedule

conflict occurs. Example of such constraints are:

1. Limiting the number of class meetings on the day where schedule conflict

occurs,
2. Limiting total class meeting hours on the day where schedule conflict occurs,

3. Limiting total class meeting hours for the student groups on the day where

schedule conflict occurs.

By this way, a new allocation of class meetings to days is obtained and second

model is run for each day to generate daily course schedules.

3.4.3 Adjustment for Lunch Breaks

After running the second model for each day in second stage and obtaining daily
course schedules, there is a high probability that some student groups have class
meetings consequently for seven or eight hours without a lunch break. This is

not desirable and to avoid this there are several ways. Timetabler can insert
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constraints that prevents scheduling class meetings on lunch time for the student
groups having more than three class meetings on that day. However, sometimes
such a constraint results in no feasible solution. In this case, the constraint can
be relaxed. For example, instead of three class meetings, for the student group

with more than four class meetings, the lunch break constraint is added.

Another way for providing lunch break can be adding an objective function
in the second model that minimizes the number of class meetings scheduled on
lunch time. However, since the search space is very large, optimal solution may
not be obtained in a reasonable time. Considering this probability, an extra
termination criteria can be inserted for the program. This termination criteria
may be “elapse of a determined time period after the start of the program” or
“having no improvement on the objective function for a determined time period”.
When the program terminates, the output at termination step is analyzed. After
analyzing the output and finding the groups with infeasible schedules, specific
constraints are added incrementally for eliminating the infeasibilities and program
is run several times till finding a feasible schedule for the lunch break requirements

of students,

ILOG OPL Studio’s charts, as seen in Figure 3.5, are very convenient for
making adjustments. By examining these charts, the student groups having class
meeting on lunch time can easily be determined and specific constraints can be

added for such student groups.

3.5 Search Strategy

In CSS search strategy is the key point for the success of CP models in first and
second stages (see Appendix C for more information about search strategy). In
this system, there are two different CP models. First model is run once and the

second model is run five times (for each day). This means there should be at least
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Figure 3.5: Daily Course Schedule of Student Groups

two different search strategies used. One strategy should be for the first model
and one or more search strategies should be for the second model. The reason
for having more than one search strategy in second model is that in second stage
the model is run five times. At each run, the data is different and different data
sets may require different search strategies. As an example on the first day there
may be a bottleneck for type-3 classrooms and on the second day the bottleneck
can be for type-4 classrooms. In such a case, if first fail principle is used, then
on the first day a search strategy is used to schedule the class meetings requiring
type-3 classrooms first and on the second day, the search strategy should first

schedule the class meetings requiring type-4 classrooms.

In general, first fail principle in variable ordering is a good way to construct
search strategy and it is recommended for CSS. To apply first fail principle, the
variables with the fewest number of values in their domains are chosen for value
assignment. At the same time another criteria for defining variable ordering in
search strategy is first assigning values to the variables that are involved in the

constraints which are hard to satisfy. This is a kind of first fail principle. If a
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variable is involved in a constraint that is difficult to satisfy, then there is higher
probability that the values assigned to this variable will fail. The timetabler
should determine the most effective search strategy for CP models in first and

second stage by investigating the course data it deals with.

3.6 Display of Course Schedule

In this CSS, the final course schedule information is stored on a database file
named schedule. It is possible to obtain course schedule information by using

SQL commands such as:

To see all course schedule information:

SQL>select * from schedule;

.................

.................

GROUPS  SECTION HOUR DAY TIMESLOT CLASSROO INSTRU

d3iyla 9810105
d32ylc 9810106
ds2ylc 9810106
d32ylc 9810107
d32ylc 9810107
d34yla 9810107
d34yla 9810107
d32ylb 9810108
d32ylb 9810108

N =~ N P N = N = N
W WO W o W o o
O O N O NN O N N

=

52

N

()]

w

w

©

©

w



CHAPTER 3. A COURSE SCHEDULING SYSTEM 44

1614 rows selected.

In the groups column, d shows department, y shows year, a, b, c shows student
group. Then to see the course schedule of the first group of the third year

industrial engineering students:

SQL> select * from schedule where groups = ’d13y3a’;

GROUPS  SECTION HOUR DAY TIMESLOT CLASSROO INSTRU
di3y3a 1030103 2 3 0 MA3 2206
di3y3a 1331101 1 1 4 EB168 305
di3y3a 1331101 2 3 4 EB162 305
d13y3a 1332101 1 2 3 MA7 4186
di3y3a 1332101 2 4 4 MA14 4186
di3y3a 1334101 1 2 2 EB163 1402
di3y3a 1334101 2 4 2 MA14 1402
di3y3a 1337101 1 2 0 MAL 5248
d13y3a 1337101 2 4 0 MA1 5248

9 rows selected.

