
9
CHAPTER

ONLINE NONLINEAR MODELING VIA
SELF-ORGANIZING TREES

Nuri Denizcan Vanli∗, Suleyman Serdar Kozat†
∗Massachusetts Institute of Technology, Laboratory for Information and Decision Systems, Cambridge, MA,

United States †Bilkent University, Ankara, Turkey

CONTENTS
9.1 Introduction .. 202
9.2 Self-Organizing Trees for Regression Problems ... 204

9.2.1 Notation .. 204
9.2.2 Construction of the Algorithm ... 205
9.2.3 Convergence of the Algorithm ... 208

9.3 Self-Organizing Trees for Binary Classification Problems.. 209
9.3.1 Construction of the Algorithm ... 209
9.3.2 Convergence of the Algorithm ... 212

9.4 Numerical Results .. 213
9.4.1 Numerical Results for Regression Problems .. 213

9.4.1.1 Mismatched Partitions.. 214
9.4.1.2 Chaotic Signals... 215

9.4.2 Numerical Results for Classification Problems ... 217
9.4.2.1 Stationary Data ... 217
9.4.2.2 Nonstationary Data: Concept Change/Drift ... 217

Appendix 9.A ... 219
9.A.1 Proof of Theorem 1 ... 219
9.A.2 Proof of Theorem 2 ... 221

Acknowledgments .. 221
References... 221

CHAPTER POINTS

• We present a nonlinear modeling method for online supervised learning problems.
• Nonlinear modeling is introduced via SOTs, which adaptively partition the feature space to minimize the loss

of the algorithm.
• Experimental validation shows huge empirical performance improvements with respect to the state-of-the-art

methods.

Adaptive Learning Methods for Nonlinear System Modeling. DOI: 10.1016/B978-0-12-812976-0.00012-9
Copyright © 2018 Elsevier Inc. All rights reserved.

201

https://doi.org/10.1016/B978-0-12-812976-0.00012-9

202 CHAPTER 9 ONLINE NONLINEAR MODELING VIA SELF-ORGANIZING TREES

9.1 INTRODUCTION
Nonlinear adaptive learning is extensively investigated in the signal processing [1–4] and machine
learning literature [5–7], especially for applications where linear modeling is inadequate and hence
does not provide satisfactory results due to the structural constraint on linearity. Although nonlinear
approaches can be more powerful than linear methods in modeling, they usually suffer from overfitting
and stability and convergence issues [8], which considerably limit their application to signal processing
and machine learning problems. These issues are especially exacerbated in adaptive filtering due to the
presence of feedback, which is hard to control even for linear models [9]. Furthermore, for applications
involving big data, which require the processing of input vectors with considerably large dimensions,
nonlinear models are usually avoided due to unmanageable computational complexity increase [10]. To
overcome these difficulties, tree-based nonlinear adaptive filters or regressors are introduced as elegant
alternatives to linear models since these highly efficient methods retain the breadth of nonlinear models
while mitigating the overfitting and convergence issues [11–13].

In its most basic form, a tree defines a hierarchical or nested partitioning of the feature space [12].
As an example, consider the binary tree in Fig. 9.1, which partitions a two-dimensional feature space.
On this tree, each node is constructed by a bisection of the feature space (where we use hyperplanes
for separation), which results in a complete nested and disjoint partitioning of the feature space. After
the partitions are defined, the local learners in each region can be chosen as desired. As an example,
to solve a regression problem, one can train a linear regressor in each region, which yields an overall
piecewise linear regressor. In this sense, tree-based modeling is a natural nonlinear extension of linear
models via a tractable nested structure.

