
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=ncse20

Computer Science Education

ISSN: 0899-3408 (Print) 1744-5175 (Online) Journal homepage: http://www.tandfonline.com/loi/ncse20

Experiences in teaching a graduate course on
model-driven software development

Bedir Tekinerdogan

To cite this article: Bedir Tekinerdogan (2011) Experiences in teaching a graduate course
on model-driven software development, Computer Science Education, 21:4, 363-387, DOI:
10.1080/08993408.2011.630129

To link to this article: https://doi.org/10.1080/08993408.2011.630129

Published online: 29 Nov 2011.

Submit your article to this journal

Article views: 160

Citing articles: 6 View citing articles

http://www.tandfonline.com/action/journalInformation?journalCode=ncse20
http://www.tandfonline.com/loi/ncse20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/08993408.2011.630129
https://doi.org/10.1080/08993408.2011.630129
http://www.tandfonline.com/action/authorSubmission?journalCode=ncse20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=ncse20&show=instructions
http://www.tandfonline.com/doi/citedby/10.1080/08993408.2011.630129#tabModule
http://www.tandfonline.com/doi/citedby/10.1080/08993408.2011.630129#tabModule

Experiences in teaching a graduate course on model-driven software

development

Bedir Tekinerdogan*

Department of Computer Engineering, Bilkent University, 06800 Bilkent, Ankara, Turkey

(Received 5 May 2011; final version received 27 September 2011)

Model-driven software development (MDSD) aims to support the
development and evolution of software intensive systems using the
basic concepts of model, metamodel, and model transformation. In
parallel with the ongoing academic research, MDSD is more and
more applied in industrial practices. After being accepted both by a
broad community of researchers and the industry, it is now being
introduced in university courses. This article describes the experiences
of three years of teaching of the graduate course Model-Driven
Software Development at Bilkent University in Turkey. The lessons
learned can be useful for peer educators who teach or aim to teach a
similar course.

Keywords: education; software engineering; model-driven software
development; experience; graduate course

Introduction

In traditional non-model-driven software development, the link between
the code and higher level design models is not formal but intentional.
Required changes are usually addressed manually using the given
modeling language. Because of the manual adaptation, the maintenance
effort is not optimal and as such sooner or later the design models become
inconsistent with the code since changes are, in practice, defined at the
code level. One of the key motivations for introducing model-driven
software development (MDSD) is the need to reduce the maintenance
effort and as such support evolution (Briand, Labiche, & O’Sullivan,
2003; van Deursen, Visser, & Warmer, 2007). MDSD aims to achieve
this goal through defining models and metamodels as first class
abstractions, and providing automated support using model transforma-
tions (Bézivin, 2005). For a given change requirement, the code is not
changed manually but automatically generated or regenerated, thereby

*Email: bedir@cs.bilkent.edu.tr

Computer Science Education

Vol. 21, No. 4, December 2011, 363–387

ISSN 0899-3408 print/ISSN 1744-5175 online

� 2011 Taylor & Francis

http://dx.doi.org/10.1080/08993408.2011.630129

http://www.tandfonline.com

substantially reducing maintenance effort. Further, because of the formal
links between the models and the code, the evolution of artefacts in the
model-driven development process is synchronized. The link between the
code and models is formal. Research on MDSD is progressing to enhance
the automated support for coping with changing requirements and as
such for providing reuse, portability, interoperability, and maintenance.

Because of the promising benefits for development and evolution,
MDSD is more and more applied in industrial projects. With the
increasing maturation and a growing consensus on the core MDSD
concepts, we can now speak of a separate MDSD community. Separate
conferences such as Models (MODELS, 2011), SLE (SLE, 2011),
ECMFA (ECMFA, 2011) are organized yearly, large international
projects are being funded and special issues of journals have started to
publish papers on MDSD. The increasing interest for MDSD also affects
software engineering education. The need for separate courses on MDSD
is growing and an increasing number of courses on MDSD are actually
starting to be taught or are planned to be introduced into the curriculum.

This article describes the experiences in teaching the graduate course
Model-Driven Software Development (Tekinerdogan, 2011) at Bilkent
University in Ankara (Bilkent, 2011). Bilkent University, is the first
private, nonprofit university in Turkey and is currently ranked number
112 worldwide and number 1 nationwide in the Times Higher Education
World University Rankings (THEWUR, 2011) of the world’s top
universities for 2010/2011. The department of Computer Engineering
offers BS, MS, and PhD degree programs.

In Turkey, the MDSD course has been introduced for the first time in
2008 and has been taught by the author for three years. This article covers
the experiences of teaching the course over three years for graduate
students. Several important lessons were learned from this course and we
think that our experiences can be useful for peer educators who teach
or aim to teach a similar course. Our experiences may help guide
educators on:

. planning an MDSD course in a semester;

. dealing with an introductory course for which no suitable education
material yet exists;

. adopting education forms that were used (presentations, project,
demonstrations, and workshop organizations);

. setting up a course project on MDSD;

. defining the evaluation criteria for the course; and

. organizing a workshop within a course.

The remainder of the article is organized as follows. Section 2 provides
the short background on MDSD. Section 3 describes the course topics

364 B. Tekinerdogan

and the organization. Section 4 describes the course material selection.
Section 5 describes the selection of pedagogical techniques that were used
during the course. In Section 6, we report on the workshop organization
that was part of the course. In Section 7, we present the results of the
realization of the course. Finally, in Section 8, we provide our conclusions.

Model-driven software development

In this section, we briefly explain the background for MDSD. The
concepts that we describe in this section are later used to support the
presentation and selection of the course topics.

Motivation

In MDSD, models are not mere documentation but become ‘‘code’’ that
is executable (Martin, 2002; Mellor, Scott, Uhl, & Weise, 2004) and that
can be used to generate even more refined models or code. This is in
contrast to model-based software development in which models are used
as blueprints at the most (Stahl & Voelter, 2006). The language in which
models are expressed is defined by metamodels. As such, a model is said to
be an instance of a metamodel, or a model conforms to a metamodel.
A metamodel by itself is also a model and conforms to a meta-metamodel,
the language for defining metamodels. Given the different levels in which
the models reside in model-driven development, models are usually
organized in a four-layered architecture (Bezivin, 2005; Favre & NGuyen,
2004; Kleppe, Warmer, & Bast, 2003). The top (M3) level in this model is
the meta-metamodel that defines the basic concepts from which specific
metamodels are created at the meta (M2) level. Normal user models are
regarded as residing at the M1 level, whereas real world concepts reside at
level M0.