In the same manner, course schedules for instructors and classrooms are
retrieved. For example, To see the course schedule of the instructor with identity
no. 50:

SQL> select * from schedule where instructor = ’50’;
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GROUPS  SECTION HOUR DAY TIMESLOT CLASSROO INSTRU
di3y4a 1347701 1 2 0 sC1 50
di3y4a 1347701 2 4 0 MA10 50
and to see the course schedule of the classroom EB167:
SQL>select * from schedule where classroom = ’EB167’;
GROUPS  SECTION HOUR DAY TIMESLOT CLASSROO INSTRU
d32ylc 9110109 2 4 6 EB167 906
d33ylb 9110109 2 4 6 EB167 906
d34yib 9110112 2 0 1 EB167 3925
d34ylc 9110112 2 0 1 EB167 3925
d34ylb 9110113 1 0 0 EB167 906
d3iylc 9810103 1 2 5 EB167 5005
d31ylc 9810103 2 0 4 EB167 5005
d34ylc 9810111 1 0 3 EB167 3538

44 rows selected.
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Validation of the System and

Conclusions

In order to validate CSS, course schedules for Fall 99 and Spring 00 semesters
were generated using data provided by STARS (Student Academic Information
Registration System)[30] at Bilkent. The input data is prepared for five faculties
involving eighteen departments. There are more than 670 course sections in both
semesters. For fall semester 112 student groups and for spring semester 107
student groups are formed. In both semesters, total number of students is more
than 4,000. The models are run on a SunOS 5.5 - SPARCserver 1000E computer.

The required courses of all the students were successfully scheduled.

4.1 Computational Experience

In CP model of the first stage, the initial search strategy used was designed for
assigning class meetings to days considering that the resource constraints were the
most difficult constraints to satisfy. The ordering of class meetings for allocating

to days was determined by the classroom type they require. However, after hours
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of run, it was not possible to obtain a solution. Later, it was observed that the
most problematic constraint in first model is the constraint requiring that the
class meetings of the same course sections cannot be scheduled in consecutive
days. In particular, it is difficult to satisfy this constraint for the class meetings
of first and second year student groups, because these student groups have a
large number of class meetings to schedule. Applying first fail principle, in the
new search strategy first the class meetings of the first and second year student
groups are allocated to days and class meetings of the third and fourth year
student groups are allocated later. This change in the search strategy made the
models give output in less than one minute for both semesters as seen in tables
4.1 and 4.2.

Constraints | Variables | Choice Points | Failures | Solution Time
3910 7525 2294 10054 50.12 sec

Table 4.1: Model I Statistics for Fall 99 Data

Constraints | Variables | Choice Points | Failures | Solution Time
3931 7693 1329 76 38.15 sec

Table 4.2: Model I Statistics for Spring 00 Data

In CP model of the second stage, again the search strategy is designed to
schedule the class meetings that are difficult to place in a classroom. This is
done by scheduling class meetings according to their classroom types. For all
days, the same search strategy is used while running the second. The second

model runs last in less than minute as seen in tables 4.3 and 4.4

In both search strategies, during the assignment of values to the variables,
the variable with the fewest number of values in its domain is chosen for value
assignment when two variables are compared. In addition to this, the value

assignment process is designed to assign the maximum or minimum available
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values for the variables in their domains. By this way, the distribution of class
meetings in the schedule is controlled and the probability of schedule conflict
because of classroom capacity constraint is decreased during program run. This

results in a shorter program run. The search strategies used are discussed in

Appendix D.

Day Constraints | Variables | Choice Points | Failures | Solution Time
Monday 666 1246 243 0 3.55 sec
Tuesday 828 1617 289 10 5.26 sec
Wednesday 875 1743 291 1 5.74 sec
Thursday 738 1491 317 2 4.10 sec
Friday 680 1428 244 0 4.41 sec

Table 4.3: Model II Statistics for Fall 99 Data

Day Constraints | Variables | Choice Points | Failures | Solution Time
Monday 688 1358 309 4 3.90 sec
Tuesday 847 1743 384 1 6.95 sec
Wednesday 850 1743 295 44 6.36 sec
Thursday 745 1533 394 4 5.11 sec
Friday 622 1316 317 0 3.90 sec

Table 4.4: Model II Statistics for Spring 00 Data

In the third stage, for class meeting - classroom assignment, runs of MP

models without objective function last in less than five minutes as seen in tables

4.5 and 4.6.

