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ABSTRACT

VISIBLE LIGHT POSITIONING SYSTEMS:
FUNDAMENTAL LIMITS, ALGORITHMS AND

RESOURCE ALLOCATION APPROACHES

Musa Furkan Keskin

Ph.D. in Electrical and Electronics Engineering

Advisor: Sinan Gezici

August 2018

Visible light communication (VLC) is an emerging paradigm that enables multi-

ple functionalities to be accomplished concurrently, including illumination, high-

speed data communications, and localization. Based on the VLC technology, vis-

ible light positioning (VLP) systems aim to estimate locations of VLC receivers

by utilizing light-emitting diode (LED) transmitters at known locations. VLP

presents a viable alternative to radio frequency (RF)-based positioning systems

by providing inexpensive and accurate localization services. In this dissertation,

we consider the problem of localization in visible light systems and investigate

distance and position estimation approaches in synchronous and asynchronous

scenarios, focusing on both theoretical performance characterization and algo-

rithm development aspects. In addition, we design optimal resource allocation

strategies for LED transmitters in VLP systems for improved localization per-

formance. Moreover, we propose a cooperative localization framework for VLP

systems, motivated by vehicular VLC networks involving vehicle-to-vehicle (V2V)

and vehicle-to-infrastructure (V2I) communications.

First, theoretical limits and estimators are studied for distance estimation in

synchronous and asynchronous VLP systems. Specifically, the Cramér-Rao lower

bounds (CRLBs) and maximum likelihood estimators (MLEs) are investigated

based on time-of-arrival (TOA) and/or received signal strength (RSS) parame-

ters. Hybrid TOA/RSS based distance estimation is proposed for VLP systems,

and its CRLB is compared analytically against the CRLBs of TOA based and

RSS based distance estimation. In addition, to investigate effects of sampling,

asymptotic performance results are obtained under sampling rate limitations as

the noise variance converges to zero. A modified hybrid TOA/RSS based distance

estimator is proposed to provide performance improvements in the presence of

sampling rate limitations. Moreover, the Ziv-Zakai bound (ZZB) is derived for

synchronous VLP systems. The proposed ZZB extracts ranging information from
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the prior information, the time delay parameter, and the channel attenuation

factor based on the Lambertian pattern. In addition to the ZZB, the Bayesian

Cramér-Rao bound (BCRB) and the weighted CRB (WCRB) are calculated for

synchronous VLP systems. Furthermore, a closed-form expression is obtained

for the expectation of the conditional CRB (ECRB). Numerical examples are

presented to compare the bounds against each other and against the maximum

a-posteriori probability (MAP) estimator. It is observed that the ZZB can pro-

vide a reasonable lower limit on the performance of MAP estimators. On the

other hand, the WCRB and the ECRB converge to the ZZB in regions of low

and high source optical powers, respectively; however, they are not tight in other

regions.

Second, direct and two-step positioning approaches are investigated for both

synchronous and asynchronous VLP systems. In particular, the CRLB and the

direct positioning based ML estimator are derived for three-dimensional localiza-

tion of a VLC receiver in a synchronous scenario by utilizing information from

both time delay parameters and channel attenuation factors. Then, a two-step

position estimator is designed for synchronous VLP systems by exploiting the

asymptotic properties of TOA and RSS estimates. The proposed two-step es-

timator is shown to be asymptotically optimal, i.e., converges to the direct es-

timator at high signal-to-noise ratios (SNRs). In addition, the CRLB and the

direct and two-step estimators are obtained for positioning in asynchronous VLP

systems. It is proved that the two-step position estimation is optimal in asyn-

chronous VLP systems for practical pulse shapes. Various numerical examples

are provided to illustrate the improved performance of the proposed estimators

with respect to the current state-of-the-art and to investigate their robustness

against model uncertainties in VLP systems.

Third, the problem of optimal power allocation among LED transmitters in a

VLP system is considered for the purpose of improving localization performance of

VLC receivers. Specifically, the aim is to minimize the CRLB on the localization

error of a VLC receiver by optimizing LED transmission powers in the presence

of practical constraints such as individual and total power limitations and illumi-

nance constraints. The formulated optimization problem is shown to be convex

and thus can efficiently be solved via standard tools. We also investigate the

case of imperfect knowledge of localization parameters and develop robust power

allocation algorithms by taking into account both overall system uncertainty and

individual parameter uncertainties related to the location and orientation of the
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VLC receiver. In addition, we address the total power minimization problem un-

der predefined accuracy requirements to obtain the most energy-efficient power

allocation vector for a given CRLB level. Numerical results illustrate the improve-

ments in localization performance achieved by employing the proposed optimal

and robust power allocation strategies over the conventional uniform and non-

robust approaches.

In the final part of the dissertation, we propose to employ cooperative lo-

calization for visible light networks by designing a VLP system configuration

that involves multiple LED transmitters with known locations and VLC units

equipped with both LEDs and photodetectors (PDs) for the purpose of cooper-

ation. In the proposed cooperative scenario, we derive the CRLB and the MLE

for the localization of VLC units. To tackle the nonconvex structure of the MLE,

we adopt a set-theoretic approach by formulating the problem of cooperative lo-

calization as a quasiconvex feasibility problem, where the aim is to find a point

inside the intersection of convex constraint sets constructed as the sublevel sets

of quasiconvex functions resulting from the Lambertian formula. Then, we devise

two feasibility-seeking algorithms based on iterative gradient projections to solve

the feasibility problem. Both algorithms are amenable to distributed implemen-

tation, thereby avoiding high-complexity centralized approaches. Capitalizing on

the concept of quasi-Fejér convergent sequences, we carry out a formal conver-

gence analysis to prove that the proposed algorithms converge to a solution of

the feasibility problem in the consistent case. Numerical examples illustrate the

improvements in localization performance achieved via cooperation among VLC

units and evidence the convergence of the proposed algorithms to true VLC unit

locations in both the consistent and inconsistent cases.

Keywords: Estimation, visible light communications, Cramér-Rao lower bound,

Ziv-Zakai bound, Lambertian pattern, direct positioning, two-step positioning,

power allocation, convex optimization, cooperative localization, quasiconvex fea-

sibility, gradient projections.



ÖZET

GÖRÜNÜR IŞIK KONUMLANDIRMA SİSTEMLERİ:
TEMEL SINIRLAR, ALGORİTMALAR VE KAYNAK

TAHSİSİ YAKLAŞIMLARI

Musa Furkan Keskin

Elektrik ve Elektronik Mühendisliği, Doktora

Tez Danışmanı: Sinan Gezici

Ağustos 2018

Görünür ışık haberleşmesi (GIH); aydınlatma, yüksek hızlı veri haberleşmesi ve

konumlama gibi birçok işlevselliğin eşzamanlı olarak gerçekleştirilmesini sağlayan

yeni bir paradigmadır. GIH teknolojisine dayanan görünür ışık konumlandırma

(GIK) sistemleri, konumları bilinen ışık yayan diyot (LED) vericileri kullanarak

GIH alıcılarının konumlarını kestirmeyi amaçlamaktadır. GIK, ucuz ve isabetli

konumlama hizmeti sağlayarak, radyo frekans (RF) tabanlı konumlandırma sis-

temlerine geçerli bir alternatif sunmaktadır. Bu tezde, görünür ışık sistemlerinde

konumlama problemi ele alınmakta ve teorik performans belirleme ve algoritma

geliştirme yönlerine odaklanarak, senkron ve asenkron senaryolarda mesafe ve

konum kestirimi yaklaşımları araştırılmaktadır. Ek olarak, konumlama perfor-

mansının iyileştirilmesi amacıyla GIK sistemlerindeki LED vericileri için optimal

kaynak tahsisi stratejileri tasarlanmaktadır. Ayrıca, araçtan araca ve araçtan

altyapıya haberleşmeleri içeren araç GIH ağlarından hareketle GIK sistemleri için

işbirlikçi bir konumlama sistemi önerilmektedir.

İlk olarak, senkron ve asenkron GIK sistemlerinde mesafe kestirimi için teorik

sınırlar ve kestiriciler çalışılmaktadır. Daha açık bir deyişle, varış zamanı

(VZ) ve/veya alınan sinyal gücü (ASG) parametrelerine dayanarak Cramér-

Rao sınırı (CRS) ve maksimum olabilirlik kestiricisi (MOK) araştırılmaktadır.

GIK sistemleri için karma VZ/ASG tabanlı mesafe kestirimi önerilmekte ve

CRS’si VZ tabanlı ve ASG tabanlı mesafe kestiriminin CRS’leriyle analitik

olarak karşılaştırılmaktadır. Ek olarak, örneklemenin etkilerini araştırmak için,

gürültü varyansı sıfıra yaklaşırken örnekleme oranı kısıtları altında asimptotik

performans sonuçları elde edilmektedir. Örnekleme oranı kısıtları varlığında

performans iyileştirmeleri sağlamak amacıyla değiştirilmiş karma VZ/ASG ta-

banlı mesafe kestiricisi önerilmektedir. Ayrıca, senkron GIK sistemleri için Ziv-

Zakai sınırı (ZZS) türetilmektedir. Önerilen ZZS, mesafe bilgisini önsel bilgi,
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zaman gecikmesi parametresi ve Lambert örüntüsüne dayanan kanal zayıflama

faktöründen çıkarmaktadır. ZZS’ye ek olarak, senkron GIK sistemlerinde Bayes

CRS (BCRS) ve ağırlıklı CRS (ACRS) hesaplanmaktadır. Bunun yanında, or-

talama koşullu CRS (OCRS) için kapalı formda bir ifade elde edilmektedir.

Teorik sınırları birbirleriyle ve maksimum sonsal olasılık (MSO) kestiricisi ile

karşılaştırmak amacıyla sayısal sonuçlar sunulmaktadır. ZZS’nin MSO kestirici-

lerinin performansı için mantıklı bir alt sınır sağladığı gözlenmektedir. Öte yan-

dan, ACRS ve OCRS, sırasıyla, düşük ve yüksek optik güç bölgelerinde ZZB’ye

yakınsamaktadır; ancak, diğer bölgelerde sıkı değillerdir.

İkinci olarak, hem senkron hem asenkron GIK sistemleri için doğrudan ve iki

adımlı konumlandırma yaklaşımları araştırılmaktadır. Özellikle, zaman gecikmesi

parametreleri ve kanal zayıflama faktörlerinden gelen bilgi kullanılarak senkron

bir senaryoda GIH alıcısının üç boyutlu konumlandırılması için CRS ve doğrudan

konumlandırma tabanlı MO kestiricisi türetilmektedir. Daha sonra, VZ ve ASG

kestirimlerinin asimptotik özelliklerinden faydalanılarak iki adımlı bir konum ke-

stirici tasarlanmaktadır. Önerilen iki adımlı kestiricinin asimptotik olarak opti-

mal olduğu; yani, yüksek sinyal gürültü oranı (SGO) altında doğrudan kestiri-

ciye yakınsadığı gösterilmektedir. Ek olarak, asenkron GIK sistemlerinde konum-

landırma için CRS ve doğrudan ve iki adımlı kestiriciler elde edilmektedir. Pratik

sinyal şekilleri için asenkron GIK sistemlerinde iki adımlı konum kestiriminin op-

timal olduğu ispatlanmaktadır. Önerilen kestiricilerin mevcut yöntemlere kıyasla

iyileşen performanslarını örneklemek ve GIK sistemlerindeki model belirsizlikler-

ine karşı gürbüzlüğünü araştırmak üzere çeşitli sayısal örnekler sağlanmaktadır.

Üçüncüsü, GIH alıcılarının konumlama performanslarını iyileştirmek amacıyla

bir GIK sisteminde LED vericileri arasında optimal güç tahsisi problemi ele

alınmaktadır. Daha açık bir deyişle, bireysel ve toplam güç ve aydınlatma gibi

pratik kısıtlar altında LED iletim güçlerini optimize ederek GIH alıcısının konum-

lama hatası üzerindeki CRS’nin küçültülmesi amaçlanmaktadır. Formüle edilen

optimizasyon probleminin dışbükey olduğu ispatlanarak standart araçlarla verimli

bir şekilde çözülebileceği gösterilmektedir. Ayrıca, konumlama parametrelerinin

hatalı olarak bilindiği durum araştırılmakta ve toplam sistem belirsizliği ve GIH

alıcısının konum ve yönüne dair bireysel parametre belirsizlikleri dikkate alınarak

gürbüz güç tahsisi algoritmaları geliştirilmektedir. Ek olarak, verilen bir CRS

seviyesi için en enerji verimli güç tahsisi vektörünü elde etmek amacıyla, önceden

tanımlanmış doğruluk gereksinimleri altında toplam güç azaltma problemi ele
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alınmaktadır. Sayısal sonuçlar, önerilen optimal ve gürbüz güç tahsisi strateji-

lerinin geleneksel eşit ve gürbüz olmayan yaklaşımlara kıyasla konumlama per-

formansında gösterdiği iyileştirmeleri örneklemektedir.

Tezin son kısmında, konumları bilinen birçok LED vericisi ve işbirliği amacıyla

hem LED’ler hem fotosezicilerle donatılmış GIH birimlerini içeren bir GIK sis-

tem konfigürasyonu tasarlanarak, görünür ışık ağları için işbirlikçi konumla-

manın kullanılması önerilmektedir. Önerilen işbirlikçi senaryoda, GIH birim-

lerinin konumlandırılması için CRS ve MOK türetilmektedir. MOK’un dışbükey

olmayan yapısının üstesinden gelmek amacıyla, işbirlikçi konumlandırma prob-

lemi dışbükey benzeri fizibilite problemi olarak formüle edilerek küme-teorik bir

yaklaşım benimsenmektedir. Bu problemde amaç, Lambert formülünden kay-

naklanan dışbükey benzeri fonksiyonların alt seviye kümeleri olarak düzenlenen

dışbükey kısıt kümelerinin kesişiminde bir nokta bulmaktır. Daha sonra, fizibilite

problemini çözmek amacıyla, yinelemeli eğim izdüşümlerine dayanan iki algo-

ritma tasarlanmaktadır. Her iki algoritma da, dağıtık olarak gerçekleştirilmeye

uygundur; bu durum, yüksek karmaşıklı merkezi yaklaşımlardan kaçınabilmeyi

sağlamaktadır. Quasi-Fejér yakınsak serilerden faydalanılarak, düzgün bir

yakınsama analizi yapılmakta ve önerilen algoritmaların tutarlı durumda fizibilite

probleminin bir çözümüne yakınsadıkları ispatlanmaktadır. Sayısal örnekler, GIH

birimleri arasında işbirliği sayesinde elde edilen konumlandırma performansı iy-

ileştirmelerini göstermekte ve önerilen algoritmaların hem tutarlı hem tutarsız

durumlarda GIH birimlerinin doğru konumlarına yakınsadığını kanıtlamaktadır.

Anahtar sözcükler : Kestirim, görünür ışık haberleşmesi, Cramér-Rao sınırı, Ziv-

Zakai sınırı, Lambert örüntüsü, doğrudan konumlandırma, iki adımlı konum-

landırma, güç tahsisi, dışbükey optimizasyon, işbirlikçi konumlandırma, dışbükey

benzeri fizibilite, eğim izdüşümleri.
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Chapter 1

Introduction

With the advent of low-cost and energy-efficient light emitting diode (LED) tech-

nologies, LED based visible light communication (VLC) systems have gathered

a significant amount of research interest in the last decade [1–3]. Utilizing the

vast unlicensed visible light spectrum, VLC has the potential to surmount the

issue of spectrum scarcity encountered in radio frequency (RF) based wireless

systems [4]. In indoor scenarios, VLC systems can employ the available lighting

infrastructure to provide various capabilities simultaneously, such as illumination,

high-speed data transmission, and localization [2,5]. Apart from their basic func-

tion of illuminating indoor spaces, LEDs can be modulated at high frequencies to

accomplish high data rate transmission [3, 6, 7]. On the other hand, the process

of localization via visible light signals can be realized by visible light positioning

(VLP) systems, where VLC receivers equipped with photo detectors can perform

position estimation by exploiting signals emitted by LED transmitters at known

locations [5, 7–10]. Since line-of-sight (LOS) links generally exist between LED

transmitters and VLC receivers, and multipath effects are not very significant as

compared to RF based solutions [11, 12], VLP systems can facilitate precise lo-

cation estimation in indoor environments [9,13–15]. Among various applications

of VLP systems, robot navigation, asset tracking and location-aware services can

be considered as the most prominent ones [3, 5].
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The main purpose of this dissertation is to investigate distance and position es-

timation techniques in VLP systems by providing theoretical performance limits,

developing efficient algorithms and proposing resource allocation approaches for

accuracy improvement. In the first part of the dissertation containing Chapter 2

and Chapter 3, we derive various performance bounds on distance and position

estimation in both synchronous and asynchronous VLP scenarios, design statisti-

cal estimators, and carry out a comprehensive accuracy analysis of VLP systems

through theoretical and numerical results [16–18]. The second part (Chapter 4)

of the dissertation focuses on power allocation strategies for LED transmitters

in VLP systems with the aim of minimizing the localization error of VLC re-

ceivers [19]. In the final part (Chapter 5), we extend our analysis to consider the

effects of cooperation among VLC receivers and devise iterative, distributed algo-

rithms for cooperative localization in VLP systems [20]. In the following sections,

we provide a literature review and summarize our main contributions.

1.1 Distance and Position Estimation in Visible

Light Systems

1.1.1 Distance Estimation in Visible Light Systems

In VLP systems, various types of parameters such as received signal strength

(RSS), time-of-arrival (TOA), time-difference-of-arrival (TDOA), and angle-of-

arrival (AOA) can be employed for position estimation. In RSS based systems,

the position of a VLC receiver is estimated based on RSS measurements between

the VLC receiver and a number of LED transmitters [9, 13–15, 21, 22]. Unlike

in RF based systems, the RSS parameter can provide very accurate position

related information in VLP systems since the channel attenuation factor does

not fluctuate significantly in LOS visible light channels. In [13], a complete

VLP system based on RSS measurements and trilateration is implemented and

the achieved sub-meter accuracy is compared against other positioning systems.

In [21], Kalman and particle filtering are employed for RSS based position tracking
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in VLP systems. The study in [15] utilizes a single LED transmitter and multiple

optical receivers for position estimation, where the position of the receiver unit

is determined based on RSS measurements at multiple receivers. In [14], an RSS

based VLP system is designed and a multiaccess protocol is implemented. The

proposed system can guarantee decimeter level accuracy in almost all scenarios

in the presence and absence of direct sunlight exposure. A carrier allocation VLC

system is proposed in [9] for RSS based positioning and experiments are performed

to illustrate its centimeter level average positioning accuracy. The studies in

[23] and [24] consider the use of the time delay parameter for positioning. In

particular, [23] investigates the theoretical limits on TOA estimation for visible

light systems. In [24], TDOAs are calculated at a VLC receiver based on signals

from three LEDs and two-dimensional position estimation is performed based

on TDOAs. As another alternative, the AOA parameter can be utilized for

localization in VLP systems [25–27]. For example, the study in [27] considers

a multi-element VLC system and exploits the narrow field of view of LEDs to

extract position related information from connectivity conditions. Based on a

least-squares estimator and Kalman filtering, average positioning accuracy on

the order of 0.2 meter is reported.

Although there exist many studies on VLP systems, theoretical limits on esti-

mation accuracy have been considered very rarely [23, 28]. Theoretical limits for

estimation present useful performance bounds on mean-squared errors (MSEs)

of estimators and provide important guidelines for system design. In [23], the

Cramér-Rao lower bound (CRLB) is presented for distance (or, TOA) estimation

in a synchronous VLC system. The effects of various system parameters, such

as source optical power, center frequency, and the area of the photo detector,

are investigated. Simulation results indicate centimeter level accuracy limits for

typical system parameters. The study in [28] derives the CRLB for distance es-

timation based on the RSS parameter, and investigates the dependence of the

CRLB expression on system parameters such as LED configuration, transmitter

height, and the signal bandwidth. Again, CRLBs on the order of centimeters are

observed for typical system parameters.

In the first part of Chapter 2, a generic signal model, which covers TOA
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based [23] and RSS based [28] distance estimation as special cases, is considered,

and theoretical limits and estimators are derived. In particular, the CRLBs and

maximum likelihood estimators (MLEs) are investigated for both synchronous

and asynchronous scenarios and in the presence and absence of a relation between

distance and channel attenuation factor. In this way, in addition to TOA based

and RSS based distance estimation, hybrid TOA/RSS based distance estimation

is introduced for VLP systems, and theoretical links and comparisons are provided

between the current study and those in the literature [23,28]. Also, via the CRLB

expressions, the accuracy limits for TOA based, RSS based, and hybrid TOA/RSS

based distance estimation are compared analytically. Furthermore, asymptotic

results are obtained for the MLEs under sampling rate limitations, and a modified

hybrid estimator is proposed to perform accurate distance estimation in practical

scenarios.

Apart from the CRLB expressions, in Chapter 2, we also derive the Ziv-Zakai

bound (ZZB) for distance estimation in synchronous VLP systems (that can uti-

lize both TOA and RSS parameters) in the presence of prior information on the

distance parameter. Therefore, unlike the theoretical limits in [16,23,28,29], the

aim in the second part of Chapter 2 is to provide theoretical limits for a syn-

chronous VLP system by considering the effects of prior information, as well. Al-

though the CRLB can provide tight limits on MSEs of unbiased estimators in high

signal-to-noise ratio (SNR) conditions, it can be quite loose for low SNRs [30]. In

addition, the CRLB derivations do not consider any prior statistical information

about the range (or, position) parameter, which can in fact be available in indoor

environments; e.g., based on physical dimensions and known system parameters

such as the field of view of the photo detector. To address these issues, the ZZB

can be used as a benchmark for ranging in VLP systems. The ZZB can provide

tight limits on MSEs of estimators in all SNR conditions, and it also utilizes the

available prior information [30, 31]. The study in [32] derives the ZZB on range

estimation in an asynchronous VLP system based on RSS measurements and

provides comparisons with the maximum a-posteriori probability (MAP) and the

minimum mean-squared error (MMSE) estimators.
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In the second part of Chapter 2, the ZZB on ranging is derived for a syn-

chronous VLP system by utilizing the prior information and the ranging infor-

mation from both the time delay (TOA) parameter and the channel attenuation

factor (RSS) via the Lambertian pattern. Based on the ZZB, effects of various

system parameters, such as the Lambertian order, the area of the photo detector,

and the source optical power, are analyzed in terms of ranging accuracy, and

design guidelines are provided for practical VLP systems. In addition, the expec-

tation of the CRB (ECRB) is calculated and a closed-form expression is obtained

for uniform prior information. The ECRB expression both illustrates the effects

of prior information and provides a low-complexity alternative to the ZZB in high

SNR conditions. Moreover, the Bayesian CRB (BCRB) and the weighted CRB

(WCRB) are derived in order to present theoretical limits that effectively utilize

the prior information, and they are compared against the ZZB.

1.1.2 Direct and Two-Step Position Estimation in Visible

Light Systems

Commonly, the problem of wireless localization is investigated by employing

two classes of approaches, which are two-step positioning and direct positioning.

Widely applied in RF and VLP based localization systems, two-step positioning

algorithms extract position related parameters, such as RSS, TOA, TDOA, and

AOA in the first step, and perform position estimation based on those parameters

in the second step [33]. There exist a multitude of applications of indoor VLP

systems that employ two-step positioning, such as those using RSS [14, 34–36],

AOA [27], hybrid RSS/AOA [26,29,37], TOA [16,23], and TDOA [24]. However,

the two-step method can be construed as a suboptimal solution to the localization

problem since it does not exploit all the collected data related to the unknown

location. On the other hand, direct positioning algorithms use the entire re-

ceived signal in a one-step process in order to determine the unknown position,

as opposed to two-step positioning [38–40]. Hence, all the available information

regarding the unknown position can be effectively utilized in the direct position

estimation approach, which can lead to the optimal solution to the localization
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problem. A theoretical justification for the superiority of direct positioning over

conventional two-step positioning is provided in [41, 42]. In [38], the direct posi-

tion determination (DPD) technique is proposed for localization of narrowband

RF emitters, where the multiple signal classification (MUSIC) algorithm is em-

ployed to formulate the cost function in the case of unknown signals. It is shown

that the DPD approach outperforms the conventional AOA based two-step local-

ization technique. The study in [43] investigates the localization of a stationary

narrowband RF source using signals from multiple moving receivers in a single-

step approach and demonstrates that the DPD method is superior to the two-step

differential Doppler (DD) method at low SNRs. In addition, direct localization

techniques are shown to enhance the performance of RF positioning in TOA [44],

TDOA [45] and hybrid TOA/AOA [46] based systems. Direct positioning algo-

rithms are also employed for target localization in radar systems [47,48].

Although the DPD approach has been employed in numerous applications in

RF localization systems, only a limited amount of research has been carried out

on the utilization of DPD techniques in indoor VLP systems. In [49], RSS based

VLP system with non-directional LEDs and a detector array consisting of multiple

directional photo diodes (PDs) is proposed, where time-averaged RSS values at

each PD are considered as the final observation for two-dimensional position

estimation. In [50], which extends the study in [49], a correlation receiver is

employed to obtain a single RSS estimate for each PD without optimizing for the

correlator peak. However, from the direct positioning perspective, the proposed

methods in [49] and [50] utilize only the time-averaged or correlation samples

of the received signal, not the entire signal for localization. Furthermore, an

asynchronous VLP system is designed in [51], where a Bayesian signal model is

constructed to estimate the unknown position based on the entire received signal

from multiple LEDs in the presence of obstruction of signals from several LEDs.

To provide performance benchmarks for positioning algorithms, theoretical

bounds on distance (‘range’) and position estimation in VLP systems have been

considered in several studies in the literature [16, 17, 23, 28, 29, 49, 52]. The work

in [28] derives the CRLB for distance estimation based on RSS information,

whereas [23] presents the CRLB for distance estimation in synchronous visible

6



light systems based on TOA measurements. The CRLB on hybrid TOA/RSS

based ranging is investigated in [16]. In [17], the ZZB is derived for synchronous

VLP systems in the presence of prior information about distance and it is com-

pared against the ECRB, BCRB, and WCRB, all of which utilize prior infor-

mation. Besides distance estimation, theoretical accuracy limits have also been

derived for localization in visible light systems. In [29], the CRLB is derived for

RSS based three-dimensional localization for an indoor VLP scenario with arbi-

trary LED transmitter and VLC receiver configurations. In [49] and [50], two-

dimensional RSS-based localization is addressed with the assumption of a known

receiver height, and an analytical CRLB expression is derived accordingly.

In Chapter 3, we study direct and two-step positioning approaches in both

synchronous and asynchronous VLP systems. Considering a generic three-

dimensional localization scenario, we first derive the CRLB and the direct po-

sitioning based ML estimator for a synchronous VLP system by taking into ac-

count both the time delays and the channel attenuation factors. Then, we design

an asymptotically optimal two-step estimator that exploits the asymptotic un-

biasedness and efficiency properties of the first-step TOA and RSS estimates.

Moreover, we provide the CRLB and the direct and two-step ML estimators in

an asynchronous VLP system, and demonstrate the optimality of two-step esti-

mation (i.e., its equivalence to direct estimation) in asynchronous scenarios for

practical waveforms.

1.2 Resource Allocation in Visible Light Sys-

tems

In order to provide satisfactory performance for mobile or stationary devices, it

is essential to investigate performance optimization in visible light systems with

respect to various criteria, such as MSE minimization (e.g., [53–56]) and trans-

mission rate maximization (e.g., [57–65]). In the literature, transmit precoding
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and DC offset1 designs are extensively explored to improve the MSE performance

of multiple-input multiple-output (MIMO) VLC systems [53–56]. In addition to

transceiver and offset designs in VLC systems, an increasingly popular research

strand focuses on power allocation for LED transmitters to enhance system per-

formance [57–64, 66, 67]. Due to practical concerns related to energy efficiency

and LED lifespan, transmission powers of LEDs in visible light systems are valu-

able resources that can have profound effects on both transmission rates of VLC

systems and localization accuracy of VLP systems. In [57], the total instan-

taneous data rate of LED arrays is considered as the performance metric for

a MIMO VLC system and the optimal strategy for LED power allocation is de-

rived under sum optical power and non-negativity constraints. The studies in [58]

and [60] perform power optimization for LEDs to maximize the sum transmission

rate of all subcarriers in a VLC system employing optical orthogonal frequency-

division multiplexing (OFDM). With the aim of achieving proportional fairness

among users in a multi-user VLC network, the total logarithmic throughput is

optimized in [61] and [64] to identify the optimal LED power control strategy.

Although total and individual power constraints are extensively utilized in power

allocation optimization in VLC systems, several studies incorporate color and

luminance constraints into the power optimization framework, as well, in com-

pliance with the illumination functionality of VLC systems [59, 62]. In general,

power allocation algorithms in both VLC and VLP systems should take into ac-

count a variety of design requirements imposed by the multi-faceted nature of

visible light applications.

The concept of power allocation has also been widely considered for RF based

wireless localization networks [68–77], where the transmit powers of anchor nodes

(the locations of which are known) can be optimized to improve the localization

accuracy of target nodes (with unknown locations). The prevailing approach

in such investigations is to adopt a mathematically tractable and tight bound

on the localization error as the performance metric and to formulate the op-

timization problem under average and peak anchor power constraints. In [68]

1Optical intensity modulation in VLC systems requires that the amplitude of the electrical

drive current of the LED must be non-negative [57].
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and [69], anchor power allocation algorithms are designed to minimize the total

power consumption subject to predefined accuracy requirements for localization

of target nodes. For cooperative localization networks, distributed power alloca-

tion strategies are developed in [70], where the transmit powers of both anchors

and targets are optimally allocated to minimize the squared position error bound

(SPEB). Moreover, [73] explores the problem of optimal power allocation for

OFDM subcarriers in the presence of both perfect and imperfect knowledge of

network parameters. As commonly observed in RF wireless localization systems,

optimal power allocation provides non-negligible performance benefits over the

traditional uniform strategy for a wide range of localization scenarios.

In Chapter 4, motivated by the promising performance improvements achieved

via power allocation in both RF localization networks and VLC systems, we pro-

pose the problem of optimal power allocation for LED transmitters in a VLP

system, where the objective is to minimize the localization error of the VLC

receiver subject to practical constraints related to power and illumination. To

quantify the localization accuracy, the CRLB metric is adopted in the problem

statement. Leveraging tools from convex optimization and semidefinite program-

ming (SDP), we formulate and solve various optimization problems in both the

absence and presence of parameter uncertainties. The power allocation problem

for VLP systems has the following key differences from the one in RF based local-

ization systems: (i) Due to the limited linear region of operation, the LEDs are

subject to both the minimum and peak power constraints [55,59,78,79]. (ii) Since

VLP systems serve the dual purpose of illumination and localization, the problem

formulation should include lighting constraints that guarantee an acceptable level

of illumination in indoor spaces [79–82]. (iii) In contrast to RF systems in which

multipath components can severely affect the quality of localization, the received

signal power in VLP systems can accurately be characterized by the Lambertian

formula [12].

9



1.3 Cooperative Localization in Visible Light

Systems

Based on the availability of internode measurements, wireless localization net-

works can broadly be classified into two groups: cooperative and noncooperative.

In the conventional noncooperative approach, position estimation is performed by

utilizing only the measurements between anchor nodes (which have known loca-

tions) and agent nodes (the locations of which are to be estimated) [83,84]. On the

other hand, cooperative systems also incorporate the measurements among agent

nodes into the localization process to achieve improved performance [84]. Bene-

fits of cooperation among agent nodes are more pronounced specifically for sparse

networks where agents cannot obtain measurements from a sufficient number of

anchors for reliable positioning [85]. There exists an extensive body of research

regarding the investigation of cooperation techniques and the development of ef-

ficient algorithms for cooperative localization in RF-based networks (see [83–85]

and references therein). In terms of implementation of algorithms, centralized ap-

proaches attempt to solve the localization problem via the optimization of a global

cost function at a central unit to which all measurements are delivered. Among

various centralized methods, ML and nonlinear least squares (NLS) estimators are

the most widely used ones, both leading to nonconvex and difficult-to-solve op-

timization problems, which are usually approximated through convex relaxation

approaches such as SDP [86–88], second-order cone programming (SOCP) [89,90],

and convex underestimators [91]. In distributed algorithms, computations re-

lated to position estimation are executed locally at individual nodes, thereby

reinforcing scalability and robustness to data congestion [84]. Set-theoretic es-

timation [92–95], factor graphs [84], and multidimensional scaling (MDS) [96]

constitute common tools employed for cooperative distributed localization in the

literature.

Despite the ubiquitous use of cooperation techniques in RF-based wireless

localization networks, no studies in the literature have considered the use of co-

operation in VLP networks. In Chapter 5, we extend the cooperative paradigm
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to visible light domain. More specifically, we set forth a cooperative localization

framework for VLP networks whereby LED transmitters with fixed, known loca-

tions2 function as anchors and VLC units with unknown locations are equipped

with LEDs and PDs for the purpose of communications with both fixed LEDs

and other VLC units. Utilization of the proposed framework is motivated by the

following potential real-life applications:

• Vehicular VLC for Intelligent Transportation: Deployment of low-

cost and energy-efficient LEDs in headlamps, taillights, and turn signals of

modern vehicles makes vehicle-to-vehicle (V2V) communications via VLC

a feasible approach for vehicular networks [97–99]. As VLC receivers, PDs

can be placed in different sides of vehicles (e.g., near headlights, taillights

or side mirrors [99, Fig. 1]) to enable inter-vehicle cooperation [97]. As

illustrated in Fig. 1.1, by exploiting vehicle-to-infrastructure (V2I) com-

munications between traffic infrastructures (e.g., traffic/street lights) and

vehicles, together with V2V VLC links, a VLC-based cooperative vehicular

localization system can be implemented to provide precise location informa-

tion for cooperative ITS applications, especially in harsh scenarios where

the global positioning system (GPS) signals are severely degraded (e.g.,

urban areas or tunnels) [99,100].

• Indoor VLC with Infrared Uplink Capability: Since infrared LEDs

and PDs are already available in some VLC systems for efficient uplink

transmission [2, 4, 101–103], they can also be utilized for device-to-device

communications to achieve cooperation among VLC units (see Fig. 1.2 for

an illustration of an indoor cooperative VLP system). An additional benefit

of using infrared wavelengths for cooperation is that it helps mitigate eye

safety risks incurred by communications among VLC units [104].

The proposed network facilitates the definition of arbitrary connectivity sets

between the LEDs on the ceiling and the VLC units, and also among the VLC

2In indoor scenarios, LEDs on ceiling have fixed locations and can be used as anchors

for localization of VLC units. For the case of vehicular visible light networks, anchor LEDs

correspond to the roadside infrastructure lightings, such as traffic lights and streetlamps [97].
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Figure 1.1: Vehicular VLC for cooperative intelligent transportation systems.

units, which can provide significant performance enhancements over the tradi-

tional noncooperative approach employed in the VLP literature. Based on the

noncooperative (i.e., between LEDs on the ceiling and VLC units) and coopera-

tive (i.e., among VLC units) RSS measurements, we first derive the CRLB and

the MLE for the localization of VLC units. Since the MLE poses a challenging

nonconvex optimization problem, we follow a set-theoretic estimation approach

and formulate the problem of cooperative localization as a quasiconvex feasibil-

ity problem (QFP) [105], where feasible constraint sets correspond to sublevel

sets of certain type of quasiconvex functions. The quasiconvexity arising in the

problem formulation stems from the Lambertian formula, which characterizes the

attenuation level of visible light channels. Next, we design two feasibility-seeking

algorithms, having cyclic and simultaneous characteristics, which employ itera-

tive gradient projections onto the specified constraint sets. From the viewpoint

of implementation, the proposed algorithms can be implemented in a distributed

architecture that relies on computations at individual VLC units and a broad-

casting mechanism to update position estimates. Moreover, we provide a formal

convergence proof for the projection-based algorithms based on quasi-Féjer con-

vergence, which enjoys decent properties to support theoretical analysis [106].
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Figure 1.2: Illustration of an indoor cooperative VLP system with three VLC
units (e.g., robots). The white cylinders on the ceiling and at the VLC units
represent the LEDs, and the red rectangular prisms denote the PDs.

The applications of convex feasibility problems (CFPs) encompass a wide va-

riety of disciplines, such as wireless localization [92–95, 107], compressed sens-

ing [108], image recovery [109], image denoising [110] and intensity-modulated

radiation therapy [111]. In contrary to optimization problems where the aim

is to minimize the objective function while satisfying the constraints, feasibility

problems seek to find a point that satisfies the constraints in the absence of an

objective function [108]. Hence, the goal of a CFP is to identify a point inside

the intersection of a collection of closed convex sets in a Euclidean (or, in general,

Hilbert) space. In feasibility problems, a commonly pursued approach is to per-

form projections onto the individual constraint sets in a sequential manner, rather

than projecting onto their intersection due to analytical intractability [112]. The

work in [92] formulates the problem of acoustic source localization as a CFP

and employs the well-known projections onto convex sets (POCS) technique for

convergence to true source locations. Following a similar methodology, the nonco-

operative wireless positioning problem with noisy range measurements is modeled
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as a CFP in [93], where POCS and outer-approximation (OA) methods are uti-

lized to derive distributed algorithms that perform well under non-line-of-sight

(NLOS) conditions. In [107], a cooperative localization approach based on pro-

jections onto nonconvex boundary sets is proposed for sensor networks, and it

is shown that the proposed strategy can achieve better localization performance

than the centralized SDP and the distributed MDS although it may get trapped

into local minima due to nonconvexity. Similarly, the work in [94] designs a

POCS-based distributed positioning algorithm for cooperative networks with a

convergence guarantee regardless of the consistency of the formulated CFP, i.e.,

whether the intersection is nonempty or not.

Although CFPs have attracted a great deal of interest in the literature, QFPs

have been investigated only rarely. QFPs represent generalized versions of CFPs

in that the constraint sets are constructed from the lower level sets of quasiconvex

functions in QFPs whereas such functions are convex in CFPs [105]. The study

in [105] explores the convergence properties of subgradient projections based itera-

tive algorithms utilized for the solution of QFPs. It is demonstrated that the itera-

tions converge to a solution of the QFP if the quasiconvex functions satisfy Hölder

conditions and the QFP is consistent, i.e., the intersection is nonempty. In Chap-

ter 5, we show that the Lambertian model based (originally non-quasiconvex)

functions can be approximated by appropriate quasiconvex lower bounds, which

convexifies the (originally nonconvex) sublevel constraint sets, thus transforming

the formulated feasibility problem into a QFP.

The previous work on VLP networks has addressed the problem of position

estimation based mainly on the ML estimator [16,29,50], the least squares estima-

tor [27, 29], triangulation [14, 113], and trilateration [24] methods. In Chapter 5,

however, we consider the problem of localization in VLP networks as a feasibility

problem and introduce efficient iterative algorithms with convergence guarantees

in the consistent case. In addition, the theoretical bounds derived for position

estimation are significantly different from those in [29, 50] via the incorporation

of terms related to cooperation, which allows for the evaluation of the effects

of cooperation on the localization performance in any three dimensional coop-

erative VLP scenario. Furthermore, unlike the previous research on localization
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in RF-based wireless networks via CFP modeling [92–94, 107], where a common

approach is to employ POCS-based iterative algorithms, we formulate the local-

ization problem as a QFP for VLP systems, which necessitates the development of

more sophisticated algorithms (e.g., gradient projections) and different techniques

for studying the convergence properties of those algorithms (e.g., quasiconvexity

and quasi-Fejér convergence).

1.4 Organization of the Dissertation

This dissertation is organized as follows. In Chapter 2, comparative theoretical

analysis of distance estimation in VLP systems is carried out by providing perfor-

mance benchmarks and statistical estimators. In Chapter 3, direct and two-step

position estimation methods are studied for VLP systems. Then, Chapter 4 con-

siders the performance metrics derived in Chapter 3 for designing optimal resource

allocation strategies for LED transmitters in VLP systems. In Chapter 5, cooper-

ative localization scenarios are investigated for VLP systems. Finally, Chapter 6

presents concluding remarks for this dissertation and provides a discussion of

future research directions.
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Chapter 2

Distance Estimation in Visible

Light Positioning Systems:

Theoretical Limits and Statistical

Estimators

In this chapter, theoretical limits and statistical estimators are studied for dis-

tance estimation in synchronous and asynchronous VLP systems [16, 17]. The

main contributions of this chapter can be summarized as follows:

• The hybrid RSS/TOA based distance estimation is proposed for VLP sys-

tems for the first time. In addition, the CRLB and the MLE corresponding

to the hybrid RSS/TOA based distance estimation are derived, which have

not been available in the literature.1

• Analytical expressions are derived for the ratios between the CRLBs for the

TOA based, RSS based, and hybrid TOA/RSS based distance estimation.