Metamodeling

As stated before, metamodels define the language for the models. A
proper definition of metamodels is important to enable valid and sound
models. The application of a systematic, disciplined, quantifiable
approach to the development, use, and maintenance of these languages
is usually called software language engineering (Kleppe, 2009) and this
forms also an important part of MDSD.

Figure 1 shows the conceptual model for the relation of models and
metamodels in MDSD. The starting point for metamodeling or software
language engineering forms the Domain. A domain can itself consist of
subdomains. A metamodel conforms to meta-metamodel, which usually
conforms to itself.

Computer Science Education 365

In both the software language engineering (Kleppe, 2009) and model-
driven development domains (Stahl & Voelter, 2006), a metamodel
should include the following elements:

. Abstract Syntax: describes the vocabulary of concepts provided by
the language and how they may be combined to create models. It
consists of a definition of the concepts and the relationships that
exist between concepts.

. Concrete Syntax: defines the syntax, the notation that facilitates
the presentation and construction of models or programs in the
language. Typically two basic types of concrete syntax are used by
languages: textual syntax and visual syntax. A textual syntax
enables models to be described in a structured textual form. A visual
syntax enables a model to be described in a diagrammatical form.

. Static Semantics (well-formedness rules): provides definitions of
additional constraint rules on abstract syntax that are hard or
impossible to express in standard syntactic formalisms of the
abstract syntax.

. Semantics: provides the description of the meaning of the concepts
and relation in the abstract syntax. Semantics can be defined in
natural language or using other more formal specification
languages.

Model transformations

Besides software language engineering, a second important part of
MDSD are model transformations. A model transformation which is
shown in Figure 2 takes a source model and transforms it into a target

Figure 1. Conceptual model for model-driven software development – metamodeling
(Stahl & Volter, 2006).

366 B. Tekinerdogan

model by using predefined transformation definition. Both models
conform to their respective metamodels. A transformation is defined
with respect to the metamodels. The transformation definition is executed
on concrete models by a transformation engine.

In general, a distinction is made between model-to-model transforma-
tion (M2M) and model-to-text transformation (M2T) (Bezivin, 2005;
Kleppe, Warmer, & Bast, 2003). An M2M transforms a model to another
model conforming to the same or a different metamodel. In an M2T,
a model is directly transformed to text such as code or documentation.

Course topics and organization

The course Model-Driven Software Development was defined as a 7.5
ECTS graduate course similar to the other graduate courses in the
department. ECTS (ECTS, 2009) is the credit system for higher education
used in Europe, whereby one credit corresponds to 25 to 30 h of work.

The course planning consists of the basic activities: Course Topic
Identification, Course Material Selection, Pedagogic Form Selection,
Course Realization, and Course Evaluation. Since the course has been
given for three years, now, we have followed the plan for three times. In
the activity Course Topic Identification, the topics were selected based on
the conceptual models as defined in the previous section and also as a
result of the Course Material Selection activity. Figure 3 shows the topic
tree for the course. As shown in this figure, we have decided that the
course had to be organized around the following four basic topics:

Motivation for MDSD

This topic consists of the subtopics ‘‘conventional software development
paradigms’’, ‘‘problems of these model-based development approaches’’,
and ‘‘the possible solution approaches’’. A distinction is made between
model-based development approaches and model-driven approaches.
In the model-based approaches, models are basically used as blueprints,

Figure 2. Conceptual model for model-driven software development – model
transformations.

Computer Science Education 367

whereas in the model-driven approaches, models are executable units that
can be interpreted by model transformation engines. This topic concerns
the idea that the contemporary model-based approaches are not sufficient
due to the informal link between code and models as discussed before.
Two important tracks are identified that aim to solve this problem: agile
software development (Martin, 2002) and MDSD. In agile software
development, the focus is put on code and less on models and as such the
required changes are defined usually directly in the code. On the other
hand, as we have stated before, MDSD aims to define executable models
that can be transformed automatically to provide more refined models
or code. Whereas agile software development focuses on the principle,
the ‘‘code is the documentation’’, MDSD adopts the philosophy ‘‘the
documentation is the code’’.

Figure 3. Topic tree for the MDSD course.

368 B. Tekinerdogan

Another perspective for motivating MDSD is based on the portability
and interoperability concerns as defined in the Model-Driven Architecture
(MDA) (Kleppe, Warmer, & Bast, 2003) approach. MDA distinguishes
between so-called Platform Independent Models (PIM) and Platform
Specific Models (PSM). The PIM is usually considered as a stable model,
whereas the PSMs and the code are automatically generated.

Modeling in software engineering

Here the focus is on the notion of modeling as a concept, as well as the
state-of-the-art and state-of-the-practice of modeling in software en-
gineering. Two important modeling approaches in software engineering
are selected, i.e. XML and UML. For both approaches, the history
and motivation behind the approaches are given. For XML, the XML
constructs, the notion of DTD and XSD, the XML processing
techniques, and example XML schemas are selected as useful topics.
For UML, the situation before UML, UML 1.*, and UML2.* are
considered as important topics.

Metamodeling

This topic includes the sub-topics elements of metamodels, example
metamodels, meta-metamodels, and the creation of metamodels. The
elements of the metamodel topic include the subtopics: abstract syntax,
static semantics, concrete syntax, and semantics. The topic, example
metamodels, illustrates both existing standard metamodels and non-
standard metamodels. For Meta-Metamodeling, the so-called technical
spaces (Bézivin, 2006) concept and example meta-metamodels such as
MOF, EMOF, CMOF, and ECORE are included (Bézivin, 2005; EMP,
2011; Stahl & Voelter, 2006). The technical space topic includes the
examples of OMG/MDA, XML, and EBNF technical spaces.