4.2 Mathematical Programming Models

It is possible to allocate class meetings to days and construct daily course

schedules by using MP models that are given in Appendix E. These models are
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Day Constraints | Variables | Solution Time
Monday 23728 106542 83.88 sec
Tuesday 19660 108234 99.54 sec
Wednesday 19348 127890 170.42 sec
Thursday 15630 92772 72.30 sec
Friday 16362 84861 59.15 sec

Table 4.5: Model III Statistics for Fall 99 Data

Day Constraints | Variables | Solution Time
Monday 25680 115128 153.53 sec
Tuesday 25970 123183 265.25 sec
Wednesday 23924 130941 181.27 sec
Thursday 16838 106200 178.25 sec
Friday 17024 82971 54.31 sec

Table 4.6: Model III Statistics for Spring 00 Data

run in OPL Studio using solver CPLEX 6.5.3 and the results are obtained. In the
output of the first model, the problem of not having a uniform allocation of class
meetings to days occurred, but this can be solved by adding extra constraints that
limit the number of class meetings in a day. Another solution may be tightening
some constraints such as decreasing the daily classroom capacity for classroom
types. After obtaining the output for the first stage, other MP model is run for

each day in second stage and daily course schedules are constructed.

Compared to CP models, solution of MP models takes a little longer (app. 10
- 15 minutes) where it is less than one minute for CP models. But if the search
strategy used in a CP model is not well chosen, then it may not be possible to

get an output even in one hour using CP models.

Another comparison can be on the user friendliness of MP and CP models run

by OPL Studio. OPL Studio has very good graphical interpretation of outputs
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such as charts for class meetings , resource utilization graphics for CP model runs
in this study. However, the output of MP models are in terms of (0,1) values
that are difficult to analyze.

Considering that the purpose of this study is constructing a system to solve the
course scheduling problem and taking into account the fact that for a timetabler
faster runs of programs and a good graphical interface are important, using CP

models for solving this problem seems to be more appropriate.

4.3 Summary and Conclusions

In this thesis, a university timetabling problem is analyzed and a course
scheduling system (CSS) is constructed to guide the timetabler for solving the
course scheduling problem of Bilkent University.

The system consists of three stages. In the first stage, the class meetings are
allocated to days and in the second stage daily course schedules are constructed.
In both of these stages constraint programming models are used. In the final
stage, the scheduled class meetings are assigned to the classrooms by using
mathematical programming. It is also shown that allocation of class meetings
to days and construction of daily course schedules can be done by mathematical

programming models.

The system is validated for Bilkent University’s course offerings and classroom
data from previous semesters. The course schedule generated in this study
involves the required courses, but the results can easily be extended to a full
course schedule involving the elective courses and laboratory sessions by defining

appropriate variables in the models.
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APPENDIX A

Tabu Search and Simulated

Annealing

Simulated Annealing (SA) and Tabu Search (TS) algorithms are iterative
improvement algorithms that are designed to search for the optimal solution
without being trapped at a local optimum. In these algorithms, an initial solution
is iteratively modified. These iterative modifications on the solutions generally
cause improvement on the objective function value, but in order not to get
stuck at a local optimum point, sometimes the modifications can deteriorate the
objective function value. The algorithms terminate when no further improvement
is possible or stop after a predetermined number of iterations. Clearly, the

solution found is not necessarily the global optimum.

SA algorithm is a local search that is designed to search for the global
optimum. This approach attracts considerable interest mainly because it is

possible to perform asymptotic analysis of the results.

For applying SA, initially there should be

f Cost (objective) function that measures the quality of the solution
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S Set of all solutions,

N A neighborhood function N(z) that generates all the solutions in the
neighborhood of z (z € S),

t;, Control parameter called temperature at iteration %,
L Control parameter called epoch length,

Cooling Schedule A procedure that controls the value of #; at each iteration.