1The hybrid RSS/TOA based estimation and the corresponding CRLB and MLE expres-

sions in RF positioning systems [114–117] are different from those in this study due to the

distinct characteristics of the visible light channel.
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In particular, it is shown that the CRLB for the hybrid TOA/RSS based

estimation converges to that of the TOA based distance estimation for β �
c/x, and to that of the RSS based distance estimation for β � c/x, where

β is the effective bandwidth of the transmitted signal, x is the distance

between the LED transmitter and the VLC receiver, and c is the speed of

light.

• Effects of sampling rate limitations on the TOA based, RSS based, and

hybrid TOA/RSS based MLEs are characterized via asymptotic MSE ex-

pressions as the noise variance converges to zero.

• To provide performance improvements in the presence of sampling rate

limitations, a modified hybrid TOA/RSS based estimator is proposed based

on the hybrid TOA/RSS based MLE.

• The ZZB on ranging is derived for a synchronous VLC system by utilizing

prior information together with the ranging information extracted from the

time delay parameter and the channel attenuation factor. (The provided

ZZB expression is different from those for synchronous RF systems [30,

118, 119] due to the facts that (i) synchronous VLP systems utilize both

time delay and received signal power information whereas synchronous RF

systems use time delay information only, and (ii) the Lambertian formula

is available for VLP systems to specify the received signal power, which is

not valid for RF systems.)

• A closed-form ECRB expression is derived for ranging in synchronous VLC

systems, which converges to the ZZB in the high SNR regime.

• The BCRB and the WCRB expressions are provided for a synchronous VLC

system, which have not been available in the literature.

• Performance of the MAP estimator is compared against the theoretical

limits. It is demonstrated that the theoretical limits on the performance

of the MAP estimators can be characterized by the ZZB, which provides

important guidelines for designers of practical VLP systems. In addition,

the ECRB and the WCRB are observed to converge to the ZZB in the high

and low SNR regimes, respectively.
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In addition, slightly more general CRLB expressions than those in [23] and [28]

are presented for the TOA based and RSS based distance estimation, and the

conditions under which the CRLB expressions in [23] and [28] arise are specified.

Furthermore, comparisons among different approaches are provided in terms of

theoretical estimation accuracy and robustness to sampling rate limitations. Nu-

merical examples are provided to investigate the theoretical results.

This chapter is organized as follows: The system model is introduced and the

parameters are defined in Section 2.1. The CRLBs and the MLEs are derived

for synchronous and asynchronous scenarios in Section 2.2, and comparisons are

presented among the CRLBs in various cases. In Section 2.3, the asymptotic

MSEs are derived for the MLEs when the noise variance goes to zero, and the

modified hybrid TOA/RSS based distance estimator is proposed. The ZZB for

synchronous VLP systems is derived in Section 2.4, and a closed-form ECRB

expression is provided in Section 2.5. The BCRB and the WCRB expressions are

obtained in Section 2.6. Numerical examples are presented in Section 2.7, followed

by discussions on position estimation in Section 2.8. Finally, the concluding

remarks are presented in Section 2.9.

2.1 System Model

In an indoor VLP system, LED transmitters are commonly located on the ceiling

of a room, and a VLC receiver is located on an object on the floor. Based on

the signals received from the LED transmitters (which have known positions),

the VLC receiver can estimate its distance (range) to each LED transmitter and

determine its position based on distance estimates. The aim in this study is to

investigate the fundamental limits on distance estimation.

Consider an LED transmitter at location lt ∈ R3 and a VLC receiver at location

lr ∈ R3 in an LOS scenario. The distance between the LED transmitter and the

VLC receiver is represented by x, which is given by x = ‖lr − lt‖2. The received
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signal at the VLC receiver is expressed as [23]

r(t) = αRp s(t− τ) + n(t) (2.1)

for t ∈ [T1, T2], where T1 and T2 specify the observation interval, α is the atten-

uation factor of the optical channel (α > 0), Rp is the responsivity of the photo

detector, s(t) is the transmitted signal which is nonzero over an interval of [0, Ts],

τ is the TOA, and n(t) is zero-mean additive white Gaussian noise with a spec-

tral density level of σ2. It is assumed that Rp and s(t) are known by the VLC

receiver. Also, the TOA parameter is modeled as

τ =
x

c
+ ∆ (2.2)

where x is the distance between the LED transmitter and the VLC receiver, c is

the speed of light, and ∆ denotes the time offset between the clocks of the LED

transmitter and the VLC receiver. For a synchronous system, ∆ = 0, whereas for

an asynchronous system, ∆ is modeled as a deterministic unknown parameter. It

is assumed that coarse acquisition is performed so that the signal component in

(2.1) resides completely in the observation interval [T1, T2].

The channel attenuation factor α in (2.1) is modeled as

α =
m+ 1

2π
cosm(φ) cos(θ)

S

x2
(2.3)

where m is the Lambertian order, S is the area of the photo detector at the

VLC receiver, φ is the irradiation angle, and θ is the incidence angle [13, 23].

For compactness of analytical expressions, it is assumed, similarly to [15, 23, 28],

that the LED transmitter is pointing downwards (which is commonly the case)

and the photo detector at the VLC receiver is pointing upwards such that φ = θ

and cos(φ) = cos(θ) = h/x, where h denotes the height of the LED transmitter

relative to the VLC receiver.2 In addition, as in [15, 21, 23, 28], it is assumed

that the height of the VLC receiver is known; that is, possible positions of the

VLC receiver are confined to a two-dimensional plane. This assumption holds in

2It is straightforward to extend the theoretical bounds in this study to the cases with

arbitrary transmitter and receiver orientations. However, it is not performed as the expressions

become lengthy and inconvenient.
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various practical scenarios; e.g., when the VLC receiver is attached to a cart or a

robot that is tracked via a VLP system as VLC receivers have fixed and known

heights in such applications (e.g., Fig. 3 in [5]). Under these assumptions, (2.3)

becomes

α =
m+ 1

2π

(
h

x

)m+1
S

x2
, γ x−m−3 (2.4)

where

γ , (m+ 1)hm+1S/(2π) (2.5)

is a known constant.3

2.2 CRLBs and ML Estimators

In order to calculate the CRLB, the log-likelihood function corresponding to the

received signal model in (2.1) is specified as follows [120], [121]:

Λ(ϕ) = k − 1

2σ2

∫ T2

T1

(r(t)− αRp s(t− τ))2 dt (2.6)

where ϕ denotes the set of unknown parameters including x and other nuisance

parameters, if any, depending on the considered scenario (as discussed below), and

k represents a normalizing constant that is a function of σ and does not depend

on the unknown parameter(s). The CRLB is obtained based on the inverse of

the Fisher information matrix (FIM) for ϕ, which can be calculated from the

log-likelihood function in (2.6) as [122]

J(ϕ) = E
{

(∇ϕΛ(ϕ)) (∇ϕΛ(ϕ))T
}

(2.7)

where ∇ϕ represents the gradient operator with respect to ϕ. From the FIM in

(2.7), the CRLB on the covariance matrix of any unbiased estimator ϕ̂ of ϕ can

be calculated as follows:

E
{

(ϕ̂−ϕ)(ϕ̂−ϕ)T
}
� J(ϕ)−1 (2.8)

3The assumption of a known height is required for unambiguous estimation of distance

based on an RSS measurement (cf. (2.4)).
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where A � B means that A−B is positive semidefinite [122].

In the following, the CRLBs and MLEs are derived for different cases.

2.2.1 Case 1: Synchronous System

Firstly, the following assumptions are considered: (i) the LED transmitter and

the VLC receiver are synchronized (i.e., ∆ = 0 in (2.2)) and (ii) the relation of

channel attenuation factor α to distance x is unknown; i.e., a relation as in (2.4)

is not available. The latter is a common assumption in RF based distance esti-

mation systems (e.g., [123]) since the channel coefficient fluctuates significantly

due to multipath effects (fading). However, in visible light systems, the chan-

nel attenuation factor can accurately be related to distance, especially in LOS

scenarios, and this relation can be used to improve the accuracy of distance esti-

mation, as will be discussed later in this section. The main aims behind studying

distance estimation in the absence of the relation between α and x are to pro-

vide a benchmark for analyzing the effects of this relation, and to investigate the

previous results in the literature [23].

In the presence of synchronization and in the absence of a relation between the

channel attenuation factor and distance, the ML estimator [122] can be obtained

from (2.6) as follows:

x̂ML,TOA = arg max
ϕ

−1

2σ2

∫ T2

T1

(r(t)− αRp s(t− τ))2 dt

= arg max
x

∫ T2

T1

r(t)s

(
t− x

c

)
dt (2.9)

where the final expression is obtained due to the facts that α > 0 and the TOA

parameter in (2.2) becomes τ = x/c for a synchronous system.

For the CRLB derivation in this scenario, it is first assumed that the channel

attenuation factor α is known by the VLC receiver. Then, the unknown param-

eter vector in (2.6) becomes ϕ = x, and the Fisher information in (2.7) can be
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obtained, from (2.6), as

J(x) = E

{(
dΛ(x)

dx

)2
}

=

(
Rpα

σc

)2

E1 (2.10)

where

E1 ,
∫ Ts

0

(s′(t))
2
dt (2.11)

with s′(t) denoting the derivative of s(t) [122, 124]. Based on (2.8) and (2.10),

the CRLB is computed as follows:

E
{

(x̂− x)2
}
≥ 1

E1

(
σc

Rpα

)2

, CRLBTOA . (2.12)

To provide an alternative expression for the CRLB in (2.12), E1 in (2.11) is

expressed, via Parseval’s relation, as follows [122]:

E1 =

∫ ∞
−∞
|j2πfS(f)|2 df = 4π2

∫ ∞
−∞

f 2 |S(f)|2 df

= 4π2β2

∫ ∞
−∞
|S(f)|2 df = 4π2E2β

2 (2.13)

where S(f) denotes the Fourier transform of s(t),

E2 ,
∫ ∞
−∞
|S(f)|2 df =

∫ Ts

0

(s(t))2 dt (2.14)

and β is the effective bandwidth of s(t) defined as

β2 =
1

E2

∫ ∞
−∞

f 2 |S(f)|2 df . (2.15)

From (2.13), (2.12) can be stated as

E
{

(x̂− x)2
}
≥ σ2c2

4π2R2
p α

2E2β2
, CRLBTOA . (2.16)

It is noted that the CRLB in (2.16) is equivalent to that in eqn. (5) of [23] for

σ2 = N0/2. Hence, the CRLB expression presented in [23] corresponds to a

synchronous system in which the channel attenuation factor α is known by the

VLC receiver but the relation of α to distance x is unknown. Since only the time

delay information is employed to estimate the distance, this scenario is referred

to as TOA based distance estimation.
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When the channel attenuation factor, α, is unknown, the CRLB can be ex-

pressed for this scenario as in the following lemma.

Lemma 1 [117]. When the channel attenuation factor α in (2.1) is unknown,

the CRLB for TOA based distance estimation is given by

E
{

(x̂− x)2
}
≥ E2

E1E2 − E2
3

(
σc

Rpα

)2

(2.17)

where E1 is as in (2.11), E2 is given by (2.14), and

E3 ,
∫ Ts

0

s′(t)s(t)dt = 0.5
(
s2(Ts)− s2(0)

)
. (2.18)

Proof: Although the proof can be obtained as a special case of the derivation

in [117], it is provided below for completeness.

When α is unknown, the vector of unknown parameters becomes ϕ = (x, α)

and the log-likelihood function in (2.6) can be expressed as Λ(x, α). Then, the

FIM in (2.7) is given by

J(x, α) =

 E
{(

∂Λ(x,α)
∂x

)2
}

E
{
∂Λ(x,α)
∂x

∂Λ(x,α)
∂α

}
E
{
∂Λ(x,α)
∂α

∂Λ(x,α)
∂x

}
E
{(

∂Λ(x,α)
∂α

)2
}
 (2.19)

which can be calculated, after some manipulation, as

J(x, α) =

(
Rp

σ

)2
[
α2E1/c

2 −αE3/c

−αE3/c E2

]
(2.20)

where E1, E2, and E3 are given by (2.11), (2.14), and (2.18), respectively. Then,

the CRLB on the MSE of any unbiased estimator x̂ of x is given by the first

element of the inverse of the FIM [122]; that is,

E
{

(x̂− x)2
}
≥
[
J(x, α)−1]

1,1
(2.21)

which can be obtained as in (2.17) based on (2.20). �

As expected, the CRLB in (2.17) is larger than or equal to the CRLB in (2.12)

due to the presence of an additional unknown parameter. It is also observed
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that the CRLBs become equal when E3 in (2.18) is equal to zero. Therefore, for

E3 = 0, the CRLB in [23] also corresponds to a synchronous system in which the

channel attenuation factor α is unknown and the relation of α to distance x is

unavailable.

Secondly, the following assumptions are considered: (i) the LED transmitter

and the VLC receiver are synchronized (i.e., ∆ = 0 in (2.2)) and (ii) the relation

between channel attenuation factor α and distance x is known, which is as stated

in (2.4). The second assumption is practical for VLP systems since the channel

attenuation factor can be specified accurately as a function of distance in LOS

visible light channels.

In this scenario, the ML estimator can be obtained from (2.2) with ∆ = 0,

(2.4), and (2.6) as follows:4

x̂ML,hyb = arg max
x

x−m−3

∫ T2

T1

r(t)s

(
t− x

c

)
dt− 0.5γRp x

−2m−6E2 . (2.22)

Compared to the MLE in (2.9), the MLE in (2.22) also exploits the relation of

the channel attenuation factor with the distance, as noted from the x−m−3 and

x−2m−6 terms.

Based on (2.2) with ∆ = 0 and the relation in (2.4), the unknown parameter

vector in (2.6) becomes ϕ = x. Then, from (2.4)-(2.7), the Fisher information

can be calculated as

J(x) =

(
Rpγ

σxm+4

)2

h1(x) (2.23)

with

h1(x) , (m+ 3)2E2 + 2(m+ 3)
x

c
E3 +

x2

c2
E1 (2.24)

where E1, E2, and E3 are given by (2.11), (2.14), and (2.18), respectively. From

(2.8) and (2.23), the CRLB is computed as follows:

E
{

(x̂− x)2
}
≥ 1

h1(x)

(
σxm+4

Rpγ

)2

, CRLBhyb . (2.25)

4The meaning of subscript hyb (hybrid) will be clear towards the end of this section.
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The comparison between the CRLBs in (2.12) and (2.25) is provided in the

following proposition:

Proposition 1. The CRLB in (2.25) is smaller than that in (2.12) if and

only if

(m+ 3)E2 +
2x

c
E3 > 0 . (2.26)

Proof: First, the CRLB in (2.25) is expressed based on (2.4) as

E
{

(x̂− x)2
}
≥ x2

c2h1(x)

(
σc

Rpα

)2

(2.27)

Then, the ratio of the CRLB in (2.12) to the CRLB in (2.27) is given by

c2h1(x)

E1x2
=
c2(m+ 3)2E2 + 2(m+ 3)xcE3 + x2E1

E1x2
(2.28)

= 1 +
c2(m+ 3)2E2 + 2(m+ 3)xcE3

E1x2
(2.29)

where the relation in (2.24) is employed. Since E1, E2, m, c, and x are positive

by definition, the second term in (2.29) is positive if and only if the condition in

(2.26) holds. �

The condition in Proposition 1 commonly holds in practice since x/c is very

small (on the order of 10−8 for indoor scenarios) and/or E3 is zero for many

practical pulses [23]. Hence, the utilization of the relation in (2.4) is useful for

improving the accuracy of distance estimation. From a practical point of view,

this implies that instead of estimating (learning) the value of α first and then us-

ing that estimate in the TOA based distance estimation, a more efficient approach

is to estimate the distance directly based on the model in (2.1) and (2.4) since

the information in α related to distance x is effectively utilized in that scenario.

In other words, in the presence of the relation between the channel attenuation

factor and the distance, information in both the channel attenuation factor and

the time delay parameter are utilized for distance estimation. Hence, this sce-

nario corresponds to hybrid TOA/RSS based distance estimation as the channel

attenuation factor is related to RSS.
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Remark 1. To illustrate the improvements that can be achieved by utilizing

the relation between α and x, the relation in (2.29) can be considered for E3 = 0,

which becomes 1 + c2(m + 3)2E2/(E1x
2). From (2.13), this expression can be

stated as 1 + c2(m + 3)2/(4π2β2x2). Hence, for typical system parameters, the

CRLB for the TOA based distance estimation is significantly larger than the

CRLB for the hybrid TOA/RSS based distance estimation for β � c/x, and

they become comparable for high effective bandwidths (on the order of 100 MHz

or higher). As an example, for x = 10 m., m = 1, and β = 1 MHz, 1 + c2(m +

3)2/(4π2β2x2) = 365.76, which means that the lower limit on the root MSEs

(RMSEs) of unbiased estimators is 19.125 times smaller for the hybrid TOA/RSS

based distance estimation than that for the TOA based distance estimation. On

the other hand, when β = 100 MHz, 1+c2(m+3)2/(4π2β2x2) = 1.0365 is obtained,

leading to comparable CRLBs.

2.2.2 Case 2: Asynchronous System

In this case, it is assumed the channel attenuation factor α and distance x are

related as in (2.4). However, the LED transmitter and the VLC receiver are not

synchronized; that is, ∆ in (2.2) is unknown. Hence, the delay parameter τ in

(2.1) and (2.2) is modeled as an unknown parameter, and the vector of unknown

parameters in (2.6) is specified by ϕ = (x, τ). Then, the ML estimator can be

expressed based on (2.6) as follows:

x̂ML,RSS = arg max
(x,τ)

x−m−3

∫ T2

T1

r(t)s(t− τ)dt− 0.5γRp x
−2m−6E2 (2.30)

which can be re-stated as

x̂ML,RSS = arg max
x

x−m−3C̃rs − 0.5γRp x
−2m−6E2 (2.31)

where

C̃rs , max
τ

∫ T2

T1

r(t)s(t− τ)dt . (2.32)

The solution of (2.31) can be obtained as

x̂ML,RSS =

(
γRpE2

C̃rs

) 1
m+3

(2.33)
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under the assumption that C̃rs is positive. It is noted that in the ML estimator

in (2.30), the value of τ is estimated as the one that maximizes the correlation

between the transmitted and received signals, as shown in (2.32). Then, that

estimate is employed in the ML estimator, leading to the expression in (2.31).

Since the TOA parameter τ cannot be related to distance in this case due

to asynchronism (see (2.2)), the distance estimation relies on the RSS informa-

tion via (2.4) in this case, which is therefore referred to as RSS based distance

estimation.

The CRLB for the RSS based distance estimation is given by the following

lemma.

Lemma 2. For the signal model in (2.1), where the delay parameter is un-

known and the channel attenuation factor is given by (2.4), the CRLB for distance

estimation is expressed as

E
{

(x̂− x)2
}
≥ E1

E1E2 − E2
3

(
σx

αRp(m+ 3)

)2

, CRLBRSS (2.34)

where E1, E2, and E3 are given by (2.11), (2.14), and (2.18), respectively.

Proof: For the model in (2.1), when the TOA parameter τ is modeled as

unknown and the channel attenuation factor α is given by (2.4), the vector of

unknown parameters becomes ϕ = (x, τ) and the log-likelihood function in (2.6)

can be denoted by Λ(x, τ). Then, the FIM in (2.7) becomes

J(x, τ) =

 E
{(

∂Λ(x,τ)
∂x

)2
}

E
{
∂Λ(x,τ)
∂x

∂Λ(x,τ)
∂τ

}
E
{
∂Λ(x,τ)
∂τ

∂Λ(x,τ)
∂x

}
E
{(

∂Λ(x,τ)
∂τ

)2
}
 . (2.35)

The elements of J(x, τ) in (2.35) are obtained, after some manipulation, as

J(x, τ) =

(
γRp

σ

)2

x−2m−7

[
(m+ 3)2E2/x (m+ 3)E3

(m+ 3)E3 xE1

]
(2.36)

where E1, E2, and E3 are given by (2.11), (2.14), and (2.18), respectively. Then,

the CRLB on the MSE of any unbiased estimator x̂ of x is given by the first
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element of the inverse of the FIM as stated in (2.21), which can be obtained as

in (2.34) based on (2.4) and (2.36). �

It is noted that the CRLB expression in Lemma 2 covers that in [28] as a

special case for E3 = 0 (please see eqn. (15) in [28]).

In the following proposition, the CRLB in Lemma 2 is compared to those cor-

responding to the TOA based and hybrid TOA/RSS based distance estimation.

Proposition 2. For E3 = 0, the ratios of the CRLB in (2.34) to that in (2.25)

and to that in (2.12) are expressed as

CRLBRSS

CRLBhyb

= 1 +
4π2β2x2

c2(m+ 3)2
= 1 +

CRLBRSS

CRLBTOA

· (2.37)

Proof: For E3 = 0, the CRLB in (2.25) (equivalently, (2.27)) becomes

E
{

(x̂− x)2
}
≥ 1

(m+ 3)2E2 + E1(x/c)2

(
σx

Rpα

)2

. (2.38)

Then, the ratio of the CRLB in (2.34) for E3 = 0 to the CRLB in (2.38) is obtained

as 1 + E1x
2/(E2c

2(m + 3)2), which becomes equal to the central expression in

(2.37) based on (2.13). In addition, the ratio of the CRLB in (2.34) for E3 =

0 to the CRLB in (2.12) is given by E1x
2/(E2c

2(m + 3)2), which is equal to

4π2β2x2/(c2(m+ 3)2) due to (2.13), leading to the second equality in (2.37). �

Based on Proposition 2, the following conclusions are made:

• The CRLB for the RSS based distance estimation is very close to the CRLB

for the hybrid TOA/RSS based distance estimation for practical indoor

positioning systems when β � c/x. Since x is less than 10 meters in

typical indoor scenarios, an effective bandwidth lower than about 1 MHz

results in approximately equal CRLBs (cf. Remark 1). In such a case,

the distance related information gathered from the time delay parameter

becomes negligible compared to the information gathered from the channel

attenuation factor (equivalently, RSS).
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• For β � c/x, the CRLB for the RSS based distance estimation is signifi-

cantly lower than the CRLB for the TOA based distance estimation; that

is, the RSS based distance estimation is much more accurate than the TOA

based distance estimation.

• The TOA based distance estimation is more accurate than the RSS based

distance estimation when β > (m + 3)c/(2πx). As an example, for m = 1

and x = 5 m, the effective bandwidth should satisfy β > 38.2 MHz for the

TOA based distance estimation to be more accurate.

• When β is on the order of (m + 3)c/(2πx), the hybrid TOA/RSS based

distance estimation can provide non-negligible improvements over both the

TOA based and the RSS based distance estimation. When β � c/x, the

CRLBs for the TOA based and hybrid TOA/RSS based distance estimation

get very close.

Remark 2. Proposition 2 provides comparisons among different approaches

based on the CRLBs (i.e., the distance estimation accuracy). On the other hand,

with respect to implementation complexity, the RSS based distance estimation

has an important practical advantage over the other approaches as it does not

require synchronization between the clocks of the LED transmitter and the VLC

receiver. Therefore, if the RSS based distance estimation can provide the required

level of accuracy for an application, it can be the preferred approach. However, in

some scenarios (e.g., for β � c/x), a synchronized system design may be required

for achieving the desired accuracy level for distance estimation.

Remark 3. Based on the CRLB expressions obtained in this section, the ef-

fects of various parameters on the ranging accuracy can be analyzed. For example,

the shape of the transmitted signal s(t) can have different effects in the syn-

chronous and asynchronous cases. For synchronous systems, the CRLB depends

on the pulse shape via the E1 parameter (equivalently, the effective bandwidth pa-

rameter β in (2.13)). In particular, for signals with larger E1 (equivalently, larger

β), the TOA based CRLB in (2.16) and the hybrid TOA/RSS based CRLB in
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(2.24) and (2.25) get smaller; i.e., the accuracy improves.5 On the other hand,

for asynchronous systems, the RSS based CRLB in (2.34) does not depend on

the pulse shape parameter, E1, when E3 = 0, which is commonly the case. As

another important parameter, the height, h, can affect the accuracy of ranging

systems. For instance, if the height parameter is increased while the irradiation

angle φ and the incidence angle θ are unchanged, the distance between the LED

transmitter and the VLC receiver increases. Then, it can be observed from (2.3)

that the channel attenuation factor α reduces (i.e., the received power decreases)

since the distance gets larger and the other parameters are fixed. Hence, based on

(2.16), (2.25), and (2.34), all the CRLBs increase; that is, the accuracy degrades.

On the other hand, if the height parameter is increased from h to h̃ while the

horizontal distance D between the LED transmitter and the VLC receiver is kept

the same, the accuracy can increase, decrease, or stay the same depending on the

parameters h, h̃, D, and m, which can be analyzed based on (2.4), (2.16), (2.25),

and (2.34).

2.3 Effects of Sampling and Modified Hybrid

Estimator

It is noted from the MLEs in (2.9), (2.22), and (2.30) that the correlator outputs

(i.e., the
∫ T2
T1
r(t)s(t−x/c)dt and

∫ T2
T1
r(t)s(t−τ)dt terms) should be evaluated for

all possible distance (delay) values to obtain the ML distance estimates. How-

ever, in practical systems, it is costly and power consuming to obtain samples of

correlator outputs (equivalently, matched filter outputs) at very high rates [33].

Therefore, it is important to investigate the effects of sampling rate limitations

on the MSE performance of the MLEs. In this section, asymptotical analyses are

performed (as the noise variance goes to zero) in order to quantify the effects of

sampling.

5For the hybrid TOA/RSS based scenario, if the information from the TOA parameter

is negligible compared to that from the RSS parameter (i.e., if β � c/x), then the hybrid

TOA/RSS based CRLB does not change significantly with the pulse shape (E1 or β).
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Suppose that the correlator outputs are sampled at integer multiples of Tsmp

seconds, where Tsmp denotes the sampling period. Also, the normalized autocor-

relation function of signal s(t) is defined as

ρ(υ) ,
1

E2

∫ ∞
−∞

s(t)s(t− υ)dt . (2.39)

In the following lemma, the asymptotic performance of the TOA based and the

RSS based ML distance estimation is specified in the presence of sampling rate

limitations.

Lemma 3. Suppose that ρ(υ) > ρ(ς), ∀υ ∈ [−0.5Tsmp, 0.5Tsmp] and ∀ς /∈
[−0.5Tsmp, 0.5Tsmp]. Then, in the absence of noise (that is, for σ = 0) and for a

sampling period of Tsmp, the MSE of the TOA based MLE in (2.9) is given by

MSETOA =

(
x− c Tsmp round

(
x

cTsmp

))2

(2.40)

and the MSE of the RSS based MLE in (2.33) is expressed as

MSERSS = x2

(
1−

(
ρ

(
τ − Tsmp round

(
τ

Tsmp

))) −1
m+3

)2

(2.41)

where x is the distance between the LED transmitter and the VLC receiver, τ =

x/c + ∆ as stated in (2.2), ρ(·) is as defined in (2.39), and round(y) represents

the closest integer to y.

Proof: The expression in (2.40) simply follows from (2.9) based on (2.1) with-

out noise. In particular, for a sampling period of Tsmp and for σ = 0, (2.9)

becomes

x̂ML,TOA = arg max
icTsmp

αRpE2ρ

(
x− icTsmp

c

)
(2.42)

where i is an integer, x denotes the true distance, and ρ(·) is as in (2.39). Un-

der the assumption in the lemma, the autocorrelation term in (2.42) is maxi-

mized for i = round(x/(cTsmp)). Hence, the ML estimate becomes x̂ML,TOA =

cTsmpround(x/(cTsmp)) and the (mean) squared error is obtained as in (2.40).

For the RSS based ML estimator in (2.33), C̃rs in (2.32) can be calculated, for

a sampling period of Tsmp and for σ = 0, as

C̃rs = max
iTsmp

αRpE2ρ
(
τ − iTsmp

)
= αRpE2ρ

(
τ − Tsmpround(τ/Tsmp)

)
(2.43)
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Figure 2.1: Normalized autocorrelation function in (2.39) for s(t) in (2.86) with
Ts = 0.1 ms, fc = 100 kHz, and A = 0.1.

where τ = x/c+ ∆ denotes the time delay as stated in (2.2), and the assumption

in the lemma is employed to obtain the final expression. Then, the RSS based

ML estimator in (2.33) becomes

x̂ML,RSS =

(
γRpE2

αRpE2ρ
(
τ − Tsmpround(τ/Tsmp)

)) 1
m+3

(2.44)

which can be expressed via (2.4) as

x̂ML,RSS =
x

(ρ(τ − Tsmpround(τ/Tsmp)))
1

m+3

· (2.45)

From (2.45), the (mean) squared error can be obtained as in (2.41). �

The assumption in Lemma 3 commonly holds in practice for a sufficiently small

Tsmp. For example, ρ(υ) in (2.39) corresponding to s(t) in (2.86) is presented in

Fig. 2.1 for Ts = 0.1 ms, fc = 100 kHz, and A = 0.1. It is observed that the

assumption in Lemma 3 holds for Tsmp < 1µs; that is, when the sampling rate

is higher than 1 MHz. It should be noted that high sampling rates are already

required for accurate distance estimation; hence, the assumption is Lemma 3 is

realistic for most practical applications.
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From Lemma 3, it is deduced that the TOA based MLE is directly affected

from the mismatches between the sampling time instant and the true delay of the

incoming signal whereas the effects on the RSS based MLE is through the sensi-

tivity of the normalized autocorrelation function, ρ(υ), to timing mismatches. For

example, if ρ(υ) does not change significantly for υ ∈ [−0.5Tsmp, 0.5Tsmp], then

effects of the sampling rate can become negligible for the RSS based MLE. Also, it

is noted from (2.40) and (2.41) that, depending on the value of distance x and the

time delay, the maximum squared error due to sampling is equal to (0.5cTsmp)2

for the TOA based MLE and it is given by x2(1− (ρ(0.5Tsmp))−1/(m+3))2 for the

RSS based MLE.

For the asymptotic performance of the hybrid TOA/RSS based MLE, the

following lemma is presented.

Lemma 4. Define the following function

gx(u) , (ux)−m−3ρ

(
x− u
c

)
− 0.5u−2m−6 (2.46)

where x denotes the distance between the LED transmitter and the VLC receiver

and ρ is as in (2.39). Assume that gx(u) > gx(v), ∀u ∈ [x, x + cTsmp] and

∀v > x+ cTsmp, and that gx(u) > gx(v), ∀u ∈ [x− cTsmp, x] and ∀v < x− cTsmp.

In addition, define i1 and i2 as

i1 ,

⌊
x

cTsmp

⌋
, i2 ,

⌈
x

cTsmp

⌉
(2.47)

where byc denotes the largest integer smaller than or equal to y and dye represents

the smallest integer larger than or equal to y. Then, the MSE of the hybrid

TOA/RSS based MLE in (2.22) is expressed as

MSEhyb =
(
x− îcTsmp

)2
(2.48)

where

î = arg max
i∈{i1,i2}

gx(icTsmp) . (2.49)

Proof: In the absence of noise, r(t) in (2.1) becomes r(t) = αRps(t− x/c) for

a synchronized system, where x is the distance between the LED transmitter and
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the VLC receiver. Replacing the dummy variable x in (2.22) with u, and then

inserting r(t) = αRps(t − x/c), the objective function for the hybrid TOA/RSS

based MLE in (2.22) can be expressed as

u−m−3αRpE2ρ

(
x− u
c

)
− 0.5γRpu

−2m−6E2 (2.50)

where ρ is given by (2.39). Based on (2.4), (2.50) can be expressed as

γRpE2

(
u−m−3x−m−3ρ

(
x− u
c

)
− 0.5u−2m−6

)
, γRpE2gx(u) (2.51)

where the equality follows from (2.46). For a sampling period of Tsmp, the hybrid

TOA/RSS based ML estimator in (2.22) can be stated based on (2.51) as

x̂ML,hyb = arg max
icTsmp

γRpE2gx(icTsmp) . (2.52)

Under the assumptions in the lemma about gx(·), the MLE in (2.52) becomes

equal to either i1cTsmp or i2cTsmp, where i1 and i2 are as in (2.47). If gx(i1cTsmp) >

gx(i2cTsmp), then x̂ML,hyb = i1cTsmp; otherwise, x̂ML,hyb = i2cTsmp. Hence, the

(mean) squared error can expressed as in (2.48) and (2.49). �

It can be shown that gx(u) in (2.46) achieves the maximum value at u = x.

Hence, the assumption in Lemma 4 is valid for practical scenarios for a sufficiently

small Tsmp and as long as the normalized autocorrelation function, ρ((x− u)/c),

does not change rapidly compared to u−m−3. In Fig. 2.2, gx(u) is presented for

s(t) in (2.86), where x = 5 m, Ts = 0.1 ms, fc = 100 kHz, and A = 0.1. It is

observed that the assumption in Lemma 4 holds for all values of Tsmp in this case.

Lemma 4 indicates that, similar to the TOA based MLE, the hybrid TOA/RSS

based MLE is directly affected from the mismatches between the sampling time

instant and the true delay of the incoming signal, and it is subject to a maximum

squared error of (0.5cTsmp)2 due to sampling.

For high distance estimation accuracy, the maximum absolute error of 0.5cTsmp

can be quite undesirable. For example, for a sampling period of Tsmp = 1 ns, the

absolute error induced by sampling can be as high as 15 cm. Hence, the accuracy

limits promised by the CRLBs may not be achievable. To alleviate this problem,
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Figure 2.2: Function gx(u) in (2.46) for s(t) in (2.86), where x = 5 m, Ts = 0.1 ms,
fc = 100 kHz, and A = 0.1.

a modified version of the hybrid TOA/RSS based ML estimator is proposed in

this section. The modified hybrid TOA/RSS based estimator is implemented in

two steps:

(i) Obtain the hybrid TOA/RSS based ML estimate x̂ML,hyb from (2.22).

(ii) Calculate the final distance estimate as

x̂modi−hyb =

(
γRpE2∫ T2

T1
r(t)s(t− x̂ML,hyb/c)dt

) 1
m+3

. (2.53)

The main intuition behind the modified hybrid TOA/RSS based estimator is as

follows: When the estimate x̂ML,hyb in (2.22) is obtained in the presence of sam-

pling errors, the correlator term
∫ T2
T1
r(t)s(t − x/c)dt in (2.22) can be evaluated

for x = x̂ML,hyb and then the distance estimate can be obtained with higher

resolution by calculating the maximizer of x−m−3
∫ T2
T1
r(t)s(t − x̂ML,hyb/c)dt −

0.5γRp x
−2m−6E2 as in (2.53) (similar to (2.33)).

Under the conditions in Lemma 4, the MSE of the modified hybrid TOA/RSS
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based estimator in (2.53) can be expressed in the absence of noise and for a

sampling period of Tsmp as6

MSEmod = x2

(
1−

(
ρ
(
τ − îTsmp

)) −1
m+3

)2

(2.54)

where î is as in (2.49). It is noted from (2.54) that, similar to the RSS based MLE,

the modified hybrid TOA/RSS based estimator is affected from the sampling

induced errors through the normalized autocorrelation function, and it is subject

to a maximum squared error of x2(1 − (ρ(0.5Tsmp))−1/(m+3))2 due to sampling.

Hence, when the normalized autocorrelation function is not very sensitive to

timing mismatches, the modified hybrid TOA/RSS based estimator can have

robustness against the effects of sampling.

2.4 Ziv-Zakai Bound (ZZB)

The ZZB provides a lower limit on MSEs of estimators based on a relation in

terms of the probability of error in a binary hypothesis-testing problem. It is

expressed as [31]

ξ ≥ 1

2

∫ ∞
0

∫ ∞
−∞

(w(ϑ) + w(ϑ+ δ))Pmin(ϑ, ϑ+ δ)dϑ δ dδ (2.55)

where ξ = E{|x̂ − x|2} is the MSE of an estimator x̂, w(·) represents the prior

probability density function (PDF) of parameter x, and Pmin(ϑ, ϑ+δ) denotes the

probability of error corresponding to the optimal decision rule for the following

hypothesis-testing problem:

H0 : p(r(t)|x = ϑ)

H1 : p(r(t)|x = ϑ+ δ)
(2.56)

In practical indoor scenarios, lower and upper limits on the range parameter

x are available based on physical dimensions of the environment and the field of

view of the photo detector. Hence, it is reasonable to assume that the prior PDF

6The derivation is not presented as it is similar to that in Lemma 3.
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of x is zero outside the interval [D1, D2], where D1 and D2 denote the minimum

and maximum possible distances, respectively. (For the signal model in (2.1),

the observation interval [T1, T2] can be related to D1 and D2 as T1 = D1/c and

T2 = D2/c+ Ts.) In this case, the ZZB in (2.55) is expressed as

ξ ≥ 1

2

∫ D2−D1

0

∫ D2−δ

D1

(w(ϑ) + w(ϑ+ δ))Pmin(ϑ, ϑ+ δ)dϑ δ dδ. (2.57)

For example, if the prior PDF of x corresponds to uniform distribution over

[D1, D2] (that is, w(x) = 1/(D2 − D1) if x ∈ [D1, D2] and w(x) = 0 otherwise),

the ZZB in (2.57) reduces to

ξ ≥ 1

D2 −D1

∫ D2−D1

0

∫ D2−δ

D1

Pmin(ϑ, ϑ+ δ)dϑ δ dδ . (2.58)

To obtain an explicit expression for the ZZB, Pmin(ϑ, ϑ + δ) in (2.57) should

be specified. Based on the PDF w(x) of x, the prior probabilities of hypotheses

H0 and H1 in (2.56) are equal to w(ϑ)/(w(ϑ) +w(ϑ+ δ)) and w(ϑ+ δ)/(w(ϑ) +

w(ϑ+ δ)), respectively. Then, the optimal decision rule for the problem in (2.56)

is the MAP rule [122], which is expressed as

w(ϑ+ δ)

w(ϑ) + w(ϑ+ δ)
p(r(t)|x = ϑ+ δ)

H0

S
H1

w(ϑ)

w(ϑ) + w(ϑ+ δ)
p(r(t)|x = ϑ) . (2.59)

After taking the natural logarithm of both sides, (2.59) becomes

− log p(r(t)|x = ϑ) + log p(r(t)|x = ϑ+ δ)
H0

S
H1

log

(
w(ϑ)

w(ϑ+ δ)

)
. (2.60)

From (2.1), (2.2), and (2.4), the log-likelihood function is expressed as [120]

log p(r(t)|x) = k − 1

2σ2

∫ T2

T1

(
r(t)− Rpγ

xm+3
s

(
t− x

c

))2

dt (2.61)

where k is a constant that does not depend on x. From (2.61), the decision rule

in (2.60) can be stated as∫ T2

T1

(
r(t)− γ ϑ−m−3Rp s

(
t− ϑ

c

))2

dt

−
∫ T2

T1

(
r(t)− γ (ϑ+ δ)−m−3Rp s

(
t− ϑ+ δ

c

))2

dt
H0

S
H1

2σ2 log

(
w(ϑ)

w(ϑ+ δ)

)
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which reduces, via some rearrangement, to

Crs(ϑ+ δ)

(ϑ+ δ)m+3
− Crs(ϑ)

ϑm+3

H0

S
H1

RpγE2

2

(
1

(ϑ+ δ)2m+6
− 1

ϑ2m+6

)
+

σ2

Rpγ
log

(
w(ϑ)

w(ϑ+ δ)

)
(2.62)

where

Crs(x) ,
∫ T2

T1

r(t)s

(
t− x

c

)
dt (2.63)

and E2 is given by (2.14).

The probability of error for the decision rule in (2.62) is calculated as

Pmin(ϑ, ϑ+ δ) =
w(ϑ)

w(ϑ) + w(ϑ+ δ)
P
(
Ĥ1|H0

)
+

w(ϑ+ δ)

w(ϑ) + w(ϑ+ δ)
P
(
Ĥ0|H1

)
(2.64)

where P
(
Ĥi|Hj

)
denotes the probability of deciding for hypothesis Hi when Hj is

true. Under H0, it can be shown from (2.1), (2.4), (2.56), and (2.63) that Crs(ϑ)

and Crs(ϑ+ δ) are jointly Gaussian distributed as[
Crs(ϑ)

Crs(ϑ+ δ)

]
∼ N

([
γRpE2

ϑm+3

γRpE2ρ( δ
c
)

ϑm+3

]
,

[
σ2E2 σ2E2ρ

(
δ
c

)
σ2E2ρ

(
δ
c

)
σ2E2

])
(2.65)

where N (µ,Σ) represents Gaussian distribution with mean µ and covariance

matrix Σ, and ρ(·) is given by (2.39).