Model transformations

The Model Transformations topic includes the sub-topics concepts of
model transformations, model transformation patterns, model-to-model
transformations (M2M), and model-to-text transformations (M2T). For
explaining M2M, the tools ATL (Jouault et al., 2008) and QVT (QVT,
2011) are selected. For M2T, the languages XPand (Stahl & Voelter,
2006) and MOFM2T (MOFM2T, 2011) are selected.

Table 1 shows how the course topics were distributed throughout the
15 weeks of the semester. So far we have discussed the topic identification
activity. In the following sections, we will elaborate on the subsequent
four steps.

Computer Science Education 369

Table 1. Course content.

Part Week Course topic Sub-topics

Motivation 1 General overview of
course motivation
for MDSD

- General guidelines for the
course.

- A first general motivation
on MDSD

Modeling 2 Modeling–UML2 - History of UML 0.* to
UML 2.*

- Current UML 2.*
architecture

- UML 2.* models and
diagrams

3 Modeling–XML - Motivation for markup
languages and the
particular role of XML.

- DTD and XSD
Metamodeling and

software
language
engineering

4 Metamodeling software
language engineering

- Metamodeling concepts
- Abstract syntax

5 Metamodeling – static
semantics

- Static semantics using
OCL

- Concrete syntax
- Example metamodels

6 Metamodeling - Semantics of metamodels
- Quality of metamodels
- Tools for defining

metamodels
7 Metametamodeling

project description
- Meta-metamodeling
- Example meta-

metamodels (MOF,
EMOF, CMOF, ECORE)

- Notion of Technical Space
8 Creating metamodels - Creating metamodels

from scratch using MOF
- UML profiles
- Example UML profiles
- EBNF grammars
- Grammars vs.

metamodeling
9 Mid-term exam

consultancy for
projects

- Open book, open slides,
laptop use

10 Student project
presentations

Software language
engineering

- Presentation of each
student team

- Demo of each case

Model
transformations

11 Spring recess
12 Model-driven

architecture (MDA)
Model transformation
concepts

- Motivation for MDA
- Transformation patterns

in MDA

13 Model-to-model
transformations

- Basic concepts of M2M
- M2M using ATL
- M2M using QVT

(continued)

370 B. Tekinerdogan

Course material selection

In this section, we will describe the course material for the MDSD course.
This includes the selection and evaluation of the textbook, additional
research papers, and the tools to be used in the course.

Textbook evaluation

Conventional courses on software engineering usually have no difficulty
finding the right textbooks, which include the important topics and
suitable exercises. However, one of the problems with the introduction of
relatively new topics into the curriculum is that suitable course material
is hard to find. At the time of introducing the course, we could identify
several textbooks on MDSD but the choice was limited. To make the
most effective use of a textbook, we had to decide which textbooks were
appropriate for the course needs. Likewise, the first step in evaluating the
selected textbook was to identify the learning goals with which the
textbooks should be aligned. The learning goals indicate what all
students should know and be able to do. The primary learning goals
were based on the conceptual models as defined in Figures 1 and 2 in
Section 2. The learning goals are shown in Figure 4. All these learning
goals relate to the MDSD domain, however; the learning goal ‘‘write a
report and workshop paper on an MDSD topic’’ can be considered as
a more general goal. First, we hesitated to present this teaching goal as a
learning goal to the students. However, since the technical writing of a
workshop paper for the graduate students is an important requirement
from the department, we kept this in the list of learning goals to
underline its importance (next to the other more domain-specific learning
goals).

The judgment on whether the selected textbooks actually address these
learning goals was based on both content analysis and instructional
analysis (Kulm, Roseman, & Treistman, 1999). In the context of content
analysis, we adopted the distinction between ‘‘topic match’’ and ‘‘content
match’’. ‘‘Topic match’’ refers to the case in which the topic is slightly

Table 1. (Continued).

Part Week Course topic Sub-topics

14 Model-to-text
transformations

- Basic concepts of M2T
- M2T using XPand
- M2T using MOF M2T

15 Student project
presentations

Model transformations

- Presentation of each
student team

- Demo of each case
16 Final exam

Computer Science Education 371

addressed but not discussed in detail. ‘‘Content match’’ refers to the case
in which the topic of the learning goal is addressed in detail. For the
MDSD content profile, the coverage of each topic in the selected learning
goal was rated on a 0–5 scale (no coverage to full coverage).

The instructional analysis of the textbooks evaluated the quality of
instructional support for both the students and the instructor. The score
for each instructional category was rated on a scale of 0–5 (high potential
for learning to take place to no instructional activity present).

As it can be observed from our evaluation in Table 2, some of the
textbooks got similar ratings. Actually, none of the textbooks that were
available and that we selected were considered as being suitable and
comprehensive enough. We required a book that covered the state-of-the
art on MDSD techniques, and was not too specific in dealing with, for
example, a single metamodeling or model-transformation language.
Despite the lack of a textbook that covered all the learning goals, we
decided to select a textbook that got the highest rating and that was
somehow also based on existing tool support. For this reason, we chose

Figure 4. Identified learning goals for the model-driven software development course.

372 B. Tekinerdogan

the textbook of Stahl and Voelter (2006). Please note that the evaluation
is also subjective both with respect to the learning goals that we have
defined and our ratings. Each instructor/reviewer might come up with a
slightly different evaluation. Also at the time of writing, several new
textbooks appeared to have been published (in 2010 and 2011). What is
important here is that the selection in each year is based on a systematic
evaluation process.

Table 2. List of selected textbooks and the result of content analysis (0: no coverage to
5: full coverage).