The algorithm starts with an initial solution z € S and at each iteration with
some probability, the algorithm moves to a solution that is generated by the
neighborhood function N. If 4,5 € S where 4 is the current solution and j € N (i)
then the probability of moving to j from ¢ is given by:

F@&=£G) )
e otherwise

P, = { 1 if £(5) < £(3)

As it can be seen from above, at each iteration k, there is a positive probability
of moving to a solution which deteriorates the cost function value. This positive

probability depends on two factors:

1. The difference between the costs of the two solutions (f(:) — f(j)), and

2. The temperature at each iteration k ().

A decrease in t; or a large difference between the costs of solutions ¢ and j
decreases the probability of accepting a worse solution. At low %, values, it is
easier to reach a final solution. For that reason, while moving from iteration
k to k + 1, a new t;y; value is computed by using the cooling schedule. This
cooling schedule can be a function such as ty4; = ct; where c is a constant in
the interval (0,1). At each iteration %k, a number of moves are made by using

the current temperature t;. The number of moves at each iteration depends on
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the parameter L. When the algorithm reaches the end of epoch length L for
the current iteration, next iteration starts. When a terminating condition occurs
such as reaching a predetermined number of iterations or having a temperature
value that is lower than a predetermined value, the algorithm stops and gives
the final solution as the best solution found. It is proved that SA algorithm

asymptotically converges to the optimal solution [1].

In TS, there also exists a cost function f, a set of feasible solutions S and
a neighborhood function N(z) where z € S. The algorithm starts with an
initial solution as in SA. At each iteration, the solutions in the neighborhood
of the current solution are generated. The objective of the algorithm is to move
a solution that has better cost than the current solution’s cost. However, for
reaching the global optimum, sometimes moves to the solutions with worse cost
should be done. In TS, cycling is prevented by keeping a list of forbidden moves
called tabu list. If a move is in tabu list, it is rejected. At each iteration, this
list is modified considering certain criteria [1]. Since tabu list requires memory,

there is a trade off between the size of the tabu list and the memory usage.

In SA, there is a positive probability for making a move to a solution with
a higher cost function value. In TS, accepting such a move is made possible by
using a modified cost function f’ for some of the consecutive iterations. This
modification is done by introducing extra cost for the neighborhood solutions
diversified from the current solution (diversification cost) and introducing
extra cost for the neighborhood solutions that resembles the current solution
(intensification cost). In the iterations where f’ is used, only one of the cost
factors, diversification or intensification cost, is added to the original cost function
f for a few number of consecutive iterations. If added term is diversification cost
then the algorithm tends to explore the current region and if the added term is
intensification cost then the algorithm tends to leave the current region. The
diversification and the intensification cost factors are used alternatively when
f' is used. The iterations of TS go on until a stopping criteria occurs such as

not having any allowed move from the current solution or reaching an initially
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determined number of iterations. Applying TS with different starting solutions

may be useful for being able to search the whole solution space.



APPENDIX B

Genetic Algorithms

Genetic Algorithm (GA) is a heuristic technique for producing acceptable
timetables. In order to initiate GA, there should be a set of solutions and a
fitness (evaluation) function that is used to measure the quality of the solutions.
GA is an iterative algorithm and the idea is obtaining good solutions with respect
to the preference function by modifying or combining the solutions in the solution
set of the previous iteration. Since these algorithms mimick the natural selection

process, they are called genetic algorithms.

In GA, the solutions are represented in chromosome structure. In other words,
the solutions are represented by combination of different sub-solutions which looks
like a chain. For example, if in a problem it is required to find some values which
can be thought as the solutions for n different subproblems pi,...,p, then a

solution is represented as:
(solution values for py),. .., (solution values for p,)

Generally, in timetabling problems the solutions are represented in two different

ways:

1. Direct representation
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2. Indirect (implicit) representation

As an example for direct representation, if there are four events e, eq, €3, e4
where each event should have a solution that defines its starting time and place,
then (z1,y1), (Z2,y2), (z3,¥s), (Z4,y4) can be a solution showing that event e,

starts at time z; in classroom y;, event e; starts at time z, in classroom y,, etc.

In indirect representation, the values in the chromosomes represent the
procedures that should be used to find value for each event. For example in
it" position, the value indicates a specific heuristic that should be used to find

the value of the #** event.

In GA, there are four main steps that should be taken at each iteration [13].

These are:

1. Evaluation
2. Selection
3. Breeding

4. Population update

Initially, there is a set of solutions. By using fitness function, the quality
of these solutions are evaluated. The fitness function is formed by considering
criterion that are important for the timetabler. After the evaluation of the
solutions by the fitness function, some of the solutions will be more preferable
than others. These solutions have higher probability to be selected. There are
several ways for selection process such as selecting the solutions that are in the top
predetermined percentage level. Then breeding stage starts. By this process, new
solutions are generated. There are two main ways for generating new solutions:
First, two or more of the selected solutions (parents) are combined by a cross over

operation. This crossover operation will produce a new solution having solution
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values that are the combination of the selected solutions’ values. Another way for
generating a new solution can be modifying an existing solution. This is called

mutation.