From (2.62) and (2.65), P
(
Ĥ1|H0

)
can be calculated as

P
(
Ĥ1|H0

)
= Q

(
0.5Rpγ E2 g(ϑ, ϑ+ δ) + σ2

γ Rp
log (w(ϑ)/w(ϑ+ δ))√

σ2E2 g(ϑ, ϑ+ δ)

)
(2.66)

where Q(y) = 1√
2π

∫∞
y

e−t
2/2dt denotes the Q-function, and

g(ϑ, ϑ+ δ) ,
1

(ϑ+ δ)2m+6
+

1

ϑ2m+6
− 2ρ(δ/c)

(ϑ(ϑ+ δ))m+3
· (2.67)

Also, via similar derivations, P
(
Ĥ0|H1

)
can be obtained as follows:

P
(
Ĥ0|H1

)
= Q

(
0.5Rpγ E2 g(ϑ, ϑ+ δ)− σ2

γ Rp
log (w(ϑ)/w(ϑ+ δ))√

σ2E2 g(ϑ, ϑ+ δ)

)
. (2.68)

38



Then, the probability of error for the decision rule in (2.62) can be evaluated via

(2.64), (2.66), and (2.68), which can be expressed in a compact form as follows:

Pmin(ϑ, ϑ+ δ) =

∑1
i=0w(ϑ+ iδ)P

(
Ĥ1−i|Hi

)
w(ϑ) + w(ϑ+ δ)

. (2.69)

Based on the obtained minimum probability of error expression in (2.69), the

ZZB in (2.57) can be calculated.

As a special case, when the prior PDF of x is uniform over [D1, D2], the

logarithm terms in (2.66) and (2.68) become zero, and Pmin(ϑ, ϑ + δ) in (2.69)

can be simplified as follows:

Pmin(ϑ, ϑ+ δ) = 0.5 P
(
Ĥ1|H0

)
+ 0.5 P

(
Ĥ0|H1

)
= Q

(
Rpγ
√
E2

√
g(ϑ, ϑ+ δ)

2σ

)
.

(2.70)

For the uniform prior case, the ZZB can be calculated based on (2.58) and (2.70).

Since the integral limits in (2.57) and (2.58) are finite, the ZZB can accurately

be evaluated via numerical approaches. From (2.57), (2.66), (2.68), and (2.69),

it is observed that the ZZB reduces as E2 increases; that is, improved ranging

accuracy is achieved with higher transmitted signal energy, as expected. It is

also noted that the ZZB expression in (2.57) and (2.69) is different from both

the ZZB expression in asynchronous VLP systems [32] since the range related

information from both the time delay parameter and the channel attenuation

factor is employed in the synchronous case.

Remark 4. It is important to emphasize that the ZZB expression in (2.57)

and (2.69) has important distinctions compared to the ZZB expressions for syn-

chronous RF based ranging systems (e.g., [30]) due to the facts that (i) the syn-

chronous VLP system utilizes both time delay and received signal power (channel

attenuation factor) information whereas synchronous RF systems use time delay

information only (since the received power parameter carries negligible informa-

tion compared to the time delay parameter in most practical RF localization

systems), and (ii) the Lambertian equation in (2.4) is available for VLP systems

to relate the channel attenuation factor (the received signal power) to distance
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x in LOS visible light channels, which is not valid for RF systems. Overall, the

Lambertian formula is utilized, together with the time delay information and the

prior information, for the purpose of range estimation in this study.

2.5 ECRB Derivations

In this section, the Cramér-Rao bound (CRB) expressions for range estimation

in VLP systems are investigated to provide comparisons against the ZZB.

For a given value of the unknown parameter, the conditional CRB presents a

lower limit on the MSEs of unbiased estimators, which is expressed as [31]

E{|x̂− x|2} ≥

(
E

{(
∂ log p(r(t)|x)

∂x

)2
})−1

, (JF(x))−1 = CRB(x) (2.71)

where x̂ is an unbiased estimate of x and the expectation operators are condi-

tioned on x. For the estimation of the range parameter x, the conditional CRB

in the synchronous case can be obtained from (2.71) as [16]

CRB(x) = (JF(x))−1 =
(σxm+4/(γ Rp))

2

(m+ 3)2E2 + Ẽs(x/c)2
(2.72)

where Ẽs ,
∫ Ts

0
(s′(t))2dt, with s′(t) denoting the first-order derivative of s(t).7

The conditional CRB expression in (2.72) is a function of the unknown parameter

x, and no prior information is considered in the derivation of this bound.

The expectation of the conditional CRB (ECRB) is obtained by calculating

the average of the conditional CRB over the prior distribution of the unknown

parameter [31], which results in the following expression for the considered sce-

nario:

ECRB = E {CRB(x)} =

∫ D2

D1

w(x)CRB(x) dx (2.73)

7For the expression in (2.72), it is assumed that s(0) = s(Ts), which is commonly the

case [16].
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where CRB(x) denotes the conditional CRB in (2.72), and w(x) is the prior PDF

of x, which is zero outside [D1, D2]. For the uniform prior PDF, the ECRB is

specified as in the following lemma:

Lemma 5. Suppose that the prior PDF of x is specified by a uniform distri-

bution over [D1, D2]. Then, the ECRB in the synchronous case is given by

ECRB =
(σ/(γ Rp))

2

(D2 −D1)Ẽs/c2

∫ D2

D1

x2m+8

x2 + a
dx (2.74)

with a , (m + 3)2c2E2/Ẽs, which can be stated as in the following expression

when 2m is an integer:

ECRB =
(σ/(γ Rp))

2

(D2 −D1)Ẽs/c2

(
(−a)bm+3c+1Hm(D1, D2, a)

+

bm+3c∑
i=0

(−a)i
(
D

2(m+3−i)+1
2 −D2(m+3−i)+1

1

)
2(m+ 3− i) + 1

)
(2.75)

where

Hm(D1, D2, a) ,

(tan−1(D2/
√
a)− tan−1(D1/

√
a)) /
√
a , if m ∈ Z+

0.5 (ln(D2
2 + a)− ln(D2

1 + a)) , if 2m ∈ Z+ & m /∈ Z+

(2.76)

Proof: The generic expression in (2.74) directly follows from (2.72) and (2.73).

To derive the specific expressions in (2.75) and (2.76), consider the division of

x2m+8 by x2 + a, which results in the following relation:

x2m+8 = (x2 + a)

j∑
i=0

(−a)ix2(m+3−i) − (−1)jaj+1x2(m+3−j) (2.77)

where j ≤ m+ 3 is an integer. Then, the integral in (2.74) becomes∫ D2

D1

x2m+8

x2 + a
dx =

∫ D2

D1

j∑
i=0

(−a)ix2(m+3−i) dx− (−1)jaj+1

∫ D2

D1

x2(m+3−j)

x2 + a
dx .

(2.78)

If m is a positive integer, j = m+3 can be employed to obtain the result specified

by (2.75) and the first part of (2.76). (Note that the last integral term in (2.78)
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becomes
∫ D2

D1
(x2 + a)−1dx in this case, which leads to the tan−1 terms in (2.76).)

Similarly, if m is not an integer but 2m is a positive integer, then j = bm + 3c
can be used to derive the expression specified by (2.75) and the second part of

(2.76). (Note that the last integral term in (2.78) becomes
∫ D2

D1
x (x2 + a)−1dx in

this case, which results in the logarithm terms in (2.76).) �

The ECRB may not provide a lower bound on the performance of MAP es-

timators since the conditional CRBs, which are the basis for the ECRB as de-

scribed above, do not take the prior information into account [31]. However, at

high SNRs, the ECRB can converge to the ZZB, which is expected since the

prior information becomes negligible compared to the information gathered from

the measurements in high SNR conditions. Overall, the ECRB provides useful

benchmarks for comparisons against the ZZB and helps quantify the range related

information gathered from prior information, as investigated in Section 2.7. In

addition, the ECRB expressions provide a low-complexity approach (compared

to the ZZB expressions) for calculating the theoretical limits on range estimation

in high SNR scenarios.

2.6 Bayesian CRB (BCRB) and Weighted CRB

(WCRB)

In order to incorporate the prior information into the lower bound effectively, the

Bayesian CRB (BCRB) can be considered [31]. The BCRB is expressed as

ξ ≥

(
E

{(
∂ log p(r(t)|x)

∂x

)2
}

+ E

{(
∂ logw(x)

∂x

)2
})−1

(2.79)

where ξ = E{|x̂ − x|2} denotes the MSE of an estimator x̂ [31]. In (2.79), the

first expectation operator is with respect to both r(t) and x while the second

expectation is over parameter x only. From (2.71) and (2.72), the first term in
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(2.79) can be calculated as follows:

E

{(
∂ log p(r(t)|x)

∂x

)2
}

= E {JF(x)} =

∫ D2

D1

w(x)
(m+ 3)2E2 + Ẽs(x/c)

2

(σxm+4/(γ Rp))2
dx .

(2.80)

For a given prior PDF, the BCRB can be obtained based on (2.79) and (2.80). One

of the limitations of the BCRB is due to the existence and absolute integrability

requirement for the partial derivative of the joint PDF of the observation and

the parameter [31]. Therefore, it may not be applicable in some scenarios. For

example, when the range parameter is uniformly distributed over [D1, D2], the

BCRB does not exist.

The weighted CRB (WCRB) provides an alternative to the BCRB and handles

the existence problem. It is defined as [31]

ξ ≥ (E{q(x)})2

E{q2(x)JF(x)}+ E
{
q2(x)

(
d log(w(x)q(x))

dx

)2
} (2.81)

where ξ is the MSE of any estimator, JF(x) is as in (2.71), q(x) is a weighting

function, and the expectations are with respect to x. As in [31], the following

weighting function can be employed:

q(x) =

(
x−D1

D2 −D1

)ν (
1− x−D1

D2 −D1

)ν
(2.82)

for x ∈ [D1, D2] and q(x) = 0 otherwise, where ν is a parameter used to enhance

the bound. Namely, the value of ν that maximizes the bound in (2.81) is employed

to obtain the tightest bound. For the uniform prior PDF, E{q(x)} in (2.81) is

calculated from (2.82) as follows:

E{q(x)} =
1

D2 −D1

∫ D2

D1

q(x)dx = β(ν + 1, ν + 1) (2.83)

where β(a, b) ,
∫ 1

0
xa−1(1 − x)b−1dx denotes the beta function. In addition, the

second term in the denominator of (2.81) can be expressed for the uniform prior

PDF as [32]

E

{
q2(x)

(
d log(w(x)q(x))

dx

)2
}

=
ν β(2ν + 1, 2ν − 1)

(D2 −D1)2
· (2.84)
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Also, the first term in the denominator of (2.81) can be calculated based on (2.72)

and (2.82) as

E
{
q2(x)JF(x)

}
=

γ2R2
p/σ

2

(D2 −D1)4ν+1

×
(

(m+ 3)2E2

∫ D2

D1

(x−D1)2ν(D2 − x)2ν

x2ν+8
dx +

Ẽ2

c2

∫ D2

D1

(x−D1)2ν(D2 − x)2ν

x2m+6
dx

)
.

(2.85)

Then, the WCRB in (2.81) can be evaluated via (2.83)–(2.85). In order to ob-

tain the tightest bound, the value of ν that yields the maximum lower bound is

obtained.

Remark 5. The theoretical limits obtained in this study do not consider the

effects of multipath (see (2.1)). In the presence of multipath propagation, higher

MSEs would be observed in general; hence, the lower bounds for the LOS scenario

provided in this chapter present lower limits for the multipath scenario, as well.

The tightness of the bounds depends on the severity of multipath effects.

2.7 Numerical Results

In this section, numerical examples are presented to investigate the theoretical

limits and the statistical estimators for different approaches.

2.7.1 Results for CRLBs and ML Estimators

A system model similar to that in [23] is considered. Namely, the Lambertian

order is taken as m = 1, h in (2.4) is set to 2.5 meters, and the responsivity of the

photo detector is given by Rp = 0.4 mA/mW. In addition, the area S of the photo

detector at the VLC receiver is equal to 1 cm2, and the spectral density level of

the noise is set to σ2 = 1.336 × 10−22 W/Hz based on the employed parameters

44



10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Source Optical Power (mW)

C
R

LB
 (

m
.)

 

 
TOA Based, f

c
=1 MHz

TOA Based, f
c
=50 MHz

TOA Based, f
c
=180 MHz

RSS Based
Hybrid, f

c
=1 MHz

Hybrid, f
c
=50 MHz

Hybrid, f
c
=180 MHz

Figure 2.3: CRLB versus source optical power for TOA based, hybrid TOA/RSS
based, and RSS based approaches, where x = 5 m. and Ts = 0.01 s.

in [23].8 Signal s(t) in (2.1) is modeled as follows [23]:

s(t) = A

(
1− cos

(
2πt

Ts

))
(1 + cos(2πfct)) (2.86)

for t ∈ [0, Ts], where fc is the center frequency, and A corresponds to the average

emitted optical power (i.e., source optical power). For fc � 1/Ts, it can be shown

that the electrical energy of s(t) defined in (2.14) and the effective bandwidth of

s(t) specified by (2.15) can be approximated as E2 = 9A2Ts/4 and β = fc/
√

3,

respectively [23]. In addition, parameter E3 in (2.18) is obtained as E3 = 0 for

the signal in (2.86).

First, the CRLBs are calculated for Ts = 0.01 s. when the distance between

the LED transmitter and the VLC receiver is given by x = 5 m. In Fig. 2.3,

8From (18) in [23], σ2 = qRppnS∆λ, where q denotes the charge on an electron, pn =

5.8×10−6 W/cm2.nm is the background spectral irradiance, and ∆λ = 360 nm is the bandwidth

of the optical filter in front of the photodiode. (It should be noted that the results in the previous

sections are valid for a generic zero-mean Gaussian noise component, which can consist of any

types of noise such as shot noise and thermal noise.)
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the CRLBs are plotted versus the source optical power A for the TOA based,

hybrid TOA/RSS based, and RSS based approaches considering different center

frequencies. As expected, the hybrid TOA/RSS approach achieves the minimum

CRLB in all cases since it utilizes information from both the time delay and

channel attenuation factor. It is also noted that the performance of the RSS

based distance estimation does not depend on the center frequency. This is due

to the fact that RSS information is related to the energy of the signal but does

not change with the other signal characteristics, which can be observed from

(2.34) in Lemma 2 for E3 = 0; that is, CRLBRSS = σ2x2/(E2α
2R2

p(m + 3)2).

Another observation from Fig. 2.3 is that the TOA based distance estimation has

significantly higher CRLBs than the other approaches for relatively low center

frequencies, for which the RSS based and hybrid TOA/RSS based approaches

achieve almost the same accuracy (as the distance related information obtained

from the TOA parameter becomes negligible). On the other hand, the TOA based

distance estimation achieves lower CRLBs than the RSS based approach for high

center frequencies; e.g., fc = 180 MHz [6, 125]. In that case, the information

obtained from the TOA parameter becomes more significant than that extracted

from the RSS parameter (channel attenuation factor), and the TOA based and

hybrid TOA/RSS based approaches have almost the same performance. All these

observations are in accordance with the relation in Proposition 2.

In order to provide further insights, the theoretical limits are plotted versus

fc in Fig. 2.4 for the TOA based, hybrid TOA/RSS based, and RSS based ap-

proaches, where x = 5 m. and A = 0.1. It is observed that the accuracy of

the TOA based distance estimation improves with fc since E1 in (2.13) increases

with fc. Also, there exists a critical frequency, which is equal to 66.16 MHz in

this scenario, after (before) which the TOA based distance estimation achieves

a lower (higher) CRLB than the RSS based approach. It is also noted that the

hybrid TOA/RSS based approach provides nonnegligible improvements over both

the TOA based and RSS based approaches around that critical frequency.

Next, the CRLBs are plotted versus the signal duration Ts in Fig. 2.5 for the

TOA based, hybrid TOA/RSS based, and RSS based approaches, where x = 5 m.

and A = 0.1. As the signal energy increases with Ts (note that E2 = 9A2Ts/4), the
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performance of distance estimation improves with Ts, as expected. As in Fig. 2.3,

it is observed that the TOA based distance estimation achieves lower (higher)

CRLBs than RSS based distance estimation for higher (lower) center frequencies.

It is also noted that for the RSS based distance estimation to achieve a CRLB

of 1 cm, the signal duration should be around 6 ms. On the other hand, shorter

signal durations can be employed by the TOA based and hybrid TOA/RSS based

approaches for high center frequencies (e.g., Ts ≈ 0.6−0.7 ms. for fc = 180 MHz.).

In Fig. 2.6, the CRLBs are plotted versus the distance x between the LED

transmitter and the VLC receiver for fc = 1 MHz, fc = 75 MHz, and fc =

180 MHz, where Ts = 0.01 s. and A = 0.1. It is intuitive that the estimation

accuracy degrades (i.e., the CRLBs increase) as the distance gets larger. This in-

tuitive observation is also verified by the expressions in (2.12), (2.25), and (2.34)

via the relations in (2.4) and (2.24). Also, it is noted from Fig. 2.6 that in some

cases (e.g., for fc = 75 MHz) the RSS based distance estimation can have lower
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Figure 2.7: RMSEs of the MLEs and the CRLBs for different approaches, where
x = 5 m., Ts = 0.1 ms. fc = 1 MHz, and Tsmp = 1 ns.

CRLBs than the TOA based approach up to a certain distance and then it re-

sults in higher CRLBs after that distance. This is due to fact that the CRLB

(in meters) increases with xm+4 for the RSS based approach whereas it increases

with xm+3 for the TOA based approach, as can be deduced from (2.4), (2.12),

and (2.34).

It should be emphasized that although the comparisons in Figs. 2.3-2.6 are

based on the CRLBs (i.e., the distance estimation accuracy), implementation

complexity should also be considered for practical applications. As stated in Re-

mark 2, the RSS based distance estimation has an important practical advantage

over the other approaches since it does not require synchronization between the

clocks of the LED transmitter and the VLC receiver. Hence, if the RSS based

distance estimation can provide the required level of accuracy for an application,

it can be the preferred approach. Otherwise, a synchronized system design may

be required for achieving the desired accuracy level for distance estimation.
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Finally, the MLEs in Sections 2.2 and 2.3 are implemented and compared

for a scenario with x = 5 m., Ts = 0.1 ms, fc = 1 MHz, ∆ = 0 (see (2.2)),

and Tsmp = 1 ns. In Fig. 2.7, the RMSEs of the TOA based MLE in (2.9),

the hybrid TOA/RSS based MLE in (2.22), the RSS based MLE in (2.33), and

the modified hybrid TOA/RSS based estimator in (2.53) are illustrated along

with the CRLBs.9 As expected from the analysis in Section 2.3, the TOA based

MLE and the hybrid TOA/RSS based MLE are directly affected by the sampling

rate limitation and their RMSEs converge towards 0.1 m. in accordance with

(2.40) and (2.48). On the other hand, the asymptotic RMSEs of the RSS based

MLE and the modified hybrid TOA/RSS based estimator are calculated from

(2.41) and (2.54) as 9.14×10−7 m., which is outside the practical accuracy range.

Hence, the sampling rate limitation does not have any significant effects on these

estimators in this scenario. It is also noted that the modified hybrid TOA/RSS

based estimator converges to the CRLB faster than the RSS based MLE, and

achieves the best performance for all power levels of interest. In addition, the

hybrid TOA/RSS based MLE has lower CRLBs than the TOA based MLE since

it utilizes both the time delay and RSS information. In Fig. 2.8, the RMSEs of

the MLEs are plotted versus Tsmp in the absence of noise to investigate the effects

of the sampling period, where x = 5 m., Ts = 0.1 ms, fc = 1 MHz, and ∆ = 0. In

the figure, the sampling period Tsmp is incremented with a step size of 10−12 s. It

is observed that the RMSEs of the MLEs fluctuate as Tsmp changes, which is due

to the fact that the RMSE converges towards zero as the distance, x, gets close to

an integer multiple of cTsmp (where c is the speed of light). This observation can

also be verified based on (2.40), (2.41), (2.48), and (2.54). In addition, Fig. 2.8

indicates that the local averages of the RMSEs reduce in general as the sampling

rate increases (i.e., as Tsmp decreases). Furthermore, the asymptotic RMSEs of

the modified hybrid TOA/RSS based MLE and the RSS based MLE are observed

to be outside the practical accuracy limits whereas those of the TOA based MLE

and the hybrid TOA/RSS based MLE are in the range of practical accuracy

limits. Hence, the sampling rate limitation can be crucial for the TOA based

9The search space for possible distance values is set to [0, 100] m. for all the estimators.

Therefore, the MLEs in Fig. 2.7 can also be considered as MAP estimators [122] for a uniform

prior distribution of x over [0, 100] m.
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Figure 2.8: RMSEs of the MLEs for different approaches in the absence of noise,
where x = 5 m., Ts = 0.1 ms., and fc = 1 MHz.

MLE and the hybrid TOA/RSS based MLE.

2.7.2 Results for ZZB, ECRB, WCRB, and MAP Estima-

tors

To illustrate the results for ZZB, ECRB, WCRB, and MAP estimators, we

consider a new scenario where h in (2.4) is set to 5 m. and the prior PDF of the

distance, x, is taken to be uniform over the interval [D1, D2], where D1 = 5 m.

and D2 = 10 m. (cf. (2.57) and (2.58)).

In the first example, Ts = 0.1 ms., fc = 1 MHz, and the area S of the photo

detector at the VLC receiver is set to 1 cm2. In Fig. 2.9, the ZZBs in Section 2.4

are plotted versus the source optical power A in (2.86) for various values of the

Lambertian order m. It is observed that the ranging accuracy degrades as m

increases for practical values of the source optical power. Although the exact
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Figure 2.9: ZZB versus source optical power for various values of the Lambertian
order, where S = 1 cm2.

relation between the ZZB and m can be deduced from (2.5), (2.58), and (2.70),

an intuitive explanation can also be provided as follows: Parameter m determines

the directionality of the LED transmitter, and a large value of m corresponds to

a fast power decay as the irradiation angle increases from zero (see (2.3)). Hence,

lower SNRs are expected at higher distances for larger values of m, which can

lead to higher ZZBs, as observed in Fig. 2.9.

In Fig. 2.10, the ZZBs in Section 2.4 are presented versus the source optical

power for various values of S, the area of the photo detector at the VLC receiver,

where Ts = 0.1 ms., fc = 1 MHz, and m = 10 are employed. From the figure,

it is observed that the ZZB increases (i.e., the estimation accuracy degrades) as

S decreases. This observation can be explained based on the ZZB expression in

(2.58) and (2.70) as follows: From (2.5), γ is proportional to S, and from eqn. (18)

in [23], σ is proportional to
√
S. Hence, the γ/σ term in (2.70) changes in

proportion to
√
S, which leads to lower ZZBs as S increases due to the monotone

decreasing nature of the Q-function. In other words, as the area of the photo
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Figure 2.10: ZZB versus source optical power for various values of the area of the
photo detector, where m = 10.

detector increases, higher SNRs are obtained at the VLC receiver and lower ZZBs

are achieved.

Next, the ZZB in Section 2.4, the ECRB in Section 2.5, and the WCRB in Sec-

tion 2.6 are investigated in Fig. 2.11, together with the performance of the MAP

estimator, where Ts = 0.1 ms., fc = 1 MHz, S = 1 cm2, and m = 1. The MAP es-

timator can be obtained based on the ML estimator in [16, eqn. (18)] by confining

the search space for the distance parameter x to the interval [D1, D2] (since the

prior distribution of x is uniform over [D1, D2]) with D1 = 5 m. and D2 = 10 m.

Fig. 2.11 shows that the ECRB converges to the ZZB at high source optical pow-

ers; i.e., at high SNRs, since the prior information becomes less important as the

SNR increases. However, for lower optical powers, the ECRB gets significantly

higher than the ZZB since the ECRB calculations do not effectively utilize the

prior information, which becomes significant in the low SNR regime.10 On the

10In the ECRB calculations in (2.73), the prior information is used to calculate the average of

the conditional CRBs; however, each conditional CRB expression is obtained without utilizing
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Figure 2.11: RMSE versus source optical power for the MAP estimator, the ZZB,
the ECRB, and the WCRB, where Ts = 0.1 ms., fc = 1 MHz, S = 1 cm2, and
m = 1.
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other hand, the WCRB is close to the ZZB at low SNRs but it becomes looser as

the SNR increases. The main reason for this behavior is that the WCRB (and the

BCRB) may not provide a tight bound at high SNRs when the conditional Fisher

information depends on the unknown parameter [31, p. 7], which is the case for

the considered VLP system (that is, the conditional Fisher information in (2.72)

depends on the unknown parameter x, the distance between the LED transmitter

and the VLC receiver). In addition, it is observed from Fig. 2.11 that the ZZB

provides a reasonably tight bound for the performance of the MAP estimator in

all SNR regions. Furthermore, since the MAP estimator utilizes the prior infor-

mation, its performance cannot be lower bounded by the ECRB in the low SNR

regime, which does not effectively utilize the prior information. Therefore, the

ECRB expression can provide useful lower bounds only in the high SNR regime,

where the prior information is not crucial in the estimation process compared to

the information obtained from the received signal.

In the final example, the same parameters as in the previous scenario are em-

ployed except that a larger value of fc is used, namely, fc = 50 MHz. The results

presented in Fig. 2.12 illustrate that the RMSEs are reduced (i.e., the ranging

performance is improved) in the medium and high SNR regimes compared to

the previous scenario, which can be explained as follows: In a synchronous VLP

system, in addition to the prior information, information from both the time

delay parameter and the channel attenuation factor can be utilized for range esti-

mation. Since the information gathered from the time delay parameter increases

with fc [16], improved estimation performance can be observed at sufficiently high

SNRs, where the prior information becomes less significant than the information

gathered from the time delay parameter and the channel attenuation factor. How-

ever, in the low SNR regime, the prior information becomes the most significant

source of information, which leads to similar performance for the MAP estimators

in Fig. 2.11 and Fig. 2.12. In addition, it is noted from Fig. 2.12 that the MAP

estimator cannot get very close to the theoretical limits at high SNRs, which is

due to the finite sampling rate (namely, 10−11 s.) employed in the simulations. In

the prior information. Hence, the ECRBs do not effectively utilize the prior information.
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Figure 2.12: RMSE versus source optical power for the MAP estimator, the ZZB,
the ECRB, and the WCRB, where Ts = 0.1 ms., fc = 50 MHz, S = 1 cm2, and
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particular, the finite resolution of the search for the distance parameter can in-

troduce additional errors in the high SNR regime where the theoretical accuracy

limits are quite low (see [16, eqn. (18)]). Please refer to Section IV in [16] for a

detailed discussion.

2.8 Relation to Position Estimation

Wireless position estimation is commonly performed in two steps, where position

related parameters such as distances or angles are estimated in the first step and

the position is estimated based on those estimated parameters in the second step

[33]. Therefore, distance estimation investigated in this study can be considered

as the first step in a wireless localization system. As the accuracy of distance

estimation improves, position estimation also gets more accurate in general. To

present a formal relation between position estimation and distance estimation

accuracy, let lr = [lr,1 lr,2 lr,3] denote the location of the VLC receiver, and

lt1 , . . . , ltN , with lti = [lti,1 lti,2 lti,3], represent the known locations of the LED

transmitters, which are utilized for the localization of the VLC receiver. For

sufficiently high SNRs (which is commonly the case in LOS visible light channels),

the ML estimate for the distance between the VLC receiver and the ith LED

transmitter can be stated as

x̂i = xi + ςi (2.87)

for i = 1, . . . , N , where the noise components ς1, . . . , ςN are independent, xi =

‖lr − lti‖2, and ςi is modeled as a zero-mean Gaussian random variable with

a variance that is equal to CRLBi, i.e., the CRLB for estimating xi based on

the received signal coming from the ith LED transmitter [122, 126]. In other

words, at high SNRs, the ML estimate for the distance is modeled by a Gaussian

random variable with a mean that is equal to the true distance and a variance

that is equal to the CRLB [122, 126]. It is noted that the results in Section 2.2

specify CRLBi for various estimation approaches (TOA based, RSS based, and

TOA/RSS based).

The CRLB for estimating the position lr of the VLC receiver based on

57



x̂1, . . . , x̂N can be expressed as [122]

E{‖l̂r − lr‖2} ≥ trace
{
J(lr)

−1} (2.88)

where J(lr) denotes the FIM related to lr (cf. (2.7)). Since the height of the VLC

receiver is assumed to be known (cf. Section 2.1), the aim is to estimate the first

two elements of lr; that is, lr,1 and lr,2. Hence, based on (2.7), the FIM can be

specified for the model in (2.87) as follows:

[J(lr)]11 =
N∑
i=1

(lti,1 − lr,1)2

CRLBi x2
i

, [J(lr)]22 =
N∑
i=1

(lti,2 − lr,2)2

CRLBi x2
i

,

[J(lr)]12 = [J(lr)]21 =
N∑
i=1

(lti,1 − lr,1)(lti,2 − lr,2)

CRLBi x2
i

.

Then, the CRLB in (2.88) is calculated as

E{‖l̂r − lr‖2} ≥

(
N∑
i=1

1

CRLBi

)(
N∑
i=1

(lti,1 − lr,1)2

CRLBi x2
i

×
N∑
i=1

(lti,2 − lr,2)2

CRLBi x2
i

−
( N∑

i=1

(lti,1 − lr,1)(lti,2 − lr,2)

CRLBi x2
i

)2
)−1

(2.89)

From (2.89), the CRLB for position estimation can be specified based on the

CRLBs for estimating the distances between the VLC receiver and a number

of LED transmitters. Therefore, the results related to distance estimation in

Section 2.2 provide guidelines for position estimation, as well.

It is important to note that, in the presence of multiple LED transmitters,

the VLC receiver can observe and process the signals from the LED transmit-

ters individually by employing multiple access techniques such as time division

multiplexing and frequency division multiplexing [9, 22,127].

2.9 Concluding Remarks and Extensions

In this chapter, theoretical limits and estimators have been obtained for both

synchronous and asynchronous VLP systems and in the presence and absence of
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a relation between distance and channel attenuation factor. In particular, the

CRLBs and MLEs have been derived for the TOA based, RSS based, and hybrid

TOA/RSS based distance estimation. Comparisons among the CRLBs have been

provided, and it has been shown that the CRLB for the hybrid TOA/RSS based

estimation converges to that of the TOA based distance estimation for β � c/x,

and to that of the RSS based distance estimation for β � c/x. Also, asymp-

totic results have been obtained for the MLEs under sampling rate limitations,

and a modified hybrid TOA/RSS based distance estimator has been proposed to

perform accurate distance estimation in practical scenarios. It has been shown

that the RSS based and the modified hybrid TOA/RSS based distance estima-

tors can provide robustness against sampling rate limitations, and the modified

hybrid TOA/RSS based distance estimator achieves the lowest MSEs among all

the estimators in practical scenarios.

In addition, the ZZB has been derived for range estimation in synchronous VLP

systems. The proposed ZZB exploits ranging information from the prior informa-

tion, the time delay parameter, and the channel attenuation factor. Moreover, a

closed-form ECRB expression has been obtained, and the BCRB and the WCRB

derivations have been presented for synchronous VLP systems. Via the numeri-

cal examples, the bounds have been compared against each other and against the

MAP estimator. The ZZB has been shown to provide a reasonable lower bound

for the MAP estimator. Hence, it can provide important guidelines for design

of practical VLP systems. For example, based on the ZZB expression, effects of

various system parameters, such as the Lambertian order, the area of the photo

detector, and the source optical power, on ranging accuracy can be analyzed. On

the other hand, the ECRB and the WCRB (BCRB) can provide useful bounds

in the high and low SNR regimes, respectively.

As future work, theoretical limits on distance estimation will be considered in

the presence of uncertainty about the height of the VLC receiver. In addition,

measurements from multiple LED transmitters will be employed to perform hy-

brid TOA/RSS based estimation in three dimensional VLP systems (as outlined

below). Another important direction would be to perform an experimental study

for evaluating the performance of the MLEs and the tightness of the CRLBs in
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real-world conditions. Moreover, theoretical limits for synchronous VLP systems

can be considered for three-dimensional scenarios (i.e., when the height of the

VLC receiver is unknown). In that case, the extended ZZB for vector parameter

estimation [128] should be employed.

In the presence of multiple LED transmitters, the VLC receiver can process

the received signals from the LED transmitters for determining its three dimen-

sional position. If ri(t) denotes the received signal from the ith LED transmitter,

where i = 1, . . . , N , the CRLB expressions and the ML estimators should be de-

rived based on the conditional distribution of r1(t), . . . , rN(t) given the unknown

parameters, which include the location of the VLC receiver and other nuisance

parameters, if any. As a practical approach, the VLC receiver can perform two-

step position estimation, which has lower implementation complexity and can

achieve similar performance to the one-step (joint) optimal processing at high

SNRs [33]. In this common approach, position related parameters such as TOA

and/or RSS are estimated in the first step and the position of the VLC receiver

is estimated based on those position related parameters in the second step. The

detailed theoretical analyses and the derivations of the ML estimators and the

two step estimators in the presence of multiple LED transmitters are considered

as future work.

For the theoretical limits in Sections 2.4–2.6, the generic expressions have

been presented first, and then the particular expressions have been obtained for

the special case of uniform prior distribution for the distance parameter x. As

another special case with practical importance, the scenario in which the VLC

receiver is uniformly distributed on the floor (ground) can be considered. In

that case, a two dimensional uniform distribution can be employed over the area

where the VLC receiver can communicate with the LED transmitter. Let Av
denote this area. Based on the minimum and the maximum possible distances,

which are denoted by D1 and D2, respectively (see Section 2.4) and the fact that

the LED transmitter and the VLC receiver are pointing in vertical directions,

area Av can be represented by a circle with a radius of
√
D2

2 −D2
1, the center of

which is located at the projection of the LED transmitter to the floor (please see
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Figure 2.13: The scenario in which the VLC receiver is located in the gray circular
area according to a uniform distribution.

Fig. 2.13 for an illustration).11 The use of such a circular area can be justified

by the field of view of the VLC receiver, which imposes an upper limit on the

incidence angle θ (see (2.3)) for communication between the LED transmitter

and the VLC receiver [32]. When the position of the VLC receiver is uniformly

distributed over the circular area Av, it can be shown, via some manipulation

of random variables, that the distance x between the LED transmitter and the

VLC receiver is characterized by the following prior PDF:

w(x) =

2x/(D2
2 −D2

1) , if D1 ≤ x ≤ D2

0 , otherwise
. (2.90)

The ZZB bound can easily be evaluated for the prior PDF in (2.90) by inserting

it into (2.57), (2.64), (2.66), and (2.68). Similarly, the ECRB expressions can be

specified based on (2.73) and (2.90), which leads to similar expressions to those in

(2.74)–(2.76). (In fact, the use of the prior PDF in (2.90) instead of the uniform

PDF mainly increases the degree of x in the numerator of the integral in (2.74);

hence, the derivations stay almost the same.) In a similar fashion, the BCRB

and the WCRB in Section 2.6 can also be evaluated for (2.57). Hence, specific

expressions for the bounds can be obtained for the prior PDF in (2.90), as well.

11In this case, D1 corresponds to the height of the LED transmitter relative to the VLC

receiver, which is also denoted by h (see (2.4)).
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In practical systems, due to synchronization errors and finite resolution of time

delay estimates, the relation in (2.2) may not hold exactly. In order to derive the

ZZB in the presence of such effects, (2.2) can be updated as τ = x/c + ε, where

ε has a PDF denoted by pε(·). Then, from (2.1), the likelihood function can be

obtained as (cf. (2.61))

p(r(t)|x) = ek
∫
pε(ε)e

− 1
2σ2

∫ T2
T1

(
r(t)− Rpγ

xm+3 s(t−
x
c
−ε)
)2
dtdε. (2.91)

Based on (2.91), the decision rule in (2.60) can be expressed, after some manip-

ulation, as follows:

log

(∫
pε(ε)e

RpγC̃rs(ϑ+δ,ε)

σ2(ϑ+δ)m+3 dε

)
− log

(∫
pε(ε)e

RpγC̃rs(ϑ,ε)

σ2ϑm+3 dε

)
H0

S
H1

R2
pγ

2E2

2σ2

(
1

(ϑ+ δ)2m+6
− 1

ϑ2m+6

)
+ log

(
w(ϑ)

w(ϑ+ δ)

)
(2.92)

where C̃rs(x, ε) ,
∫ T2
T1
r(t)s(t− x/c− ε)dt. Since it is difficult to specify the PDF

of the decision statistics in (2.92), a closed-form expression for Pmin in (2.69) may

not be obtained. However, a Monte-Carlo approach can be adopted to evaluate

Pmin based on the decision rule in (2.92). Then, the ZZB can be calculated

numerically via (2.57).
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Chapter 3

Direct and Two-Step Positioning

in Visible Light Systems

In this chapter, we investigate the fundamental limits of three-dimensional local-

ization of a VLC receiver in synchronous and asynchronous VLP systems, design

ML estimators by employing direct and two-step positioning techniques, and char-

acterize the asymptotic performance of the proposed estimators via theoretical

derivations [18]. The main contributions of this chapter can be summarized as

follows:

• Theoretical Bounds for Synchronous Scenarios: For the first time in the lit-

erature, a general CRLB expression is derived for three-dimensional local-

ization of a VLC receiver in synchronous VLP systems by utilizing informa-

tion from both time delay parameters (i.e., TOA) and channel attenuation

factors (i.e., RSS) (Proposition 1).

• Algorithms/Estimators for Synchronous Scenarios: The direct and two-step

ML position estimators are proposed for synchronous VLP systems by tak-

ing into account both TOA and RSS information. The direct positioning

approach, which exploits the whole observation signal, is considered for the
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first time for synchronous VLP systems. In addition, the two-step estima-

tor is designed by exploiting the asymptotic properties of TOA and RSS

estimates in the high SNR regime (Lemma 1). Moreover, it is shown that

the proposed two-step estimator is asymptotically optimal, i.e., converges to

the direct estimator at high SNRs (Proposition 2 and Remark 1).

• Theoretical Bounds for Asynchronous Scenarios: The CRLB for three-

dimensional RSS-based localization is derived for asynchronous VLP sys-

tems (Proposition 3). The derived CRLB expression constitutes a general-

ization of that in [29] to cases in which transmitted pulses can have arbitrary

shapes and LED transmission powers can have any values.

• Algorithms/Estimators for Asynchronous Scenarios: The ML estimators

are designed for direct and two-step positioning in asynchronous VLP sce-

narios. It is proved that the two-step estimator is equivalent to the direct

estimator for practical pulse shapes (Proposition 4). Hence, the two-step

position estimation is shown to be optimal in the ML sense under practical

conditions in asynchronous VLP systems.

The key differences between this work and the previous results on VLP systems

can be listed as follows:

• Theoretical Bounds:

– Different from the previous work on synchronous VLP systems (e.g.,

[16, 17, 23, 129]), which analyzes only distance estimation, this study

investigates three-dimensional position estimation and puts forward

a fundamental limit on the accuracy of localization in synchronous

scenarios, which is valid for arbitrary transmitter/receiver positions

and orientations.

– Although there exist previous studies that focus on the CRLB deriva-

tion for localization in asynchronous VLP systems (e.g., [29, 49, 50]),

theoretical bounds on localization in synchronous VLP systems are

provided for the first time.
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– The analytical derivations are based directly on the received signal

itself, not on measured/extracted quantities (as in, e.g., [29, 49, 50]),

which leads to generalized expressions that can address scenarios with

any type of transmitted signals.

• Positioning Algorithms:

– Position estimators are proposed for generic three-dimensional VLP

configurations. However, most of the existing work on positioning

algorithms in VLP systems relies on the assumption of a known re-

ceiver height and/or perpendicular LED and VLC orientations (e.g.,

[9,13,14,34,36]), which can make those algorithms impractical in cer-

tain applications.

– For asynchronous scenarios, different from the three-dimensional ML

position estimator in [29], which is effectively a two-step estimator

through the use of measured RSS values, we derive both the direct and

the two-step estimators, and identify conditions under which these two

positioning paradigms become equivalent.