Textbook Motivation Metamodeling
Model

transformation

1. M. Fowler, Domain-Specific
Languages, Addison-Wesley, 2008

4 4 1

2. D.S. Frankel, Model Driven
Architecture: Applying MDA to
Enterprise Computing, Wiley,
2003

5 3 2

3. J. Greenfield, Software Factories:
Assembling Applications with
Patterns, Models, Frameworks,
and Tools, Wiley, 2004

4 3 3

4. R.C. Gronback, Eclipse Modeling
Project: A Domain-Specific
Language (DSL) Toolkit,
Addison-Wesley Professional,
2009

2 2 2

5. A. Kleppe, J. Warmer, W. Bast,
MDA Explained: The Model
Driven Architecture: Practice and
Promise, Addison-Wesley, 2003

3 3 3

6. A. Kleppe, Software Language
Engineering: Creating
Domain-Specific Languages Using
Metamodels, Addison-Wesley
Professional, 2008

2 5 2

7. S. Kelly, J.K. Tolvannen,
Domain-Specific Modeling:
Enabling Full Code Generation,
Wiley, 2008

3 4 4

8. Stephen J. Mellor, Marc J. Balcer,
Executable UML: A Foundation
for Model-Driven Architecture,
2002.

3 3 2

9. S.J. Mellor, K. Scott, A. Uhl, Dirk
Weise, MDA Distilled, 2004.

4 2 2

10. T. Stahl and M. Voelter,
Model-Driven Software
Development: Technology,
Engineering, Management, May
2006

3 5 4

Computer Science Education 373

Paper selection

To cover the missing topics and increase awareness on research in
MDSD, we also added a list of research papers. These are shown in
Table 3. We did not apply here a systematic evaluation process but the
selection was based on our own background and the quality of the papers.
All the papers were accessible to our students through the subscriptions
of Bilkent University.

Tool selection

One of the important learning goals of the course was to explore the
current state-of-the-art tools in the MDSD context. Knowledge about
tools is particularly important for MDSD since it primarily focuses on
automation of the development process. Tool support was needed for
three different cases: (1) modeling in XML and UML, (2) metamodeling,
and (3) model transformations. For the modeling part in XML and
UML, students were allowed to use any tool. To support the modeling
of XML and its processing, the students were directed to
http://www.w3schools.com/ to model in XML. For the selection of the
tool support for metamodeling and model transformations we adopted
two important criteria. First, the adopted tools in the course should be

Table 3. Selected papers for the MDSD course in addition to the textbook.

General MDSD/introduction to MDSD
1. D.C. Schmidt. ‘‘Model-Driven Engineering’’. IEEE Computer, 39(2), February 2006.
2. E. Seidewitz. What Models Mean. IEEE Software 20(5), 26–32, 2003.
3. P.A. Muller, F. Fondement, B. Baudry. Modeling Modeling. MoDELS Conf., 2–16,

2009.
4. J. Bézivin. On the Unification Power of Models, 2005.
5. D.S. Frankel. Domain-Specific Modeling and Model Driven Architecture, 2004.

Modeling
6. UML 2. Specification, www.omg.org/spec/UML/2.0/.
7. XML Specification, www.w3.org/XML/.

Metamodeling
8. C. Atkinson and T. Kühne. Profiles in a Strict Metamodeling Framework, Science of

Computer Programming, Vol. 44, Issue 1, July 2002.
9. A. van Deursen, P. Klint, J. Visser. Domain-Specific Languages: An Annotated

Bibliography, 2000.

Meta-metamodeling and Technical Spaces
10. J. Bezivin and I. Kurtev. Model-based Technology Integration with the Technical

Space Concept, 2005.

Model Transformations
11. K. Czarnecki & S. Helsen. Feature-based survey of model transformation

approaches, IBM Systems Journal, Vol 45, No 3, 2006.
12. F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev. ATL: A model transformation tool,

Science of Computer Programming 72, 31–39, 2008.

374 B. Tekinerdogan

http://www.w3schools.com/
http://www.omg.org/spec/UML/2.0/
http://www.w3.org/XML/

open source and free. Second, the adopted tools should be reliable and
reflect the topics of the course. In alignment with these criteria we
adopted the MDSD toolset as defined in the Eclipse Modeling Project
(EMP, 2011). This project focuses on the evolution and promotion of
model-based development technologies within the Eclipse community by
providing a unified set of modeling frameworks, tooling, and implemen-
tation of standards. The project provides tools for abstract syntax
development, concrete syntax development, static semantics, M2M, and
M2T. The students were free to choose any language defined in this
Eclipse Modeling Project.

Pedagogic form selection

In this section, we describe the adopted pedagogic forms for the MDSD
course. This includes Powerpoint presentations, in-class demonstrations,
homework, project, and the decisions on assignment and grading.

Powerpoint presentations

The course was conducted two days a week, including one-hour and two-
hour lecture sessions. Each lecture was presented by using Powerpoint
slides. The Powerpoint slides were prepared based on the guidelines for
multi-media presentations (Joyce, Weil, & Calhoun, 2003) and they were
effectively used to explain the topics. During the course, active discussions
were encouraged as much as possible. In general, the students appreciated
the use of electronic presentations, especially when showing the example
metamodels. The presented course slides were sent by e-mail to the
students.

In-class demonstrations

The MDSD course is an advanced course in software development and
requires a considerably conceptual effort from students in order to
understand both the problems and the proposed solutions. To clarify the
topics and to make it more concrete, we focused on presenting as many
examples as possible. In addition to the examples presented, we arranged
demonstrations of XML modeling, XSD and DTD modeling, Metamo-
deling using XText, Metamodeling using ECore, model transformations
using ATL, model transformations using QVT, and M2T using XPand.
All of these tools were defined in the Eclipse Modeling Project. The
demonstrations were shown after the discussion on the theory of the
corresponding MDSD topic was completed, and were accompanied with
separate presentations explaining the cases of the demonstrations. The
demonstrations were kept short (around 15 min) and were mainly used to

Computer Science Education 375

support and direct the students in the selection and usage of the tools. In
addition to the plenary demonstrations, the students were also given the
opportunity to redo the demonstration at home. In our experience, these
demonstrations have not only been of great help for an improved
understanding of the presented topics but also improved the enthusiasm
for the course topics.

Homework

The students were given homework on the topics that were discussed in
the corresponding week. The homework included reading and evaluation
of selected papers, small assignments on MDSD, and the usage of MDSD
tools. Each homework was planned so that it could be realized in 5–10 h.
The assignments were briefly discussed in the lecture and, if needed,
explained in more detail afterwards.

Project

The course included one project in which the basic MDSD concepts and
techniques were practiced. The project could start in week eight after
sufficient information about the MDSD topics was discussed, and the
students got some experience with the MDSD tools during the homework
assignments. The project’s aim was to clarify the concepts that had been
taught during the classes using teamwork. For this, the students formed
groups of three, working together on a case that they had selected
themselves. It was expected that each group had to work on the project
every week for about 3–5 h. To control the progress and provide
intermediate feedback, separate consultancy meetings (with instructor) of
half-an-hour per group were planned.