Although nonlinear modeling using trees is a powerful and efficient method, there exist several
algorithmic parameters and design choices that affect their performance in many applications [11].
Tuning these parameters is a difficult task for applications involving nonstationary data exhibiting
saturation effects, threshold phenomena or chaotic behavior [14]. In particular, the performance of
tree-based models heavily depends on a careful partitioning of the feature space. Selection of a good
partition is essential to balance the bias and variance of the regressor [12]. As an example, even for
a uniform binary tree, while increasing the depth of the tree improves the modeling power, such an
increase usually results in overfitting [15]. To address this issue, there exist nonlinear modeling algo-
rithms that avoid such a direct commitment to a particular partition but instead construct a weighted
average of all possible partitions (or equivalently, piece-wise models) defined on a tree [6,7,16,17].
Note that a full binary tree of depth d defines a doubly exponential number of different partitions of the
feature space [18]; for an example, see Fig. 9.2. Each of these partitions can be represented by a certain
collection of the nodes of the tree, where each node represents a particular region of the feature space.
Any of these partitions can be used to construct a nonlinear model, e.g., by training a linear model
in each region, we can obtain a piece-wise linear model. Instead of selecting one of these partitions
and fixing it as the nonlinear model, one can run all partitions in parallel and combine their outputs
using a mixture-of-experts approach. Such methods are shown to mitigate the bias–variance tradeoff in
a deterministic framework [6,7,16,19]. However, these methods are naturally constrained to work on a
fixed partitioning structure, i.e., the partitions are fixed and cannot be adapted to data.

Although there exist numerous methods to partition the feature space, many of these split criteria
are typically chosen a priori and fixed such as the dyadic partitioning [20] and a specific loss (e.g., the
Gini index [21]) is minimized separately for each node. For instance, multivariate trees are extended

9.1 INTRODUCTION 203

FIGURE 9.1

Feature space partitioning using a binary tree. The partitioning of a two-dimensional feature space using a
complete tree of depth-2 with hyperplanes for separation. The feature space is first bisected by st,λ, which is
defined by the hyperplane φt,λ, where the region on the direction of the φt,λ vector corresponds to the child
with label “1”. We then continue to bisect children regions using st,0 and st,1, defined by φt,0 and φt,1,
respectively.

FIGURE 9.2

Example partitioning for a binary classification problem. The left figure shows an example partitioning of a
two-dimensional feature space using a depth-2 tree. The active region corresponding to a node is shown
colored, where the dashed line represents the separating hyperplane at that node, and the two different
colored subregions in a node represent the local classifier trained in that region. The right figure shows all
different partitions (and consequently classifiers) defined by the tree on the left.

to allow the simultaneous use of functional inner and leaf nodes to draw a decision in [13]. Similarly,
the node-specific individual decisions are combined in [22] via the context tree weighting method [23]
and a piece-wise linear model for sequential classification is obtained. Since the partitions in these

204 CHAPTER 9 ONLINE NONLINEAR MODELING VIA SELF-ORGANIZING TREES

methods are fixed and chosen even before the processing starts, the nonlinear modeling capability of
such methods is very limited and significantly deteriorates in cases of high dimensionality [24].

To resolve this issue, we introduce self-organizing trees (SOTs) that jointly learn the optimal feature
space partitioning to minimize the loss of the algorithm. In particular, we consider a binary tree where
a separator (e.g., a hyperplane) is used to bisect the feature space in a nested manner, and an online
linear predictor is assigned to each node. The sequential losses of these node predictors are combined
(with their corresponding weights that are sequentially learned) into a global loss that is parameterized
via the separator functions and the parameters of the node predictors. We minimize this global loss
using online gradient descent, i.e., by updating the complete set of SOT parameters, i.e., the separators,
the node predictors and the combination weights, at each time instance. The resulting predictor is a
highly dynamical SOT structure that jointly (and in an online and adaptive manner) learns the region
classifiers and the optimal feature space partitioning and hence provides an efficient nonlinear modeling
with multiple learning machines. In this respect, the proposed method is remarkably robust to drifting
source statistics, i.e., nonstationarity. Since our approach is essentially based on a finite combination
of linear models, it generalizes well and does not overfit or limitedly overfits (as also shown by an
extensive set of experiments).