– As opposed to the previous VLP studies, we employ the optimal way

of obtaining the RSS observations from the received signals via an ML

approach (Section 3.2.3 and Section 3.3.2).

– Regarding synchronous scenarios, there exist no previous studies in the

literature that propose a positioning algorithm for synchronous VLP

systems.

The rest of this chapter is organized as follows: Section 3.1 presents the VLP

system model. The CRLBs and the ML estimators are derived for synchronous

and asynchronous systems in Section 3.2 and Section 3.3, respectively. Numerical

results are presented in Section 3.4, and concluding remarks are provided in

Section 3.5.
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3.1 System Model

3.1.1 Received Signal Model

Consider a VLP system in which a number of LED transmitters are employed to

estimate the position of a VLC receiver. An LOS scenario is assumed between

each LED transmitter and the VLC receiver, which is commonly the case for

visible light systems [5,23]. Then, the received signal at the VLC receiver due to

the signal emitted by the ith LED transmitter is formulated as [23]

ri(t) = αiRp si(t− τi) + ηi(t) (3.1)

for i ∈ {1, . . . , NL} and t ∈ [T1,i, T2,i], where NL denotes the number of LED

transmitters, T1,i and T2,i determine the observation interval for the signal coming

from the ith LED transmitter, αi is the attenuation factor of the optical channel

between the ith LED transmitter and the VLC receiver (αi > 0), Rp is the

responsivity of the photo detector, si(t) is the transmitted signal from the ith

LED transmitter, which is nonzero over an interval of [0, Ts,i], τi is the TOA of the

signal emitted by the ith LED transmitter, and ηi(t) is zero-mean additive white

Gaussian noise with spectral density level σ2. It is assumed that a certain type

of multiple access protocol, such as frequency-division or time-division multiple

access [130], is employed in order to facilitate separate processing of signals from

each LED transmitter at the VLC receiver [4]. Therefore, the noise processes

corresponding to the received signals from different LED transmitters are modeled

to be independent. It is also assumed that Rp and si(t), i ∈ {1, . . . , NL}, are

known by the VLC receiver.

The TOA parameter in (3.1) is modeled as

τi =
‖lr − lit‖

c
+ ∆i (3.2)

where c is the speed of light, ∆i denotes the time offset between the clocks

of the ith LED transmitter and the VLC receiver, lr = [lr,1 lr,2 lr,3]T and lit =[
lit,1 l

i
t,2 l

i
t,3

]T
are three-dimensional column vectors that denote the locations of
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the VLC receiver and the ith LED transmitter, respectively, and ‖lr− lit‖ denotes

the distance between the ith LED transmitter and the VLC receiver. For a

synchronous scenario, ∆i = 0 for i = 1, . . . , NL, whereas for an asynchronous

scenario, ∆i’s are modeled as deterministic unknown parameters. It is assumed

that the signal component in (3.1) is contained completely in the observation

interval [T1,i, T2,i]; that is, τi ∈ [T1,i, T2,i − Ts,i]. In (3.1), the channel attenuation

factor αi is modeled as

αi = −(mi + 1)S

2π

[
(lr − lit)Tnit

]mi (lr − lit)Tnr

‖lr − lit‖mi+3
(3.3)

where mi is the Lambertian order for the ith LED transmitter, S is the area

of the photo detector at the VLC receiver, and nr = [nr,1 nr,2 nr,3]T and

nit =
[
nit,1 n

i
t,2 n

i
t,3

]T
denote the orientation vectors (‘normals’) of the VLC re-

ceiver and the ith LED transmitter, respectively [23,29].1 It is assumed that the

VLC receiver knows S, nr, mi, l
i
t, and nit for i = 1, . . . , NL. For example, the

orientation of the VLC receiver, nr, can be determined by a gyroscope and the

parameters of the LED transmitters (mi, l
i
t and nit) can be sent to the receiver

via visible light communications.

3.1.2 Log-Likelihood Function and CRLB

Considering the received signal model in (3.1), the log-likelihood function for the

received signal vector r(t) , [r1(t) . . . rNL
(t)]T is obtained as follows [120,121]:

Λ(ϕ) = k − 1

2σ2

NL∑
i=1

∫ T2,i

T1,i

(ri(t)− αiRp si(t− τi))2 dt (3.4)

where ϕ represents the set of unknown parameters and k is a normalizing constant

that does not depend on the unknown parameters. While the set of unknown pa-

rameters consists only of the coordinates of the VLC receiver in the synchronous

case, it also contains the delay parameters in the asynchronous case, as investi-

gated in Sections 3.2 and 3.3.

1For example, if the VLC receiver is pointing up directly, then nr = [0 0 1]
T

.
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The CRLB on the covariance matrix of any unbiased estimator ϕ̂ of ϕ can be

expressed as [122]

E
{

(ϕ̂−ϕ)(ϕ̂−ϕ)T
}
� J(ϕ)−1 (3.5)

where A � B means that A−B is positive semidefinite and J(ϕ) is the Fisher

information matrix (FIM) for ϕ, which can be calculated as follows:

J(ϕ) = E
{

(∇ϕΛ(ϕ)) (∇ϕΛ(ϕ))T
}

(3.6)

with ∇ϕ representing the gradient operator with respect to ϕ and Λ(ϕ) being

the log-likelihood function as defined in (3.4).

3.2 Positioning in Synchronous Systems

In the synchronous scenario, the VLC receiver is synchronized with the LED

transmitters; that is, ∆i = 0 in (3.2) for i = 1, . . . , NL. In this section, the

CRLB is derived for synchronous VLP systems, the direct position estimation is

proposed, and the two-step position estimation is developed by considering both

time delay and channel attenuation information.

3.2.1 CRLB

In the synchronous case, αi and τi are functions of lr only (since ∆i = 0 in (3.2));

hence, the set of unknown parameters in (3.4) is defined as

ϕ = [lr,1 lr,2 lr,3]T = lr . (3.7)

Then, the CRLB for estimating lr based on r1(t), . . . , rNL
(t) in (3.1) is specified

by the following proposition.

Proposition 1. For synchronous VLP systems, the CRLB on the mean-

squared error (MSE) of any unbiased estimator l̂r for the location of the VLC

68



receiver is given by

E
{
‖l̂r − lr‖2

}
≥ trace

{
J−1

syn

}
(3.8)

where

[Jsyn]k1,k2 =
R2
p

σ2

NL∑
i=1

(
Ei

2

∂αi
∂lr,k1

∂αi
∂lr,k2

+ Ei
1α

2
i

∂τi
∂lr,k1

∂τi
∂lr,k2

− Ei
3αi

(
∂αi
∂lr,k1

∂τi
∂lr,k2

+
∂τi
∂lr,k1

∂αi
∂lr,k2

))
(3.9)

for k1, k2 ∈ {1, 2, 3} with

Ei
1 ,

∫ Ts,i

0

(
s′i(t)

)2
dt (3.10)

Ei
2 ,

∫ Ts,i

0

(
si(t)

)2
dt (3.11)

Ei
3 ,

∫ Ts,i

0

si(t)s
′
i(t)dt (3.12)

∂τi
∂lr,k

=
lr,k − lit,k
c‖lr − lit‖

(3.13)

∂αi
∂lr,k

= −(mi + 1)S

2π

((
(lr − lit)Tnit

)mi−1

‖lr − lit‖mi+3
(3.14)

×
(
mi n

i
t,k(lr − lit)Tnr + nr,k(lr − lit)Tnit

)
−

(mi + 3)(lr,k − lit,k)
‖lr − lit‖mi+5

(
(lr − lit)Tnit

)mi(lr − lit)Tnr

)
.

Proof: Consider the likelihood function in (3.4), where τi and αi are related

to lr as in (3.2) (with ∆i = 0) and (3.3), respectively. Since the set of unknown

parameters in the synchronous case is equal to lr as stated in (3.7), the elements

of the FIM in (3.6) can be expressed as

[J(ϕ)]k1,k2 = E
{
∂Λ(ϕ)

∂lr,k1

∂Λ(ϕ)

∂lr,k2

}
(3.15)

for k1, k2 ∈ {1, 2, 3}. From (3.4), the expression in (3.15) can be calculated as

follows:

[J(ϕ)]k1,k2 =
R2
p

σ2

NL∑
i=1

(
Ei

2

∂αi
∂lr,k1

∂αi
∂lr,k2

+ αi
∂αi
∂lr,k1

∫ T2,i

T1,i

si(t− τi)
∂si(t− τi)
∂lr,k2

dt
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+ αi
∂αi
∂lr,k2

∫ T2,i

T1,i

si(t− τi)
∂si(t− τi)
∂lr,k1

dt+ α2
i

∫ T2,i

T1,i

∂si(t− τi)
∂lr,k1

∂si(t− τi)
∂lr,k2

dt

)
(3.16)

where Ei
2 ,

∫ T2,i
T1,i

s2
i (t−τi)dt, which is equal to the expression in (3.11) as si(t−τi)

is assumed to be contained completely in the observation interval [T1,i, T2,i]. Since

∂si(t− τi)/∂lr,k = −(∂τi/∂lr,k)s
′
i(t − τi), the expression in (3.16) can be shown

to be equal to that in (3.9) based on the definitions in (3.10) and (3.12); hence,

J(ϕ) = Jsyn. In addition, the partial derivatives in (3.13) and (3.14) can be

obtained from (3.2) (with ∆i = 0) and (3.3), respectively. Finally, the CRLB on

the MSE of any unbiased estimator l̂r for the location of the VLC receiver, lr,

can be expressed based on the inequality in (3.5) as

E
{
‖l̂r − lr‖2

}
≥ trace

{
J(ϕ)−1} . (3.17)

Since J(ϕ) in (3.16) is equal to Jsyn in (3.9), as discussed above, the expression

in (3.8) follows from (3.17). �

The CRLB expression specified by (3.8)–(3.14) illustrates the effects of the

transmitted signals via the Ei
1, Ei

2, and Ei
3 parameters and the impact of the

geometry (configuration) via the ∂τi/∂lr,k and ∂αi/∂lr,k terms. Hence, the theo-

retical limit on the localization accuracy can be evaluated for any given system

based on the provided expression. It is noted that the CRLB expression in Propo-

sition 1 has not been available in the literature, and provides a theoretical limit

for synchronous VLP systems by utilizing information from both channel atten-

uation factors (RSS) and time delay parameters (TOA). Compared to the CRLB

in Proposition 1, those in [16, 23, 28] are for distance estimation only, and those

in [29, 49, 50] focus on RSS based localization. As noted from Proposition 1 and

its proof, the main technical difference and difficulty in obtaining the proposed

CRLB expression is related to the simultaneous use of the TOA and RSS param-

eters, which requires the calculation of the partial derivatives of both {αi}NL
i=1 and

{τi}NL
i=1.

The CRLB expression in Proposition 1 is generic since the LED transmitters

and the VLC receiver can have any locations and orientations and the transmitted
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signals can be in generic forms. Special cases can easily be obtained from (3.8)–

(3.14). For example, if the transmitted signals satisfy si(Ts,i) = si(0) for i =

1, . . . , NL, then Ei
3 in (3.12) becomes zero2 and [Jsyn]k1,k2 in (3.9) reduces to

[Jsyn]k1,k2 =
R2
p

σ2

NL∑
i=1

(
Ei

2

∂αi
∂lr,k1

∂αi
∂lr,k2

+ Ei
1α

2
i

∂τi
∂lr,k1

∂τi
∂lr,k2

)
(3.18)

From (3.18), the contribution of the channel attenuation factors and time delays

can be observed individually. Namely, the first and the second elements in (3.18)

are related to the location information obtained from the channel attenuation

factors and the time delay parameters, respectively. Hence, it is noted that both

RSS and TOA parameters are utilized for localization in the synchronous scenario.

3.2.2 Direct Positioning

Direct positioning refers to the estimation of the unknown location directly from

the received signals without any intermediate steps for estimating location related

parameters such as TOA or RSS [38–40, 42–45, 47, 48] (cf. Section 3.2.3). Direct

positioning has not been considered before for synchronous VLP systems, which

carry significant differences from RF based positioning systems.

In direct positioning, the aim is to estimate the location of the VLC receiver,

lr, based on the received signals in (3.1). From (3.4) and (3.7), the ML estimator

for lr can be obtained as follows [122]:

l̂DP,syn
r = arg max

lr

−
NL∑
i=1

∫ T2,i

T1,i

(ri(t)− αiRp si(t− τi))2 dt

which can be simplified, after some manipulation, into

l̂DP,syn
r = arg max

lr

NL∑
i=1

αi

∫ T2,i

T1,i

ri(t)si(t− τi)dt−
Rp

2

NL∑
i=1

α2
iE

i
2 (3.19)

where Ei
2 is as defined in (3.11). It should be noted that τi and αi in (3.19) are

functions of lr as specified in (3.2) (with ∆i = 0) and (3.3), respectively. Hence,

2Since Ei3 =
∫ Ts,i

0
si(t)s

′
i(t)dt = (si(Ts,i)

2 − si(0)2)/2, Ei3 = 0 if si(Ts,i) = si(0), which is

satisfied for most practical pulse shapes (cf. (3.61) and [23, Eq. 3]).
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the direct ML position estimator in (3.19) searches over all possible values of the

unknown position lr based on the relations of lr with the channel attenuation

factors and the time delays.

The main advantage of the direct positioning approach in (3.19) is related to

its performance (optimality in the ML sense), as investigated in Section 3.4. On

the other hand, it can lead to high complexity in certain applications due to

increased storage and communication requirements. For example, if the location

estimation should be performed at a central unit, then it becomes cumbersome

to transmit all the received signals to the center.

3.2.3 Two-Step Positioning

A common method for positioning in wireless networks is to apply a two-step

estimation process where estimation of location related parameters such as RSS,

TOA, TDOA, and/or AOA is performed in the first step and the unknown loca-

tion is estimated based on those parameters in the second step [33].

Although two-step positioning has commonly been considered for VLP sys-

tems (e.g., [9, 14, 24, 26, 27, 29, 34, 37]), there exist no studies on the design of

two-step estimators for synchronous VLP systems in which both RSS and TOA

information can be utilized. In the proposed two-step estimator for synchronous

VLP systems, the ML estimates of the TOA and RSS parameters are obtained

for each of the NL LED transmitters in the first step, and the location of the

VLC receiver is estimated based on those location related parameters, i.e., TOA

and RSS estimates, in the second step.

In the first step, the ML estimates of the TOA and RSS parameters3 are

obtained for each LED transmitter. For the ith LED transmitter, the received

signal ri(t) is expressed as in (3.1) and the corresponding log-likelihood function

for ri(t) is given by ki− 1
2σ2

∫ T2,i
T1,i

(ri(t)− αiRp si(t− τi))2 dt, where ki is a constant

3The channel attenuation factor αi is referred to as the RSS parameter in this study since

αi ≥ 0 in visible light channels and it determines the received signal energy (power).
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that does not depend on αi and τi (cf. (3.4)). Then, the ML estimates of the TOA

and RSS parameters corresponding to the ith LED transmitter are obtained as

follows:

(τ̂i, α̂i) = arg max
(τi,αi)

2αi

∫ T2,i

T1,i

ri(t)si(t− τi)dt− α2
iRpE

i
2 (3.20)

for i = 1, . . . , NL. Since αi is nonnegative, the solution for τ̂i is obtained by

maximizing the integral expression in (3.20). Hence, the ML estimate τ̂i of the

TOA parameter τi for the ith LED transmitter is calculated from

τ̂i = arg max
τi

∫ T2,i

T1,i

ri(t)si(t− τi)dt . (3.21)

Then, α̂i can be expressed from (3.20) and (3.21) as

α̂i = arg max
αi

2αiC̃
i
rs − α2

iRpE
i
2 (3.22)

where

C̃i
rs ,

∫ T2,i

T1,i

ri(t)si(t− τ̂i)dt . (3.23)

The problem in (3.22) leads to the following closed-form expression for the ML

estimate of the RSS parameter αi corresponding to the ith LED transmitter:

α̂i =
C̃i
rs

RpEi
2

· (3.24)

In the second step, the aim is to estimate the location of the VLC receiver,

lr, based on the TOA and RSS estimates in the first step; that is, {α̂i, τ̂i}NL
i=1.

To that aim, the following lemma is presented first in order to characterize the

statistics of the estimates obtained in the first step.

Lemma 1. Assume that Ei
3 = 0 for i = 1, . . . , NL. Then, at high SNRs (i.e.,

for α2
iR

2
pE

i
2 � σ2), the TOA estimate in (3.21) and the RSS estimate in (3.24)

can approximately be modeled as

τ̂i = τi + νi (3.25)

α̂i = αi + ςi (3.26)
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for i = 1, . . . , NL, where νi and ςi are independent zero mean Gaussian random

variables with variances σ2/(R2
pα

2
iE

i
1) and σ2/(R2

pE
i
2), respectively, and νi and νj

(ςi and ςj) are independent for i 6= j.

Proof : Consider the estimation of τi and αi based on the received signal from

the ith LED transmitter, i.e., ri(t) in (3.1). The log-likelihood function for ri(t)

is given by

Λi(τi, αi) = ki −
1

2σ2

∫ T2,i

T1,i

(ri(t)− αiRp si(t− τi))2 dt (3.27)

where ki is a constant that does not depend on αi and τi (cf. (3.4)). The FIM for

(τi, αi) can be expressed based on (3.6) as follows:

J(τi, αi) =

 E

{(
∂Λi(τi,αi)

∂τi

)2
}

E
{
∂Λi(τi,αi)

∂τi

∂Λi(τi,αi)
∂αi

}
E
{
∂Λi(τi,αi)

∂αi

∂Λi(τi,αi)
∂τi

}
E

{(
∂Λi(τi,αi)

∂αi

)2
}
 (3.28)

the elements of which can be computed from (3.27) as

[J(τi, αi)]11 =
α2
iR

2
pE

i
1

σ2
(3.29)

[J(τi, αi)]22 =
R2
pE

i
2

σ2
(3.30)

[J(τi, αi)]12 = [J(τi, αi)]21 =
−αiR2

pE
i
3

σ2
(3.31)

where Ei
1, Ei

2, and Ei
3 are as defined in (3.10), (3.11), and (3.12), respectively.

Since Ei
3 = 0 for i = 1, . . . , NL as stated in the lemma, the FIM in (3.28) can be

expressed from (3.29)–(3.31) as

J(τi, αi) =

[
R2
pα

2
iE

i
1

σ2 0

0
R2
pE

i
2

σ2

]
. (3.32)

As studied in [124,126], the ML estimates for τi and αi can be approximated,

at high SNRs, by a Gaussian random vector, where the mean of each component

is equal to the true value of the parameter and the covariance matrix is given by

the inverse of the FIM. Hence, at high SNRs, the joint probability distribution
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of τ̂i in (3.21) and α̂i in (3.24) can approximately be expressed as[
τ̂i

α̂i

]
∼ N

[τi
αi

]
,

 σ2

R2
pα

2
iE

i
1

0

0 σ2

R2
pE

i
2

 (3.33)

where N (µ,Σ) denotes Gaussian distribution with mean vector µ and covari-

ance matrix Σ. Hence, τ̂i and α̂i are independent Gaussian random variables as

specified by (3.25) and (3.26) in the lemma. In addition, since the noise ηi(t)

in the received signal, ri(t), is independent for different LED transmitters (see

(3.1)), the noise components in the ML estimates τ̂i and α̂i are also independent

for different transmitters. Hence, the noise components in (3.25) and (3.26) are

independent as specified in the lemma. �

Lemma 1 states the asymptotic unbiasedness and efficiency properties of the

ML estimates τ̂i in (3.21) and α̂i in (3.24) [122], [126]. Based on Lemma 1, the

following estimator can be obtained for the second step of the two-step estimator:

l̂TS,syn
r = arg min

lr

NL∑
i=1

(
Ei

1α
2
i (τ̂i − τi)2 + Ei

2 (α̂i − αi)2)− 2σ2

R2
p

NL∑
i=1

logαi (3.34)

where τi and αi are functions of lr as defined in (3.2) (with ∆i = 0) and (3.3),

respectively, and log denotes the natural logarithm. The estimator in (3.34)

corresponds to the ML estimator for lr based on the TOA and RSS estimates in

the first step when they are Gaussian distributed as specified in Lemma 1 (please

see Appendix 3.6.1 for the derivation). In other words, at high SNRs, l̂TS,syn
r in

(3.34) is approximately the ML estimator for lr based on {α̂i, τ̂i}NL
i=1. Since the

last term in (3.34) is commonly smaller than the others at high SNRs, a simpler

version of (3.34) can be proposed as follows:

l̂TS,syn
r = arg min

lr

NL∑
i=1

(
Ei

1α̂i
2 (τ̂i − τi)2 + Ei

2 (α̂i − αi)2) (3.35)

where the estimate α̂i is replaced with αi in the first term, as well, considering

high SNRs. The simplified estimator in (3.35) corresponds to an NLS estimator.

In summary, the proposed two-step positioning approach first calculates the

TOA and RSS estimates via (3.21) and (3.24) for each LED transmitter, and
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then uses those estimates for determining the position of the VLC receiver via

(3.35). In Section 3.4, comparisons between the two-step and direct positioning

approaches are provided via simulations. In order to present a theoretical com-

parison under the conditions in Lemma 1, the following proposition specifies the

CRLB for estimating the VLC receiver location, lr, based on the TOA and RSS

estimates {α̂i, τ̂i}NL
i=1 obtained in the first step.

Proposition 2. Suppose that the conditions in Lemma 1 hold. Then, the

CRLB on the MSE of any unbiased estimator l̂r for the location of the VLC

receiver, lr, based on the TOA and RSS estimates {α̂i, τ̂i}NL
i=1 obtained from (3.21)

and (3.24), is stated as

E
{
‖l̂r − lr‖2

}
≥ trace

{
J−1

TS,syn

}
(3.36)

where JTS,syn is a 3× 3 matrix with the following elements:

[JTS,syn]k1,k2 =
R2
p

σ2

NL∑
i=1

(
Ei

2

∂αi
∂lr,k1

∂αi
∂lr,k2

+ Ei
1α

2
i

∂τi
∂lr,k1

∂τi
∂lr,k2

)
(3.37)

for k1, k2 ∈ {1, 2, 3}, with Ei
1, Ei

2, ∂τi/∂lr,k and ∂αi/∂lr,k being as defined in

(3.10), (3.11), (3.13) and (3.14), respectively.

Proof : The derivative of the log-likelihood function in (3.65) with respect to

the kth parameter of the unknown parameter vector lr is computed as

∂Λ̃(lr)

∂lr,k
=

NL∑
i=1

(
1

αi

∂αi
∂lr,k

+
(α̂i − αi)R2

pE
i
2

σ2

∂αi
∂lr,k

+
(τ̂i − τi)α2

iR
2
pE

i
1

σ2

∂τi
∂lr,k

−
(τ̂i − τi)2αiR

2
pE

i
1

σ2

∂αi
∂lr,k

)
(3.38)

for k ∈ {1, 2, 3}. Using the formula in (3.6) with the expression in (3.38), the

(k1, k2)th entry of the FIM can be obtained after some manipulation as

[JTS,syn]k1,k2 =
R2
p

σ2

NL∑
i=1

((
1 +

2σ2

α2
iR

2
pE

i
2

)
Ei

2

∂αi
∂lr,k1

∂αi
∂lr,k2

+ Ei
1α

2
i

∂τi
∂lr,k1

∂τi
∂lr,k2

)
(3.39)

for k1, k2 ∈ {1, 2, 3}. By invoking the assumption of high SNRs in Lemma 1

(α2
iR

2
pE

i
2 � σ2), the FIM for the unknown receiver location lr can be obtained

as in (3.37). �
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The CRLB expression in Proposition 2 presents an important guideline for

asymptotic comparison of the direct and two-step positioning approaches in syn-

chronous VLP systems as detailed in the following remark.

Remark 1. It is observed that the expression in (3.18), which is obtained for

direct positioning under the assumption of Ei
3 = 0, is equal to that in (3.37), which

is for two-step positioning under the assumptions of Ei
3 = 0 and α2

iR
2
pE

i
2 � σ2.

In other words, referring to the signal model in (3.1), the performance of direct

positioning and two-step positioning algorithms converges to each other at high

SNRs. Hence, it can be concluded that the benefits of direct positioning are more

prominent in the low SNR regime, which is in compliance with the results obtained

for RF systems [38,43]. This conclusion is intuitive since the consistency between

TOA and RSS estimates (measurements) gets higher as the SNR increases. In the

low SNR regime, the TOA estimate in (3.21) may be far away from the true time

delay, leading possibly to a mismatch between the corresponding RSS estimate

in (3.24) and the position information inferred from that TOA information. In

such cases, the direct positioning approach is capable of estimating the unknown

location more accurately than the two-step approach by utilizing entire signals

and thus producing consistent location estimates.

3.2.4 Complexity Analysis

In this part, computational complexity analyses are presented for the proposed

direct and two-step estimators in Section 3.2.2 and Section 3.2.3.

Consider an indoor localization scenario where the VLC receiver moves inside

a certain volume and tries to estimate its position. Then, complexity analyses

can be performed by implementing the direct ML estimator in (3.19) and the

two-step ML estimator in (3.35) over a finite search space corresponding to that

volume for the location of the VLC receiver. Since the objective functions in

(3.19) and (3.35) are nonconvex with respect to the VLC receiver location, lr,

the exhaustive search method is considered for identifying the global optimum.

For complexity calculations, it is assumed that range (or, equivalently, time)
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dimensions are sampled with a sampling interval on the order of ∆d. To that aim,

we consider a three-dimensional uniform grid U consisting of O(1/∆d3) possible

locations in the considered volume for the location of the VLC receiver. Based

on U , the complexity analyses for the direct and two-step positioning algorithms

are provided as follows.

3.2.4.1 Direct Positioning

For the computation of the objective function in (3.19) at each search location lr ∈
U , it is necessary to compute αi via (3.3), τi via (3.2), and the correlator output∫ T2,i
T1,i

ri(t)si(t− τi)dt using the computed τi value. First, the computation of αi in

(3.3) and τi in (3.2) has O(1) complexity since these operations take a constant

time for a given value of lr. Secondly, evaluating the integral
∫ T2,i
T1,i

ri(t)si(t− τi)dt
requires O(1/∆d) operations. Taking into account the whole search space U
(which contains O(1/∆d3) points) and all NL LEDs, the overall complexity of

the direct positioning method becomes

O(NL × 1/∆d4) . (3.40)

3.2.4.2 Two-Step Positioning

In the first step of the two-step estimator in (3.35), τ̂i in (3.21) and α̂i in (3.24)

must be computed. Assuming that continuous signals are sampled with the num-

ber of samples on the order of O(1/∆d), as in direct positioning, the computation

of the integral expression in (3.21) requires O(1/∆d) operations for a given τi.

Since τi lies in the finite interval [T1,i, T2,i − Ts,i], it can be assumed that there

exists O(1/∆d) different values of τi. Hence, the overall complexity of (3.21)

becomes O(1/∆d2). On the other hand, the computation of α̂i via (3.24) has a

computational complexity of O(1) once the results of (3.21) and (3.23) are ob-

tained. In the second step, τi and αi in (3.35) must be evaluated for each lr ∈ U ,
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whose size is on the order of O(1/∆d3). Therefore, the computational complexity

of the two-step positioning is given by

O(NL × 1/∆d2)︸ ︷︷ ︸
First Step

+O(NL × 1/∆d3)︸ ︷︷ ︸
Second Step

= O(NL × 1/∆d3) (3.41)

where the term corresponding to the second step calculations dominates as the

sampling interval ∆d approaches zero.

The proposed direct and two-step positioning approaches can be compared

based on the expressions in (3.40) and (3.41) in terms of the computational com-

plexity. For instance, if ∆d is sufficiently small, i.e., range/time dimensions are

sampled fast enough to achieve high resolution, then the direct position esti-

mator has a higher complexity than its two-step counterpart. Moreover, it is

observed, by comparing (3.40) and (3.41), that the task of integral evaluation is

performed at each search location lr ∈ U in direct positioning, whereas it only

appears in the first-step calculations in two-step positioning. This alleviates the

strain on the second-step calculations in the two-step approach, which makes

it computationally less demanding than the direct approach. Hence, the main

computational burden of direct positioning consists in evaluating the correlator

output
∫ T2,i
T1,i

ri(t)si(t− τi)dt at each search location lr.

3.3 Positioning in Asynchronous Systems

In the asynchronous scenario, the VLC receiver is not synchronized with the

LED transmitters; that is, ∆i in (3.2) is a deterministic unknown parameter for

each i ∈ {1, . . . , NL}. In this section, the CRLB is derived for asynchronous

VLP systems, and the direct position estimation and its relation to the two-step

position estimation are investigated.
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3.3.1 CRLB

In an asynchronous VLP system, the unknown parameters include the TOAs of

the received signals coming from the LED transmitters in addition to the location

of the VLC receiver. Hence, the vector of unknown parameters in (3.4) for the

asynchronous case can be expressed as

ϕ = [lr,1 lr,2 lr,3 τ1 . . . τNL
]T . (3.42)

Then, the CRLB for estimating lr based on r1(t), . . . , rNL
(t) in (3.1) is stated in

the following proposition.

Proposition 3. For asynchronous VLP systems, the CRLB on the MSE of

any unbiased estimator l̂r for the location of the VLC receiver is given by

E
{
‖l̂r − lr‖2

}
≥ trace

{
J−1

asy

}
(3.43)

where Jasy denotes a 3× 3 matrix with the following elements:

[Jasy]k1,k2 =
R2
p

σ2

NL∑
i=1

(
Ei

2 −
(Ei

3)2

Ei
1

)
∂αi
∂lr,k1

∂αi
∂lr,k2

(3.44)

for k1, k2 ∈ {1, 2, 3}, with Ei
1, Ei

2, Ei
3, and ∂αi/∂lr,k being as defined in (3.10),

(3.11), (3.12), and (3.14), respectively.

Proof: Consider the log-likelihood function in (3.4) for the unknown param-

eter vector in (3.42). Then, from (3.6), the FIM can be obtained after some

manipulation as

J(ϕ) =

[
JA JB

JTB JD

]
(3.45)

where JA is a 3× 3 matrix with elements

[JA]k1,k2 =
R2
p

σ2

NL∑
i=1

Ei
2

∂αi
∂lr,k1

∂αi
∂lr,k2

(3.46)

for k1, k2 ∈ {1, 2, 3}, JB is a 3×NL matrix with elements

[JB]k,i = −
R2
p

σ2
Ei

3αi
∂αi
∂lr,k

(3.47)
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for k ∈ {1, 2, 3} and i ∈ {1, . . . , NL}, and JD is an NL×NL matrix with elements

[JD]i1,i2 =


R2
p

σ2 α
2
i1
Ei1

1 , if i1 = i2

0 , if i1 6= i2
(3.48)

for i1, i2 ∈ {1, . . . , NL}. In (3.46)–(3.48), Ei
1, Ei

2, Ei
3, and ∂αi/∂lr,k are as defined

in (3.10), (3.11), (3.12), and (3.14), respectively.

The CRLB on the location lr of the VLC receiver can be expressed, based on

(3.5), as

E
{
‖l̂r − lr‖2

}
≥ trace

{[
J−1(ϕ)

]
3×3

}
(3.49)

where l̂r is any unbiased estimator for lr. From (3.45),
[
J−1(ϕ)

]
3×3

can be stated

as [
J−1(ϕ)

]
3×3

=
(
JA − JBJ−1

D JB

)−1
. (3.50)

Based on (3.46)–(3.48), JA−JBJ−1
D JB can be calculated after some manipulation

as

[
JA − JBJ−1

D JB]k1,k2 =
R2
p

σ2

NL∑
i=1

(
Ei

2 −
(Ei

3)2

Ei
1

)
∂αi
∂lr,k1

∂αi
∂lr,k2

. (3.51)

Hence, (3.49)–(3.51) lead to the expressions in (3.43) and (3.44) in the proposi-

tion. �

It is noted from the CRLB expression in Proposition 3 that the position re-

lated information in the channel attenuation factors (RSS) is utilized in the asyn-

chronous case for estimating the location of the VLC receiver (see (3.44)). On the

other hand, information from both the channel attenuation factors (RSS) and the

time delay (TOA) parameters is available in the synchronous case as can be noted

from Proposition 1. In addition, the CRLB expression presented in Proposition 3

has been obtained for the first time in the literature; hence, provides a theoretical

contribution to localization in asynchronous VLP systems. Since the expression

in (3.44) is obtained based on the entire observation signals, ri(t)’s in (3.1), it

differs from the CRLB expression in [29], which is derived for asynchronous VLP
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systems based on the RSS measurements without directly using the received sig-

nals (eqn. (32) in [29]). On the other hand, when Ei
3 = 0 for i = 1, . . . , NL, which

is valid for many practical pulses, the FIM expression in (3.44) is equivalent to

that in [29]. Hence, the CRLB provided by Proposition 3 also covers the more

general case of Ei
3 6= 0 as compared to the CRLB in [29], which constitutes a

special case of (3.44).4

Remark 2. From Proposition 1 and Proposition 3, it is observed that if Ei
3 = 0

and α2
iE

i
1 � Ei

2 for i = 1, . . . , NL, the CRLB expressions in the synchronous and

asynchronous cases converge to each other. This corresponds to scenarios in

which the position related information in the time delay (TOA) parameters is

negligible compared to that in the channel attenuation factors (RSS parameters).

Hence, synchronism does not provide any significant benefits in such scenarios.

Since Ei
1/E

i
2 can be expressed from Parseval’s relation as 4π2β2

i , where βi is

the effective bandwidth of si(t),
5 it can be concluded that the synchronous and

asynchronous cases lead to similar CRLBs when the transmitted signals have

small effective bandwidths. This is an intuitive result because TOA information

gets less accurate as the effective bandwidth decreases [33].

3.3.2 Direct and Two-Step Estimation

Direct position estimation involves the estimation of lr, the location of the VLC

receiver, directly from the received signals in (3.1). From (3.4), the ML estimator

for direct positioning in the asynchronous case can be obtained as follows:

ϕ̂ML = arg max
ϕ

NL∑
i=1

(
αi

∫ T2,i

T1,i

ri(t)si(t− τi)dt−
Rp

2
α2
iE

i
2

)
(3.52)

4Indeed, it is proved in Proposition 4 in Section 3.3.2 that the direct positioning approach

adopted for the derivation of (3.44) is equivalent to the two-step method for asynchronous

VLP systems under the condition of Ei3 = 0. This result explains the equivalence of the two

expressions in (3.44) and [29] for practical localization scenarios.

5The effective bandwidth is defined as βi =
√

(1/Ei2)
∫
f2|Si(f)|2df , where Si(f) is the

Fourier transform of si(t).
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where ϕ is defined by (3.42), αi is related to lr as in (3.3), and Ei
2 is given by

(3.11). Since αi’s are nonnegative and the integral expressions depend only on

τi’s (3.52), the ML estimates for τi’s can be calculated as in (3.21). Then, the

ML estimate for lr is obtained from (3.52) as

l̂DP,asy
r = arg max

lr

NL∑
i=1

(
αiC̃

i
rs − 0.5Rpα

2
iE

i
2

)
(3.53)

where C̃i
rs is as defined in (3.23).

For the two-step position estimation in the asynchronous case, the RSS pa-

rameters related to NL LED transmitters are estimated in the first step and the

location of the VLC receiver is estimated based on those RSS estimates in the

second step. Due to the asynchronism between the LED transmitters and the

VLC receiver, the TOA parameters cannot be related to the location of the VLC

receiver (see (3.2)); hence, cannot be utilized for positioning in this case (cf.

Section 3.2.3).

In the first step of the two-step estimator, the ML estimator for the RSS

parameter, αi, is calculated based on ri(t) for i = 1, . . . , NL. Similar to that in

the synchronous case (see Section 3.2.3), the ML estimate α̂i of αi is expressed

as

α̂i =
C̃i
rs

RpEi
2

(3.54)

for i = 1, . . . , NL, where C̃i
rs is as in (3.23) and Ei

2 is given by (3.11).

The second step utilizes the RSS estimates in (3.54) for i = 1, . . . , NL for

estimating the location of the VLC receiver based on the following NLS estimator:

l̂TS,asy
r = arg min

lr

NL∑
i=1

wi(α̂i − αi)2 (3.55)

where αi is as defined in (3.3) and the following expression is proposed for the

weighting coefficients:

wi =
Ei

1E
i
2 − (Ei

3)2

Ei
1

(3.56)
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for i = 1, . . . , NL, where Ei
1 and Ei

3 are as in (3.10) and (3.12), respectively.

As illustrated in Appendix 3.6.2, the proposed weighting coefficient in (3.56) is

inversely proportional to the CRLB for estimating αi from ri(t). Hence, the RSS

estimates with higher accuracy (i.e., lower CRLBs) are assigned higher weights

in the NLS estimator in (3.55).

In the following proposition, it is shown that the direct position estimator in

(3.53) is equivalent to the two-step estimator specified by (3.54)–(3.56) under

certain conditions.

Proposition 4. Consider an asynchronous VLP system with Ei
3 = 0 for

i = 1, . . . , NL. Then, the direct position estimator in (3.53) is equivalent to the

two-step position estimator in (3.54)–(3.56).

Proof: When Ei
3 = 0, the weighting coefficient in (3.56) reduces to

wi = Ei
2 (3.57)

for i = 1, . . . , NL. Inserting (3.54) and (3.57) into (3.55) yields the following:

l̂TS,asy
r = arg min

lr

NL∑
i=1

Ei
2

(
C̃i
rs

RpEi
2

− αi

)2

. (3.58)

After some manipulation, the estimator in (3.58) can be expressed as

l̂TS,asy
r = arg min

lr

NL∑
i=1

(
−2αiC̃

i
rs + α2

iRpE
i
2

)
(3.59)

which is equivalent to the direct position estimator in (3.53). �

Proposition 4 implies that the two-step position estimator is optimal in the

ML sense for asynchronous VLP systems; that is, the direct positioning (based

on ML estimation) is equivalent to the two-step positioning when Ei
3 = 0 for i =

1, . . . , NL. Since si(0) = si(Ts,i) for many practical pulses, Ei
3 = 0 is encountered

in practice (see (3.12)); hence, the two-step estimator can be employed in real

systems as the optimal approach in the ML sense.

Remark 3. As proved in Proposition 4, if Ei
3 = 0 for i = 1, . . . , NL, the direct

positioning approach is equivalent to the two-step approach for the asynchronous
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scenario, whereas Remark 1 states that the two approaches are only asymptotically

equivalent for the synchronous scenario. The intuition behind these results is that

the measurement of RSS information is performed at the peak of the correlator

output over the observation interval, irrespective of the true time delay of the

received signal. Hence, direct positioning reduces to two-step positioning for the

asynchronous case. On the other hand, when the TOA information corresponding

to the location of the correlator peak is incorporated into the estimation process

in the synchronous case, the direct positioning approach can identify a more

accurate location that accounts for the observed signal, which is also implied in

Remark 1.

3.3.3 Complexity Analysis

In this part, the complexity analysis is performed for the proposed ML position

estimators in Section 3.3.2. Specifically, the computational complexity of the

direct estimator in (3.53) is investigated as in Section 3.2.4.6 First, C̃i
rs can be

computed via (3.23) and (3.21) using O(1/∆d2) operations. Then, for each lr ∈ U
and i ∈ {1, . . . , NL}, the summand in (3.53) requires O(1) operations. Therefore,

the overall complexity of the ML estimator in asynchronous VLP systems is

obtained as

O(NL × 1/∆d2) +O(NL × 1/∆d3) = O(NL × 1/∆d3) . (3.60)

It follows from (3.40), (3.41) and (3.60) that the asynchronous estimator has the

same order of complexity as that of the synchronous TS estimator and a lower

complexity than the synchronous DP estimator.

6Since the direct and two-step estimators in asynchronous systems are equivalent for Ei3 = 0

via Proposition 4, the computational complexity analysis is carried out only for the direct

estimator in (3.53). When Ei3 6= 0, the estimators in (3.53) and (3.55) still have the same

complexity as the computation of Ei3 requires constant time, i.e., of complexity O(1).
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3.4 Numerical Results

In this section, numerical results are presented to corroborate the theoretical

derivations in the previous sections. As in [23], the responsivity of the photo

detector is taken as Rp = 0.4 mA/mW, and the spectral density level of the noise

is set to σ2 = 1.336 × 10−22 W/Hz. In addition, the Lambertian order is taken

as m = 1 and the area S of the photo detector at the VLC receiver is equal to

1 cm2. The transmitted signal s(t) in (3.1) is modeled as [23]

s(t) = A (1− cos (2π t/Ts)) (1 + cos(2πfct)) It∈[0,Ts] (3.61)

where fc denotes the center frequency, A corresponds to the average emitted

optical power; that is, source optical power, and It∈[0,Ts] represents an indicator

function, which is equal to 1 if t ∈ [0, Ts] and zero otherwise.