After breeding stage, the population of solutions is updated in a way
that includes the new solutions and some or none of the previous solutions.
These processes are repeated until obtaining good solutions with respect to the

preference function.



APPENDIX C

Constraint Programming

Constraint Programming (CP) is a programming technique that tries to solve
the problems by using partial information obtained from constraints. As it
is understood from its name, it consists of computer implementation of the
algorithms that are designed to solve specific type of problems. These algorithms
can be implemented in a logic programming language such as PROLOG or more
efficiently in a CLP language such as CHIP (Constraint Handling in Prolog) that
is developed by modifying PROLOG to have extensive capabilities of solving
constraints. However, this does not mean that CP cannot be implemented by
using general purpose programming languages. As an example, ILOG Solver,

that is used in this study, is a CP solver that consists of routines written in C-++

[6].

The two major aspects of CP are:

1. Constraint Satisfaction Problems

2. Constraint Solving

In most of the problems that we face with, the solution requires to find out
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value assignments for the variables in a way that all the constraints are satisfied.

Generally these problems can be represented as a Constraint Satisfaction Problem
(CSP). A CSP consists of

e A finite set of variables,
e A finite set of values each variable can take, variable’s domain,

e A set of constraints restricting the values that the variables can take

simultaneously.

Constraint satisfaction algorithms deal with finding values for the variables
in CSP such that all the constraints are satisfied. Since in real life most of the
problems can be modeled by using finite set of variables with finite domain for

each variable, constraint satisfaction can be used in combinatorial problems.

The second aspect of CP is constraint solving. In constraint solving, the
variables may have infinite values in their domains and the constraints are
more complicated such as there may be nonlinear equalities. Constraint solving
algorithms use algebraic and numeric methods instead of combinations and search
algorithms that are used in CSP [5].

The following is a brief overview of concepts and techniques used in CP (for

a detailed discussion see [20]).

C.1 Consistency

Consistency is a deterministic technique used in solving CSP’s. To use this
technique, it is necessary to have binary constraints (constraints containing only
two variables) or unary constraints (constraints containing a single variable). In

this case, the problem can be modeled as a constraint graph in which the variables
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are represented by the nodes and the edges between the nodes represent the binary

constraints.

As an example consider the following model :

£L'1>3
T1+ 1T < 8
xl,xze{l,...,Q}

Then this model is represented by a constraint graph as seen in Figure B.1.

OXPS
) (%)
X +X%<8

X1 ¢ {1,.,9} X ¢ {1,..9}

Figure B.1: Constraint Graph of the Model

There is two types of consistency:

1. Node Consistency

2. Arc Consistency

Node consistency deals with the domains of the variables represented by the
nodes. A node is consistent, if the domain of the variable represented by that
node has no value that does not satisfy the unary constraints containing that
variable. The node consistent constraint graph of the above model can be seen

in Figure B.2.

In a constraint graph, an arc (z;,z;) is consistent if every value v; that is in

the domain of z;, (v; € Dy,), then there exists a corresponding v; value in the
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domain of variable z;, (v; € Dy;) for which the binary constraint represented by

the edge (z;, ;) is satisfied for the value pair (v;, v;).

OXPS
) (%)
X|+X% <8

X ¢ {4,..9) X% ¢ {1,..9}

Figure B.2: Constraint Graph is Node Consistent

Then for the previous model given in Figure B.1, if arc (z1,z3) is consistent,

then the value domains of the variables z; and x5 will be as in Figure B.3.

OXI>3
) (%)
X +% <8

X] ¢ {4,5,6} X ¢ {1,.,9}

Figure B.3: Constraint Graph is Consistent for Arc (z;,z) and Nodes z;, z2

Clearly arc consistency is directional; that is, if arc (z1,z2) is consistent then
this does not mean that arc (z,z;) is consistent. The arc consistent form of the

graph can be seen in Figure B.4.

OXl>3
) (%)
X +X% <8

X ¢ {4,5,6} X% ¢ {1,2,3}

Figure B.4: Constraint Graph is Both Arc and Node Consistent

Related to consistency, another term is K-consistency. A constraint graph is

K-consistent if for any of the k£ — 1 variables that are assigned to values which
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satisfy the constraints between those k — 1 variables, then there exists a feasible

value for any of the k™ variable chosen next for value assignment.