9.2 SELF-ORGANIZING TREES FOR REGRESSION PROBLEMS
In this section, we consider the sequential nonlinear regression problem, where we observe a desired
signal {dt }t≥1, dt ∈ R, and regression vectors {xt }t≥1, xt ∈ R

p , such that we sequentially estimate dt

by

d̂t = ft (xt),

where ft (·) is the adaptive nonlinear regression function defined by the SOT. At each time t , the
regression error of the algorithm is given by

et = dt − d̂t

and the objective of the algorithm is to minimize the square error loss
∑T

t=1 e2
t , where T is the number

of observed samples.

9.2.1 NOTATION
We first introduce a labeling for the tree nodes following [23]. The root node is labeled with an empty
binary string λ and assuming that a node has a label n, where n is a binary string, we label its upper
and lower children as n1 and n0, respectively. Here we emphasize that a string can only take its letters
from the binary alphabet {0,1}, where 0 refers to the lower child and 1 refers to the upper child of a
node. We also introduce another concept, i.e., the definition of the prefix of a string. We say that a string
n′ = q ′

1 . . . q ′
l′ is a prefix to string n = q1 . . . ql if l′ ≤ l and q ′

i = qi for all i = 1, . . . , l′ and the empty
string λ is a prefix to all strings. Let P(n) represent all prefixes to the string n, i.e., P(n) � {n0, . . . , nl},
where l � l(n) is the length of the string n, ni is the string with l(ni) = i and n0 = λ is the empty string,
such that the first i letters of the string n form the string ni for i = 0, . . . , l.

9.2 SELF-ORGANIZING TREES FOR REGRESSION PROBLEMS 205

For a given SOT of depth D, we let ND denote all nodes defined on this SOT and LD denote all leaf
nodes defined on this SOT. We also let βD denote the number of partitions defined on this SOT. This
yields the recursion βj+1 = β2

j + 1 for all j ≥ 1, with the base case β0 = 1. For a given partition k, we
let Mk denote the set of all nodes in this partition.

For a node n ∈ ND (defined on the SOT of depth D), we define SD(n) � {ń ∈ ND |P(ń) = n} as
the set of all nodes of the SOT of depth D, whose set of prefixes includes node n.

For a node n ∈ ND (defined on the SOT of depth D) with length l(n) ≥ 1, the total number of
partitions that contain n can be found by the following recursion:

γd

(
l(n)

)
�

l(n)∏
j=1

βd−j .

For the case where l(n) = 0 (i.e., for n = λ), one can clearly observe that there exists only one partition
containing λ, therefore γd(0) = 1.

For two nodes n, ń ∈ ND (defined on the SOT of depth D), we let ρ(n, ń) denote the number of
partitions that contain both n and ń. Trivially, if ń = n, then ρ(n, ń) = γd(l(n)). If n �= ń, then letting
n̄ denote the longest prefix to both n and ń, i.e., the longest string in P(n) ∩P(ń), we obtain

ρ(n, ń) �

⎧⎪⎪⎨
⎪⎪⎩

γd(l(n)), if n = ń,

γd (l(n))γd−l(n̄)−1(l(ń)−l(n̄)−1)

βd−l(n̄)−1
, if n /∈ P(ń) ∪ SD(ń),

0, otherwise.

(9.1)

Since l(n̄) + 1 ≤ l(n) and l(n̄) + 1 ≤ l(ń) from the definition of the SOT, we naturally have ρ(n, ń) =
ρ(ń, n).

9.2.2 CONSTRUCTION OF THE ALGORITHM
For each node n on the SOT, we define a node predictor

d̂t,n = vT
t,nxt , (9.2)

whose parameter vt,n is updated using the online gradient descent algorithm. We also define a separator
function for each node p on the SOT except the leaf nodes (note that leaf nodes do not have any
children) using the sigmoid function

st,n = 1

1 + exp(φT
t,nxt)

, (9.3)

where φt,n is the normal to the separation plane. We then define the prediction of any partition accord-
ing to the hierarchical structure of the SOT as the weighted sum of the prediction of the nodes in that
partition, where the weighting is determined by the separator functions of the nodes between the leaf
node and the root node. In particular, the prediction of the kth partition at time t is defined as follows:

d̂
(k)
t =

∑
n∈Mk

(
d̂t,n

l(n)−1∏
i=0

s
qi
t,ni

)
, (9.4)