Table 4 shows the number of students, the groups, and the selected
cases for the three academic years. Most of these cases were existing cases
or research topics of the group in which the students had to finalize their
MSc assignments. As such the projects had also an indirect positive effect
since the students directly applied the concepts in the real research setting.
Another important aim of the project was to define a proper problem
statement for the selected case from the perspective of MDSD. In this
way, the students were directed towards exploring different motivations
for MDSD and this further enhanced the understanding of the practical
value of MDSD. As such we aimed to support not only the understanding
of common domain-specific issues of MDSD but also the individual
problem-solving skills as described in, for example, Deek, Turoff, and
McHugh (1999).

The concrete aims of the projects were all different but we could
also observe problem statement categories based on software language

376 B. Tekinerdogan

engineering and model transformations. For the software language
engineering part, the basic motivation was to initially provide a
metamodel (DSL) for the selected domain to increase the under-
standability and/or to use it for model validation. In the final part of
the project, the problem statement had to be sharpened including the
motivation for M2M and M2T. The various aims from the model-
transformation perspective were to enhance portability, supporting
interoperability, and enhancing productivity. Detailed information about
the projects can be found on the workshop web sites (TModels, 2009;
TModels, 2010).

After defining the problem statement the students had to do a domain
analysis on the selected case. This was needed to support the idea of
domain-driven design and domain specific language engineering. Based
on the domain model concepts derived from the domain analysis process,
the students had to provide a language engineering solution using three
different technical spaces, i.e. XML-based, grammar-based, and OMG
metamodeling-based.

For the model transformation part both M2M and M2T were
required. As stated in the previous sections, we chose to adopt the tools

Table 4. Selected projects by student groups in the MDSD course over three years.

2008–2009 (20 students) 2009–2010 (15 students) 2010–2011 (17 students)

MD-CHISIO: A model
driven approach for
graph visualization

A model-driven approach
for automating
architecture
documentation process

Model-driven analysis of
wireless networks

Model-driven development
for procedural building
modeling

Model-driven
development approach
for tactical battlefield
management systems

A model-driven software
architecture for
mind-mapping

Model-driven flight deck
display modeling

A model-driven approach
to role playing games

Model driven development
of car navigation system

Model-driven approach for
emergency resource
management

A model-driven approach
for information
retrieval systems

Model-driven integration of
ARINC 653 compatible
real time avionics system

Automatic generation of
board games using
MDSD

A model-driven approach
to the planning domain

Model-driven approach for
organizational structures

Model-driven development
of command and control
of unmanned systems

Model-driven approach for
kinematic human body
model generation

Model-driven development
of discrete event
simulation modeling

Model-driven integrated
circuit modeling and
analysis

Computer Science Education 377

as defined in the Eclipse Modeling Project. Several different alternative
tools are provided in the Eclipse Modeling Project. We deliberately did
not choose a particular tool but let the students explore the possible
and suitable tools for their projects. In this way, we stimulated the
analysis of multiple tools and gaining insight in the current state-of-
the-art of MDSD tools. The deliverables of the project included a
report (about 30–40 pages). The general outline of the report is shown in
Figure 5.

We can state that the students were, in general, very positive about the
project since it provided them the opportunity to experience a real MDSD
process.

Assignment and grading

The final course grade was based on a set of written exams/assignments,
which were used to evaluate students understanding of the course
material. There were two homework assignments, two examinations, one
mid-term, and one final exam. The overall grading scheme is given in
Table 5.

Table 5. Examinations and grading.

Task Description Weight

Homework Individual assignments 10%
Mid-term project (software language eng.) Report (50%) 20%

Presentation (15%)
Code (35%)

Final project (model transformations) Report/workshop paper (50%) 20%
(Workshop) Presentation (15%)
Code (35%)

Mid-term exam Open book 120 min 25%
Final exam Open book 120 min 25%

Figure 5. Outline of the report that was required as a result of the project deliverables.

378 B. Tekinerdogan

The homework assignments helped to assess the students’ knowledge
of particular topics and stimulated the students to explore the required
MDSD tools on time. The mid-term and final exams were more
comprehensive and focused on a broader understanding and application
of the topics. The examinations were open book and open slides, and
even open notebook, i.e. the students could use their notebooks during
the exam. This is because our focus was not on memorization of the
topics but rather on the ability to apply what was learned during the
course. To prevent plagiarism (using the internet), the open notebook
exams were held in a classroom in which no wireless internet access was
possible.

The homework and examinations did not only help to evaluate and
grade the students but also ensured indirectly that the course topics were
studied on time. This was important considering the relative advanced
nature of the course. Besides the examinations, which were evaluated
individually, the students also got a group grade for the project and the
related workshop (see next section). The project was graded based on
the report (workshop paper), presentation, and code. Note that the
project counts for a significant part of the grade, which emphasizes its
importance.

Workshop organization

During the project, complex cases were selected from industry and
ongoing projects at the university and these were analyzed and
re-engineered as MDSD designs. Each student team implemented a
metamodel, an M2M, and an M2T. The deliverables were provided as a
report. To make these valuable practices public for a broad audience we
decided to organize the First and Second Turkish MDSD (TModels)
Workshop (TModels, 2009; TModels, 2010) for which we invited
participants from industry and other universities. This was a unique
experience since most of the students had never participated in a
workshop before. In addition, since the topic was introduced for the first
time in Turkey, the audience would consist of participants who were new
to this paradigm. Consequently, we thought that organizing such a
workshop would be beneficial for both our students and external
participants. In particular, with the organization of the workshop we
had the following goals in mind:

. Trigger academic and industrial activities in the MDSD domain in
Turkey.

. Show real-world example cases using different MDSD approaches
to highlight the current state-of-the-art in the MDSD community.

. Show the lessons learned from MDSD.

Computer Science Education 379

. Share our ideas with respect to MDSD education on MDSD in
Turkey.

. Trigger new research topics on MDSD.

For the First TModels workshop (TModels, 2009), we had around 45
registered participants, the Second TModels workshop (TModels, 2010)
had around 30 registered participants. The majority of the participants
consisted of our own students, participants from the Turkish software
industry, and a few participants from other Turkish universities.