If for a given K, a constraint graph is J-consistent, for every J value satisfying
the equation J < K, then this graph is called strongly K-consistent. Clearly
having a strongly N-consistent constraint graph with N nodes means that a
solution for the model represented by this constraint graph can be found without
a search. However, worst-case behavior of turning a constraint graph with N

nodes into strongly N-consistent form is exponential.

Although it is not efficient to solve CSP’s by using consistency technique
alone, it is still useful. Especially, search algorithms, which are explained in
the next section, use it to prune the search space. During the search process,
the conflicting values for the variables are detected by consistency technique and
variables are initiated only to the consistent values. This is like generating new

constraints by using the current ones. This called constraint propagation.

C.2 Search Algorithms

In order to solve a CSP, it is necessary to find different value assignments of the
variables that satisfy the constraints. This value assignment process is specified

by the search algorithm.

There are several search algorithms that may be used to solve CSP’s. The
simplest, but an inefficient one is generating all the value assignments of the
variables and testing each value assignment whether it satisfies the constraints
or not. This is known as generate and test algorithm. There are other, more

efficient, algorithms such as backtracking, forward checking, look ahead (MAC).
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C.2.1 Backtracking

Backtracking is a widely used search algorithm. The idea is instantiating values
to the variables until finding value assignments for all the variables that satisfy

all the constraints.

Initially one of the variables is instantiated to a specific value. At each step,
if there are k — 1 variables that are instantiated previously, then the next k**
variable is assigned to a value that is consistent with the previously instantiated
k — 1 variables. If it is not possible to find a consistent value for the k** variable
then the algorithm backtracks to the closest point where it can generate a new

branch.

Backtracking algorithm is more efficient than the simple generate and test
algorithm. However, the inconsistencies in value assignments can only be detected

when they occur.

C.2.2 Forward Checking

Forward Checking is an improved version of simple backtracking. In forward
checking, again initially a variable is instantiated to a value from its domain. Then
repeatedly at each step, next variable is instantiated to a value that is consistent
with the previous assignments. Different than backtracking, while assigning a
value to the current variable, arc consistency between the current variable and
the uninstantiated variables are maintained. By this way, current variable cannot
take a value that causes an empty domain for one of the uninstantiated variables.
If there is not such a value, then the algorithm backtracks to the point where it

can start a new branch.

In backtracking, the inconsistencies are detected when they occur, however

in forward checking it is possible to detect inconsistencies much earlier. On the
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other hand, forward checking does more computations compared to backtracking

although it has a smaller search tree.

C.2.3 Look Ahead

Look Ahead or MAC (Maintaining Arc Consistency) is more involved than
backtracking and forward checking algorithms. In backtracking, arc consistency is
maintained only between the variable instantiated at that step and the previously
instantiated variables. In forward checking, arc consistency is maintained between
the instantiated variables and the uninstantiated variables. However, in look
ahead algorithm arc consistency among the uninstantiated variables is maintained
as well. This provides look ahead algorithm to detect inconsistencies between
the future variables without assigning them any value. Consequently, it has
smaller search trees compared to other search algorithms, but as an disadvantage,
pruning search space more requires more computations which may cause look

ahead algorithm to be inefficient.

C.3 Variable and Value Ordering

It is important to specify the way the search algorithm selects the variables for

value assignment. The following are the strategies to achieve this.

C.3.1 Variable Ordering

Variable ordering is the strategy that specifies how the next variable is selected
for value assignment at each step of the search algorithm. There is two types of

variable ordering;:
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1. Static Ordering

2. Dynamic Ordering

In static variable ordering, the ordering of the variables for value assignment
is known before the search process starts. In dynamic ordering, the candidate
variable for value assignment is determined during the search process depending
on the partial information at that step. For example, a dynamic variable ordering
strategy may be selecting the next uninstantiated variable which has fewer values
in its domain at each step. Since dynamic variable ordering requires modifications
of variable domains at each step, it can be applied in forward checking or look
ahead algorithms.

There are various strategies for variable ordering, but first-fail strategy is the
most widely used one. This strategy requires to select the next variable that is
more likely to fail, in other words the variable with the fewest number of values in
its domain is selected. By this way, the branches can terminate at shorter depths
and the size of the search tree becomes smaller. Then a feasible value assignment

for all the variables can be obtained faster.