206 CHAPTER 9 ONLINE NONLINEAR MODELING VIA SELF-ORGANIZING TREES

where ni ∈ P(n) is the prefix to string n with length i − 1, qi is the ith letter of the string n, i.e.,
ni+1 = niqi , and finally s

qi
t,ni

denotes the value of the separator function at node ni such that

s
qi
t,ni

�
{

st,ni
, if qi = 0,

1 − st,ni
, otherwise,

(9.5)

with st,ni
defined as in (9.3). We emphasize that we dropped the n dependency of qi and ni to simplify

notation. Using these definitions, we can construct the final estimate of our algorithm as

d̂t =
∑
k∈βD

w
(k)
t d̂

(k)
t , (9.6)

where w
(k)
t represents the weight of partition k at time t .

Having found a method to combine the predictions of all partitions to generate the final prediction
of the algorithm, we next aim to obtain a low-complexity representation since there are O(1.52D

)

different partitions defined on the SOT and (9.6) requires a storage and computational complexity of
O(1.52D

). To this end, we denote the product terms in (9.4) as follows:

δ̂t,n � d̂t,n

l(n)−1∏
i=0

s
qi
t,ni

, (9.7)

where δ̂t,n can be viewed as the estimate of the node n at time t . Then (9.4) can be rewritten as follows:

d̂
(k)
t =

∑
p∈Mk

δ̂t,n.

Since we now have a compact form to represent the tree and the outputs of each partition, we next
introduce a method to calculate the combination weights of O(1.52D

) partitions in a simplified manner.
For this, we assign a particular linear weight to each node. We denote the weight of node n at time t as
wt,n and then define the weight of the kth partition as the sum of the weights of its nodes, i.e.,

w
(k)
t =

∑
n∈Mk

wt,n,

for all k ∈ {1, . . . , βD}. Since we use online gradient descent to update the weight of each partition, the
weight of partition k is recursively updated as

w
(k)
t+1 = w

(k)
t + μtet d̂

(k)
t .

This yields the following recursive update on the node weights:

wt+1,n = wt,n + μtet δ̂t,n, (9.8)

where δ̂t,n is defined as in (9.7). This result implies that instead of managing O(1.52D
) memory loca-

tions and making O(1.52D
) calculations, only keeping track of the weights of every node is sufficient

9.2 SELF-ORGANIZING TREES FOR REGRESSION PROBLEMS 207

and the number of nodes in a depth-D model is |ND| = 2D+1 − 1. Therefore, we can reduce the stor-
age and computational complexity from O(1.52D

) to O(2D) by performing the update in (9.8) for all
n ∈ ND .

Using these node predictors and weights, we construct the final estimate of our algorithm as follows:

d̂t =
βd∑

k=1

⎧⎨
⎩
⎛
⎝ ∑

n∈Mk

wt,n

⎞
⎠
⎛
⎝ ∑

n∈Mk

δ̂t,n

⎞
⎠
⎫⎬
⎭ .

Here, we observe that for arbitrary two nodes n, ń ∈ Nd , the product wt,nδ̂t,ń appears ρ(n, ń) times in
d̂t (cf. (9.1)). Hence, the combination weight of the estimate of the node n at time t can be calculated
as follows:

κt,n =
∑

ń∈Nd

ρ(n, ń)wt,ń. (9.9)

Using the combination weight (9.9), we obtain the final estimate of our algorithm as follows:

d̂t =
∑

n∈ND

κt,n δ̂t,n. (9.10)

Note that (9.10) is equal to (9.6) with a storage and computational complexity of O(4D) instead of
O(1.52D

).
As we derived all the update rules for the node weights and the parameters of the individual node

predictors, what remains is to provide an update scheme for the separator functions. To this end, we
use the online gradient descent update