During the workshop, the project results have been presented as
workshop papers. Because most students in the MDSD course wrote a
workshop paper for the first time, they also received a short course on
how to write workshop papers and in addition got extensive feedback on
their papers by the instructor. The papers not only present experiences
in an MDSD project but also highlight the obstacles in MDSD and
provide some triggers for new research directions. As such, we consider
the papers in the published workshop proceedings as both useful for
novice MDSD developers and researchers.

Course evaluation

In this section, we report on the evaluation of the course by reflecting on
the impact of the course on the students, and the evaluation of the course
by the students.

Table 6 shows the overall grading results (over 100) of the students in
each year for the particular course evaluation items. The first year
homework was not graded and as such the results here are missing. In
general, the students were highly motivated and also scored well for the
course. Based on our experience we can state that defining and grading
homework had an important impact on the overall motivation and
understanding of both the concepts and the MDSD tools. The homework
assignments were done individually and usually the grades for these
assignments were quite high.

Table 6. Averages of the grades for the course evaluation items.

TASK 2008–2009 2009–2010 2010–2011 Avg. grade (over 100)

Homework – 91 80 85
Mid-term project 72 79 80 77
Final project 83 74 86 83
Mid-term exam 78 63 69 70
Final exam 77 72 66 72
GPA 3.36 3.0 3.45 3.27

380 B. Tekinerdogan

For the project report, the students had to also write a section in which
they had to reflect on the lessons learned. Several items were recurring
themes in the observations of students:

Identifying cases and problem statement

For the project, the students had to define their own cases and the related
problem statement. Defining the cases was usually not a problem but very
often the students needed additional help to define a proper problem
statement within the context of the selected case. Defining a concrete
problem statement required a sufficient understanding of MDSD topics
and this appeared difficult in particular in the initial stages of the project.
The division of the project into two parts including software language
engineering for mid-term project and model transformations for the final
project helped the students to reflect on the case and identify ‘‘emerging’’
and usually real problem statements. Students in the MDSD course that
was given in the last two years had fewer problems in defining problem
statements since they could access the project reports of the previous
year(s) on the course website.

Immature tools

Most students needed quite a lot of time to analyze the different tools,
install a selected tool, and use the tools. A commonly cited issue was the
immaturity of the tools which was caused due to lack of proper
documentation, lack of examples, bugs in the tools, or the lack for
integration with other tools. In the first year of the course the immaturity
of the tools was a bigger problem than the last year. We expect that,
thanks to the developments in MDSD, the concerns about tool support
will be somehow reduced in the coming years.

Difficulty of metamodeling

It appeared that the process of metamodeling was considered more
difficult than expected after the lectures. During the lectures, many
different examples of metamodels were given but once the students had
to define their own metamodels they reported that defining the right
metamodel abstractions was not that easy. There are different processes
for modeling in the literature which most students had somehow applied
before, but the process for metamodeling was quite new and required a
different level of thinking. Despite the lack of a systematic metamodeling
process and the related difficulties, most students noted that they still
appreciated this new insight because it enabled a new perspective on

Computer Science Education 381

modeling in general. Regarding the different metamodeling approaches
(metamodeling from scratch vs. UML profiling) it appeared that
different students had different opinions about these two distinct
appoaches. Some groups indicated that metamodeling from scratch
was easier while others preferred profiling (UML) to define metamodels.
A reflection on the projects showed that the difference was also caused
due to the different selected cases. Important criteria here appeared to be
the distance of the metamodel to the UML metamodel. Metamodels
closer to the UML metamodel could be better and easily modeled using
profiling, while other metamodels required the definition of metamodel
from scratch.

Effective usage of model transformations

Once the metamodels were defined, the students usually had no problems
in defining M2M and M2T. Although they had several options, in
general, the students preferred using ATL (Jouault et al., 2008) for M2M
and XPand (Stahl & Voelter, 2006) for M2T. The main (reported) reason
for this was the more extensive documentation and the availability of
examples in both tools. Many students indicated that the learning curve
for the several tools was a bit high but after some experience with the
tools they indicated that model transformations had a sufficient high
pay-off since they could solve ‘‘real’’ problems related to such as reuse,
portability, and interoperability.

Overall appreciation of technical spaces

During the lectures, we have adopted three different technical spaces
for modeling (XML-based, grammar-based, and OMG metamodel-
ing). The overall notion of technical spaces and the analysis of these
seemed to be better understood and appreciated after the application
of these in the project. Besides metamodeling, the students indicated
that the notion of technical spaces broadened their vision of modeling
in general. In many projects, the students themselves define the
bridging between solutions in technical spaces. The motivation for this
bridging became more understood during the realization of the
project.

Table 7 shows the course evaluation by the students over three years.
The evaluation criteria are defined by the department and used for all
graduate and under-graduate courses. As it can be observed from the
table, the students have indicated that they appreciated both the
presented course content and the pedagogic forms. The evaluations can
be considered as outstanding results considering the average in the
computer engineering department of Bilkent University.

382 B. Tekinerdogan

Related work

The Educators’ Symposium at MODELS is being organized for several
years now (Bezivin et al., 2010; EduSymp, 2011; Seidl & Clarke, 2010;
Śmiałek, 2008). The workshop focuses on discussing the education of
model-driven techniques to software engineers at universities and
software industries. The motivation for organizing the workshop stems
from the observation that while most computer science curricula
include some education in modeling technologies, a more holistic
approach of modeling in software engineering is rarely captured. We
think that our experiences fit perfectly with the goals of the EduSymp
workshops.

The panel discussion held during the Educators’ Symposium at
MODELS’2009 (Bezivin et al., 2010) indicated important concerns when
teaching MDSD. A number of topics relevant to teaching modeling
such as Notation, Semantics, Programming, Tooling, Suitability, and
Metamodeling were discussed. An interesting observation that was made
during the panel discussion is that MDSD has been initially an industry-
driven approach, which was later on tackled and reshaped by researchers.
There seems to be now an agreement that MDSD has a reasonable
consistent theory with basic tooling support and empirical evidence for a
significant return on investment for MDSD projects. What is missing in
the MDSD context is education. We think that our effort in designing and

Table 7. Course evaluation by students over three years.