We consider a room with a width, depth, and height of [8 8 5] m, respectively,

where NL = 4 LED transmitters are attached to the ceiling at positions l1t =

[2 2 5]T m, l2t = [6 2 5]T m, l3t = [2 6 5]T m, and l4t = [6 6 5]T m, as illustrated

in Fig. 3.1. The orientation vectors of the LEDs are given by

nit = [sin θi cosφi sin θi sinφi cos θi]
T (3.62)

for i = 1, . . . , NL, where θi and φi denote the polar and the azimuth angles, respec-

tively [131].7 In the configuration in Fig. 3.1, the polar and the azimuth angles

are taken as (θ1, φ1) = (150◦, 45◦), (θ2, φ2) = (150◦, 135◦), (θ3, φ3) = (150◦,−45◦)

and (θ4, φ4) = (150◦,−135◦). The VLC receiver is located at lr = [4 4 1]T m and

looks upwards, i.e., the orientation vector is given by nr = [0 0 1]T .

In the following subsections, the CRLBs and the performance of the direct

position (DP) estimators and the two-step (TS) estimators are evaluated for both

synchronous and asynchronous VLP systems. The CRLBs are computed based

on Proposition 1 and Proposition 3, and the DP estimators are implemented via

(3.19) and (3.53) for the synchronous and asynchronous cases, respectively. Also,

7For example, when θi = 180◦ and φi = 0◦, the LED orientation vector is directed down-

wards, i.e., nit = [0 0 − 1].
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Figure 3.1: VLP system configuration in the simulations, where wall reflections
are omitted by assuming an LOS scenario.

the two-step (TS) estimator in the synchronous scenario is obtained via (3.21),

(3.24), and (3.35). Furthermore, the minimum mean absolute error (MMAE)

estimator in [13] is implemented to compare the proposed estimators with the

current state-of-the-art.8,9

3.4.1 Theoretical Accuracy Limits over the Room

In order to observe the localization performance throughout the entire room,

the CRLBs for the synchronous and asynchronous VLP systems are computed

8Since the localization algorithm in [13] depends on the assumption of a perpendicular

LED orientation, implementing it directly for the configuration of Fig. 3.1 would yield poor

localization performance. To perform a fair evaluation of the algorithm in [13], we express the

irradiation and the incidence angles in [13, Eq. 10] as a function of positions and orientations

as in (3.3), which makes the algorithm applicable for Fig. 3.1.
9For the implementation of all the estimators in this work, the search interval in all the

dimensions is taken to be [−100 100] m.
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Figure 3.2: CRLB (in meters) for a synchronous VLP system as the VLC receiver
moves inside the room, where Ts = 0.1 ms, fc = 100 MHz, and A = 100 mW.

as the VLC receiver moves inside the room and the resulting contour plots are

shown in Fig. 3.2 and Fig. 3.3, respectively. The CRLBs are obtained for position

estimation of a VLC receiver with a fixed height lr,3 = 1 m, which is moved along

the x−y plane over the room. As noted from Fig. 3.2 and Fig. 3.3, the localization

performance decreases as the receiver moves away from the center of the room,

which is an expected outcome since that movement leads to an increase in the

distance, the incidence angle, and the irradiation angle between the VLC receiver

and the LED transmitters, thereby reducing the signal strength, as implied by the

Lambertian formula in (3.3). In addition, the level of increase in the CRLB from

the center to the corners is much higher in the asynchronous case than that in the

synchronous case as the TOA information can be effectively exploited to facilitate

the localization process at the room corners, where the RSS information becomes

less useful. Furthermore, the CRLBs are significantly lower in the synchronous

case than those in the asynchronous case as the carrier frequency is quite high,

which is in agreement with Remark 2.
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Figure 3.3: CRLB (in meters) for an asynchronous VLP system as the VLC
receiver moves inside the room, where Ts = 0.1 ms, fc = 100 MHz, and A =
100 mW.

3.4.2 Performance of Direct and Two-Step Estimators

with Respect to Optical Power

In this subsection, the root mean-squared errors (RMSEs) corresponding to the

proposed DP and TS estimators, the MMAE estimator in [13], and the CRLBs

are plotted with respect to the source optical power, A, for fc = 100 MHz and

fc = 10 MHz in Fig. 3.4 and Fig. 3.5, respectively.10 First, it is seen that the DP

approach can provide significant performance improvements over the TS approach

for synchronous scenarios, especially in the low-to-medium SNR region (about 4.5

m improvement for A = 4.64 W and fc = 100 MHz). Also, it can be inferred

from the figures that the utilization of the time delay information in the syn-

chronous DP estimator leads to considerable performance gains as compared to

its asynchronous counterpart (0.26 m gain for A = 215 mW and fc = 100 MHz).

10The estimators can achieve lower RMSEs than the corresponding CRLBs at low SNRs

since the theoretically infinite search space for the unknown parameter is confined to a finite

region when implementing the estimators due to practical concerns, as described in Footnote 9.
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Figure 3.4: CRLBs and RMSEs of the estimators for synchronous and asyn-
chronous VLP systems versus source optical power, where Ts = 1µs and
fc = 100 MHz.

It is important to highlight that performance enhancement due to synchronism

becomes larger as the center frequency increases, in compliance with Remark 2.

Next, it is observed that the performance of the DP estimator in the synchronous

case converges to that of the TS estimator at high SNR values (at high source

optical powers) since the benefits of direct positioning get negligible as the SNR

increases, which complies with Proposition 2 and Remark 1. Hence, the extra

information acquired by utilizing the entire received signal for localization as op-

posed to using a set of intermediate measurements (i.e., TOA and RSS estimates)

leads to higher performance gains in low-to-medium SNR regimes. Therefore, it

is deduced that the two-step positioning approach in the synchronous VLP sys-

tems is best suited for high SNR scenarios, where direct and two-step positioning

achieve similar localization performance with the latter method requiring reduced

computational resources, as explored in Section 3.2.4. Moreover, the proposed

DP approach outperforms the algorithm in [13] at all SNR levels and center fre-

quencies.
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Figure 3.5: CRLBs and RMSEs of the estimators for synchronous and asyn-
chronous VLP systems versus source optical power, where Ts = 1µs and
fc = 10 MHz.

3.4.3 Performance of Direct and Two-Step Estimators

with Respect to VLC Receiver Coordinates

In this subsection, theoretical bounds and estimator performances are investi-

gated along a horizontal path inside the room. In Fig. 3.6 and Fig. 3.7, the

CRLBs and the RMSEs of the DP and TS estimators and the algorithm in [13]

are illustrated for fc = 100 MHz and fc = 10 MHz, respectively, as the VLC re-

ceiver moves on a straight line starting from [4 0 1] m and ending at [4 8 1] m

inside the room. It is observed that the estimator performances tend to decrease

as the receiver moves towards the edge of the room, as indicated by the Lam-

bertian formula in (3.3). In addition, the TS estimator for fc = 10 MHz exhibits

significantly higher performance than that for fc = 100 MHz. The reason for

this behaviour is that the first-step TOA estimation errors are weighted by the

inverse of the corresponding analytical CRLBs in (3.35), which do not provide

tight bounds at low SNRs for the ML estimates of the TOA in the first step in
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Figure 3.6: CRLBs and RMSEs of the estimators for synchronous and asyn-
chronous VLP systems as the VLC receiver moves on a straight line in the room,
where Ts = 1µs, A = 1 W and fc = 100 MHz.

(3.21). Furthermore, the figures show that the proposed direct scheme in the

asynchronous case attains higher performance than the localization algorithm

in [13] at most of the locations in the room.

3.4.4 Performance of Direct and Two-Step Estimators in

the Presence of Model Uncertainties

In this part, the performances of the proposed direct and two-step estimators are

evaluated in the presence of uncertainties related to the attenuation model for

visible light channels, i.e., the Lambertian model in (3.3). Since the knowledge

of model-related parameters is imperfect in practical localization scenarios, it is

important to assess the localization performance under various degrees of uncer-

tainty, which is useful to reveal the robustness of the proposed algorithms against

parameter/model mismatches.
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Figure 3.7: CRLBs and RMSEs of the estimators for synchronous and asyn-
chronous VLP systems as the VLC receiver moves on a straight line in the room,
where Ts = 1µs, A = 1 W and fc = 10 MHz.

3.4.4.1 Performance with Respect to Uncertainty in Lambertian Or-

der

First, we consider the case in which the Lambertian order mi in (3.3) is known

with a certain degree of uncertainty. To that aim, a measured (estimated) value

m̂i, which does not perfectly match the true value mi, is used in the proposed DP

and TS estimators and in the localization algorithm in [13]. In the simulations, mi

is set to 1 and m̂i is varied over the interval [0.75 1.25] for i ∈ {1, . . . , NL}. Fig. 3.8

and Fig. 3.9 show the localization performance of the considered approaches with

respect to the measured value of the Lambertian order for fc = 100 MHz and

fc = 10 MHz, respectively. It is observed from the figures that the localization

performance deteriorates as the measured/estimated Lambertian order deviates

from the true value, as expected. In addition, it is noted that the synchronous DP

estimator is more robust to Lambertian order mismatches than the asynchronous

algorithms. The reason is that the TOA information, which is independent of the
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Figure 3.8: CRLBs and RMSEs of the estimators for synchronous and asyn-
chronous VLP systems under imperfect knowledge of Lambertian order, where
true Lambertian order is 1, Ts = 1µs, A = 1 W, and fc = 100 MHz.

Lambertian order (see (3.2)), becomes the dominant factor affecting the local-

ization performance as the uncertainty in the Lambertian order grows, hindering

the effective use of the RSS information (see (3.3)). Hence, the robustness of the

synchronous positioning against uncertainties in the Lambertian order is more

evident at high center frequencies with an increase in the accuracy of TOA in-

formation [33], which can also be observed by comparing Fig. 3.8 and Fig. 3.9.

Moreover, in the asynchronous case, the proposed algorithm performs slightly

better than that in [13] for various degrees of uncertainty.

3.4.4.2 Performance with Respect to Uncertainty in Transmission

Model

Next, we investigate the estimator performances in the presence of uncertainty in

the overall transmission model in (3.3). As in [131], we assume a multiplicative

uncertainty model that represents all the individual uncertainties embedded in
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Figure 3.9: CRLBs and RMSEs of the estimators for synchronous and asyn-
chronous VLP systems under imperfect knowledge of Lambertian order, where
true Lambertian order is 1, Ts = 1µs, A = 1 W, and fc = 10 MHz.

(3.3) (e.g., lit, n
i
t, nr, and mi) in the form of a multiplication of the true transmis-

sion model. More specifically, the position estimation is performed by considering

the following transmission model:

αmeas
i = (1 + εi)αi, i = 1, . . . , NL (3.63)

where αi is as defined in (3.3) and εi ∈
[
εmin
i , εmax

i

]
specifies the degree of mis-

match between the true and the estimated transmission models. In Fig. 3.10 and

Fig. 3.11, the RMSEs of the estimators are plotted against the degree of uncer-

tainty, εi, for fc = 100 MHz and fc = 10 MHz, respectively, where εmin
i = −0.25

and εmax
i = 0.25 for i = 1, . . . , NL. As observed from the figures, the localization

performance curves with respect to the degree of uncertainty in the transmission

model exhibit similar trends to those for the case of uncertainty in the Lambertian

order.
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Figure 3.10: CRLBs and RMSEs of the estimators for synchronous and asyn-
chronous VLP systems under mismatched transmission model, where Ts = 1µs,
A = 1 W, and fc = 100 MHz.
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Figure 3.11: CRLBs and RMSEs of the estimators for synchronous and asyn-
chronous VLP systems under mismatched transmission model, where Ts = 1µs,
A = 1 W, and fc = 10 MHz.

96



3.4.5 Special Case: Two-Dimensional Localization

In this part, we investigate the two-dimensional localization performance of the

proposed estimators and perform comparisons with the trilateration method,

which is one of the most commonly used methods in two-dimensional visible light

localization. Specifically, we implement the linear least-squares (LLS) based tri-

lateration algorithm in [9] via Eqs. (6), (7), (9), and (17) therein.11 For the CRLB

computations and algorithm implementations, we assume that the receiver height

is known and perform two-dimensional position estimation accordingly. We carry

out two experiments to assess the relative performance of the proposed estima-

tors, the MMAE estimator in [13], and the LLS based trilateration algorithm

in [9]. In the experiments, the polar and azimuth angles of the LEDs are set to

be (θi, φi) = (180◦, 0◦) for i = 1, . . . , NL, i.e., the LEDs are facing downwards.

3.4.5.1 Performance with Respect to Optical Power

In Fig. 3.12, we present the RMSE performance of the proposed DP and TS al-

gorithms, the algorithm in [13], and the LLS based trilateration algorithm in [9]

with respect to the optical power for fc = 100 MHz and lr = [4 6 1] m. It is

observed that, in the asynchronous case, the proposed direct estimator is able

to outperform both the MMAE estimator in [13] and the trilateration algorithm

in [9] at almost all SNR levels. For instance, for A = 215 mW, the improvements

in localization performance achieved by the proposed DP method are about 10 cm

and 40 cm as compared to the positioning methods in [13] and [9], respectively. In

addition, we note that the synchronous DP estimator outperforms all the asyn-

chronous estimators by using the time delay information. Moreover, the proposed

synchronous TS estimator converges to the CRLB at high SNR regime, which re-

sults from its asymptotic optimality property, as shown in Proposition 2 and

Remark 1. Therefore, similarly to Fig. 3.4 and Fig. 3.5 in Section 3.4.2, Fig. 3.12

11For the implementation in [9], the Lambertian modeling in (12) and (13) is used. The

parameters in (17) are taken as A = 1, h = 4 m, and CS = 6
√

2 m in accordance with the

configuration in Fig. 3.1.
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illustrates the trade-off between direct and two-step positioning in terms of local-

ization performance and computational complexity at different SNR regimes.

3.4.5.2 Performance with Respect to VLC Receiver Coordinates

Fig. 3.13 depicts the two-dimensional localization performance as the VLC re-

ceiver moves along the horizontal line starting from [4 0 1] m and ending at

[4 8 1] m for fc = 100 MHz. It is observed that the proposed ML-based direct

positioning technique can attain higher localization performance than the algo-

rithms in [13] and [9] at all the locations along the line. Also, the performance

of the algorithm in [9] gets worse as the receiver moves away from the center

of the room towards the edges. This is because the trilateration-based method

in [9] is a suboptimal three-step approach that first estimates the distances to

the LEDs by using the RSS observations, then adjusts the estimated distances

via normalization and finally employs the LLS method based on the normalized

distances. As the symmetry is reduced at the room edges, the normalization

method applied in [9] (see (6) and (7) therein), which assigns the same normaliz-

ing constant and factor to distance estimates from different LEDs, becomes less

accurate. The proposed ML-based estimator, on the other hand, achieves RMSE

levels close to the CRLB at all positions along the line and therefore leads to a

substantial improvement in localization performance as compared to the method

in [9] (about 63 cm improvement for lr = [4 8 1] m).

3.5 Concluding Remarks

In this chapter, direct and two-step positioning paradigms have been investigated

for VLP systems. In particular, the CRLBs and the direct and two-step posi-

tion estimators are derived in synchronous and asynchronous VLP systems. The

proposed CRLB expressions exploit the entire observation signal at the VLC re-

ceiver and can be applied to any VLP system in which the LED transmitters
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Figure 3.12: CRLBs and RMSEs of the estimators for two-dimensional localiza-
tion in synchronous and asynchronous VLP systems with respect to source optical
power, where Ts = 1µs and fc = 100 MHz.
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Figure 3.13: CRLBs and RMSEs of the estimators for two-dimensional localiza-
tion in synchronous and asynchronous VLP systems with respect to room depth,
where Ts = 1µs, A = 1 W and fc = 100 MHz.
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and the VLC receiver can have arbitrary orientations. The CRLB on the local-

ization accuracy of synchronous VLP systems that utilize both TOA and RSS

information has been derived for the first time in the literature. In addition, the

CRLB presented for the asynchronous case generalizes an expression available in

the literature to any type of transmitted pulses. Comparative analysis on the

performance of synchronous and asynchronous systems has indicated that the

advantage of synchronous positioning becomes more noticeable as the effective

bandwidth of the transmitted pulse increases. Furthermore, in order to explore

the relationship between direct and two-step positioning approaches, the condi-

tions of (asymptotic) equivalence of these two approaches have been identified.

It has been proved that the two-step estimator converges to the direct estimator

at high SNRs for synchronous systems, whereas the two estimators are equiva-

lent for asynchronous systems at all SNRs for practical pulse shapes. Therefore,

the benefits of direct positioning on localization accuracy can be significant for

synchronous systems at low-to-medium SNRs. Furthermore, the computational

complexities of the proposed approaches have been presented to demonstrate the

trade-off between implementation complexity and localization accuracy. Various

numerical examples have been provided to illustrate the effects of direct position-

ing on the performance of VLP systems and to present a comparative evaluation

of synchronous and asynchronous scenarios. As future work, the effects of syn-

chronization errors can be analyzed for three-dimensional localization in VLP

systems. In particular, in the presence of significant synchronization errors, it

may not be useful to utilize TOA measurements in addition to RSS measure-

ments for localization purposes. Therefore, quantifying the information that can

be extracted from TOA measurements with synchronization errors is an impor-

tant issue. As another direction for future work, VLP in the presence of model

and parameter uncertainty can be considered with the aim of designing robust

position estimators.
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3.6 Appendices

3.6.1 Derivation of (3.34)

Based on Lemma 1, the joint distribution of τ̂i and α̂i can be specified as in (3.33),

and τ̂i and τ̂j (α̂i and α̂j) are conditionally independent for a given value of lr

whenever i 6= j. Therefore, the joint probability density function of {τ̂i, α̂i}NL
i=1 for

a given value of lr; that is, the likelihood function for lr, is obtained as follows:

p(τ̂ , α̂|lr) =

NL∏
i=1

Rpαi
√
Ei

1√
2π σ

exp

{
−
R2
pα

2
iE

i
1

2σ2
(τ̂i − τi)2

}

×
NL∏
i=1

Rp

√
Ei

2√
2π σ

exp

{
−
R2
pE

i
2

2σ2
(α̂i − αi)2

}
(3.64)

where τ̂ = (τ̂1, . . . , ˆτNL
) and α̂ = (α̂1, . . . , ˆαNL

). From (3.64), the log-likelihood

function can be expressed as

Λ̃(lr) = k̃ +

NL∑
i=1

logαi −
R2
p

2σ2

NL∑
i=1

(
α2
iE

i
1(τ̂i − τi)2 + Ei

2(α̂i − αi)2
)

(3.65)

where k̃ is a constant that is independent of αi’s and τi’s. Hence, the ML estimate

for lr can be obtained from (3.65) as in (3.34). �

3.6.2 Derivation of (3.56)

Consider the estimation of τi and αi from ri(t) in (3.1). As derived in the proof

of Lemma 1, the FIM can be expressed, from (3.28)–(3.31), as

J(τi, αi) =

[
α2
iR

2
pE

i
1

σ2

−αiR2
pE

i
3

σ2

−αiR2
pE

i
3

σ2

R2
pE

i
2

σ2

]
. (3.66)

Then, the CRLB on estimating αi can be obtained as

E{(α̂i − αi)2} ≥ [J−1(τi, αi)]2,2 =
Ei

1 σ
2/R2

p

Ei
1E

i
2 − (Ei

3)2
(3.67)

Hence, the weighting coefficient in (3.56) is inversely proportional to the CRLB

for estimating αi from ri(t). �
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Chapter 4

Optimal and Robust Power

Allocation for Visible Light

Positioning Systems under

Illumination Constraints

In this chapter, optimal power allocation strategies are studied for LED transmit-

ters in a VLP system under both perfect and imperfect knowledge of localization

related parameters [19]. The main contributions of this chapter can be listed as

follows:

• Problem Formulation for LED Power Allocation: For the first time in the

literature, we investigate the problem of optimal power allocation among

LED transmitters in a VLP system for maximizing the localization accu-

racy of a VLC receiver. Specifically, we employ the CRLB on the localiza-

tion error as the performance measure and formulate the power allocation

problem to minimize the CRLB in the presence of transmission power and

illumination constraints.
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• Robustness Under Overall System Uncertainty1: We consider the problem

of robust power allocation under imperfect knowledge of system parameters

and demonstrate that the resulting worst-case CRLB minimization prob-

lem can equivalently be transformed into a convex program, which further

simplifies to an SDP via constraint relaxation.

• Robustness Under Individual Parameter Uncertainties: We present robust

power allocation schemes in the presence of uncertainties in the location

and orientation of the VLC receiver. To tackle the resulting intractable

optimization problems, we propose an iterative entropic regularization ap-

proach where, at each iteration, a convex problem is solved and a three

(two)-dimensional grid search is executed over the uncertainty region cor-

responding to the location (orientation) of the VLC receiver.

• Sum Power Minimization Under Preset Accuracy Constraints: We formu-

late the minimum power consumption problem under the constraint that the

CRLB for localization of the VLC receiver does not exceed a certain thresh-

old. We also extend the problem to the case of overall system uncertainty

and prove that the resulting worst-case accuracy constrained optimization

problem is shown to be reformulated as a convex one, leading to efficient

solutions.

In addition, numerical results show that the proposed optimal power allocation

approach for LED transmitters yields significant localization performance gains

over the conventional uniform power assignment method. For the case of im-

perfect knowledge of localization related parameters, the proposed robust power

allocation strategies are shown to outperform the uniform and non-robust (which

disregards the uncertainty in parameter measurements) strategies.

This chapter is organized as follows: Section 4.1 introduces the system model

and Section 4.2 presents a theoretical framework for LED power allocation. In

Section 4.3 and Section 4.4, robust power allocation strategies are considered in

1Overall system uncertainty is defined as the uncertainty related to all the system parame-

ters except for the transmit powers and mathematically formulated as a perturbation matrix.
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the presence of overall system uncertainty and individual parameter uncertainties,

respectively. Section 4.5 focuses on the minimum power consumption problem.

Numerical results are provided in Section 4.6, followed by concluding remarks in

Section 4.7.

4.1 System Model

We consider a VLP system with NL LED transmitters and a VLC receiver, where

the objective is to estimate the unknown location of the VLC receiver by utilizing

signals emitted by the LED transmitters. As is commonly the case for visible light

systems [5, 23], we assume an LOS scenario between each LED transmitter and

the VLC receiver. Then, the received signal at the VLC receiver due to the ith

LED transmitter is formulated as [23]

ri(t) = αiRp si(t− τi) + ηi(t) (4.1)

for i ∈ {1, . . . , NL} and t ∈ [T1,i, T2,i], where T1,i and T2,i specify the observation

interval for the signal coming from the ith LED transmitter, αi is the optical

channel attenuation factor between the ith LED transmitter and the VLC receiver

(αi > 0), Rp is the responsivity of the photo detector at the VLC receiver, si(t)

is the transmitted signal of the ith LED transmitter, which is nonzero over an

interval of [0, Ts,i], τi is the TOA of the signal emitted by the ith LED transmitter,

and ηi(t) is zero-mean additive white Gaussian noise with a spectral density

level of σ2. To enable independent processing of signals coming from different

LED transmitters, a certain type of multiple access protocol, such as frequency-

division or time-division multiple access [130,132], can be employed [4]. Thus, the

noise processes, η1(t), . . . , ηNL
(t), are modeled to be independent. In addition, we

assume that the VLC receiver has the knowledge of Rp and si(t), i ∈ {1, . . . , NL}.

The TOA parameter in (4.1) can be expressed as

τi = ‖lr − lit‖
/
c+ ∆i (4.2)

where c is the speed of light, ∆i denotes the time offset between the clocks

of the ith LED transmitter and the VLC receiver, lr = [lr,1 lr,2 lr,3]T and
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lit =
[
lit,1 l

i
t,2 l

i
t,3

]T
denote the locations of the VLC receiver and the ith LED

transmitter, respectively, and ‖lr− lit‖ specifies the distance between the ith LED

transmitter and the VLC receiver. For synchronous VLP systems, ∆i = 0 for

i = 1, . . . , NL as all the LED transmitters and the VLC receiver are synchronized

to a common time reference. On the other hand, for asynchronous systems, where

there is no synchronization between the LED transmitters and the VLC receiver,

∆i’s are modeled as deterministic unknown parameters.

Using the Lambertian model [104], the channel attenuation factor αi in (4.1)

can be written as2

αi = −(mi + 1)S

2π

[
(lr − lit)Tnit

]mi (lr − lit)Tnr

‖lr − lit‖mi+3
(4.3)

where mi is the Lambertian order for the ith LED transmitter, S is the area

of the photo detector at the VLC receiver, and nr = [nr,1 nr,2 nr,3]T and nit =[
nit,1 n

i
t,2 n

i
t,3

]T
specify the orientation vectors of the VLC receiver and the ith

LED transmitter, respectively [23,29].3

It is assumed that the parameters S, nr, mi, l
i
t, and nit for i = 1, . . . , NL

are known by the VLC receiver. For example, the orientation of the VLC re-

ceiver, nr, can be measured through a gyroscope and the parameters of the LED

transmitters (mi, l
i
t and nit) can be transmitted to the receiver via visible light

communications.4

Remark 1. In VLP systems, the types of signal metrics that can be utilized

for position estimation depend on whether the considered system is synchronous

or asynchronous. The TOA parameter in (4.2) can be used only for synchronous

2As the optical channel attenuation αi is non-negative and governs the received signal level,

it can be regarded as the RSS parameter in VLP systems [18].
3For example, nr = [0 0 1]

T
means that the VLC receiver is pointing upwards.

4The communication interval between each LED transmitter and the VLC receiver can be

divided into two non-overlapping time slots, in which the ranging signals si(t) can be transmitted

in the first one and the parameters of the transmitter can be sent in the second one. The VLC

receiver can estimate its own location using the ranging signals and the related parameters

transmitted by the LEDs via a consistent LOS link between each LED transmitter and the

VLC receiver.
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systems as ∆i’s are unknown in asynchronous scenarios. On the other hand, the

RSS parameter in (4.3) conveys information related to the unknown location of

the VLC receiver, lr, in both synchronous and asynchronous VLP systems since

it does not depend on the time offsets ∆i’s. Hence, in synchronous scenarios,

both the TOA and RSS parameters can be employed for positioning, whereas in

asynchronous scenarios, only the RSS parameter can be used for estimating lr.

4.2 Optimal Power Allocation for LEDs

In this section, we establish a theoretical framework for the optimization of LED

transmit powers with the aim of maximizing the localization performance of the

VLC receiver. First, we describe the optimization variables and the optimization

performance metric. Then, by incorporating several practical constraints related

to indoor visible light scenarios, we present the formulation of the optimal power

allocation problem.

4.2.1 Optimization Variables

The transmitted signal si(t) from the ith LED transmitter can be expressed as

si(t) =
√
Pi s̃i(t) (4.4)

for i ∈ {1, . . . , NL}, where s̃i(t) is a base signal such that
∫ Ts,i

0
(s̃i(t))

2dt/Ts,i = 1,

and Pi is a parameter that specifies the transmit power of the ith LED. Then,

the optical power of si(t) can be obtained as [23]

Eopt
i =

∫ Ts,i

0

si(t)dt
/
Ts,i =

√
Pi Ẽ

opt
i (4.5)

where Ts,i denotes the period of si(t) and Ẽopt
i is the optical power of s̃i(t), defined

as

Ẽopt
i ,

∫ Ts,i

0

s̃i(t)dt
/
Ts,i . (4.6)
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On the other hand, the electrical power consumed by the ith LED, Eelec
i , is

proportional to Pi [104]; that is, Eelec
i ∝

∫ Ts,i
0

(si(t))
2dt/Ts,i = Pi. In this study,

we aim at optimizing the electrical powers of the transmitted signals by adjusting

{Pi}NL
i=1 to maximize the localization performance.

4.2.2 Optimization Metric

The CRLB on the variance of any unbiased estimator l̂r for the location of the

VLC receiver lr can be expressed as

E
{
‖l̂r − lr‖2

}
≥ trace

{
J−1(p)

}
(4.7)

where the Fisher information matrix (FIM) is given by [18]

J(p) = (I3 ⊗ p)TΓ (4.8)

with

p , [P1 . . . PNL
]T ∈ RNL (4.9)

Γ ,


γ1,1 γ1,2 γ1,3

γ2,1 γ2,2 γ2,3

γ3,1 γ3,2 γ3,3

 ∈ R3NL×3 (4.10)

γk1,k2 ,
[
γ

(1)
k1,k2

. . . γ
(NL)
k1,k2

]T
∈ RNL (4.11)

for k1, k2 ∈ {1, 2, 3}. I3 and ⊗ in (4.8) represents, respectively, the 3× 3 identity

matrix and the Kronecker product, Pi in (4.9) is as defined in Section 4.2.1 and

γ
(i)
k1,k2

in (4.11) is given by Appendix 4.8.1.

We employ the CRLB in (4.7) as the optimization performance metric for

quantifying the localization accuracy of the VLC receiver.5 The reason for this

5It should be emphasized that this performance metric constitutes a lower bound on the

positioning error of unbiased estimators and therefore may not be the same as the actual

positioning error. However, as will be shown in Section 4.6.2, the optimization based on the

CRLB leads to a similar level of improvement on the RMSE performance of the ML estimators.
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choice is that the ML estimator for the location of the VLC receiver can at-

tain the CRLB for sufficiently high SNRs [122, 133]. In addition, the CRLB

expression facilitates theoretical analyses and results in mathematically tractable

formulations. Also, the usage of the CRLB as a performance measure renders

the analysis independent of any specific location estimator, thereby providing a

generic framework for power allocation in VLP systems.

4.2.3 VLP System Constraints

Certain constraints must be imposed on a VLP system while designing LED

power optimization schemes in order to satisfy illumination, energy, and hardware

related requirements. In particular, the following system constraints are taken

into account in the power optimization problem:

4.2.3.1 Individual Power Constraints

Lower and upper bound constraints for LED powers must be incorporated to

ensure that transmission powers of LEDs lie inside the linear region of operation

so that the LED output power is proportional to the input drive current, which

provides efficient electrical-to-optical conversion [55, 59, 78, 79, 134]. In addition,

self-heating induced by a high drive current may shorten the LED lifetime [135].

Hence, the resulting constraint set is given by

P1 , {p ∈ RNL : plb � p � pub} (4.12)

where plb ∈ RNL and pub ∈ RNL denote, respectively, the lower and upper bounds

on p in (4.9).
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4.2.3.2 Total Power Constraint

Due to power consumption restrictions of LEDs and human eye safety consid-

erations, the total electrical power of LEDs in a VLP system must be lim-

ited [60, 79, 104, 136]. Therefore, we have the following constraint set regarding

the total power limit:

P2 , {p ∈ RNL : 1Tp ≤ PT} (4.13)

where PT determines the total electrical power constraint of LEDs.

4.2.3.3 Individual Illumination Constraints

Since VLP systems are utilized also for indoor lighting in addition to other benefits

such as data transmission and localization, a certain level of brightness must be

maintained over the room and/or at specified locations [79–82]. The illuminance

(lm/m2, lx) is used as a measure of brightness, which is defined as the luminous

flux (lm) per unit area [137]. Combining [82, Eq. 3], [137, Eq. 16.3] and (4.5), the

horizontal illuminance at location x generated by the ith LED can be calculated

as

I iind(x, Pi) =
√
Pi φi(x) (4.14)

where

φi(x) ,
(mi + 1)κiẼ

opt
i

2π

[
(x− lit)Tnit

]mi (lit,3 − x3)

‖x− lit‖mi+3
(4.15)

with Ẽopt
i being as defined in (4.6) and κi denoting the luminous efficacy (lm/W)

of the ith LED, defined as the optical power to luminous flux conversion efficiency

[137]. Then, the total illuminance at x produced by all the LEDs can be obtained

as follows [138]:

Iind(x,p) =

NL∑
i=1

I iind(x, Pi) =

NL∑
i=1

√
Pi φi(x) (4.16)
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Let L denote the number of locations at which the illuminance constraint is to

be satisfied. Then, the corresponding constraint set can be defined as

P3 , {p ∈ RNL : Iind(x`,p) ≥ Ĩ`, ` = 1, . . . , L} (4.17)

where Ĩ` is the illuminance constraint defined for location x`.

4.2.3.4 Average Illumination Constraint

The expression in (4.16) quantifies the illuminance level at a specified location

in the room. It may also be necessary to keep the average illuminance over the

room above a certain threshold to comply with average brightness requirements.

Then, the average illuminance is

Iavg(p) =

NL∑
i=1

√
Pi

∫
A φi(x)dx

|A|
(4.18)

where A denotes the region where the average illuminance constraint must be

satisfied and |A| denotes the volume of A. The constraint set associated with the

average illuminance is given by

P4 , {p ∈ RNL : Iavg(p) ≥ Ĩavg} (4.19)

where Ĩavg is the average illuminance constraint.

Remark 2. In addition to the lower bounds on the illumination levels in (4.17)

and (4.19), we can also impose upper bound constraints to alleviate eye safety

risks in human environments. However, since the total power constraint in (4.13)

effectively limits the illumination level, an additional upper bound constraint in

(4.17) and (4.19) is not required. To express this observation in a formal manner,

let {Ĩub
` }L`=1 and Ĩub

avg denote the upper bounds on the individual and average

illuminance levels in (4.17) and (4.19), respectively. Then, it follows from the

Cauchy-Schwarz inequality that these upper bound constraints are satisfied if we

choose the total power limit in (4.13) as

PT ≤ min

{
min

`∈{1,...,L}

(Ĩub
` )2

‖φ(x`)‖2
,
(Ĩub

avg)2

‖ϕ‖2

}
, (4.20)
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where φ(x) = [φ1(x) . . . φNL
(x)]T and ϕ = [ϕ1 . . . ϕNL

]T with ϕi ,
∫
A φi(x)dx

|A| for

i ∈ {1, . . . , NL}.

4.2.4 Problem Formulation

Considering the optimization metric in Section 4.2.2 and the system constraints

in Section 4.2.3, the problem of optimal power allocation for LED transmitters

can be formulated as follows:

minimize
p

trace
{
J−1(p)

}
(4.21a)

subject to p ∈ P (4.21b)

where P ,
⋂4
i=1Pi and J(p) is given by (4.8). In the proposed power optimization

framework in (4.21), we search for the optimal power vector that minimizes the

CRLB for the localization of the VLC receiver subject to power and illumination

constraints.6 The following lemma establishes the convexity of (4.21).

Lemma 1. The optimization problem in (4.21) is convex.

Proof: First, the convexity of f(p) , trace
{
J−1(p)

}
in p is shown as follows:

Consider any p1 ∈ RNL , p2 ∈ RNL , and λ ∈ [0, 1]. Then,

f(λp1 + (1− λ)p2) = trace
{([

I3 ⊗ (λp1 + (1− λ)p2)
]T

Γ
)−1}

(4.22)

= trace
{(
λ(I3 ⊗ p1)TΓ + (1− λ)(I3 ⊗ p2)TΓ

)−1}
(4.23)

≤ λf(p1) + (1− λ)f(p2) (4.24)

where (4.22) follows from (4.8), (4.23) is the result of the properties of Kronecker

product, and (4.24) is due to the convexity of trace
{
X−1

}
for X � 0 [139]. Since

the constraint sets P1 in (4.12) and P2 in (4.13) are linear, and P3 in (4.17) and

P4 in (4.19) are convex due to the concavity of (4.16) and (4.18) with respect to

6With the optimal power allocation strategy in (4.21), the available resources of the LED

transmitters can be employed to provide improved localization accuracy and a desired level

of illumination simultaneously (i.e., no extra power resources are needed for localization in

addition to those utilized for illumination).
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p, the combined constraint set P is convex, thus proving the convexity of (4.21)

in p. �

Based on Lemma 1, it is noted that optimal LED power allocation strategies

can be obtained via standard convex optimization tools [139,140].

4.3 Robust Power Allocation with Overall Sys-

tem Uncertainty

In Section 4.2, the optimal power allocation is performed by assuming perfect

knowledge of localization parameters, which however may not be realistic for

practical VLP scenarios. In this section, robust optimization schemes will be

designed for power allocation among LED transmitters in the presence of overall

uncertainty in VLP system parameters7. In the following, we present the problem

formulation for robust power allocation with overall system uncertainty in VLP

scenarios and demonstrate that it can be reformulated as a convex optimization

problem, which can further be simplified to an SDP via feasible set relaxations.

4.3.1 Problem Statement

Considering the optimization problem in (4.21), the matrix Γ in (4.10) contains

all the information required for LED power optimization based on (4.8). Since

the knowledge of localization related parameters is imperfect in practice, it is

assumed that Γ is measured with some uncertainty; that is,

Γ̂ = Γ + ∆Γ (4.25)

where Γ̂ is the estimated/nominal matrix and ∆Γ represents the error matrix that

accumulates all the uncertainties in localization parameters. As in [141–144], a

7The meaning of overall uncertainty will be clarified in Section 4.3.1.
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deterministically bounded error model is considered for ∆Γ, i.e.,

∆Γ ∈ E , {∆Γ ∈ R3NL×3 : ‖∆Γ‖ ≤ δ} (4.26)

for a known size of uncertainty region δ, where ‖·‖ stands for the matrix spectral

norm.

For the robust counterpart of (4.21), the aim is to minimize the worst-case

CRLB over all uncertainties in the form of ‖∆Γ‖ ≤ δ. Hence, considering the

error model in (4.25), the robust min-max design problem corresponding to the

CRLB optimization in (4.21) can be stated as follows:

minimize
p

max
∆Γ∈E

trace
{(

(I3 ⊗ p)T (Γ̂−∆Γ)
)−1
}

(4.27)

subject to p ∈ P

where E is as defined in (4.26) and P is the feasible region in (4.21b).

Remark 3. As observed from (4.10), (4.11) and (4.62)–(4.67), the uncer-

tainty in Γ (equivalently, the uncertainty in γ
(i)
k1,k2

in (4.62)) may result from an

imperfect knowledge of the following VLP system parameters: Rp, lr, nr, l
i
t, n

i
t

and mi. The maximum possible errors in estimating these parameters can be

obtained by utilizing the characteristics of the devices on the LED transmitters

and the VLC receiver. For instance, orientation measurement error bounds can

be figured out via auxiliary sensor (e.g., gyroscope, accelerometer, magnetome-

ter) properties, while the responsivity of the photodetector and the Lambertian

order of the LED transmitters can be determined in a bounded interval from

device characteristics. In addition, the uncertainty in lr can be estimated from

the tracking error covariance matrix. Hence, it is reasonable to assume that the

uncertainty in γ
(i)
k1,k2

is bounded and known. Denoting this uncertainty level by

ε
(i)
k1,k2

(i.e.,
∣∣γ̂(i)
k1,k2
− γ(i)

k1,k2

∣∣ ≤ ε
(i)
k1,k2

where γ̂
(i)
k1,k2

represents the estimated value of

γ
(i)
k1,k2

), we have

‖∆Γ‖ ≤ ‖∆Γ‖F = ‖Γ̂− Γ‖F =

(
3∑

k1=1

3∑
k2=1

NL∑
i=1

(
γ̂

(i)
k1,k2
− γ(i)

k1,k2

)2

)1/2

(4.28)

≤

(
3∑

k1=1

3∑
k2=1

NL∑
i=1

(
ε

(i)
k1,k2

)2

)1/2

, δ (4.29)
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where ‖·‖F is the matrix Frobenius norm. Therefore, in practice, the uncertainty

level δ in (4.26) can be computed via (4.28) and (4.29).

Remark 4. The motivation for studying the overall system uncertainty comes

from its mathematical tractability that allows for the characterization of uncer-

tainties in a large number of individual parameters (e.g, locations, orientations

and other device properties) as a single perturbation/error matrix whose spec-

tral norm is upper bounded by a known value. This uncertainty model has also

been used in the localization literature (e.g., [144]) and can lead to computa-

tionally favorable robust problem formulations, as will be shown in Section 4.3.2.