φt+1,n = φt,n − 1

2
ηt∇e2

t (φt,n), (9.11)

for all nodes n ∈ ND \LD , where ηt is the learning rate of the algorithm and ∇e2
t (φt,n) is the derivative

of e2
t (φt,n) with respect to φt,n. After some algebra, we obtain

φt+1,n = φt,n + ηtet

∂d̂t

∂st,n

∂st,n

∂φt,n

= φt,n + ηtet

⎧⎨
⎩
∑

ń∈ND

κt,ń

∂δ̂t,ń

∂st,n

⎫⎬
⎭ ∂st,n

∂φt,n

= φt,n + ηtet

⎧⎨
⎩

1∑
q=0

∑
ń∈SD(nq)

(−1)qκt,ń

δ̂t,ń

s
q
t,n

⎫⎬
⎭ ∂st,n

∂φt,n

, (9.12)

208 CHAPTER 9 ONLINE NONLINEAR MODELING VIA SELF-ORGANIZING TREES

Algorithm 1 Self-Organizing Tree Regressor (SOTR).
1: for t = 1 to n do
2: Calculate separator functions st,p , for all p ∈ND \LD using (9.14).
3: Calculate node predictors d̂t,p , for all p ∈ LD using (9.2).

4: Define αt,p =∏l(p)

i=1 s
qi
t,νi

and calculate δ̂t,p , for all p ∈ LD using (9.7).
5: Calculate combination weights κt,p , for all p ∈ LD using (9.9).
6: Construct the final estimate d̂t using (9.10).
7: Observe the error et = dt − d̂t .
8: Update the node predictors vt+1,p = vt,p + μtetαt,pxt for all p ∈ LD .
9: Update the node weights wt+1,p = wt,p + μtet δ̂t,p for all p ∈ LD .

10: Update the separator functions φt,p for all p ∈ ND \LD using (9.12).
11: end for

where we use the logistic regression classifier as our separator function, i.e., st,n = (
1+ exp(xT

t φt,n)
)−1

.
Therefore, we have

∂st,n

∂φt,n

= −
(

1 + exp(xT
t φt,n)

)−2
exp(xT

t φt,n)xt

= −st,n(1 − st,n)xt . (9.13)

We emphasize that other separator functions can also be used in a similar way by simply calculating
the gradient with respect to the extended direction vector and plugging in (9.12) and (9.13). From
(9.13), we observe that ∇e2

t (φt,n) includes the product of st,n and 1 − st,n terms; hence, in order not to
slow down the learning rate of our algorithm, we restrict s+ ≤ st ≤ 1 − s+ for some 0 < s+ < 0.5. In
accordance with this restriction, we define the separator functions as follows:

st = s+ + 1 − 2s+

1 + exT
t φt

. (9.14)

According to the update rule in (9.12), the computational complexity of the introduced algorithm
results in O(p4d). This concludes the construction of the algorithm and a pseudocode is given in
Algorithm 1.

9.2.3 CONVERGENCE OF THE ALGORITHM
For Algorithm 1, we have the following convergence guarantee, which implies that our regressor
(given in Algorithm 1) asymptotically achieves the performance of the best linear combination of the
O(1.52D

) different adaptive models that can be represented using a depth-D tree with a computational
complexity O(p4D). While constructing the algorithm, we refrain from any statistical assumptions on
the underlying data, and our algorithm works for any sequence of {dt }t≥1 with an arbitrary length of n.
Furthermore, one can use this algorithm to learn the region boundaries and then feed this information
to the first algorithm to reduce computational complexity.

9.3 SELF-ORGANIZING TREES FOR BINARY CLASSIFICATION PROBLEMS 209

Theorem 1. Let {dt }t≥1 and {xt }t≥1 be arbitrary, bounded and real-valued sequences. The predictor

d̂t given in Algorithm 1 when applied to these sequences yields

T∑
t=1

(
dt − d̂t

)2 − min
w∈Rβd

T∑
t=1

(
dt − wT d̂ t

)2 ≤ O
(

log(T)
)
, (9.15)

for all T , when e2
t (w) is strongly convex ∀t , where d̂ t = [d̂(1)

t , . . . , d̂
(βd)
t]T and d̂

(k)
t represents the

estimate of dt at time t for the adaptive model k = 1, . . . , βd .

Proof of this theorem can be found in Appendix 9.A.1.