Evaluation criteria
2008–2009

Avg. evaluation
2009–2010

Avg. evaluation
2010–2011

Avg. evaluation

The instructor clearly stated
course objectives and
expectations from students.

4.89 4.91 4.67

The instructor stimulated
interest in the subject.

4.89 4.55 4.44

The instructor was able to
promote effective student
participation in class

4.89 4.82 4.56

The instructor helped develop
analytical, scientific, critical,
creative, and independent
thinking abilities in students.

4.89 4.91 4.67

Rate the instructor’s overall
teaching effectiveness in this
course.

4.89 4.91 4.56

I learned a lot in this course. 4.56 4.91 4.56
The exams, assignments, and

projects required analytical,
scientific, critical, and creative
thinking.

4.78 4.82 4.33

Computer Science Education 383

teaching an MDSD course is in alignment with this vision for
dissemination of the MDSD topics.

In the EduSymp workshop in 2010 (Seidl & Clarke, 2010), the general
consensus among the participants seemed to be that software modeling
education should not be limited to teaching theory only but hands-on
experience of the students is necessary. This is because students will be
more motivated if they can use some tools, and the taught concepts will
be better understood implementing practical applications. Our experi-
ences underline these observations. We could indeed observe that the
students got more motivated when starting with the projects and also
mastered the MDSD concepts after realizing the project and implement-
ing metamodels and the model transformations.

Several MDSD-related courses have been started elsewhere in the
world. Gokhale and Gray (2005) describe their experiences in developing
and teaching MDSD courses based on their research activities. The
authors report on two special topic courses that were related to the theory
and practice in MDSD. The courses were basically research-driven and
open to both graduate and under-graduate students. As a consequence, in
the adopted format of the course less emphasis was placed on the didactic
aspects of teaching, while more focus was put on hands-on experiences,
projects, and discussions. The course organization had also a practical
goal; the enhancement and use of the CoSMIC and C-SAW tools. The
course that we have organized was only open for graduate students, and
due to the workshop organization within the course there was also a
strong research focus. The main reason for organizing our course was
educational and not targeted to support our research activities. As such
our students had to analyze a broad set of MDSD tools and could select
their own MDSD tool. Gokhale and Gray (2005) report on the similar
lessons learned from our experience, including the relatively high learning
curve involved in mastering the tools and the difficulties in comprehend-
ing the concepts of metamodeling.

Brosch et al. (2009) report on the advanced modeling course called
Model Engineering that is started at the Business Informatics Group
(BIG) of the Vienna University of Technology. The course is obligatory
for business informatics master students and optional for master
students of computer science. The course seems to include similar topics
as in our MDSD course, including metamodeling, model transformation,
code generation, and concrete syntax specifications. Further, the authors
also state that besides a solid knowledge on MDSD, hands-on experience
concerning the state-of-the-art techniques seemed to be important. The
immature tool support in MDSD resulted in several problems but in
general the students appreciated to work with the latest MDSD tools.
Our experiences from our MDSD courses also confirm these
observations.

384 B. Tekinerdogan

Clarke et al. (2009) describe their experiences in how MDSD has been
integrated into the software design course at Florida International
University. During the course, the students had to work on a project for
modeling and realizing communication applications. The authors of
the paper further present the results of a survey that was provided to the
students to obtain empirical evidence on how MDSD helps with
understanding modeling concepts and the current state of the tools to
support MDSD. The results of the survey showed that MDSD has a
positive impact on helping students to better understand how models can
be used during software design. Our experiences are in alignment with
these findings. In particular, the notion of metamodeling and the
discussion of different technical spaces increased the understanding and
vision on modeling.

Conclusion

In this article, we have described our experiences of three-year teaching of
the graduate course Model-Driven Software Development, at Bilkent
University in Ankara, Turkey. To support the organization and planning
of the course, the important topics were represented in a topic tree and
these were later on distributed over 15 weeks in a semester. The selection of
topics was done in parallel with the evaluation of the textbooks and the
relevant scientific papers in the MDSD domain. The textbooks were
evaluated based on the learning goals that we have defined for the course.
For this we adopted both content analysis and instruction analysis.
Since no textbook covered all the learning goals for the course, we selected
the most feasible textbook and complemented this with a selection of
important MDSD research papers in the course material. In our experience
the adoption of research papers in the course helped to improve the
scientific reading and writing skills, which is essential for graduate students.

Knowledge of tools and the ability to implement metamodels and
model transformations was an important learning goal. During the
projects, it appeared that different student groups used different Eclipse
Modeling tools. As such, all students got an overview of practically all the
Eclipse Modeling tools.

The organization of a workshop within a course was really a unique
experience and helped increase not only the scientific reading, writing,
and presentation skills of the students but also supported the
popularization of the MDSD concepts in Turkey.

In the future, we plan to give the same course in a similar way. We
expect that more and better textbooks will be published in the near future
and the corresponding tools will be even more mature. This will facilitate
the realization of the course further and the opportunity and need to
introduce MDSD courses in the CS curriculum (CSC, 2008) will increase.

Computer Science Education 385

We hope that the course organization and the planning will be of help for
our peer educators and colleagues.

Acknowledgments

I would like to thank all the Bilkent University, CS587 (MDSD course) students of the
academic years 2008–2009, 2009–2010, and 2010–2011, for their motivation and their
hard work during this course. Further, I would like to thank the anonymous reviewers
for their valuable comments for the earlier versions of this article.

References

Bézivin, J. (2005). On the unification power of models. Software and System Modeling, 4,
171–188.

Bézivin, J. (2006). Model driven engineering: An emerging technical space. In R. Lämmel,
J. Saraiva, & J. Visser (Eds.), Generative and transformational techniques in software
engineering (Vol. 4143) (pp. 36–64). Berlin, Heidelberg: Springer.

Bézivin, J., France, R., Gogolla, M., Haugen, O., Taentzer, G., & Varro, D. (2010).
Teaching modeling: Why, when, what? In S. Ghosh (Ed.), Models in software
engineering (Vol. 6002) (pp. 55–62). Berlin, Heidelberg: Springer.