Another strategy for variable ordering may be selecting the variable that is
involved in the largest number of constraints. In fact this strategy is like first-
fail strategy. If a variable is involved in more constraints, then it becomes more
difficult to find a value for that variable. By this strategy, again the difficult
cases are handled first during search process and it results in the detection of

inconsistencies earlier and a smaller sized search tree.

C.3.2 Value Ordering

In search process, after selecting the variable for value assignment, another
question is about the value the current variable will take. The answer of this

question depends on the value ordering strategy used by the search algorithm.
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For example, there may be a strategy that initiates the variable to the value in
its domain which is more likely to lead a solution. By this way, the probability of
reaching a solution at the end of the current branch increases. However, if all the
solutions are required or there are no feasible solution, value ordering strategy

has no effect on solution time, since all the value assignments are tried.
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Search Strategies

Search Strategy Used for Allocating Class Meetings
to Days

1 For all the meetings that first and second year students attend and that
are not scheduled yet
1.1 Select the meeting with minimum domain size and minimum value in its domain
1.2 While value domain of meeting is not empty do
1.2.1 Let m be the minimum value in meeting’s domain
1.2.2 Let start time of meeting be m
1.2.3 If fail then delete the minimum value from meeting’s domain and go to 1.2

1.2.4 If there is no violation of constraint then go to 1

2 For all the meetings that third and fourth year students attend and that
are not scheduled yet
2.1 Select the meeting with minimum domain size and maximum value in its domain
2.2 While value domain of meeting is not empty do
2.2.1 Let m be the maximum value in meeting’s domain

2.2.2 Let start time of meeting be m
71
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2.2.3 If fail then delete the maximum value from meeting’s domain and go to 2.2

2.2.4 If there is no violation of constraint then go to 2

Search Strategy Used for Construction of
Daily Course Schedules

1 For all the meetings requiring type two, type three or type four classroom and
that are not scheduled yet
1.1 Select the meeting with minimum domain size and minimum value in its domain
1.2 While value domain of meeting is not empty do
1.2.1 Let m be the minimum value in meeting’s domain
1.2.2 Let start time of meeting be m
1.2.3 If fail then delete the minimum value from meeting’s domain and go to 1.2

1.2.4 If there is no violation of constraint then go to 1

2 For all the meetings requiring type one classroom and that are not scheduled yet
2.1 Select the meeting with minimum domain size and maximum value in its domain
2.2 While value domain of meeting is not empty do
2.2.1 Let m be the maximum value in meeting’s domain
2.2.2 Let start time of meeting be m
2.2.3 If fail then delete the maximum value from meeting’s domain and go to 2.2

2.2.4 If there is no violation of constraint then go to 2
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Mathematical Programming
Models

Although CP models are used for constructing the weekly course schedule in
the first two stages, it is possible to do this by mathematical programming. In
this approach, the constraints become more complex compared to the declarative

nature of the constraints in CP models.

E.1 MP Model for Allocation of Class Meetings
to Days

Sets

S Set of class meetings, {m1,...,my}
G Set of student groups, {g1,-- ., gk}

Sy Set of class meetings belonging to student group g;

73
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I Set of instructors, {I1,...,In}

Sy, Set of class meetings given by instructor I;
R Set of resources, {r1,79,7s,74}

Sr, Set of class meetings that require resource rj

P Set of class meeting pairs m;, m; that belong to the same section

Parameters

hm; Hours of class meeting m;
lm; Resource requirement of class meeting m; per day

¢r, Maximum capacity of resource r; per day

Variables

1, if class meeting m; is assigned to time ;
z(t,m;) = .

0, otherwise.
Constraints

1. All class meetings should be assigned to a day.

2. At each day, the total capacity requirement of the class meetings for
a specific classroom type cannot exceed the available capacity of that

classroom type (for classroom types -2, -3 and -4).

3. Class meetings that require type-1 classroom can be placed in any type of

classroom ensuring that the total daily classroom capacity is not exceeded.

4. Two class meetings belonging to the same course cannot assigned to

consecutive days.



APPENDIX E. MATHEMATICAL PROGRAMMING MODELS 75

5. A student cannot attend class meetings for more than eight hours in a day.
6. An instructor cannot teach for more than five hours in a day.