The difference between the overall system uncertainty and individual parame-

ter uncertainties (which will be investigated in Section 4.4) is that the former

one reflects the combined effect of all the uncertainties in individual parame-

ters using a conservative error model, i.e., via a matrix perturbation model (as

in [144, Sec. III-C]) that involves the aggregate uncertainty, while the latter one

exploits the specific characteristics of the individual uncertainty regions (e.g.,

spherical uncertainty set for the location in (4.42) or bounded angular deviations

in orientation measurements in (4.46)) for achieving robustness in localization

(i.e., each individual parameter is considered separately). In cases where it is

difficult to handle the uncertainty sets collectively for all individual parameters

(note that γ
(i)
k1,k2

, defined in (4.62)–(4.67), is a very complicated expression in

terms of the uncertainty sources, e.g., Rp, lr, nr, l
i
t, n

i
t and mi [131]), the overall

uncertainty model can be especially beneficial in facilitating simultaneous treat-

ment of individual uncertainties. Therefore, it should be emphasized that the

individual parameter uncertainties in Section 4.4 are not the special cases of the

overall system uncertainty in Section 4.3; rather, they allow us to investigate the

effect of each uncertain parameter on the localization performance independently

by itself [131].
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4.3.2 Equivalent Convex Reformulation of (4.27)

The problem in (4.27) is challenging to solve in its current form and its direct solu-

tion is computationally prohibitive. In the following proposition, we demonstrate

that (4.27) can be reformulated as a convex program.

Proposition 1. The robust power allocation problem in (4.27) can equivalently

be expressed as the following convex optimization problem:

minimize
p,t,H,s,µ

t (4.30a)

subject to trace
{
H
}
≤ t− ds (4.30b)

Φ(p,H, s, µ) � 0 (4.30c)

H � 0, µ ≥ 0 (4.30d)

p ∈ P (4.30e)

where

Φ(p,H, s, µ) ,


H + sI I 0

I (I3 ⊗ p)T Γ̂− µI − δ
2
(I3 ⊗ p)T

0 − δ
2
(I3 ⊗ p) µI

 (4.31)

and d is the dimension of localization.

Proof: We utilize the following lemmas for the proof [142].

Lemma 2 (18c in [145]). Let X ∈ Rd×d be a symmetric matrix. Then,

trace
{
X
}
≤ t if and only if there exists s ∈ R and H ∈ Rd×d such that

trace
{
H
}
≤ t− ds, H � 0, H + sI � X . (4.32)

Lemma 3 (Lemma 2 in [141]). For matrices A, B and C with A = AT , the

matrix inequality

A � BTXC + CTXTB , ∀X : ‖X‖ ≤ δ (4.33)

is satisfied if and only if there exists a µ ≥ 0 such that[
A− µCTC −δBT

−δB µI

]
� 0 . (4.34)

115



By introducing a slack variable t, (4.27) can equivalently be written in the

epigraph form as follows:

minimize
p,t

t (4.35a)

subject to trace
{(

(I3 ⊗ p)T (Γ̂−∆Γ)
)−1
}
≤ t ,∀∆Γ : ∆Γ ∈ E (4.35b)

p ∈ P (4.35c)

First, using Lemma 2 for the constraint in (4.35b) leads to the following inequal-

ities:

trace
{
H
}
≤ t− ds, H � 0 (4.36a)

H + sI �
(
(I3 ⊗ p)T (Γ̂−∆Γ)

)−1
, ∀∆Γ : ∆Γ ∈ E (4.36b)

for some s ∈ R and H ∈ Rd×d. Next, applying the Schur complement lemma to

(4.36b), we have[
H + sI I

I (I3 ⊗ p)T (Γ̂−∆Γ)

]
� 0 , ∀∆Γ : ∆Γ ∈ E . (4.37)

Rearranging (4.37), an inequality of the form (4.33) is obtained as[
H + sI I

I (I3 ⊗ p)T Γ̂

]
� BT∆Γ C + CT∆ΓTB , ∀∆Γ : ∆Γ ∈ E (4.38)

where B , 1
2

[0 (I3 ⊗ p)] and C , [0 I]. Then, via Lemma 3, (4.38) is trans-

formed into the constraint in (4.30c), which completes the proof. �

4.3.3 SDP Formulation via Feasible Set Relaxation

Since (4.30c) is a linear matrix inequality (LMI) in the variables p, H, s and µ

[146], the problem in (4.30) is convex. In addition, if the general convex constraint

(4.30e) can be relaxed to a linear one by replacing P with an appropriate P̃
satisfying P̃ ⊇ P , (4.30) simplifies to an SDP with a linear objective and a set

of LMI constraints [147]. By squaring both sides of (4.17) and applying the
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arithmetic mean-geometric mean inequality, a relaxed version of P3 is obtained

as

P̃3 , {p : φ(x)Tp ≥ Ĩ2
` /1

Tφ(x), ` = 1, . . . , L} ⊇ P3 (4.39)

where φ(x) = [φ1(x) . . . φNL
(x)]T . Similarly, P4 in (4.19) can be relaxed to

P̃4 , {p : ϕTp ≥ Ĩ2
avg/1

Tϕ} ⊇ P4 (4.40)

whereϕ = [ϕ1 . . . ϕNL
]T with ϕi ,

∫
A φi(x)dx

|A| . Hence, by defining P̃ , P1∩P2∩P̃3∩
P̃4 and replacing P with P̃ in (4.30e), (4.30) becomes an SDP problem and thus

can be solved very efficiently using available convex optimization softwares [140,

148]. The worst-case complexity of an SDP with n variables and m constraints is

given by O(max(m,n)4n1/2 log(1/ε)), where ε is the tolerance level [149]. Thus,

the computational complexity of the SDP version of (4.30), which is obtained

from the feasible set relaxations, can be expressed as O(N4.5
L log(1/ε)).

4.4 Robust Power Allocation with Individual

Parameter Uncertainties

In this section, we consider robust power allocation schemes under individual un-

certainties related to localization parameters in VLP systems. In indoor tracking

applications, VLC receiver position lr can be predicted to lie in a validation re-

gion, but its exact position cannot perfectly be known. Similarly, VLC receiver

orientation nr may be subject to measurement errors since the measurement de-

vices such as gyroscopes tend to generate noisy parameter estimates. Hence,

individual parameter uncertainties must be taken into account while deriving op-

timal strategies for LED power allocation. In the following, we first present the

problem formulations in the presence of uncertainties in the location and the ori-

entation of the VLC receiver. Then, we propose an iterative approach to solve

the resulting intractable optimization problems.
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4.4.1 Uncertainty in VLC Receiver Location

To formulate the robust power allocation problem in the presence of uncertainties

about the location of the VLC receiver, we assume that the nominal location l̂r

is a perturbed version of the true location lr, i.e.,

l̂r = lr + elr . (4.41)

As in [131,142,150], we assume a spherical uncertainty set for the location errors,

i.e.,

elr ∈ Elr , {e ∈ R3 : ‖e‖ ≤ δlr} (4.42)

where δlr is a known value that represents the size of the uncertainty region. Then,

the power allocation problem in (4.21) based on worst-case CRLB minimization

can be formulated as

minimize
p

max
elr∈Elr

trace
{(

(I3 ⊗ p)T Γ(l̂r − elr)
)−1
}

(4.43)

subject to p ∈ P

where Γ(l̂r − elr) denotes the matrix Γ in (4.10) evaluated at lr = l̂r − elr .

4.4.2 Uncertainty in VLC Receiver Orientation

The orientation vector of the VLC receiver can be expressed as

nr(θ, φ) = [sin θ cosφ sin θ sinφ cos θ]T (4.44)

where θ and φ represent the polar and the azimuth angles, respectively [131].

According to (4.44), the uncertainty related to the orientation of the VLC receiver

can be modeled as angular uncertainties in θ and φ [131]. Hence, the nominal

(measured) polar and azimuth angles can be written as

θ̂ = θ + eθ, φ̂ = φ+ eφ (4.45)

where θ and φ are the true values of the angles, and eθ and eφ represent the errors

in angular measurements, for which the bounded uncertainty sets can be defined
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as

eθ ∈ Eθ , {e ∈ R : |e| ≤ δθ} (4.46a)

eφ ∈ Eφ , {e ∈ R : |e| ≤ δφ} (4.46b)

with δθ and δφ denoting the maximum possible angular deviations. Then, the

robust counterpart of (4.21) in the case of orientation uncertainties can be stated

as

minimize
p

max
eθ∈Eθ
eφ∈Eφ

trace
{(

(I3 ⊗ p)T Γ
(
nr(θ̂ − eθ, φ̂− eφ)

))−1}
(4.47)

subject to p ∈ P

where nr(· , ·) is as defined in (4.44) and Γ
(
nr(θ, φ)

)
is the matrix Γ in (4.10)

evaluated at nr = nr(θ, φ).

4.4.3 Iterative Entropic Regularization Algorithm

In this part, we develop a unified power allocation algorithm design for solving

the robust optimization problems in (4.43) and (4.47). To this end, let the error

vectors and the corresponding uncertainty sets in (4.42) and (4.46) be defined as

follows:

ẽ ,

elr , uncertainty in VLC receiver location

(eθ, eφ) , uncertainty in VLC receiver orientation
(4.48)

Ẽ ,

Elr , uncertainty in VLC receiver location

Eθ × Eφ , uncertainty in VLC receiver orientation
(4.49)

In addition, the objective functions in (4.43) and (4.47) can be represented by

ψ(p, ẽ) ,

trace
{(

(I3 ⊗ p)T Γ(l̂r − elr)
)−1
}

trace
{(

(I3 ⊗ p)T Γ
(
nr(θ̂ − eθ, φ̂− eφ)

))−1} (4.50)

where the first and second rows denote, respectively, the cases for the uncertainty

in the location and the orientation. Then, based on (4.48)–(4.50), the problems in
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(4.43) and (4.47) can be unified into a single optimization framework as follows:

minimize
p

max
ẽ∈Ẽ

ψ(p, ẽ) subject to p ∈ P (4.51)

The inner problem in (4.51) is not convex since ψ(p, ẽ) is not concave in

ẽ. Moreover, the epigraph form of (4.51) results in a semi-infinite optimization

problem whose constraints (in the form of ψ(p, ẽ) ≤ t, ∀ ẽ ∈ Ẽ , for some t ∈ R)

do not admit a tractable convex reformulation, as in (4.35b). Furthermore, the

exhaustive search method for solving (4.51) has a computational complexity that

is exponential in the number of LED transmitters NL. Therefore, it is challenging

to solve (4.51) in a computationally efficient manner via conventional techniques.

To tackle the robust design problem in (4.51), our algorithmic approach is

to use an iterative entropic regularization procedure that successively decreases

the objective value of the outer problem by updating the power vector p while

simultaneously refining the optimal value of the inner maximization problem [151,

152]. Let the objective function of the outer problem in (4.51) be defined as

Ψ(p) , max
ẽ∈Ẽ

ψ(p, ẽ) . (4.52)

The continuous uncertainty set Ẽ can be discretized using n points in Ẽ to

obtain a subset Ẽn of Ẽ . Then, Ψ(p) in (4.52) can be approximated by

Ψn(p) , max
ẽ∈Ẽn

ψ(p, ẽ). To circumvent the non-differentiability of Ψn(p), we can

employ the following entropic regularized/smoothed approximation of the max

function [151], [139, p. 72]:

Ψn
%(p) ,

1

%
log

{∑
ẽ∈Ẽn

exp
(
%ψ(p, ẽ)

)}
(4.53)

where % is the regularization constant [152].

Based on the regularized function in (4.53), we propose the iterative entropic

regularization algorithm in Algorithm 1, which consists of the following steps

[151,152]:
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• Outer Minimization: The objective function Ψ(p) in (4.52) is approximated

by the smoothed version Ψn
%(p) in (4.53). The resulting convex problem8

in (4.54) can efficiently be solved via standard tools of convex optimization

[139].

• Inner Maximization: Using the power vector p? obtained from the outer

minimization step, the inner maximization problem of (4.51) is solved in

(4.55) by performing a three (two)-dimensional grid search over Ẽ for the

case of the uncertainty in the location (orientation) of the VLC receiver.

Algorithm 1 can be shown to converge to a global minimum of (4.51) [151]. It

is worth noting that the computational burden of (4.51) is significantly reduced

via Algorithm 1 as compared to the exhaustive search approach, as mentioned in

the next subsection.

4.4.4 Complexity Analysis

In this part, we discuss the computational complexity of Algorithm 1 and compare

it with that of the exhaustive search based solution of (4.51). At each iteration,

Algorithm 1 involves solving a convex optimization problem and a grid search

over the uncertainty region. Let O(C) denote the complexity of the convex op-

timization problem in (4.54) and Ngrid the number of points employed for the

grid search over Ẽ in (4.55). Then, the per-iteration complexity of Algorithm 1 is

given by O(C) +O(Ngrid). Regarding the exhaustive search technique for solving

(4.51), let each axis of the feasible region P ⊂ RNL be discretized using O(M) dif-

ferent values. Thus, the outer iteration of (4.51) has a computational complexity

of O(MNL). Utilizing Ngrid points for the inner iteration, the overall complex-

ity becomes O(MNL Ngrid). Therefore, the complexity of the exhaustive search

method grows exponentially with the number of LED transmitters, whereas that

of Algorithm 1 is primarily determined by the convex problem in (4.54), which

8Since ψ(p, ẽ) is a convex function of p for a given ẽ (see (4.50) and Lemma 1) and the

log-sum-exp function is convex [139, p. 72], the resulting composition Ψn
% (p) is convex in p.
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Algorithm 1 Iterative Entropic Regularization Algorithm to Solve the Robust
Power Allocation Problem in (4.51)

Initialization:
Select ẽ1 ∈ Ẽ , set Ẽ1 = {ẽ1}, n = 1 and k = 1.
Select % > 0, ε ∈ (0, 1), ς > 0 and Ngrid ∈ Z+.
Iterative Step:
(Outer Problem) Solve the following convex optimization problem with a tol-
erance level of εk:

p? = arg min
p∈P

Ψn
%(p) (4.54)

where Ψn
%(p) is given by (4.53).

(Inner Problem) Obtain a new candidate from the uncertainty region Ẽ using
a grid search over the prespecified Ngrid points:

ẽn+1 = arg max
ẽ∈Ẽ

ψ(p?, ẽ) (4.55)

where ψ(p, ẽ) is as defined in (4.50).
Update k = k + 1.
(Check the Objective Value)
if ψ(p?, ẽn+1) > Ψn

%(p?) then

Set Ẽn+1 = Ẽn ∪ {ẽn+1}.
Update n = n+ 1.
Update % = max(%, log(n)2).

end if
(Check the Tolerance Value)
if εk + log(n)/% > ς then

Update % = %+ log(n).
end if
Stopping Criteria:
ψ(p?, ẽn+1) ≤ Ψn

%(p?) and εk + log(n)/% ≤ ς.
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can be solved in polynomial time [145]. As a result, Algorithm 1 has significantly

lower computational complexity than the exhaustive search based solution.

4.5 Minimum Power Consumption Problem

In practical indoor VLP systems, the power consumption of LEDs and the local-

ization error of VLC receivers must be jointly considered in a power optimization

problem. In Section 4.2, Section 4.3 and Section 4.4, the aim is to minimize

the localization error while satisfying power and illumination related constraints.

However, for improved energy efficiency of VLP systems, the total power con-

sumption of LEDs must also be taken into account in addition to localization

performance requirements [153].9 Therefore, similar to the minimal illumination

level problem in VLC systems [56, 135], we consider the minimum power con-

sumption problem for VLP systems, where the objective is to minimize the total

power consumption of LEDs while keeping the CRLB of the VLC receiver below

a predefined level. In the following subsections, we first investigate the problem

of total power minimization under perfect knowledge of localization parameters

and then study robust power allocation designs in the presence of uncertainties.

4.5.1 Power Minimization with Perfect Knowledge

In the absence of uncertainties in localization parameters, the minimum power

consumption problem can be formulated as follows:

minimize
p

1Tp (4.56a)

subject to trace
{
J−1(p)

}
≤ ε (4.56b)

p ∈ Ps (4.56c)

9Energy efficient localization algorithms have been considered also for RF sensor networks

in the literature (e.g., [154]).
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where 1Tp determines the total electrical power consumption, Ps , P1 ∩P3 ∩P4

and ε represents the maximum tolerable CRLB level for the localization of the

VLC receiver. In (4.56), we seek to find the most energy-efficient LED power

assignment scheme satisfying a certain level of localization accuracy. As implied

by Lemma 1, the optimization problem in (4.56) is convex.

The significance of the considered problem in (4.56) for VLP systems lies in

the fact that it yields the minimum value of PT in (4.13), above which the optimal

solution of (4.21) always achieves a lower CRLB than the specified design level, ε.

In other words, a certain level of localization performance is guaranteed by setting

PT above the obtained minimum value in (4.56), as in the minimal illumination

level problem in VLC systems [135].

4.5.2 Robust Power Minimization with Imperfect Knowl-

edge

In this part, we consider the robust counterpart of the power minimization prob-

lem in (4.56) under deterministic norm-bounded uncertainty in matrix Γ in (4.10)

based on the error model in (4.25). Thus, we assume that the errors in Γ belong

to a bounded uncertainty region as in Section 4.3.1 and develop a robust approach

that guarantees the localization performance measure for all the uncertainties in

the specified region. Accordingly, the robust design problem can be formulated

as

minimize
p

1Tp (4.57a)

subject to trace
{(

(I3 ⊗ p)T (Γ̂−∆Γ)
)−1
}
≤ ε , ∀∆Γ ∈ E (4.57b)

p ∈ Ps (4.57c)

where E is given by (4.26) and ε represents the constraint on the worst-case

CRLB. Similar to (4.27), the semi-infinite programming problem in (4.57) can

equivalently be reformulated as a convex problem, as shown in the following

proposition.
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Proposition 2. The robust power allocation problem in (4.57) is equivalent

to the following convex optimization problem:

minimize
p,H,s,µ

1Tp (4.58a)

subject to trace
{
H
}
≤ ε− ds (4.58b)

Φ(p,H, s, µ) � 0 (4.58c)

H � 0, µ ≥ 0, p ∈ Ps (4.58d)

where Φ(p,H, s, µ) is defined as in (4.31).

Proof: The proof directly follows from that of Proposition 1. �

4.6 Numerical Results

In this section, we provide numerical examples to investigate the performance of

the proposed optimal and robust power allocation designs for VLP systems.

4.6.1 Simulation Setup

We consider a VLP scenario in a room of size 10×10×5 m3, where there existNL =

4 LED transmitters and a VLC receiver. The locations and the orientations of the

LED transmitters and the VLC receiver are provided in Table 4.1. In addition,

L = 4 locations are determined for individual illumination constraints, which are

also displayed in Table 4.1. The average illuminance in (4.18) is calculated over

the horizontal plane of the room at a fixed height of 1 m.

The scaled version of the transmitted signal, s̃i(t), in (4.4) is modeled as s̃i(t) =
2
3
(1− cos(2π t/Ts,i))(1 + cos(2πfc,i t)) for i = 1, . . . , NL and t ∈ [0, Ts,i], where Ts,i

is the pulse width and fc,i is the center frequency [16,23].10 From (4.6), the optical

10The constant factor 2/3 is included to satisfy
∫ Ts,i

0
(s̃i(t))

2dt/Ts,i = 1, as indicated in

Section 4.2.1.
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Table 4.1: Locations and Orientations
Location of LED-1, l1t [1 1 5]T m

Location of LED-2, l2t [1 9 5]T m

Location of LED-3, l3t [9 1 5]T m

Location of LED-4, l4t [9 9 5]T m

Orientation of LEDs, nit (i = 1, 2, 3, 4) [0 0 − 1]T

Location of VLC Receiver, lr [3 3 0.5]T m

Orientation of VLC Receiver, nr [0.5 0 0.866]T

Location of Illumination Constraint-1, x1 [1 1 1]T m

Location of Illumination Constraint-2, x2 [1 9 1]T m

Location of Illumination Constraint-3, x3 [9 1 1]T m

Location of Illumination Constraint-4, x4 [9 9 1]T m

Table 4.2: Simulation Parameters
Responsivity of Photo Detector, Rp 0.4 mA/mW
Area of Photo Detector, S 1 cm2

Spectral Density Level of Noise, σ2 1.3381× 10−22 W/Hz
LED Lambertian Order, mi (i = 1, 2, 3, 4) 1
LED Luminous Efficacy, κi (i = 1, 2, 3, 4) 284 lm/W
Min. LED Optical Power 5 W
Max. LED Optical Power 20 W

Min. Illuminance Level, Ĩavg, Ĩ` (` = 1, 2, 3, 4) 30 lx
Transmitted Pulse Width, Ts,i (i = 1, 2, 3, 4) 1µs
Center Frequency, fc,i (i = 1, 2, 3, 4) 40 + 20(i− 1) MHz

power of s̃i(t) is calculated as Ẽopt
i = 2/3. In accordance with [16,23,79,81,131],

the VLP system parameters utilized throughout the simulations are given in

Table 4.2. In addition, an asynchronous VLP system is considered, i.e., the time

offsets {∆i}NL
i=1 in (4.2) are modeled as unknown parameters.

4.6.2 Power Allocation with Perfect Knowledge

In this part, we investigate the effects of the proposed optimal power allocation

approach on the localization performance of the VLC receiver under the assump-

tion of perfect knowledge of localization related parameters. Since this is the first
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study to consider power allocation in VLP systems, the uniform power alloca-

tion strategy (i.e., Pi = PT/NL, i = 1, . . . , NL) is also illustrated for comparison

purposes.

Fig. 4.1 plots the CRLB achieved by the optimal solution of (4.21) versus

PT/NL, which determines the average electrical power limit, for various locations

of the VLC receiver. It is observed that the optimal power allocation approach

can provide significant improvements in localization performance over the conven-

tional uniform power allocation approach. In addition, we note that the perfor-

mance improvement becomes more pronounced as the VLC receiver moves away

from the center of the room. The reason is that the contribution of each LED to

the Fisher information in (4.8) becomes almost equal at the room center whereas

the LEDs are less symmetric at the corners. Moreover, due to the limited linear

operation regime of the LEDs, the optimal strategy exhibits a similar performance

to that of the uniform strategy for sufficiently high values of PT. Furthermore,

when PT is lower than a certain value, the problem becomes infeasible due to the

average illumination constraint, and the uniform and optimal strategies achieve

the same CRLB at that value of PT.

In order to evaluate how the optimization based on the CRLB metric reduces

the true positioning error, we implement the ML estimator in [18, Eq. (44)] using

the LED optical powers obtained from the optimal solution of (4.21). Fig. 4.2

shows the root-MSEs (RMSEs) of the ML estimators corresponding to the optimal

and uniform power allocation strategies along with the corresponding CRLBs

with respect to PT/NL. We observe that power optimization based on the CRLB

metric can provide a level of performance enhancement in terms of the RMSE of

the ML estimator that is congruent with what is predicted by the CRLB.

To investigate the power allocation performance in the presence of multiple

VLC receivers, we also consider the problem of average CRLB minimization of

NV receivers

minimize
p

1

NV

NV∑
`=1

trace
{
J−1
` (p)

}
(4.59a)

subject to p ∈ P (4.59b)
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Figure 4.1: CRLB of (4.21) versus PT/NL for optimal and uniform power alloca-
tion strategies for various locations of the VLC receiver.
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mal and uniform power allocation strategies with respect to PT/NL.
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Figure 4.3: Average CRLB of three VLC receivers in (4.59) versus PT/NL for
optimal and uniform power allocation strategies, where the receiver locations
are given by l1r = [1.5 3 0.5]T m, l2r = [3 3 0.5]T m, l3r = [6 8 0.5]T m, and the
receiver orientations are given by n1

r = [0.5 0 0.866]T , n2
r = [0.5 0 0.866]T , n3

r =
[−0.2198 − 0.6040 0.7660]T .

where J`(p) denotes the FIM for the `th receiver. Fig. 4.3 depicts the average

CRLB performance of (4.59) with three VLC receivers against PT/NL for the

cases of optimal and uniform power allocation. Similar to the scenario with a

single VLC receiver, substantial localization performance gains within the dy-

namic range of the LEDs can be achieved via power optimization with multiple

receivers. Hence, different receivers can simultaneously utilize the available power

resources at the LED transmitters, resulting in improved efficiency of the VLP

system.
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4.6.3 Robust Power Allocation in the Presence of Overall

System Uncertainty

To illustrate the performance of the robust power allocation in the presence of

overall system uncertainty, as discussed in Section 4.3, several numerical exam-

ples are provided for the problem in (4.30), which is equivalent to the original

robust problem in (4.27). Since the goal of robustness is to optimize the worst-

case performance, we investigate the worst-case CRLBs achieved by the following

strategies:

• Robust: The robust strategy takes into account the uncertainty in Γ and

solves the problem in (4.30). Then, the resulting optimal value t? of the

slack variable t yields the worst-case CRLB.

• Non-robust: The non-robust strategy ignores the uncertainty in Γ and di-

rectly utilizes the nominal matrix Γ̂ in (4.25) to solve the power allocation

problem in (4.21). To obtain the worst-case CRLB corresponding to opti-

mal power vector pn−rob of (4.21), pn−rob is inserted into (4.30) as a fixed

quantity. Hence, the worst-case CRLB t? is calculated by solving

t? = min
t,H,s,µ

t (4.60a)

subject to trace
{
H
}
≤ t− ds, Φ(pn−rob,H, s, µ) � 0, H � 0, µ ≥ 0

(4.60b)

where Φ(p,H, s, µ) is given by (4.31).

• Uniform: In this strategy, the uniform power allocation vector is used and

the corresponding worst-case CRLB is obtained via (4.60) by replacing

pn−rob with the uniform power vector.

The worst-case CRLBs are averaged over 100 Monte Carlo realizations. For each

realization, an error matrix ∆Γ is randomly chosen from the uncertainty set E
in (4.26) and the nominal matrix Γ̂ is generated according to (4.25). Then, each
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strategy is evaluated by using realizations for which that strategy is feasible11.

Fig. 4.4 shows the worst-case CRLB performance and the feasibility rate of

the considered power allocation strategies against the level of uncertainty δ in

(4.26). It is observed that the performance of all the strategies deteriorates as

the uncertainty increases, as expected. For small uncertainty regions (i.e., small

δ), the robust strategy has almost the same performance as its non-robust coun-

terpart. However, the robust strategy outperforms the non-robust strategy for

large uncertainty regions, which results from the design philosophy in (4.27).

More specifically, since the nominal matrix Γ̂ deviates substantially from the

true matrix Γ for large values of δ, the non-robust strategy, which treats Γ̂ as the

true matrix in LED power optimization, results in poor worst-case localization

performance. On the other hand, the robust approach attempts to minimize the

performance degradation by utilizing the properties of the uncertainty region E
in (4.26).

As noted from Fig. 4.4, the robust strategy also provides the highest feasibility

rate among all the strategies since the feasible region of (4.60) is smaller than

that of (4.30) (the constraint set (4.30e) is replaced by a single point in (4.60)).

In addition, the feasibility rate of the uniform strategy undergoes a sharp decline

after a certain level of uncertainty, which distorts the monotonic behavior of its

worst-case CRLB around the point where this decline occurs. It is worth noting

that the non-robust strategy achieves a higher feasibility rate and lower worst-

case CRLB than the uniform strategy for small δ, but this trend changes as δ

increases. The reason is that for small δ, the non-robust approach can find near-

optimal power allocation vectors in the sense of (4.27) (since solving (4.21) is

almost equivalent to solving (4.27) for small δ) whereas the uniform power vector

does not take into account the localization related parameters (e.g., locations

and orientations of the LED transmitters and the VLC receiver) and assigns

11More specifically, we fix the number of feasible realizations beforehand and continue to pick

new matrices from the uncertainty region until the predefined number of feasible realizations

is reached. For the robust strategy, feasibility refers to the problem in (4.30) being feasible for

a given realization Γ̂. For the non-robust and uniform strategies, feasibility means that the

problem in (4.60) is feasible, which is equivalent to the worst-case CRLB in (4.60a) being finite.
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Figure 4.4: Worst-case CRLB and the percentage of feasible realizations in (4.27)
versus the level of uncertainty δ, where the average power limit is PT/NL = 400.

equal power to all the LEDs, which leads to low feasibility rates and large errors

in localization. On the other hand, for high δ, the performance of the non-robust

strategy becomes worse than that of the uniform strategy with increasing errors

in Γ̂.

4.6.4 Robust Power Allocation in the Presence of Indi-

vidual Parameter Uncertainties

In this part, we consider the robust power allocation schemes designed for the

case of individual parameter uncertainties, as discussed in Section 4.4. In the

simulations, we explore the performance of the three strategies as mentioned in

Section 4.6.3 using 100 Monte Carlo realizations. The robust strategy is obtained

by solving (4.51) via Algorithm 1. For the non-robust strategy, the uncertainty

set Ẽ in (4.49) is ignored and the nominal parameters (i.e., l̂r in (4.41) or (θ̂, φ̂) in

(4.45)) are employed for power allocation via (4.21). To compute the worst-case
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CRLB for a given power vector p∗, which corresponds to Ψ(p∗) in (4.52), we

use a multi-start optimization algorithm for globally solving the maximization

problem in (4.52).

Fig. 4.5 depicts the worst-case CRLB performance versus the level of uncer-

tainty in the VLC receiver location, δlr , for the considered strategies.12 As seen

from Fig. 4.5, the proposed robust power allocation approach always achieves

lower worst-case CRLBs than the other two strategies. In addition, the perfor-

mance benefit provided by the robust strategy over its non-robust counterpart

becomes more evident for larger values of δlr . Hence, the robust scheme in (4.43)

can effectively exploit the characteristics of the uncertainty region Elr in (4.42)

to optimize the worst-case localization performance. This also indicates that the

proposed power allocation algorithm in Algorithm 1 can successfully converge to

the optimal solution of (4.43). Moreover, we observe that the uniform strategy

performs worse than the non-robust strategy for small δlr . However, as δlr in-

creases, the non-robust approach is outperformed by the uniform approach since

the latter blindly assigns equal powers to the LEDs by disregarding parameter

measurements whereas the former employs the highly inaccurate measurement of

lr for power allocation of the LEDs.

In Fig. 4.6, we plot the worst-case CRLBs against the level of uncertainty in

the polar angle of the VLC receiver (δθ in (4.46a)) for two different levels of uncer-

tainty in the azimuth angle (δφ in (4.46b)). As seen from Fig. 4.6, the proposed

robust power allocation strategy offers the best worst-case CRLB performance

among all strategies. In addition, we note that the performance gain achieved

via the robust approach becomes more prominent for larger uncertainty regions

12 Even though the x-axis (uncertainty in location) and the y-axis (CRLB for location

estimation) of Fig. 4.5 may seem to be conflicting with one another, they actually refer to

different stages of a positioning/tracking system. In particular, the x-axis corresponds to the

uncertainty in the receiver location that derives from the error covariance matrix of the tracking

filter (e.g., Kalman filter) while the y-axis corresponds to the errors in location measurements,

which can be quantified by the CRLB expression. In a VLP tracking scenario, the y-axis and the

x-axis denote, respectively, the errors in the measurement and tracking blocks of a positioning

system. Therefore, in Fig. 4.5, we aim to optimize the location measurement performance (i.e.,

CRLB) by utilizing the uncertainty information coming from the tracking block.
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Figure 4.5: Worst-case CRLB of (4.43) versus the level of uncertainty in the
location of the VLC receiver δlr , where the average power limit is PT/NL = 400.

Eθ and Eφ in (4.46). Moreover, additional numerical experiments for computing

the worst-case RMSEs achieved by the considered power allocation approaches

indicate that the level of improvement in the actual positioning error (i.e., RMSE)

is analogous to that achieved by the worst-case CRLB optimization.

4.6.5 Minimum Power Consumption Problem

In this subsection, numerical examples are provided for the power allocation

designs in Section 4.5.

4.6.5.1 Power Allocation with Perfect Knowledge

We explore the electrical power consumption corresponding to the optimal so-

lution of (4.56) and provide a comparison with the uniform power allocation
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Figure 4.6: Worst-case CRLB of (4.47) versus the level of uncertainty in the polar
angle of the VLC receiver δθ for two different values of uncertainty in the azimuth
angle δφ, where the average power limit is PT/NL = 400.
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scheme, which is obtained from (4.56b) as

Pi = trace
{(

(I3 ⊗ 1)TΓ
)−1}

/ε (4.61)

for i = 1, . . . , NL.

Fig. 4.7 plots P ?
avg versus

√
ε for the optimal and uniform power allocation

strategies, where P ?
avg corresponds to the optimal value of (4.56a) divided by NL

(which is proportional to the average electrical power consumption) and ε is the

desired CRLB level in (4.56b). From the figure, we observe power saving gains of

around 30% via the optimal approach for centimeter-level accuracy requirements.

In addition, it is seen that the optimal strategy becomes equivalent to the uniform

strategy when the desired level of localization accuracy is sufficiently low, which

results from the illumination constraints.
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4.6.5.2 Robust Power Allocation with Imperfect Knowledge

We provide examples for the case of uncertainty in VLP system parameters,

discussed in Section 4.5.2. For the robust strategy, we solve (4.58), which is

equivalent to the original problem in (4.57) by Proposition 2, to get the optimal

power vector, while the non-robust strategy is obtained by replacing Γ̂ with Γ in

(4.56). In addition, the uniform strategy is given by (4.61) with Γ replaced by Γ̂.

Fig. 4.8 depicts the cumulative distribution function (CDF) of the CRLBs ob-

tained by the considered strategies for two different uncertainty levels, δ = 0.1

and δ = 0.2, by setting the worst-case accuracy level as
√
ε = 0.1 m. It is observed

that the robust algorithm, which solves (4.58), satisfies the accuracy constraint

in (4.57b) for all the realizations of Γ in accordance with the robust design ap-

proach, which also verifies the validity of Proposition 2. On the other hand, the

non-robust and uniform strategies are not able to satisfy the accuracy constraint

for approximately 50% of the realizations since they do not consider the uncer-

tainty in Γ in allocating powers to the LEDs. Also, the CRLBs are observed to

be more spread out for higher δ for all strategies. In Fig. 4.9, we show P ?
avg with

respect to δ, where P ?
avg is the optimal value of (4.57a) divided by NL. It is seen

that the robust strategy must utilize more transmission power with increasing δ in

order to guarantee the specified level of accuracy for larger uncertainty regions,

as expected. Hence, the relative performance gain of the robust strategy can

be achieved at the cost of higher transmit powers and increased computational

complexity, which results from solving (4.58) rather than the original problem

(4.56). However, as opposed to the non-robust power allocation, the robust ap-

proach provides a solid theoretical guarantee for satisfying the worst-case CRLB

constraint in (4.57b).

137



0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12
0

0.5

1
Robust
Non-robust
Uniform

0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12
0

0.5

1
Robust
Non-robust
Uniform

Worst-Case
Accuracy
Constraint

Worst-Case
Accuracy
Constraint

Figure 4.8: CDF of localization CRLBs achieved by robust, non-robust and uni-
form strategies in the case of deterministic norm-bounded uncertainty for the
matrix Γ, where the worst-case CRLB constraint in (4.57b) is set to

√
ε = 0.1 m

and two different uncertainty levels are considered, namely, δ = 0.1 (above) and
δ = 0.2 (below).
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4.7 Concluding Remarks

In this chapter, we have considered the problem of optimal power allocation for

LED transmitters in a VLP system. The optimization problem has been for-

mulated to minimize the CRLB for the localization of the VLC receiver under

practical constraints on transmission powers and illumination levels. Under the

assumption of perfect knowledge of localization related parameters, the power al-

location problem has been shown to be convex and thus efficiently solvable. In the

presence of overall uncertainty, we have investigated the robust design problem

that aims to minimize the worst-case CRLB over deterministic norm-bounded

uncertainties and proved that it can be reformulated as a convex optimization

problem. In addition, we have formulated the robust min-max problems corre-

sponding to the uncertainties in individual parameters, namely, the location and

the orientation of the VLC receiver. To solve the min-max problem, we have pro-

posed an iterative entropic regularization algorithm, whereby the original problem
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is transformed into a sequence of convex programs and a grid search is performed

over the uncertainty region. Moreover, the problem of total power minimization

has been explored under preset accuracy requirements. Simulation results have

demonstrated the effectiveness of the optimal power allocation approach in en-

hancing the localization performance compared to the traditional uniform strat-

egy. Furthermore, the proposed robust power allocation designs have been shown

to outperform their non-robust counterparts, especially for large uncertainty re-

gions. Regarding the minimum power consumption problem, power saving gains

of 30% by the optimal strategy have been observed relative to the uniform power

allocation approach.

4.8 Appendices

4.8.1 Definition of γ
(i)
k1,k2

γ
(i)
k1,k2

in (4.11) is defined as follows [18]:

γ
(i)
k1,k2

=

γ
(i),syn
k1,k2

, if synchronous VLP system

γ
(i),asy
k1,k2

, if asynchronous VLP system
(4.62)

γ
(i),syn
k1,k2

,
R2
p

σ2

(
Ei

2

∂αi
∂lr,k1

∂αi
∂lr,k2

+ Ei
1α

2
i

∂τi
∂lr,k1

∂τi
∂lr,k2

− Ei
3αi

(
∂αi
∂lr,k1

∂τi
∂lr,k2

+
∂τi
∂lr,k1

∂αi
∂lr,k2

))
(4.63)

γ
(i),asy
k1,k2

,
R2
p

σ2

(
Ei

2 −
(Ei

3)2

Ei
1

)
∂αi
∂lr,k1

∂αi
∂lr,k2

(4.64)

Ei
1 ,

∫ Ts,i

0

(
s̃′i(t)

)2
dt, Ei

2 ,
∫ Ts,i

0

(
s̃i(t)

)2
dt, Ei

3 ,
∫ Ts,i

0

s̃i(t)s̃
′
i(t)dt (4.65)

∂τi
∂lr,k

=
lr,k − lit,k
c‖lr − lit‖

(4.66)

∂αi
∂lr,k

= −(mi + 1)S

2π

((
(lr − lit)Tnit

)mi−1

‖lr − lit‖mi+3

(
mi n

i
t,k(lr − lit)Tnr + nr,k(lr − lit)Tnit

)
(4.67)

140



−
(mi + 3)(lr,k − lit,k)
‖lr − lit‖mi+5

(
(lr − lit)Tnit

)mi(lr − lit)Tnr

)
where s̃′i(t) denotes the derivative of s̃i(t).
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Chapter 5

Cooperative Localization in

Visible Light Networks

In this chapter, we propose a cooperative localization framework for VLP net-

works and design distributed algorithms based on iterative gradient projections

[20]. The main contributions of this chapter can be summarized as follows:

• For the first time in the literature, we propose to employ cooperative lo-

calization for VLP networks via a generic configuration that allows for an

arbitrary construction of connectivity sets and transmitter/receiver orien-

tations.

• The CRLB for localization of VLC units is derived in the presence of co-

operative measurements (Section 5.1). The effects of cooperation on the

performance of localization in VLP systems are illustrated based on the

provided CRLB expression (Section 5.5.1).

• The problem of cooperative localization in VLP systems is formulated as

a quasiconvex feasibility problem, which circumvents the complexity of the

nonconvex ML estimator and facilitates efficient feasibility-seeking algo-

rithms (Section 5.2).
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• We design gradient projections based low-complexity iterative algorithms

to find solutions to the feasibility problem (Section 5.3). The proposed

set-theoretic framework favors the implementation of algorithms in a dis-

tributed architecture.

• We provide formal convergence proofs for the proposed algorithms in

the consistent case based on the concept of quasi-Fejér convergence (Sec-

tion 5.4).

5.1 System Model and Theoretical Bounds

5.1.1 System Model

In a cooperative VLP system, there exist NL LED transmitters with known loca-

tions and orientations (i.e., anchor/reference nodes), and NV VLC units that are

to be located (i.e., agent/target nodes), as illustrated in Fig. 1.2. The location

of the jth LED transmitter is denoted by yj and its orientation vector is given

by ñT,j for j ∈ {1, . . . , NL}. Each VLC unit not only receives signals from the

LED transmitters at known locations but also communicates with other VLC

units in the system for cooperation purposes. Therefore, VLC units consist of

both LEDs and PDs; namely, there exist Li LEDs and Ki PDs at the ith VLC

unit for i ∈ {1, . . . , NV }. The unknown location of the ith VLC unit is denoted

by xi, where i ∈ {1, . . . , NV }. For the jth PD at the ith VLC unit, the loca-

tion is denoted by xi + ai,j and the orientation vector is given by n
(i)
R,j, where

j ∈ {1, . . . , Ki}. Similarly, for the jth LED at the ith VLC unit, the location

is represented by xi + bi,j and the orientation vector is denoted by n
(i)
T,j, where

j ∈ {1, . . . , Li}. The displacement vectors, ai,j’s and bi,j’s, are known design pa-

rameters of the VLC units. In addition, the orientation vectors for the LEDs and

PDs at the VLC units are assumed to be known since they can be determined by

the VLC unit design and/or via auxiliary sensors (e.g., inertial measurement unit
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(IMU) consisting of gyroscope, accelerometer and magnetometer [155–157]1). To

differentiate between the LED transmitters at known locations and the LEDs at

the VLC units, the former are called as the LEDs on the ceiling in the remainder

of this chapter.