Bilkent. (2011). Bilkent University. Retrieved from http://www.bilkent.edu.tr/bilkent-tr/
index.html

Briand, L.C., Labiche, Y., & O’Sullivan, L. (2003). Impact analysis and change
management of UML models. In Proceedings of the International Conference on
Software Maintenance (ICSM’03), Amsterdam, Netherlands.

Brosch, P., Kappel, G., Seidl, M., & Wimmer, M. (2009). Teaching model engineering in
the large. In Educators’ Symposium @ Models 2009, Denver, USA.

Clarke, P.J., Wu, Y., Allen, A.A., & King, T.M. (2009). Experiences of teaching model-
driven engineering in a software design course. In Proceedings of the Models 2009
Educators’ Symposium, Denver, USA.

CSC. (2008). ACM and IEEE computer science curriculum 2008: An interim revision of CS
2001 (Report from the Interim Review Task Force, The association for computing
machinery and the IEEE computer society). New York: ACM/IEEE.

Deek, F., Turoff, M., & McHugh, J. (1999)A common model for problem solving and
program development. Journal of the IEEE Transactions on Education, 42, 331–336.

van Deursen, A., Visser, E., & Warmer, J. (2007). Model-driven software evolution: A
research agenda. In Dalila Tamzalit (Eds.), Proceedings 1st International Workshop on
Model-Driven Software Evolution (pp. 41–49). Nantes: University of Nantes.

ECMFA. (2011). European conference on modelling foundations and applications.
Retrieved from http://www.ecmfa–2011.org/

ECTS. (2009). ECTS users’ guide. Retrieved from http://ec.europa.eu/education/lifelong-
learning-policy/doc/ects/guide_en.pdf

EduSymp. (2011). Software modeling in education. In 7th Educators’ Symposium @
MODELS 2011. Retrieved from http://edusymp.big.tuwien.ac.at/

EMP. (2011). Eclipse modeling project. Retrieved from http://www.eclipse.org/modeling/
Favre, J.M. & NGuyen, T. (2004). Towards a megamodel to model software evolution

through transformations. In SETRA Workshop (pp. 59–74) [ENCTS]. Amsterdam:
Elsevier.

Gokhale, A.S. & Gray, J. (2005). Advancing model driven development education via
collaborative research. In Proceedings of the Educators Symposium at the 8th
International Conference, MoDELS 2005. Montego Bay, Jamaica.

Jouault, F., Allilaire, F., Bézivin, J., & Kurtev, I. (2008). ATL: A model transformation
tool. Science of Computer Programming, 72, 31–39.

Joyce, B., Weil, M., & Calhoun, E. (2003).Models of teaching (7th ed.). Englewood Cliffs,
NJ: Prentice-Hall.

386 B. Tekinerdogan

http://www.bilkent.edu.tr/bilkent-tr/index.html
http://www.bilkent.edu.tr/bilkent-tr/index.html
http://www.ecmfa–2011.org/
http://ec.europa.eu/education/lifelong-learning-policy/doc/ects/guide_en.pdf
http://ec.europa.eu/education/lifelong-learning-policy/doc/ects/guide_en.pdf
http://edusymp.big.tuwien.ac.at/
http://www.eclipse.org/modeling/

Kleppe, A. (2009). Software language engineering: Creating domain-specific languages
using metamodels. Boston: Addison-Wesley Longman Publishing.

Kleppe, A., Warmer, J., & Bast, W. (2003). MDA explained: The model driven
architecture – Practice and promise. Boston: Addison-Wesley.

Kulm, G., Roseman, J., & Treistman, M. (1999). A benchmarks-based approach to
textbook evaluation. Science Books & Films, 35, 147–153.

Martin, R.C. (2002). Agile software development, principles, patterns, and practices. Upper
Saddle River, NJ: Prentice Hall.

Mellor, S.J., Scott, K., Uhl, A., & Weise, D. (2004). MDA distilled: Principle of model
driven architecture. Reading, Boston: Addison Wesley.

MODELS. (2011). ACM/IEEE international conference series on model driven
engineering languages and systems model conference. Retrieved from http://www.
modelsconference.org/

MOFM2T. (2011). Object management group. MOF model to text transformation
language (MOFM2T), 1.0 – Specification. Retrieved from http://www.omg.org/spec/
MOFM2T/1.0/

Seidl, M. & Clarke, P.J. (2010). Software modeling in education. In Proceedings of the 6th
Educators’ Symposium at MODELS 2010, Oslo, Norway.

SLE. (2011). Software language engineering conference series. Retrieved from http://
planet-sl.org/sle2011/

Śmiałek, M. (2008). Promoting software modeling through active education. In Educators
Symposium at the 11th International Conference, MODELS 2008, Toulouse, France.

Stahl, T. & Voelter, M. (2006). Model-driven software development. Boston: Addison-
Wesley.

Tekinerdogan. (2011). CS587-model-driven software development course home page.
Bilkent University, Ankara, Turkey. Retrieved from http://www.cs.bilkent.edu.tr/
*bedir/CS587-MDSD/, 2010/2011

THEWUR. (2011). Times higher education world university rankings. Retrieved from
http://www.timeshighereducation.co.uk/world-university-rankings/

TModels. (2009). First Turkish workshop on model-driven software development. Retrieved
from http://www.cs.bilkent.edu.tr/Bilsen/TMODELS-2009/

TModels. (2010). Second Turkish workshop on model-driven software development.
Retrieved from http://www.cs.bilkent.edu.tr/Bilsen/TMODELS-2010/

QVT. (2011). Object management group. Meta object facility (MOF) 2.0 query/view/
transformation (QVT). Retrieved from http://www.omg.org/spec/QVT/1.0/

Computer Science Education 387

http://www.modelsconference.org/
http://www.modelsconference.org/
http://planet-sl.org/sle2011/
http://planet-sl.org/sle2011/
http://www.cs.bilkent.edu.tr/~bedir/CS587-MDSD/
http://www.cs.bilkent.edu.tr/~bedir/CS587-MDSD/
http://www.timeshighereducation.co.uk/
http://www.cs.bilkent.edu.tr/Bilsen/TMODELS-2009/
http://www.cs.bilkent.edu.tr/Bilsen/TMODELS-2010/