9.3 SELF-ORGANIZING TREES FOR BINARY CLASSIFICATION PROBLEMS
In this section, we study online binary classification, where we observe feature vectors {xt }t≥1 and
determine their labels {yt }t≥1 in an online manner. In particular, the aim is to learn a classification
function ft (xt) with xt ∈ R

p and yt ∈ {−1,1} such that, when applied in an online manner to any
streaming data, the empirical loss of the classifier ft (·), i.e.,

LT (ft) �
T∑

t=1

1{ft (xt)�=dt }, (9.16)

is asymptotically as small (after averaging over T) as the empirical loss of the best partition classifier
defined over the SOT of depth D. To be more precise, we measure the relative performance of ft with
respect to the performance of a partition classifier f

(k)
t , where k ∈ {1, . . . , βD}, using the following

regret:

RT (ft ;f (k)
t) � LT (ft) − LT (f

(k)
t)

T
, (9.17)

for any arbitrary length T . Our aim is then to construct an online algorithm with guaranteed upper
bounds on this regret for any partition classifier defined over the SOT.

9.3.1 CONSTRUCTION OF THE ALGORITHM
Using the notations described in Section 9.2.1, the output of a partition classifier k ∈ {1, . . . , βD} is
constructed as follows. Without loss of generality, suppose that the feature xt has fallen into the region
represented by the leaf node n ∈ LD . Then xt is contained in the nodes n0, . . . , nD , where nd is the i

letter prefix of n, i.e., nD = n and n0 = λ. For example, if node nd is contained in partition k, then one
can simply set f

(k)
t (xt) = ft,nd

(xt). Instead of making a hard selection, we allow an error margin for
the classification output ft,nd

(xt) in order to be able to update the region boundaries later in the proof.
To achieve this, for each node contained in partition k, we define a parameter called path probability to
measure the contribution of each leaf node to the classification task at time t . This parameter is equal
to the multiplication of the separator functions of the nodes from the respective node to the root node,

210 CHAPTER 9 ONLINE NONLINEAR MODELING VIA SELF-ORGANIZING TREES

which represents the probability that xt should be classified using the region classifier of node nd . This
path probability (similar to the node predictor definition in (9.7)) is defined as

Pt,nd
(xt) �

d−1∏
i=0

s
qi+1
t,ni

(xt), (9.18)

where p
qi+1
t,ni

(·) represents the value of the partitioning function corresponding to node ni towards the
qi+1 direction as in (9.5). We consider that the classification output of node nd can be trusted with a
probability of Pt,nd

(xt). This and the other probabilities in our development are independently defined
for ease of exposition and gaining intuition, i.e., these probabilities are not related to the unknown data
statistics in any way and they definitely cannot be regarded as certain assumptions on the data. Indeed,
we do not take any assumptions about the data source.

Intuitively, the path probability is low when the feature vector is close to the region boundaries;
hence we may consider to classify that feature vector by another node classifier (e.g., the classifier of
the sibling node). Using these path probabilities, we aim to update the region boundaries by learning
whether an efficient node classifier is used to classify xt , instead of directly assigning xt to node nd

and lose a significant degree of freedom. To this end, we define the final output of each node classifier
according to a Bernoulli random variable with outcomes {−ft,nd

(xt), ft,nd
(xt)}, where the probability

of the latter outcome is Pt,nd
(xt). Although the final classification output of node nd is generated

according to this Bernoulli random variable, we continue to call ft,nd
(xt) the final classification output

of node nd , with an abuse of notation. Then the classification output of the partition classifier is set to
f

(k)
t (xt) = ft,nd

(xt).
Before constructing the SOT classifier, we first introduce certain definitions. Let the instantaneous

empirical loss of the proposed classifier ft at time t be denoted by �t (ft) � 1{ft (xt)�=yt }. Then the
expected empirical loss of this classifier over a sequence of length T can be found by

LT (ft) = E

[
T∑

t=1

�t (ft)

]
, (9.19)

with the expectation taken with respect to the randomization parameters of the classifier ft . We also
define the effective region of each node nd at time t as follows: Rt,nd