In the cooperative VLP system, each PD communicates with a subset of all

the LEDs in the network. For this reason, the following connectivity sets are

defined to specify the connections between the PDs and the LEDs:

S̃
(j)
k =

{
` ∈ {1, . . . , NL} | `th LED on ceiling is

connected to kth PD of jth VLC unit
}

(5.1)

S
(i,j)
k =

{
` ∈ {1, . . . , Li} | `th LED of ith VLC unit is

connected to kth PD of jth VLC unit
}
. (5.2)

In (5.1), S̃
(j)
k is the set of LEDs on the ceiling that are connected to the kth

PD at the jth VLC unit. Similarly, in (5.2), S
(i,j)
k represents the set of LEDs at

the ith VLC unit that are connected to the kth PD at the jth VLC unit.

We consider a scenario in which RSS measurements performed by the PDs

are employed for estimating the unknown locations of the VLC units, i.e.,

x1, . . . ,xNV . Let P̃
(j)
`,k denote the RSS observation at the kth PD of the jth

VLC unit due to the transmission from the `th LED on the ceiling. Similarly,

let P
(i,j)
`,k represent the RSS observation at the kth PD of the jth VLC unit due

to the `th LED at the ith VLC unit. From the Lambertian formula [13,23], P̃
(j)
`,k

and P
(i,j)
`,k can be stated as follows2:

P̃
(j)
`,k = α̃

(j)
`,k(xj) + η̃

(j)
`,k (5.3)

P
(i,j)
`,k = α

(i,j)
`,k (xj,xi) + η

(i,j)
`,k (5.4)

1Relative locations and orientations of PDs and LEDs on VLC units can easily be calcu-

lated via simple linear operations (i.e., rotations and translations) based on IMU orientation

measurements.
2Since the wavelength of the visible light carrier (on the order of 10−6 m) is much lower than

dimensions of typical PDs (i.e., 10−2 m), multipath reflections are averaged out by integration

of the incident optical power over the area of a PD [4,11, 104]. Hence, in this study, only LOS

links are taken into account in the VLC channel model.
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where

α̃
(j)
`,k(xj) , −

m̃` + 1

2π
P̃T,`A

(j)
k

(
(d̃

(j)
`,k)

T ñT,l
)m̃`(d̃(j)

`,k)
Tn

(j)
R,k

‖d̃(j)
`,k‖m̃`+3

(5.5)

α
(i,j)
`,k (xj,xi) , −

m
(i)
` + 1

2π
P

(i)
T,`A

(j)
k

(
(d

(i,j)
`,k )Tn

(i)
T,`

)m(i)
` (d

(i,j)
`,k )Tn

(j)
R,k

‖d(i,j)
`,k ‖m

(i)
` +3

(5.6)

for j ∈ {1, . . . , NV }, k ∈ {1, . . . , Kj}, i ∈ {1, . . . , NV } \ j and ` ∈ S
(i,j)
k , with

d̃
(j)
`,k , xj + aj,k−y` and d

(i,j)
`,k , xj + aj,k−xi−bi,`. In (5.5) and (5.6), m̃` (m

(i)
` )

is the Lambertian order for the `th LED on the ceiling (at the ith VLC unit), P̃T,`

(P
(i)
T,`) denotes the transmit power of the `th LED on the ceiling (at the ith VLC

unit), and A
(j)
k is the area of the kth PD at the jth VLC unit. In addition, the

noise components, η̃
(j)
`,k and η

(i,j)
`,k , are modeled by zero-mean Gaussian random

variables each with a variance of σ2
j,k. By utilizing a certain type of multiple

access protocol (e.g., time division multiple access among the LEDs at the same

VLC unit and on the ceiling, and frequency division multiple access among the

LEDs at different VLC units or on the ceiling), η̃
(j)
`,k and η

(i,j)
`,k are assumed to be

independent for all different (j, k) pairs and for all ` and i.

5.1.2 ML Estimator and CRLB

Let the vector of unknown parameters be represented as x ,
[
xT1 . . . xTNV

]T
,

which has a size of 3NV × 1. The aim is to estimate the elements of x based on

the RSS measurements in (5.3) and (5.4). Let P denote a vector consisting of

all the measurements in (5.3) and (5.4). The elements of P can be expressed as

follows: {{{
P̃

(j)
`,k

}
`∈S̃(j)

k

}
k∈{1,...,Kj}

}
j∈{1,...,NV }{{{

{P (i,j)
`,k }`∈S(i,j)

k

}
i∈{1,...,NV }\{j}

}
k∈{1,...,Kj}

}
j∈{1,...,NV }

Then, the conditional PDF of P given x can be expressed as

f(P |x) =

( NV∏
j=1

Kj∏
k=1

1

(
√

2π σj,k)N
(j,k)
tot

)
e
−

∑NV
j=1

∑Kj
k=1

hj,k(x)

2σ2
j,k (5.7)
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where N
(j,k)
tot denotes the total number of LEDs that can communicate with the

kth PD at the jth VLC unit; that is, N
(j,k)
tot , |S̃

(j)
k |+

∑NV
i=1,i 6=j|S

(i,j)
k |, and hj,k(x)

is defined as

hj,k(x) ,
∑
`∈S̃(j)

k

(
P̃

(j)
`,k − α̃

(j)
`,k(xj)

)2
+

NV∑
i=1,i 6=j

∑
`∈S(i,j)

k

(
P

(i,j)
`,k − α

(i,j)
`,k (xj,xi)

)2
. (5.8)

Based on (5.7), the MLE is obtained as

x̂ML = arg min
x

NV∑
j=1

Kj∑
k=1

hj,k(x)

σ2
j,k

(5.9)

and the Fisher information matrix (FIM) [122] is given by

[J]t1,t2 = E
{
∂ log f(P |x)

∂xt1

∂ log f(P |x)

∂xt2

}
(5.10)

where xt1 (xt2) represents element t1 (t2) of vector x with t1, t2 ∈ {1, 2, . . . , 3NV }.
Then, the CRLB is expressed as

CRLB = trace(J−1) ≤ E{‖x̂− x‖2} (5.11)

where x̂ represents an unbiased estimator of x. From (5.7) and (5.8), the elements

of the FIM in (5.10) can be calculated after some manipulation as

[J]t1,t2 =

NV∑
j=1

Kj∑
k=1

1

σ2
j,k

( ∑
`∈S̃(j)

k

∂α̃
(j)
`,k(xj)

∂xt1

∂α̃
(j)
`,k(xj)

∂xt2︸ ︷︷ ︸
noncooperative

+

NV∑
i=1,i 6=j

∑
`∈S(i,j)

k

∂α
(i,j)
`,k (xj,xi)

∂xt1

∂α
(i,j)
`,k (xj,xi)

∂xt2︸ ︷︷ ︸
cooperative

)
.

(5.12)

where we can observe the contributions of noncooperative (i.e., measurements

due to LEDs on ceiling) and cooperative (i.e., measurements due to LEDs at the

VLC units) terms to the Fisher information.

5.1.3 Discussions on Practical Aspects

In this part, we remark on possible challenges that may arise in practical cooper-

ative VLP scenarios and demonstrate how these can be overcome by employing
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simple yet effective techniques. In particular, we focus on two possible real-life ap-

plications of the proposed cooperative VLP framework; namely, indoor scenarios

with infrared uplink transmission and vehicular VLC networks.

5.1.3.1 Optical Power of LEDs on VLC units

In certain indoor scenarios, increasing the optical power of LEDs installed in VLC

units to enable signal detection may lead to a concern for the human eye safety.

However, this can easily be handled by performing localization at low powers

via pulse combining. In localization applications, significantly higher SNR values

than those in communication systems can be achieved by transmitting signals

over much longer durations or by combining measurements from a large number

of pulses (transmitted signals). Unlike communication systems in which signal

durations cannot be increased arbitrarily due to high data rate requirements, we

can improve the SNR of measurements (and, thus, the localization accuracy) in

localization systems by repeating measurements to accumulate signal energy over

longer observation times [158]. Therefore, regarding the proposed cooperative

VLP framework, the LEDs installed in the VLC units can operate at low optical

powers to eliminate eye safety risks and still achieve high accuracy localization

by measurement integration.

As an alternative to the visible light spectrum (400 to 700 nm), we can utilize

the infrared band (> 700 nm) for communications among VLC units to comply

with eye safety requirements [104]. Although spectral transmittance through the

eye is relatively high in the visible light region (400 to 700 nm), it decreases

significantly in the infrared wavelengths, especially above 1200 nm [159], which

motivates the use of the infrared band for device-to-device VLC links. Recently,

low-cost and high-performance PD designs providing high responsivity in the

eye-safe infrared region (1550 nm) have been reported in the literature [160–

162]. Regarding practical scenarios, a large number of potential VLC applications

utilizing infrared wavelengths for uplink and device-to-device transmissions (i.e.,

among VLC units) have been proposed [2, 4, 101–103,163].
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Even though eye safety might be a concern for manned environments (which

can be eliminated by using the aforementioned approaches), VLC units operating

in unmanned environments do not pose any risks to human health. With the

advent of industrial autonomous robots, industrial production takes place mainly

in unmanned settings, leading to the concept of unmanned factories. Therefore,

VLC units mounted on robotic devices can cooperate with one another in such

environments for improved localization performance without jeopardizing human

health.

5.1.3.2 LOS Blockage Scenarios

LOS paths between the VLC units can be blocked by obstacles in some indoor

environments involving densely placed objects, which may reduce cooperation

gains in localization. Vehicular networks involving V2V and V2I links represent

a prominent example of the proposed cooperative VLC localization framework

that overcomes the limitations caused by LOS blockage [99, 164]. Since most

modern vehicles are equipped with LEDs in their headlights, taillights and turn

signals, V2V communications can easily be realized via VLC [97–99, 165]. For

the receiver part of V2V links, PDs can be placed in various sides of vehicles

(e.g., backsides of sideview mirrors, near headlights and taillights [99, Fig. 1])

to obtain measurements from LEDs of neighboring vehicles [97, 98]. Regarding

V2I communications, the infrastructure consists of fixed known-position nodes

(i.e., anchor nodes), such as traffic lights, street lights and digital signage [97–

99,166]. Integrating V2I and V2V communications in cooperative vehicular VLC

scenarios, we can establish a low-cost and highly reliable cooperative VLP system

that facilitates efficient traffic management applications (e.g., collision avoidance,

cooperative adaptive cruise control, lane assistance) [97, 99, 100, 164, 167]. As

VLP systems can produce much more precise location estimates than GPS, they

can be employed to provide the desired level of accuracy (e.g., on the order

of centimeters) for vehicle safety applications with strict accuracy requirements

[97,99,164,167,168].
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It is worth noting that besides its usage in cooperative vehicular settings, the

proposed system model in Section 5.1.1 is generic in the sense that it comprises

any cooperation scenario using the connectivity sets between LEDs and PDs, as

defined in (5.1) and (5.2). Therefore, the theoretical analysis is valid also for the

case of LOS blockage between some VLC units.

5.2 Cooperative Localization as a Quasiconvex

Feasibility Problem

In this section, the problem of cooperative localization in VLP networks is inves-

tigated in the framework of convex/quasiconvex feasibility. First, the feasibility

approach to the localization problem is motivated, and the problem formulation is

presented. Then, the convexity analysis is carried out for the resulting constraint

sets.

5.2.1 Motivation

For the localization of the VLC units, the MLE in (5.9) has very high computa-

tional complexity as it requires a search over a 3NV dimensional space. In addi-

tion, the formulation in (5.9) presents a nonconvex optimization problem; hence,

convex optimization tools cannot be employed to obtain the (global) optimal so-

lution of (5.9). As the number of VLC units increases, centralized approaches

obtained as solutions to a given optimization problem (such as (5.9)) may become

computationally prohibitive. Besides scalability issues, centralized methods also

require all measurements gathered at the VLC units to be relayed to a central unit

for joint processing, which may lead to communication bottlenecks. Therefore,

low-complexity algorithms amenable to distributed implementation are needed to

efficiently solve the cooperative localization problem in VLP networks. To that

aim, the localization problem is cast as a feasibility problem with the purpose of

149



finding a point in a finite dimensional Euclidean space that lies within the inter-

section of some constraint sets. Feasibility-seeking methods enjoy the advantage

of not requiring an objective function, thereby eliminating the concerns for non-

convexity or nondifferentiability of the objective function [169]. Hence, modeling

the localization problem as a feasibility problem (i) alleviates the computational

burden of minimizing a (possibly nonconvex) cost function in the highly un-

favorable centralized setting and (ii) facilitates the use of efficient distributed

algorithms involving parallel or sequential processing at individual VLC units.

5.2.2 Problem Formulation

Considering the Lambertian formula in (5.3)–(5.6), an RSS measurement at a PD

can be expressed as

P̂r = Pr + η (5.13)

where Pr is the true observation (as in (5.5) or (5.6)) and η is the measurement

noise. Suppose that the RSS measurement errors are negative, which yields P̂r ≤
Pr.

3 Then, based on (5.5) and (5.6), the following inequality is obtained:

g(x; y,nT ,nR,m, γ) ≤ 0 (5.14)

where g : Rd → R is the Lambertian function with respect to the unknown PD

location x, defined as

g(x; y,nT ,nR,m, γ) , γ −
[
(x− y)TnT

]m
(y − x)TnR

‖x− y‖m+3
, (5.15)

y, nT , nR, and m are known, d is the dimension of the visible light localization

network, and γ is given by γ = P̂r
Pt

2π
(m+1)A

. The field-of-views (FOVs) of the LED

3In order to satisfy the negative error assumption, a constant value can always be subtracted

from the actual RSS measurement [170]. Decreasing the value of an RSS measurement is

equivalent to enlarging the corresponding feasible set. Although this assumption does not

have a physical justification, it facilitates theoretical derivations and feasibility modeling of the

localization problem. It will be justified via simulations in Section 5.5.2 that the proposed

feasibility-seeking algorithms will converge for realistic noise models (e.g., Gaussian), as well.
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transmitters and the PDs are taken as 90◦, which implies that (x − y)TnT ≥ 0

and (y− x)TnR ≥ 0. Under the assumption of negative measurement errors, the

feasible set in which the true PD location resides is given by the following lower

level set of g(x):

L =
{

x ∈ Rd
∣∣∣ g(x; y,nT ,nR,m, γ) ≤ 0

}
(5.16)

which will hereafter be referred to as the Lambertian set. In RF wireless lo-

calization networks, such feasible sets are generally obtained as balls [92, 94],

hyperplanes [171], or ellipsoids [172], all of which lead to closed-form expressions

for orthogonal projection. For k ∈ {1, . . . , Kj} and j ∈ {1, . . . , NV }, the Lam-

bertian set corresponding to the kth PD of the jth VLC unit based on the signal

received from the `th LED on the ceiling for ` ∈ S̃(j)
k is defined as follows:

N (j)
`,k =

{
z ∈ Rd

∣∣∣ g̃(j)
`,k(z) ≤ 0

}
(5.17)

where g̃
(j)
`,k(z) is given by

g̃
(j)
`,k(z) , g

(
z; y` − aj,k, ñT,`,n

(j)
R,k, m̃`, γ̃

(j)
`,k

)
(5.18)

and γ̃
(j)
`,k is calculated from (5.3). Similarly, the Lambertian set corresponding to

the kth PD of the jth VLC unit based on the signal received from the `th LED

of the ith VLC unit for ` ∈ S(i,j)
k is defined as

C(i,j)
`,k =

{
z ∈ Rd

∣∣∣ g(i,j)
`,k (z,xi) ≤ 0

}
(5.19)

where g
(i,j)
`,k (z,xi) is given by

g
(i,j)
`,k (z,xi) , g

(
z; xi + bi,` − aj,k,n

(i)
T,`,n

(j)
R,k,m

(i)
` , γ

(i,j)
`,k

)
(5.20)

and γ
(i,j)
`,k is calculated from (5.4). The sets defined as in (5.17) represent nonco-

operative localization as they are constructed from the RSS measurements cor-

responding to the LEDs on the ceiling, whereas the sets in (5.19) are based on

the signals from the LEDs of the other VLC units and represent the cooperation

among the VLC units. Assuming negatively biased RSS measurements, the prob-

lem of cooperative localization in a visible light network reduces to that of finding

a point in the intersection of sets as defined in (5.17) and (5.19) for each VLC
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unit. If the Lambertian function in (5.15) is assumed to be quasiconvex4, then

the quasiconvex feasibility problem (QFP) can be formulated as follows [105,173]:

Problem 1. Let x , (x1, . . . ,xNV ). The feasibility problem for cooperative

localization of VLC units is given by5

find x ∈ RdNV

subject to xj ∈ Λj ∩Υj, j = 1, . . . , NV (5.21)

where

Λj =

Kj⋂
k=1

⋂
`∈S̃(j)

k

N (j)
`,k (5.22)

Υj =

Kj⋂
k=1

NV⋂
i=1

⋂
`∈S(i,j)

k

C(i,j)
`,k . (5.23)

5.2.3 Convexity Analysis of Lambertian Sets

The Lambertian sets as defined in (5.16) are not convex in general. The following

lemma presents the conditions under which the Lambertian sets become convex.

Lemma 1. Consider the α-sublevel set

B =
{

x ∈ Ω
∣∣∣ gε(x) ≤ α

}
(5.24)

of gε(x), which is given by

gε(x) = γ − (y − x)TnR
‖x− y‖k + ε

(5.25)

4The conditions under which the Lambertian function is quasiconvex are investigated in

Section 5.2.3.
5It may be more convenient to regard the problem in (5.21) as an implicit quasiconvex

feasibility problem (IQFP) since the Lambertian sets C(i,j)`,k depend on the locations of the VLC

units, which are not known a priori [94]. It should be emphasized that the feasibility problem

posed in Problem 1 is different from those in RF-based localization systems (e.g., [93,94]) since

the constraint sets and the associated quasiconvex functions have distinct characteristics as

compared to convex functions (e.g., distance to a ball) encountered in RF-based systems.
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where ε is a small positive constant to avoid non-differentiability and non-

continuity of gε(·) at y, as in [174, Eq. 7], k ≥ 1 and γ > 0 are real numbers,

and Ω ⊂ Rd is defined as

Ω =
{

x ∈ Rd
∣∣∣ (y − x)TnR ≥ 0

}
. (5.26)

Then, B is convex for each α ∈ R.

Proof : Suppose that x1 ∈ B, x2 ∈ B, and α < γ. It is clear that for any

λ ∈ (0, 1), λx1 + (1− λ)x2 ∈ Ω. Also, for any λ ∈ (0, 1),

gε(λx1 + (1− λ)x2) (5.27)

= γ − λ(y − x1)TnR + (1− λ)(y − x2)TnR
‖λ(x1 − y) + (1− λ)(x2 − y)‖k + ε

(5.28)

≤ γ − λ(y − x1)TnR + (1− λ)(y − x2)TnR
λ‖x1 − y‖k + (1− λ)‖x2 − y‖k + ε

(5.29)

≤ γ−
λ(γ − α)(‖x1 − y‖k + ε) + (1− λ)(γ − α)(‖x2 − y‖k + ε)

λ(‖x1 − y‖k + ε) + (1− λ)(‖x2 − y‖k + ε)
(5.30)

= α (5.31)

is obtained, where (5.29) is due to the convexity of ‖.‖k, x1 ∈ Ω, and x2 ∈ Ω,

and (5.30) follows from x1 ∈ B and x2 ∈ B. Hence, (5.27)–(5.31) implies the

convexity of B for α < γ. For α ≥ γ, gε(x) ≤ α is satisfied ∀x ∈ Ω, which implies

B = Ω. Therefore, B is convex ∀α ∈ R. �

Remark 1. Lemma 1 characterizes the type of Lambertian functions whose

sublevel sets are convex. Since a function whose all sublevel sets are convex is

quasiconvex [175], Lambertian functions of the form (5.25) are quasiconvex over

the halfspace Ω in (5.26). It can be noted that Ω consists of those VLC unit

locations which are able to obtain measurements from an LED located at y due

to the receiver FOV limit of 90◦.
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5.2.4 Convexification of Lambertian Sets

In this part, we utilize Lemma 1 to investigate the following two cases in which the

Lambertian functions can be transformed into the form of (5.25) and Problem 1

becomes a QFP.

5.2.4.1 Case 1: Convexification via Majorization

We propose to approximate the Lambertian function g(x) in (5.15) by a qua-

siconvex minorant g̃(x) such that g̃(x) ≤ g(x) for x ∈ Ω and L ⊆ L̃, where

L̃ ,
{
x ∈ Ω

∣∣ g̃(x) ≤ 0
}

represents a majorization of the original set

L ,
{
x ∈ Ω

∣∣ g(x) ≤ 0
}

. Assuming x ∈ Ω, we have

g(x) = γ −
[
(x− y)TnT

]m
(y − x)TnR

‖x− y‖m+3
(5.32)

≥ γ − ‖x− y‖m‖nT‖m(y − x)TnR
‖x− y‖m+3

(5.33)

= γ − (y − x)TnR
‖x− y‖3

, g̃(x) (5.34)

where (5.33) is due to the Cauchy-Schwarz inequality and x ∈ Ω, and (5.34)

follows from the unit norm property of the orientation vector. Then, including ε in

the denominator, we construct the Lambertian sets as (hereafter called expanded

Lambertian sets)

L =
{

x ∈ Ω
∣∣∣ g̃ε(x) ≤ 0

}
(5.35)

with

g̃ε(x) = γ − (y − x)TnR
‖x− y‖3 + ε

(5.36)

and Ω being as in (5.26). According to Lemma 1, L in (5.35) is convex, g̃ε(x)

in (5.36) is quasiconvex over Ω and the resulting problem of determining a point

inside the intersection of such sets turns into a QFP, which can be studied through

iterative projection algorithms [105,173].
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5.2.4.2 Case 2: Known VLC Height, Perpendicular LED

In this case, as in [15, 16, 23, 28], it is assumed that the LED transmitters on

the ceiling have perpendicular orientations, i.e., ñT,j = [0 0 − 1]T for each j ∈
{1, . . . , NL}, and the height of each VLC unit is known. This assumption is valid

for some practical scenarios, an example of which is a VLP network where the

LEDs on the ceiling are pointing downwards and the VLC units are attached

to robots that move over a two-dimensional plane [5, Fig. 3]. Assuming that

the height of the LED transmitters relative to the VLC units is h and nT =

[0 0 − 1]T , the Lambertian function in (5.15) can be rewritten as follows:

g(x; y,nT ,nR,m, γ) = γ − hm(y − x)TnR
‖x− y‖m+3

· (5.37)

Then, the Lambertian set corresponding to the function in (5.37) by introducing

ε in the denominator is obtained as

L =
{

x ∈ Ω
∣∣∣ g̃ε(x) ≤ 0

}
(5.38)

with

g̃ε(x) = γ̃ − (y − x)TnR
‖x− y‖m+3 + ε

(5.39)

where Ω is given by (5.26) and γ̃ = γ/hm. Note that the Lambertian set in (5.38)

is effectively defined on R2 since the height of the VLC unit is already known.

According to Lemma 1, the set defined in (5.38) is convex. Therefore, in this

case, the noncooperative sets as defined in (5.17) are originally convex.

Based on the discussion above, it is concluded that in the case of a known VLC

height and perpendicular LED transmitter orientations, the expanded Lamber-

tian sets in (5.35) defined on R2 must be used for the measurements among the

VLC units (i.e., cooperative measurements) in order to ensure that Problem 1 is

a QFP. For the general case in which the LED orientations are arbitrary and/or

the heights of the VLC units are unknown, all the noncooperative and coopera-

tive Lambertian sets must be replaced by the corresponding expanded versions

in (5.35).
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A noncooperative VLP network is illustrated in Fig. 5.1(a), where there exist

four LED transmitters on the ceiling and two VLC units. In the network, it

is assumed that the heights of the VLC units are known and the LEDs on the

ceiling have perpendicular orientations so that Case 2 type convex Lambertian

sets can be utilized for the measurements between the LEDs on the ceiling and the

VLC units. Fig. 5.1(b) shows the cooperative version of the VLP network with

cooperative Lambertian sets including both the nonexpanded (original) sets as in

(5.19) and Case 1 type expanded sets as in (5.35). It is noted from Fig. 5.1(b)

that incorporating cooperative Lambertian sets into the localization geometry

can significantly reduce the region of intersection of the Lambertian sets.

5.3 Gradient Projections Algorithms

In this section, we design iterative subgradient projections based algorithms to

solve Problem 1. The idea of using subgradient projections is to approach a

convex set defined as a lower contour set of a convex/quasiconvex function by

moving in the direction that decreases the value of that function at each iteration,

i.e., in the opposite direction of the subgradient of the function at the current

iterate [112, 176]. First, the definition of the gradient projector is presented as

follows:

Definition 1. The gradient projection operator Gλ
f : Rd → Rd onto the

zero-sublevel set of a continuously differentiable function f : Rd → R is given

by [177]

Gλ
f : x 7→

x− λ f(x)
‖∇f(x)‖2∇f(x), if f(x) > 0

x, if f(x) ≤ 0
(5.40)

where λ is the relaxation parameter and ∇ is the gradient operator. The gradient

projector can also be expressed as

Gλ
f (x) = x− λ f+(x)

‖∇f(x)‖2
∇f(x) (5.41)

with f+(x) denoting the positive part, i.e., f+(x) = max{0, f(x)}. In the sequel,

it is assumed that Gλ
f (x) = x when x is outside the region where f is quasiconvex.

156



-10 -5 0 5 10 15

Room Width (m)

-10

-5

0

5

10

15

R
oo

m
 D

ep
th

 (
m

)

LED 3

LED 2 LED 4

LED 1

VLC 2VLC 1

(a)

0 2 4 6 8 10

Room Width (m)

0

2

4

6

8

10

R
oo

m
 D

ep
th

 (
m

)

LED 2

LED 1

Expanded Set
for VLC 1

LED 4

LED 3

Expanded Set
for VLC 2

VLC 1 VLC 2

Original Set
for VLC 1

Original
Set
for VLC 2

(b)

Figure 5.1: (a) A noncooperative VLP network consisting of four LED transmit-
ters on ceiling and two VLC units. VLC-1 is connected to LED-1 and LED-2,
and VLC-2 is connected to LED-3 and LED-4. Green and blue regions rep-
resent the noncooperative Lambertian sets for VLC-1 and VLC-2, respectively.
(b) Cooperative version of the VLP system in Fig. 5.1(a), shown by zooming
onto VLC units. Case 1 type expanded cooperative Lambertian sets and their
nonexpanded (original) counterparts are illustrated along with noncooperative
Lambertian sets. Cooperation helps shrink the intersection region of Lambertian
sets for VLC units.
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5.3.1 Projection Onto Intersection of Halfspaces

Since the functions of the form (5.25) are continuously differentiable and qua-

siconvex on the halfspace Ω in (5.26), a special case of subgradient projections,

namely, gradient projections, can be utilized to solve Problem 1, under the con-

straint that iterates must be inside Ω to guarantee quasiconvexity. Hence, at the

start of each iteration of gradient projections, projections onto the intersection

of halfspaces of the form Ω in (5.26) can be performed to keep the iterates inside

the quasiconvex region. The procedure for projection onto the intersection of

halfspaces

Γj =

Kj⋂
k=1

⋂
`∈S̃(j)

k

Ω̃
(j)
`,k (5.42)

corresponding to the jth VLC unit for j ∈ {1, . . . , NV }, with the halfspaces given

by

Ω̃
(j)
`,k ,

{
x ∈ Rd

∣∣∣ (y` − aj,k − x)Tn
(j)
R,k ≥ 0

}
, (5.43)

is provided in Algorithm 26. In order to find a point inside the intersection of

halfspaces, the method of alternating (cyclic) projections is employed in Algo-

rithm 2, where the current iterate is projected onto each halfspace in a cyclic

manner. Convergence properties of this method are well studied in the litera-

ture [178, 179]. Γj is guaranteed to be nonempty since it represents the set of

possible locations for the jth VLC unit at which the RSS measurements from the

connected LEDs on the ceiling can be acquired. However, the intersection of the

halfspaces corresponding to the LEDs of the other VLC units that are connected

to the jth VLC unit may be empty due to the VLC unit locations being unknown

and variable during iterations.

5.3.2 Step Size Selection

An important phase of the proposed projection algorithms is determining the

relaxation parameters (i.e., step sizes) associated with the gradient projector.

6PC(x) denotes the orthogonal projection operator, i.e., PC(x) = arg minw∈C‖w − x‖.
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Algorithm 2 Projection Onto Intersection of Halfspaces Γj

function PΓj(xj)

Initialization: x
(0)
j = xj

Iterative Step: Given the nth iterate x
(n)
j ∈ Rd

for k = 1, . . . , Kj do

for ` ∈ S̃(j)
k do

x
(n)
j = P

Ω̃
(j)
`,k

(x
(n)
j ) (5.44)

end for
end for
Set x

(n+1)
j = x

(n)
j

Stopping Criterion: ‖x(n+1)
j − x

(n)
j ‖ < δ for some δ > 0.

end function

The step size selection procedure exploits the well-known Armijo rule, which is

an inexact line search method used extensively for gradient descent methods in

the literature [180, 181], [182, Section 1.2]. Algorithm 3 provides an Armijo-like

procedure for step size selection given a set of Lambertian functions, the initial

step size value λ, a fixed constant β ∈ (0, 1) specifying the degree of decline in

the value of the function, step size shrinkage factor ξ ∈ (0, 1), and the current

point x. The guarantee of existence of a step size as described in Algorithm 3

can be shown similarly to [183, Lemma 4].

Algorithm 3 Armijo Rule for Step Size Selection

function J ({fi}Mi=1, λ, β, ξ,x)
Output: New step size λ̃
Set the step size as

λ̃ = λξm̃ (5.45)

where

m̃ = min
{
m ∈ Z≥0 | fi(Gλξm

fi
(x)) ≤ fi(x)(1− βλξm), ∀i ∈ {1, . . . ,M}

}
(5.46)

end function
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5.3.3 Iterative Projection Based Algorithms

In this work, two classes of gradient projections algorithms, namely, sequential

(i.e., cyclic) [176] and simultaneous (i.e., parallel) [184] projections, are consid-

ered for the QFP described in Problem 1. The proposed algorithm for cyclic

projections, namely, the cooperative cyclic gradient projections (CCGP) algo-

rithm, for cooperative localization of VLC units is provided in Algorithm 4. In

the proposed cyclic projections, the current iterate, which signifies the location

of the given VLC unit, is first projected onto the intersection of halfspaces corre-

sponding to the LEDs on the ceiling via Algorithm 2. Then, the resulting point

is projected onto the noncooperative Lambertian set that leads to the highest

function value, i.e., the most violated constraint set [105]. Similarly, projection

onto the most violated constraint set among the cooperative Lambertian sets is

performed and the projections obtained by noncooperative and cooperative sets

are weighted to obtain the next iterate.

The cooperative simultaneous gradient projections (CSGP) algorithm is pro-

posed as detailed in Algorithm 5. Simultaneous projections are based on project-

ing the current point onto each noncooperative and cooperative Lambertian set

separately and then averaging all the resulting points to obtain the next iterate.

At each iteration, the parallel projection stage is preceded by projection onto the

intersection of halfspaces, which aims to ensure that the current iterate resides in

the region where all the Lambertian functions corresponding to the fixed anchors

(i.e., the LEDs on the ceiling) are quasiconvex. It should be noted that for both

cyclic and simultaneous projections, the cooperative Lambertian sets are deter-

mined by the latest estimates of the VLC unit locations [94], which are updated

in the ascending order of their indices. In addition, the step sizes are updated

using the Armijo rule in Algorithm 3.

Remark 2. Both Algorithm 4 and Algorithm 5 can be implemented in a dis-

tributed manner by employing a gossip-like procedure among the VLC units [185].

After refining its location estimate via projection methods, each VLC unit broad-

casts the resulting updated location to other VLC units to which it is connected.
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In order to save computation time, a synchronous counterpart of this asyn-

chronous/sequential algorithm can be devised, where VLC units work in parallel

to update their locations based on the most recent broadcast information. Hence,

the synchronous/parallel implementation trades off the localization accuracy for

faster convergence to the desired solution.

5.3.4 Complexity Analysis

In this part, we provide the complexity analysis of Algorithm 4, Algorithm 5,

and the MLE in (5.9).

5.3.4.1 Complexity Analysis for Algorithm 4

We first analyze the complexity of Algorithm 4 for the jth VLC unit at each

iteration. Each sub-step in the iterative step of Algorithm 4 is investigated as

follows:

Assume that Algorithm 2 requires O(N1) iterations for convergence. Then,

the computational complexity of (5.47) is given by O
(
N1

∑Kj
k=1|S̃

(j)
k |
)

. Since

the number of functions g̃
(j)
`,k

(
·
)

in (5.48) is equal to
∑Kj

k=1|S̃
(j)
k |, evaluating

(5.48) has the complexity O
(∑Kj

k=1|S̃
(j)
k |
)

. Similar to the case of noncooper-

ative projections in (5.48), evaluating (5.49) requires a computational complexity

of O
(∑Kj

k=1

∑NV
i=1,i 6=j|S

(i,j)
k |

)
. To analyze (5.53) and (5.54), assume that Algo-

rithm 3 requires O(N2) trials for determining a non-negative integer m. At each

trial, (5.46) requires O(M) operations, where M is the number of functions at the

input of Algorithm 3. Then, the computational complexity of step size selection

in (5.53) and (5.54) is computed as O

(
N2

∑Kj
k=1

[
|S̃(j)
k |+

∑NV
i=1,i 6=j|S

(i,j)
k |

])
. Since

the evaluation of the gradient projection operator in (5.41) requires O(1) oper-

ations, the averaging step in (5.52) has the complexity of O(1). Therefore, the
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Algorithm 4 Cooperative Cyclic Gradient Projections (CCGP)

Initialization: Choose an arbitrary initial point
(
x

(0)
1 , . . . ,x

(0)
NV

)
∈ RdNV .

Iterative Step: Given the nth iterate
(
x

(n)
1 , . . . ,x

(n)
NV

)
∈ RdNV

for j = 1, . . . , NV do
Projection Onto Intersection of Halfspaces Γj by Algorithm 2:

x̃
(n)
j = PΓj(x

(n)
j ) (5.47)

Most Violated Constraint Control for Noncooperative Projections:

(k̂nc, ˆ̀
nc) = arg max

k,`
g̃

(j)
`,k

(
x̃

(n)
j

)
(5.48)

Most Violated Constraint Control for Cooperative Projections:

(k̂c, îc, ˆ̀
c) = arg max

k,i,`
G(n)
j (5.49)

where

G(n)
j ,

{
g

(i,j)
`,k (x̃

(n)
j ,x

(n̂)
i )

∣∣∣ x̃
(n)
j ∈ Ω

(i,j)
`,k

}
(5.50)

Ω
(i,j)
`,k ,

{
x ∈ Rd

∣∣∣ (x
(n̂)
i + bi,` − aj,k − x)Tn

(j)
R,k ≥ 0

}
(5.51)

with n̂ = n for i > j, n̂ = n+ 1 for i < j.
Averaging:

x
(n+1)
j = ϑncG

λ
(n)
j,nc

g̃
(j)
ˆ̀nc,k̂nc

(x̃
(n)
j ) + ϑcG

λ
(n)
j,c

g
(̂ic,j)
ˆ̀c,k̂c

(·,x(n̂)
i )

(x̃
(n)
j ) (5.52)

where ϑnc + ϑc = 1 and ϑnc ≥ 0, ϑc ≥ 0.
end for
Stopping Criterion:

∑NV
j=1‖x

(n+1)
j − x

(n)
j ‖2 < δ for some δ > 0.

Relaxation Parameters: Initialize λ
(0)
j,nc = λ

(0)
j,c = λ0 and update using Algo-

rithm 3 as

λ
(n)
j,nc = J (g̃

(j)
ˆ̀
nc,k̂nc

, λ
(n−1)
j,nc , β, ξ, x̃

(n)
j ) (5.53)

λ
(n)
j,c =

{
J (g

(̂ic,j)
ˆ̀
c,k̂c

(·,x(n̂)
i ), λ

(n−1)
j,c , β, ξ, x̃

(n)
j ), if G(n)

j 6= ∅
λ

(n−1)
j,c otherwise

(5.54)

for j ∈ {1, . . . , NV }.
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Algorithm 5 Cooperative Simultaneous Gradient Projections (CSGP)

Initialization: Choose an arbitrary initial point
(
x

(0)
1 , . . . ,x

(0)
NV

)
∈ RdNV .

Iterative Step: Given the nth iterate
(
x

(n)
1 , . . . ,x

(n)
NV

)
∈ RdNV

for j = 1, . . . , NV do
Projection Onto Intersection of Halfspaces Γj by Algorithm 2:

x̃
(n)
j = PΓj

(
x

(n)
j

)
(5.55)

Parallel Projection Onto Lambertian Sets:

x
(n+1)
j =

Kj∑
k=1

[ ∑
`∈S̃(j)

k

κ̃
(j)
`,kG

λ
(n)
j

g̃
(j)
`,k

(x̃
(n)
j ) +

NV∑
i=1,i 6=j

∑
`∈S(i,j)

k

κ
(i,j)
`,k G

λ
(n)
j

g
(i,j)
`,k (·,x(n̂)

i )
(x̃

(n)
j )

]

(5.56)

where n̂ = n for i > j, n̂ = n+ 1 for i < j and the weights satisfy

Kj∑
k=1

∑
`∈S̃(j)

k

κ̃
(j)
`,k +

NV∑
i=1,i 6=j

∑
`∈S(i,j)

k

κ
(i,j)
`,k

 = 1 (5.57)

and κ̃
(j)
`,k ≥ 0, κ

(i,j)
`,k ≥ 0, ∀i, `, k.

end for
Stopping Criterion:

∑NV
j=1‖x

(n+1)
j − x

(n)
j ‖2 < δ for some δ > 0.

Relaxation Parameters: Initialize λ
(0)
j = λ0 and update using Algorithm 3

as
λ

(n)
j = J (F̃j ∪ S(n)

j , λ
(n−1)
j , β, ξ, x̃

(n)
j ) (5.58)

for j ∈ {1, . . . , NV }, where F̃j and Fj are given by (5.69) and (5.70) in the
supplementary material, respectively, and

S(n)
j ,

{
f ∈ Fj | f(x̃

(n)
j ) ≤ γ

(i,j)
`,k

}
. (5.59)
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overall complexity for the jth VLC unit is given by O

(∑Kj
k=1

[
(N1 +N2)|S̃(j)

k |+

N2

∑NV
i=1,i 6=j|S

(i,j)
k |

])
. Assuming that the number of iterations for the convergence

of Algorithm 4 is on the order of O(N3), the overall complexity of Algorithm 4

can be expressed as

O

(
N3

NV∑
j=1

Kj∑
k=1

[
(N1 +N2)|S̃(j)

k |︸ ︷︷ ︸
noncooperative

+N2

NV∑
i=1,i 6=j

|S(i,j)
k |︸ ︷︷ ︸

cooperative

])
. (5.60)

where we can observe the contribution of the terms corresponding to noncooper-

ative and cooperative projections separately.

5.3.4.2 Complexity Analysis for Algorithm 5

Following a similar approach to that in Algorithm 4, the complexity of Algo-

rithm 5 can be obtained as

O

(
N3

NV∑
j=1

Kj∑
k=1

[
(N1 +N2)|S̃(j)

k |︸ ︷︷ ︸
noncooperative

+N2

NV∑
i=1,i 6=j

|S(i,j)
k |︸ ︷︷ ︸

cooperative

])
. (5.61)

5.3.4.3 Complexity Analysis for MLE in (5.9)

Due to the nonconvexity of the MLE, we evaluate the complexity by assuming

the use of the exhaustive search method over a bounded region. Suppose that

each VLC unit can take Nsmp different values in each of the three axes. Then, the

number of possible locations for NV VLC units is on the order of O(Nsmp
3NV ).