7. All z(m;,t)’s are binary variables.

These constraints can be written in mathematical form as:

(1) z?:o I(t, mj) = ]-’ va € S
(2) ijesrk CL‘(t, mj) X lmj < Crys Vri € {7’2,’/‘3,7‘4}, te {0, -
(3) Emjesx(t) m]) X l'rn,j S ZT};ER Crp» Vt € {0, . ,4}

4)  Tioz(t,my) +z(t+1,my)+

z(t,my) +z(t +1,mg) <1, Y (mj,my) € P
(5)  Lmues,, L(tsmi) X hm, <8, Vg eG, te{o,...,4}
(6)  Tmpesy, 2(t,mi) X A, <5, VeI, te{0,...,4}
(1)  z(t,m;) € {0,1} Vm; €S, te{0,...,4}.

E.2 MP Model for Construction of Daily Course
Schedules

Sets

S Set of class meetings, {m,...,mny}
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I Set of instructors, {Iy,...,In}

Sy, Set of class meetings given by instructor I;

G Set of student groups, {g1,...,9x}

Sg; Set of class meetings belonging to student group g;
R Set of resources, {ry, s, 73,74}

Sr, Set of class meetings that require resource 7

H; Set of class meetings that are ¢ hour length (i € {1,2,3})

Parameters

hm; Hours of class meeting m;
lm; Resource requirement of class meeting m; per hour

¢, Maximum capacity of resource ry per hour

Variables

1, if meeting m; starts at time ¢;
z(t, m; ) = .

0, otherwise.
Constraints

1. All class meetings should be assigned to a time slot.

2. At each time slot, the total capacity requirement of the class meetings
for a specific classroom type cannot exceed the available capacity of that

classroom type (For classroom types-2, -3 and -4)
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3. Class meetings that require type-1 classroom can be placed in any type of
classroom ensuring that the total classroom capacity at that time slot is

not exceeded.
4. An instructor cannot teach more than one class meeting at a time slot
5. A student cannot attend more than one class meeting at a time slot

6. All z(m,,t)’s are binary variables

These constraints can be written in mathematical form as:

(1) Shostmy) =1, Vm, € B,
Yo 2(t, m;) =1, Vm; € Hy
Yoo z(t,my) =1, Vm; € Hs

(2)  Zmjes., £(0,m;) X lm; < Crp,s Vry, € {re, 73,74}

Emje(srkﬂHl) -77(17 mj) X lmj+
Smje(sn,na2)(@(1,mg) + 2(0,my)) X lm;+
ije(sran3)($(17mj) + .’E(O,mj)) X lmj < Cry» V’rk € {7'2,7'3,7'4}

ije(sranl) z(t, m;) X lm;+

Yomse(s., nuz)(@(t,m;) + ot — 1,my)) X lm;+

Yomje(s,,nmz) (@t my) + 2(t — 1,m;)+ V1 € {re, 73,74},
z(t — 2,m;)) X Im; < cry,s te{2,...,8}

(3) EijS 1'(0, mj) X lTnj < ZrkER Crs
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ijGHl x(l,mj) X lmj‘l'
ijEHZ(m(lamj) + iL'(O, mJ)) X lmj+
Emj€H3(x(]"mj) + ZL’(O,mj)) X lmj < ZrkeR Cry

Yoment Tt mj) X b+

EijHz(x(t7 mj) + :U(t -1, m])) X lmj']"

ijeH3(w(t’ m;) + z(t — 1,my)

+z(t - 2,m;)) X lm; < Xr,er Cre» Vte {2,...,8}

(4) ijESIi m(077n,7) < 1a VI,, el

ije(SIiﬂHl) .’L‘(].,’I’ﬂj)'f'
ije(SjinH2) (z(1,my) + (0, my))+
ijG(SIZ.nHii)(x(lamj) +x(0,m])) < 17 VIZ el

ijE(S]iﬂHl) x(t7 m])+
ijE(SjiﬂHZ) (x(t7 mJ) + .T(t - 1’ m]))+
z’ij(Sliant)(x(t’ mj) + -'L'(t - l,m]) + .'I?(t - 2, m])) < 1, VIZ S I,t S {2, .. ,8}

(5) zmjesgi z(0, mj) <1, Vg €G
Yomje(sy;nm1) T(1,my)+
ije(SgiﬂHZ)(x(la mj) + x(07mj))+
> omje(sy;nu3)(2(1,my) + 2(0,my)) < 1, VgieG
ije(sginHl) .’L‘(t, mj)"'
ije(SgiﬂH2)(x(t’ mj) + 'T(t -1, mJ))+

Yomje(s,nas) (Tt my) +3(t — 1,my) +z(t —2,m;)) <1, Vg €G, te{2,...,8}

(6) =z(t,my) € {0,1} Vm; € S,te{0,...,8}.