At each search location, we need O

(∑NV
j=1

∑Kj
k=1

[
|S̃(j)
k | +

∑NV
i=1,i 6=j|S

(i,j)
k |

])
op-

erations for evaluating the cost function in (5.9). Hence, the overall complexity
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of the MLE can be computed as

O

(
Nsmp

3NV

NV∑
j=1

Kj∑
k=1

[
|S̃(j)
k |︸ ︷︷ ︸

noncooperative

+

NV∑
i=1,i 6=j

|S(i,j)
k |︸ ︷︷ ︸

cooperative

])
. (5.62)

As observed from (5.60) and (5.61), the complexity of the proposed algorithms

depends on the number of iterations and the size of the connectivity sets. On the

other hand, the complexity of the MLE, expressed in (5.62), is exponential in the

number of VLC units, which limits its scalability, as discussed in Section 5.2.1.

Hence, the proposed projection based algorithms provide low-complexity alter-

natives to the MLE in cooperative VLP scenarios.

5.4 Convergence Analysis

In this section, the convergence analysis of the proposed algorithms in Algo-

rithm 4 and Algorithm 5 is performed in the consistent case. To that aim, it is

assumed that for each j ∈ {1, . . . , NV }, the intersection of the noncooperative

and cooperative Lambertian sets in (5.21) is nonempty; that is, Λj ∩ Υj 6= ∅,
where Λj and Υj are given by (5.22) and (5.23), respectively. In the following,

we present the definitions of quasiconvexity and quasi-Fejér convergence, which

will be used for the convergence proofs.

Definition 2 (Quasiconvexity [186]). A differentiable function f : Rn → R is

quasiconvex if and only if f(x) ≤ f(y) implies ∇f(y)T (x− y) ≤ 0 ∀x,y ∈ Rn.

Definition 3 (Quasi-Fejér Convergence [106]). A sequence {yk} ⊂ Rn is

quasi-Fejér convergent to a nonempty set V if for each y ∈ V , there exists a

non-negative integer M and a sequence {εk} ⊂ R≥0 such that
∑∞

k=0 εk <∞ and

‖yk+1 − y‖2 ≤ ‖yk − y‖2 + εk, ∀k ≥M. (5.63)

For the convergence analysis, we make the following assumptions:
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• A1. Considering any xj ∈ Λj ∩ Υj and x̂j /∈ Λj ∩ Υj, the inequal-

ity g
(i,j)
`,k (xj,x

(n)
i ) ≤ g

(i,j)
`,k (x̂j,x

(n)
i ) holds for every iteration index n and

∀`, k, i, j.

• A2. The sequence of path lengths taken by the iterations of the proposed

algorithms are square summable, i.e.,

∞∑
n=0

(
‖x̃(n)

j − x
(n)
j ‖2 + ‖x(n+1)

j − x̃
(n)
j ‖2

)
<∞ (5.64)

for j ∈ {1, . . . , NV }.

Assumption A1 is valid especially when the cooperative algorithms can be ini-

tialized at some x = (x1, . . . ,xNV ) with xj ∈ Λj, ∀j ∈ {1, . . . , NV }. Assump-

tion A1 implies that any point inside the intersection of the noncooperative and

cooperative constraint sets is closer, in terms of the function value (whose zero-

sublevel sets are the constraint sets), to the cooperative constraint sets than any

point outside the intersection. When the iterations in the cooperative case start

from coarse location estimates obtained in the absence of cooperation, the cor-

responding cooperative sets, which are dynamically changing at each iteration,

may involve the set Λj ∩Υj, but exclude the points outside Λj ∩Υj, which yields

g
(i,j)
`,k (xj,x

(n)
i ) ≤ 0 < g

(i,j)
`,k (x̂j,x

(n)
i ). On the other hand, Assumption A2 rep-

resents a realistic scenario through the Armijo rule in (5.45) and (5.46), which

ensures a certain level of decline in the Lambertian functions at each iteration

and generates a nonincreasing sequence of step sizes.

5.4.1 Quasi-Fejér Convergence

In the convergence analysis, the proof of convergence is based on the concept

of quasi-Fejér convergent sequences, which possess nice properties that facilitate

further investigation, as will be presented in Lemma 2. The following proposition

establishes the quasi-Fejér convergence of the sequences generated by Algorithm 5

to the set Λj ∩Υj.
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Proposition 1. Assume A1 and A2 hold. Let {x(n)}∞n=0 be any sequence

generated by Algorithm 5, where x(n) ,
(
x

(n)
1 , . . . ,x

(n)
NV

)
. Then, for each j ∈

{1, . . . , NV }, the sequence {x(n)
j }∞n=0 is quasi-Fejér convergent to the set Λj ∩Υj.

Proof : Since Λj ∩ Υj 6= ∅, consider any point xj ∈ Λj ∩ Υj. At the nth

iteration, it can be assumed that x
(n)
j /∈ Λj ∩Υj because otherwise iterations will

stop via (5.56) and (5.40), which implies quasi-Fejér convergence of {x(n)
j }∞n=0 to

Λj ∩ Υj based on Definition 3. Then, based on the iterative step in (5.56), the

following is obtained:

‖x(n+1)
j − xj‖2 = ‖x̃(n)

j − xj − λ(n)
j θ

(n)
j ‖2 (5.65)

where

θ
(n)
j ,

Kj∑
k=1

( ∑
`∈S̃(j)

k

κ̃
(j)
`,kHg̃

(j)
`,k

(x̃
(n)
j ) +

NV∑
i=1,i 6=j

∑
`∈S(i,j)

k

κ
(i,j)
`,k Hg

(i,j)
`,k (·,x(n̂)

i )
(x̃

(n)
j )

)
(5.66)

with the scaled gradient operator being defined as

Hf (x) =
f+(x)

‖∇f(x)‖2
∇f(x). (5.67)

From (5.65), it follows that

‖x(n+1)
j − xj‖2 = ‖x̃(n)

j − xj‖2 +
(
λ

(n)
j

)2

‖θ(n)
j ‖2 − 2λ

(n)
j

(
θ

(n)
j

)T (
x̃

(n)
j − xj

)
.

(5.68)

Let F̃j and Fj be the sets of Lambertian functions for the jth VLC unit

corresponding to the noncooperative and cooperative cases, respectively, which

are given by

F̃j =
{
{g̃(j)

`,k}`∈S̃(j)
k

}
k∈{1,...,Kj}

(5.69)

Fj =
{
{{g(i,j)

`,k (·,x(n̂)
i )}

`∈S̃(j)
k
}i∈{1,...,NV }\j

}
k∈{1,...,Kj}

(5.70)

For any function f ∈ F̃j∪Fj, f(xj) ≤ 0 holds since xj ∈ Λj∩Υj (see (5.17), (5.19),

(5.22), and (5.23)). Consider the following mutually exclusive and exhaustive

subsets of F̃j ∪ Fj:

F?j,n = {f ∈ F̃j ∪ Fj | f(x̃
(n)
j ) ≤ 0} (5.71)
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F�j,n = {f ∈ F̃j ∪ Fj | f(x̃
(n)
j ) > 0} . (5.72)

It is clear from (5.67) that for any f ? ∈ F?j,n

Hf?(x̃
(n)
j ) = 0 (5.73)

is satisfied. On the other hand, for any f � ∈ F�j,n ∩ F̃j, f �(xj) = 0 < f �(x̃
(n)
j ),

and, for any f � ∈ F�j,n ∩ Fj, f �(xj) < f �(x̃
(n)
j ) via Assumption A1. Then, the

following inequality holds for any f � ∈ F�j,n:

f �(xj) < f �
(
x̃

(n)
j

)
. (5.74)

Since xj and x̃
(n)
j both lie inside the halfspaces of the form (5.43) and (5.51)

corresponding to the set of functions F�j,n (xj ∈ Λj ⊂ Γj and x̃
(n)
j ∈ Γj, see

(5.42), (5.43), (5.55) and (5.22)), they are in the region where any f � ∈ F�j,n is

quasiconvex. Hence, from (5.74) and Definition 2,(
∇f �(x̃(n)

j )
)T (

xj − x̃
(n)
j

)
≤ 0 (5.75)

follows, which, based on (5.67), implies that(
Hf�(x̃

(n)
j )
)T (

x̃
(n)
j − xj

)
≥ 0 . (5.76)

The inner product term (the rightmost term) in (5.68) can be decomposed into

two parts corresponding to the sets F?j,n and F�j,n. The part that corresponds to

F?j,n is 0 via (5.73) and the remaining part is greater than or equal to 0 via (5.76).

Hence, the following inequality is obtained:(
θ

(n)
j

)T (
x̃

(n)
j − xj

)
≥ 0 , (5.77)

which, based on (5.68), yields

‖x(n+1)
j − xj‖2 ≤ ‖x̃(n)

j − xj‖2 + ε
(n)
j (5.78)

where

ε
(n)
j ,

(
λ

(n)
j

)2

‖θ(n)
j ‖2. (5.79)
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From the fact that xj ∈ Γj, the following can be written:

‖x̃(n)
j − xj‖

(a)
= ‖PΓj(x

(n)
j )− PΓj(xj)‖

(b)

≤ ‖x(n)
j − xj‖ (5.80)

where (a) follows from (5.55), and (b) is due to the non-expansivity of the or-

thogonal projection operator. Combining (5.80) with (5.78) yields the following

inequality:

‖x(n+1)
j − xj‖2 ≤ ‖x(n)

j − xj‖2 + ε
(n)
j . (5.81)

Based on the parallel projection step in (5.56), it can easily be shown that

‖x(n+1)
j − x̃

(n)
j ‖ = λ

(n)
j ‖θ

(n)
j ‖ (5.82)

where θ
(n)
j is given by (5.66). Then, from Assumption A2, it follows that∑∞

n=0‖x
(n+1)
j − x̃

(n)
j ‖2 <∞, which leads to

∑∞
n=0 ε

(n)
j <∞ via (5.82) and (5.79).

Finally, using (5.81) and Definition 3 yields the desired result. �

The following proposition states the quasi-Fejér convergence of the sequences

generated by Algorithm 4.

Proposition 2. Assume A1 and A2 hold. Let {x(n)}∞n=0 be any sequence

generated by Algorithm 4, where x(n) ,
(
x

(n)
1 , . . . ,x

(n)
NV

)
. Then, for each j ∈

{1, . . . , NV }, the sequence {x(n)
j }∞n=0 is quasi-Fejér convergent to the set Λj ∩Υj.

Proof : Following the same steps as stated in the proof of Proposition 1, the

following inequality is obtained based on (5.52):

‖x(n+1)
j − xj‖2 ≤ ‖x(n)

j − xj‖2 + ε
(n)
j (5.83)

where

ε
(n)
j , ‖ϑncλ

(n)
j,ncHg̃

(j)
ˆ̀nc,k̂nc

(x̃
(n)
j ) + ϑcλ

(n)
j,c Hg

(̂ic,j)

ˆ̀c,k̂c(·,x
(n̂)
i

)

(x̃
(n)
j )‖2 (5.84)

with Hf being defined as in (5.67). The averaging step in (5.52) leads to

‖x(n+1)
j − x̃

(n)
j ‖ =

√
ε

(n)
j , where ε

(n)
j is given by (5.84). Assuming that A2 holds

and following an approach similar to that in the proof of Proposition 1, the in-

equality
∑∞

n=0 ε
(n)
j <∞ is obtained, thus establishing the quasi-Fejér convergence

of the sequence {x(n)
j }∞n=0 to Λj ∩Υj. �
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As the quasi-Fejér convergence of the sequences generated by the proposed

algorithms is stated, the following lemma presents the properties of quasi-Fejér

convergent sequences.

Lemma 2 (Theorem 4.1 in [106]). If a sequence {yk} is quasi-Fejér convergent

to a nonempty set V, the following conditions hold:

1. {yk} is bounded.

2. If V contains an accumulation point of {yk}, then {yk} converges to a point

y ∈ V.

5.4.2 Limiting Behavior of Step Size Sequences

In this part, we investigate the limiting behavior of the step size sequences, which

are updated according to the procedure in Algorithm 3. The following two lemmas

prove that the step size sequences generated by Algorithm 5 and Algorithm 4 have

positive limits.

Lemma 3. Any step size sequence λ
(n)
j generated by Algorithm 5 has a positive

limit, i.e.,

lim
n→∞

λ
(n)
j > 0. (5.85)

Proof : The proof is based on contradiction. Suppose that limn→∞ λ
(n)
j = 0.

Then, for each ζ > 0, there exists an iteration index n(ζ) such that λ
(n(ζ))
j < ζ.

Based on the Armijo step size selection rule (5.46) in Algorithm 3 and the step

size update equation (5.58) in Algorithm 5, there exists a function f ◦ ∈ F̃j ∪ Fj
such that the inequality in (5.46) is not satisfied for the step size

ζ̃ = λ
(n(ζ)−1)
j ξm̄ (5.86)

where

m̄ = max{m ∈ Z≥0 | λ(n(ζ)−1)
j ξm > ζ} . (5.87)
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Hence, the following inequality is obtained:

f ◦(Gζ̃
f◦(x̃

(n(ζ))
j )) > f ◦(x̃

(n(ζ))
j )(1− βζ̃) . (5.88)

It is clear that f ◦(x̃
(n(ζ))
j ) > 0 since otherwise the step size selection procedure

would not need to be applied, meaning that x̃
(n(ζ))
j is inside the zero-sublevel set

of every function in F̃j ∪ Fj, i.e., x̃
(n(ζ))
j ∈ Λj ∩Υj, which completes the proof of

convergence of the iterates {x(n)
j }∞n=0 to the set Λj via Lemma 2. Then, the left

hand side of (5.88) can be rewritten using the Taylor series expansion and (5.41)

as follows:

f ◦(Gζ̃
f◦(x̃

(n(ζ))
j )) = f ◦(x̃

(n(ζ))
j )− ζ̃f ◦(x̃(n(ζ))

j ) +O(ζ̃2) (5.89)

where O(ζ̃2) represents the terms with ζ̃s for s ≥ 2. Since limζ̃→0O(ζ̃2)/ζ̃ = 0,

there exists υ > 0 such that

O(ζ̃2)/ζ̃ < f ◦(x̃
(n(ζ))
j )(1− β) (5.90)

is satisfied for 0 < ζ̃ ≤ υ. The existence of υ satisfying (5.90) is guaranteed by

f ◦(x̃
(n(ζ))
j ) > 0 and β ∈ (0, 1). Inserting (5.90) into (5.89) yields the inequality

f ◦(Gζ̃
f◦(x̃

(n(ζ))
j )) < f ◦(x̃

(n(ζ))
j )(1− βζ̃) , (5.91)

which contradicts with (5.88). Therefore, the initial assumption is not valid,

which implies limn→∞ λ
(n)
j > 0. �

Lemma 4. Any step size sequences λ
(n)
j,nc and λ

(n)
j,c generated by Algorithm 4

have positive limits, i.e.,

lim
n→∞

λ
(n)
j,nc > 0 and lim

n→∞
λ

(n)
j,c > 0. (5.92)

Proof : The proof can be obtained by invoking similar arguments to those in

the proof of Lemma 3 and using the step size update rule in (5.53) and (5.54).�

Lemma 3 and Lemma 4 will prove to be useful for deriving the fundamental

convergence properties of the proposed algorithms, as investigated next.
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5.4.3 Main Convergence Results

In this part, we present the main convergence results for the proposed algorithms,

i.e., convergence to a solution of Problem 1.

Proposition 3. Let {x(n)}∞n=0 be any sequence generated by Algorithm 5,

where x(n) ,
(
x

(n)
1 , . . . ,x

(n)
NV

)
. Then, for each j ∈ {1, . . . , NV }, the sequence

{x(n)
j }∞n=0 converges to a point xj ∈ Λj ∩Υj, i.e., a solution of Problem 1.

Proof: From Proposition 1,
∑∞

n=0 ε
(n)
j <∞, where ε

(n)
j is given by (5.79) in the

supplementary material. Hence, limn→∞ ε
(n)
j = 0 is obtained. Based on Lemma 3,

(5.66), and (5.79), it follows that

lim
n→∞

∥∥∥∥ Kj∑
k=1

( ∑
`∈S̃(j)

k

κ̃
(j)
`,kHg̃

(j)
`,k

(x̃
(n)
j ) +

NV∑
i=1,i 6=j

∑
`∈S(i,j)

k

κ
(i,j)
`,k Hg

(i,j)
`,k (·,x(n̂)

i )
(x̃

(n)
j )

)∥∥∥∥ = 0 ,

(5.93)

which implies that

lim
n→∞

Jf (x̃
(n)
j ) = 0 (5.94)

is satisfied ∀f ∈ F̃j ∪ Fj, where the operator Jf defined on Rd for the set of

continuously differentiable functions f : Rd → R is given by

Jf (x) =

(
f+(x)

‖∇f(x)‖

)2

. (5.95)

For a generic Lambertian function in (5.25), the norm square of the gradient can

be expressed as

‖∇gε(x)‖2 =
1

(‖x− y‖k + ε)2 (5.96)

+

(
(y − x)TnR
‖x− y‖k + ε

)2 k‖x− y‖k−2
(
(k − 2)‖x− y‖k − 2ε

)
(‖x− y‖k + ε)2 ·

Since the sequence of iterates {x̃(n)
j }∞n=0 is bounded by Lemma 2,

{
‖x̃(n)

j −y‖
}∞
n=0

is also bounded, which implies the boundedness of ‖∇gε(x)‖ via (5.96). Therefore,

based on (5.94) and (5.95), it follows that

lim
n→∞

f+(x̃
(n)
j ) = 0, ∀f ∈ F̃j ∪ Fj . (5.97)
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From the Bolzano-Weierstrass Theorem [187, Section 3.4], the boundedness of

{x̃(n)
j }∞n=0 requires that {x̃(n)

j }∞n=0 has a convergent subsequence. Denote the limit

of this subsequence by x?j . From (5.97), it turns out that x?j ∈ Λj∩Υj. Therefore,

Λj ∩Υj contains a limit point of {x̃(n)
j }∞n=0, which, based on Lemma 2, yields the

result that {x̃(n)
j }∞n=0 converges to a point inside Λj∩Υj. Based on (5.55) and the

fact that Λj ⊂ Γj (see (5.22) and (5.42)), it follows that the sequence {x(n)
j }∞n=0

converges to a point xj ∈ Λj ∩Υj. �

Proposition 4. Let {x(n)}∞n=0 be any sequence generated by Algorithm 4,

where x(n) ,
(
x

(n)
1 , . . . ,x

(n)
NV

)
. Then, for each j ∈ {1, . . . , NV }, the sequence

{x(n)
j }∞n=0 converges to a point xj ∈ Λj ∩Υj, i.e., a solution of Problem 1.

Proof: Applying similar steps to those in the proof of Proposition 3 and ex-

ploiting Proposition 2 and Lemma 4, the following results are obtained:

lim
n→∞

[
g̃

(j)
ˆ̀
nc,k̂nc

(x̃
(n)
j )
]+

= 0 (5.98)

lim
n→∞

[
g

(̂ic,j)
ˆ̀
c,k̂c

(x̃
(n)
j ,x

(n̂)
i )
]+

= 0 (5.99)

Based on the most violated constraint control in (5.48) and (5.49), it is obvious

that

f̃(x̃
(n)
j ) ≤ g̃

(j)
ˆ̀
nc,k̂nc

(x̃
(n)
j ), ∀f̃ ∈ F̃j (5.100)

f(x̃
(n)
j ) ≤ g

(̂ic,j)
ˆ̀
c,k̂c

(x̃
(n)
j ,x

(n̂)
i ), ∀f ∈ Fj (5.101)

which implies via (5.98) and (5.99) that

lim
n→∞

f+(x̃
(n)
j ) = 0, ∀f ∈ F̃j ∪ Fj . (5.102)

The rest of the proof is the same as that in Proposition 3. �

5.5 Numerical Results

In this section, numerical examples are provided to investigate the theoretical

bounds on cooperative localization in VLP networks and to evaluate the perfor-

mance of the proposed projection-based algorithms. The VLP network parame-

ters are determined in a similar manner to the work in [23] and [16]. The area
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of each PD is selected as 1 cm2 and the Lambertian order of all the LEDs is set

to m = 1. In addition, the noise variances are computed using [135, Eq. 6]. The

parameters for noise variance calculation are the same as those used in Table I

in [135].

The VLP network considered in the simulations is illustrated in Fig. 5.2. A

room of size 10m×10m×5m is considered, where there exist NL = 4 LED trans-

mitters on the ceiling which are located at y1 = [1 1 5]Tm, y2 = [1 9 5]Tm,

y3 = [9 1 5]Tm, and y4 = [9 9 5]Tm. The LEDs on the ceiling have perpen-

dicular orientations, i.e., ñT,j = [0 0 − 1]T for j ∈ {1, 2, 3, 4}. In addition,

there exist NV = 2 VLC units whose locations are given by x1 = [2 5 1]Tm and

x2 = [6 6 1.5]Tm. Each VLC unit consists of two PDs and one LED, whose offsets

with respect to the center of the VLC unit are given by aj,1 = [0 − 0.1 0]Tm,

aj,2 = [0 0.1 0]Tm, and bj,1 = [0.1 0 0]Tm for j = 1, 2. The orientation vec-

tors of the PDs and the LEDs on the VLC units are set to be the normalized

versions (the orientation vectors are unit-norm) of the following vectors: n
(1)
R,1 =

[0.3 − 0.1 1]T , n
(2)
R,1 = [0.2 0.4 1]T , n

(1)
R,2 = [0.8 0.6 0.1]T , n

(2)
R,2 = [−0.7 0.2 0.1]T ,

n
(1)
T,1 = [0.9 0.4 0.1]T , and n

(2)
T,1 = [−0.8 0.1 0.1]T . Furthermore, the connectivity

sets are defined as S
(i,j)
1 = ∅, S(i,j)

2 = {1} for i, j ∈ {1, 2}, i 6= j for the cooperative

measurements and S̃
(1)
1 = {1, 2, 3}, S̃(2)

1 = {2, 3, 4} and S̃
(j)
2 = ∅ for j ∈ {1, 2} for

the noncooperative measurements.

5.5.1 Theoretical Bounds

In this part, the CRLB expression derived in Section 5.1 is investigated to illus-

trate the effects of cooperation on the localization performance of VLP networks.
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Figure 5.2: VLP network used in the simulations. Each VLC unit is equipped
with two PDs and one LED. PD 1 of the VLC units gathers measurements from
the LEDs on the ceiling while PD 2 of the VLC units is used to communicate
with the LED of the other VLC unit for cooperative localization. The squares
and the triangles denote the projections of the LEDs and the VLC units on the
floor, respectively.
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5.5.1.1 Performance with Respect to Transmit Power of LEDs on

Ceiling

In order to evaluate the localization performance of the VLC units with respect

to the transmit powers of the LEDs on the ceiling (equivalently, anchors), individ-

ual CRLBs for localization of the VLC units in noncooperative and cooperative

scenarios are plotted with respect to the transmit powers of LEDs on the ceiling

in Fig. 5.3 by fixing the transmit powers of the VLC units to 1 W. As seen from

Fig. 5.3, cooperation among VLC units can provide substantial improvements

in localization accuracy (about 43 cm and 14 cm improvement, respectively, for

VLC 1 and VLC 2 for the LED transmit power of 300 mW). We note that the

improvement gained by employing cooperation is higher for VLC 1 as compared

to that for VLC 2. This is an expected result since VLC 1 acquires its location

information mainly through LED 1 and LED 2 (due to much longer distances to

other LEDs), and cooperative measurements enhance the localization accuracy

for VLC 1 more significantly than they do for VLC 2. Note that VLC 2 can

obtain informative measurements from the LEDs on the ceiling even in the ab-

sence of cooperation, as seen from the network geometry in Fig. 5.2. In addition,

the CRLBs in the cooperative scenario converge to those in the noncooperative

scenario as the transmit powers of the LEDs increase, which is in compliance with

the FIM expression in (5.12). Hence, the effect of cooperation on localization per-

formance becomes more evident as the transmit power decreases, which agrees

with the results obtained for RF based cooperative localization networks [85].

5.5.1.2 Performance with Respect to Transmit Power of VLC Units

Secondly, we explore the localization performance of the VLC units with respect

to the transmit powers of the VLC units by fixing the transmit powers of the

LEDs on the ceiling to 1 W. In Fig. 5.4, the CRLBs for localization of the VLC

units are shown with respect to the transmit powers of the VLC units in the

noncooperative and cooperative cases. Similar to Fig. 5.3, cooperation results in

a higher improvement in the performance of VLC 1. In addition, we note that

176



10-1 100 101 102

Transmit Power of LEDs on Ceiling (W)

10-3

10-2

10-1

100

101

C
R

LB
 (

m
)

VLC 1 (Coop.)
VLC 1 (Noncoop.)
VLC 2 (Coop.)
VLC 2 (Noncoop.)

Figure 5.3: Individual CRLBs for localization of VLC units in the absence and
presence of cooperation with respect to the transmit power of LEDs on ceiling,
where the transmit power of VLC units is set to 1W.

the contribution of cooperation to localization performance gets higher as the

transmit powers of the VLC units increase, which complies with (5.12). Unlike

Fig. 5.3, the CRLB begins to saturate above a certain power level. The main

reason for this difference between the CRLB trends in Fig. 5.3 and Fig. 5.4 can be

explained as follows: For a fixed transmit power of the VLC units, the localization

error by using three anchors (i.e., three LEDs on the ceiling that are connected

to the corresponding VLC unit) converges to zero as the transmit powers of

the anchors increase regardless of whether VLC units cooperate or not. On the

other hand, for a fixed transmit power of the LEDs on the ceiling, increasing the

transmit power of the VLC unit (i.e., one of the anchors) cannot improve the

accuracy after a certain level.
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Figure 5.4: Individual CRLBs for localization of VLC units in the absence and
presence of cooperation with respect to the transmit power of VLC units, where
the transmit power of LEDs on ceiling is set to 1W.

5.5.2 Performance of the Proposed Algorithms

In this part, the proposed algorithms in Algorithm 4 (CCGP) and Algorithm 5

(CSGP) are evaluated in terms of localization performance and convergence

speed. For both algorithms, the initial step size is selected as λ0 = 1, the step

size shrinkage factor and the degree of decline in the Armijo rule in Algorithm 3

are set to ξ = 0.5 and β = 0.001, respectively. The VLC units are initialized

at the positions of the closest LEDs on the ceiling which are connected to the

corresponding VLC units.

Localization performances of the algorithms are presented in both the absence

and the presence of cooperation and compared against those of the ML estimator

in (5.9) and the CRLBs derived in Section 5.1. In order to ensure convergence
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to the global minimum, the ML estimator is implemented using a multi-start op-

timization algorithm with 100 initial points randomly selected from the interval

[0 10] m at each axis.7 In addition, two different measurement noise distributions,

namely, Gaussian and exponential, are considered while evaluating the proposed

algorithms as in [93]. The Gaussian noise is used to model the case in which the

RSS measurement noise can be both positive and negative, whereas the exponen-

tially distributed noise (subtracted from the true value) represents the scenario in

which the RSS measurements are negatively biased, which leads to the feasibility

modeling of the localization problem in Section 5.2.2. Furthermore, the average

residuals at each iteration are calculated to assess the convergence speed of the

proposed algorithms [94]:

%n =
1

MNV

M∑
m=1

‖x(n,m) − x(n−1,m)‖ (5.103)

where x(n,m) =
(
x

(n,m)
1 , . . . ,x

(n,m)
NV

)
denotes the position vector of all the VLC

units at the nth iteration for the mth Monte Carlo realization of measurement

noises and M is the number of Monte Carlo realizations.

In the simulations, two-dimensional localization is performed by assuming that

the VLC units have known heights. Therefore, with the knowledge of perpendic-

ular LED orientations, Case 2 type Lambertian sets in Section 5.2.4.2 are utilized

for localization based on the measurements from the LEDs on the ceiling. The

cooperation among the VLC units is modeled by Case 1 type Lambertian sets in

Section 5.2.4.1.

7The implemented estimator is effectively a MAP estimator with a uniform prior distribu-

tion over the interval [0 10] m, based on the prior information that VLC units are inside the

room. Hence, the implemented ML estimator may achieve smaller RMSEs than the CRLB in

the low SNR regime, where the prior information becomes more significant as the measurements

are very noisy.
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5.5.2.1 Gaussian Noise

In Fig. 5.5, the average localization errors of the VLC units for the different

algorithms are plotted against the transmit power of the LEDs on the ceiling

for the case of the Gaussian measurement noise by fixing the transmit powers

of the LEDs at the VLC units to 1 W. From Fig. 5.5, it is observed that the

cooperative approach can significantly reduce the localization errors, especially

in the low SNR regime (about 60 cm and 70 cm reduction for CSGP and CCGP

algorithms, respectively, for 100 mW LED transmit power). In addition, both

Algorithm 4 (CCGP) and Algorithm 5 (CSGP) can attain the localization error

levels that asymptotically converge to zero at the same rate as that of the CRLB.

Moreover, it can be inferred from Fig. 5.5 that the proposed iterative methods

achieve higher localization performance than the ML estimator in the low SNR

regime for both the noncooperative and the cooperative scenarios. Although the

ML estimator is forced to converge to the global minimum via the multi-start

optimization procedure involving 100 different executions of a local solver, whose

complexity may be prohibitive for practical implementations, it has lower perfor-

mance than the proposed approaches, which depend on low-complexity iterative

gradient projections. Hence, at low SNRs, the proposed algorithms are superior

to the MLE in terms of both the localization performance and the computational

complexity. Furthermore, the simultaneous projections outperforms the cyclic

projections at low SNRs at the cost of a higher number of set projections, but

the two approaches converge asymptotically as the SNR increases.

Fig. 5.6(a) and Fig. 5.6(b) report the average residuals calculated by (5.103)

corresponding to the proposed algorithms versus the number of iterations for

100 mW and 1 W of transmit powers of the LEDs on the ceiling, respectively.

CSGP in the absence of cooperation has the fastest convergence rate and exhibits

an almost monotonic convergence behavior. However, CSGP in the cooperative

scenario shows relatively slow convergence in general and a locally nonmonotonic

behavior when several consecutive iterations are taken into account. This is due

to the cooperative Lambertian sets being involved in the simultaneous projec-

tion operations. In addition, cyclic projections tend to settle into limit cycle
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Figure 5.5: Average localization error of VLC units with respect to the transmit
power of LEDs on ceiling for the proposed algorithms in Algorithm 4 (CCGP)
and Algorithm 5 (CSGP) along with the MLE and CRLB for the case of Gaussian
measurement noise.
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Figure 5.6: Convergence rate of the average residuals in (5.103) for the proposed
algorithms in Algorithm 4 and Algorithm 5 for the case of Gaussian measurement
noise, where the transmit power of LEDs on ceiling is (a) 100 mW and (b) 1 W.

182



oscillations8 after few iterations, thus implying that the sequence itself does not

converge to a point, but it has several subsequences that converge [112]. This be-

havior, called cyclic convergence, is encountered in cyclic (sequential) projections

if the feasibility problem is inconsistent [112, 188]. Furthermore, by comparing

Fig. 5.6(a) and Fig. 5.6(b), it is observed that the magnitude of limit cycle os-

cillations in the CCGP algorithm gets smaller as the SNR increases since the

region of uncertainty becomes narrower at higher SNR values, thereby making

the convergent subsequences close to each other.

5.5.2.2 Exponential Noise

To investigate the performance of the algorithms under exponentially distributed

measurement noise, the average localization errors are plotted against the trans-

mit power of the LEDs on the ceiling for the case of the subtractive exponential

noise in Fig. 5.7. Similar to the case of the Gaussian noise, the proposed algo-

rithms succeed in converging to the true VLC unit positions as the SNR increases.

Since the projection based methods rely on the assumption of negatively biased

measurements, they perform slightly better at low SNRs as compared to the case

of the Gaussian noise. On the other hand, the MLE produces larger errors at low

SNRs for the exponentially distributed noise since its derivation is based on the

assumption of Gaussian noise.

The average residuals in the case of the exponentially distributed noise are

illustrated in Fig. 5.8(a) and Fig. 5.8(b) for two different LED power levels.

In contrary to the case of Gaussian noise, cyclic projections do not fall into

limit cycles and provide globally monotonic convergence results as the feasibility

problem is consistent, which complies with the results presented in the literature

8 In inconsistent feasibility problems (i.e., those with empty region of intersection), the

sequence of points obtained by cyclic projections does not converge [112]. However, it has

convergent subsequences each of which converges to a different point [112]. In the limit, the

cyclic projections based algorithm (i.e., CCGP) visits each of these limiting points in a sequential

fashion, leading to a cyclic behavior called limit cycle. In this case, average residuals in (5.103)

(i.e., distances between consecutive iteration points) can be regarded as limit cycle oscillations.
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Figure 5.7: Average localization error of VLC units with respect to the transmit
power of LEDs on ceiling for the proposed algorithms in Algorithm 4 (CCGP) and
Algorithm 5 (CSGP) along with the MLE and CRLB for the case of exponentially
distributed measurement noise.

pertaining to the study of CFPs [112]. In addition, it is observed that both the

cyclic and the sequential projection methods have faster convergence for lower

SNR values since it takes fewer iterations to get inside the intersection of the

constraint sets, which becomes larger as the SNR decreases.9

9 Since the measured RSS is always smaller than the true RSS value in the case of negative

exponential noise (see (5.13)), the Lambertian sets become larger at lower SNR values (as

the size of a Lambertian set L in (5.16) is inversely proportional to the corresponding RSS

measurement P̂r, or, equivalently γ in (5.15)).
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Figure 5.8: Convergence rate of the average residuals in (5.103) for the proposed
algorithms in Algorithm 4 and Algorithm 5 for the case of exponentially dis-
tributed measurement noise, where the transmit power of LEDs on ceiling is (a)
100 mW and (b) 1 W.

185



5.6 Concluding Remarks

In this chapter, a cooperative VLP network has been proposed based on a generic

system model consisting of LED transmitters at known locations and VLC units

with multiple LEDs and PDs. First, the CRLB on the overall localization error

of the VLC units has been derived to quantify the effects of cooperation on the

localization accuracy of VLP networks. Then, due to the nonconvex nature of the

corresponding ML expression, the problem of cooperative localization has been

formulated as a QFP, which facilitates the development of low-complexity de-

centralized feasibility-seeking methods. In order to solve the feasibility problem,

iterative gradient projections based algorithms have been proposed. Further-

more, based on the notion of quasi-Fejér convergent sequences, formal conver-

gence proofs have been provided for the proposed algorithms in the consistent

case. Finally, numerical examples have been presented to illustrate the signifi-

cance of cooperation in VLP networks and to investigate the performance of the

proposed algorithms in terms of localization accuracy and convergence speed. It

has been verified that the proposed iterative methods asymptotically converge to

the true positions of VLC units at high SNR and exhibit superior performance

over the ML estimator at low SNRs in terms of both implementation complexity

and localization accuracy.

An important research direction for future studies is to explore the conver-

gence properties of Algorithm 4 and Algorithm 5 when the proposed QFP is

inconsistent. In the inconsistent case, simultaneous projection algorithms tend

to converge to a minimizer of a proximity function that specifies the distance to

constraint sets [112,189]. For the implicit CFP (ICFP) considered in TOA-based

wireless network localization, the POCS based simultaneous algorithm is shown

to converge to the minimizer of a convex function, which is the sum of squares of

the distances to the constraint sets [94]. Therefore, finding proximity functions

characterizing the behavior of simultaneous projections (e.g., Algorithm 5) for

the inconsistent QFPs [105] would be a significant extension for the set-theoretic

estimation literature.
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5.7 Appendices

5.7.1 Partial Derivatives in (5.12)

From (5.5) and (5.6), the partial derivatives in (5.12) can be computed as follows:

∂α̃
(j)
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∂xt
= −
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for t ∈ {3j−2, 3j−1, 3j} and ∂α̃
(j)
l,k (xj)/∂xt = 0 otherwise, where ñT,l(t−3j+3),
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for t ∈ {3j − 2, 3j − 1, 3j}, ∂α(i,j)
l,k (xi,xj)/∂xt is equal to the negative of (5.105)

with (t− 3j + 3)’s being replaced by (t− 3i+ 3)’s for t ∈ {3i− 2, 3i− 1, 3i}, and

∂α
(i,j)
l,k (xi,xj)/∂xt = 0 otherwise. In (5.105), n

(i)
T,l(t− 3j + 3) and d

(i,j)
l,k (t− 3j + 3)

denote the (t− 3j + 3)th elements of n
(i)
T,` and d

(i,j)
`,k , respectively.
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Chapter 6

Conclusions and Future Work

As a key enabler for low-cost and high-accuracy indoor wireless localization

services, the VLP technology constitutes a vital ingredient of next-generation

location-aware applications. Therefore, it is imperative, for both researchers in

the academia and practical system designers in the industry, to acquire a metic-

ulous understanding of the fundamental trends in position estimation via visible

light signals and their impacts on the performance of VLP systems under various

operation environments. In this dissertation, we have considered the problem of

localization in visible light systems by providing fundamental performance lim-

its and statistical estimators, devising localization algorithms and investigating

optimal resource allocation approaches.

In Chapter 2, we have derived the CRLBs and MLEs for distance estimation in

VLP systems based on TOA and/or RSS information. We have proposed hybrid

TOA/RSS distance estimation for VLP systems and determined the conditions

under which the hybrid approach outperforms TOA based and RSS based esti-

mators. To mitigate the effects of finite sampling rate in practical systems, a

modified hybrid TOA/RSS based distance estimator has been developed. In ad-

dition to the CRLB, we have also derived the ZZB for ranging in synchronous

VLP systems by taking into account the time delay and the optical channel atten-

uation parameters along with the prior information. Moreover, we have obtained
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the BCRB, the WCRB and the ECRB expressions for range estimation in syn-

chronous scenarios.

In Chapter 3, the direct position estimation approach has been considered for

both synchronous and asynchronous VLP systems. The CRLBs and direct posi-

tioning based ML estimators have been derived for a generic three-dimensional

VLP scenario. In addition, we have also designed two-step position estimators

and characterized their asymptotic performance, i.e., whether they can attain the

CRLB in the high SNR regime. It has been shown that the two-step estimation

based on TOA and RSS parameters in the first-step is asymptotically optimal

for synchronous VLP systems, whereas for asynchronous systems, the two-step

approach is optimal in all SNR regimes for practical ranging signals. Another re-

lated conclusion is that the benefits of direct positioning are especially significant

in the low SNR regime for synchronous VLP systems.

In Chapter 4, we have considered optimal LED power allocation strategies

to maximize the localization accuracy of VLC receivers subject to power and

illumination constraints. The performance limits derived in Chapter 3 have been

employed as optimization metrics for quantification of localization accuracy. The

problem of optimal power allocation has been shown to be formulated as a convex

program, on the basis of which the optimal power vectors have been derived

efficiently to showcase the performance benefits over the conventional uniform

power allocation approach. In addition, robust power allocation algorithms have

been developed to provide accurate location estimates under imperfect knowledge

of localization related parameters.

Finally, in Chapter 5, we have devised a cooperative VLP system architecture

that utilizes communications among VLC receiver units to improve the accuracy

of localization via cooperation. Our main motivation comes from vehicular VLC

networks where V2V and V2I links are available to provide the necessary foun-

dation for cooperative ITS applications. A cooperative localization algorithm

that is amenable to distributed implementation has been proposed to illustrate

the improvements in localization performance via the use of cooperation among
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the VLC units. Moreover, we have provided a convergence analysis of the pro-

posed algorithm under certain conditions on the mathematical structure of the

localization problem.

Although significant improvements are being made for VLP systems in the lit-

erature, there are still some issues which have not adequately been addressed and

should be investigated in future work. A recent study in the literature has shown

that omitting multipath reflections in VLP systems may considerably reduce the

accuracy of localization in certain indoor environments [190]. For that reason,

VLP systems should be designed in consideration of multipath propagation. In

a similar context, the common algorithms and methods in the literature do not

consider the situation when the LOS between the LED transmitter and the VLC

receiver is lost; that is, when an LOS blockage occurs. Regarding this issue, the

approaches for VLP systems should be adapted for the case of LOS blockage. In

addition, the VLP systems should be invulnerable to various interference sources

such as sunlight and other lighting systems. Moreover, most VLP systems can-

not be treated separately from illumination systems, and consequently the design

of such systems requires the consideration of not only localization performance

but also illumination constraints. Furthermore, in scenarios with mobile entities,

temporal cooperation can be utilized by taking into account the previous state

information of a VLC receiver in the design of VLP algorithms in order to achieve

robust localization results. Overall, in view of these challenges and remarks, fully

integrated superior designs can be developed for VLP systems in the future.
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