�
{
x : Pt,nd

(x) ≥ (0.5)d
}
. Ac-

cording to the aforementioned structure of partition classifiers, the node nd classifies an instance xt

only if xt ∈ Rt,nd
. Therefore, the time accumulated empirical loss of any node n during the data

stream is given by

LT,n �
∑

t≤T :{xt }t≥1∈Rt,n

�t (ft,n). (9.20)

Similarly, the time accumulated empirical loss of a partition classifier k is L
(k)
T �

∑
n∈Mk

LT,n.
We then use a mixture-of-experts approach to achieve the performance of the best partition classifier

that minimizes the accumulated classification error. To this end, we set the final classification output of
our algorithm as ft (xt) = f

(k)
t with probability w

(k)
t , where

w
(k)
t = 1

Zt−1
2−J (k) exp

(
−bL

(k)
t−1

)
,

9.3 SELF-ORGANIZING TREES FOR BINARY CLASSIFICATION PROBLEMS 211

b ≥ 0 is a constant controlling the learning rate of the algorithm, J (k) ≤ 2|L(k)| − 1 represents
the number of bits required to code the partition k (which satisfies

∑βD

k=1 J (k) = 1) and Zt =∑βD

k=1 2−J (k) exp
(
−bL

(k)
t

)
is the normalization factor.

Although this randomized method can be used as the SOT classifier, in its current form, it re-
quires a computational complexity O(1.52D

p) since the randomization w
(k)
t is performed over the set

{1, . . . , βD} and βD ≈ 1.52D
. However, the set of all possible classification outputs of these partitions

has a cardinality as small as D + 1 since xt ∈ Rt,nD
for the corresponding leaf node nD (in which

xt is included) and f
(k)
t = ft,nd

for some d = 0, . . . ,D, ∀k ∈ {1, . . . , βD}. Hence, evaluating all the
partition classifiers in k at the instance xt to produce ft (xt) is unnecessary. In fact, the computational
complexity for producing ft (xt) can be reduced from O(1.52D

p) to O(Dp) by performing the exact
same randomization over ft,nd

’s using the new set of weights wt,nd
, which can be straightforwardly

derived as follows:

wt,nd
=

βD∑
k=1

w
(k)
t 1

f
(k)
t (xt)=ft,nd

(xt)
. (9.21)

To efficiently calculate (9.21) with complexity O(Dp), we consider the universal coding scheme
and let

Mt,n �
{

exp
(−bLt,n

)
, if n has depth D,

1
2

[
Mt,n0Mt,n1 + exp

(−bLt,n

)]
, otherwise

(9.22)

for any node n and observe that we have Mt,λ = Zt [23]. Therefore, we can use the recursion (9.22) to
obtain the denominator of the randomization probabilities w

(k)
t . To efficiently calculate the numerator

of (9.21), we introduce another intermediate parameter as follows. Letting n′
d denote the sibling of

node nd , we recursively define

κt,nd
�

⎧⎪⎪⎨
⎪⎪⎩

1
2 , if d = 0
1
2Mt−1,n′

d
κt,nd−1 , if 0 < d < D

Mt−1,n′
d
κt,nd−1 , if d = D

, (9.23)

∀d ∈ {0, . . . ,D}, where xt ∈ Rt,nD
. Using the intermediate parameters in (9.22) and (9.23), it can be

shown that we have

wt,nd
= κt,nd

exp
(−bLt,nd

)
Mt,λ

. (9.24)

Hence, we obtain the final output of the algorithm as ft (xt) = ft,nd
(xt) with probability wt,nd

, where
d ∈ {0, . . . ,D} (i.e., with a computational complexity O(D)).

We then use the final output of the introduced algorithm and update the region boundaries of the
tree (i.e., organize the tree) to minimize the final classification error. To this end, we minimize the loss
E
[
�t (ft)

] = E[1{ft (xt)�=yt }] = 1
4E
[
(yt − ft (xt))

2] with respect to the region boundary parameters,
i.e., we use the stochastic gradient descent method as follows:

212 CHAPTER 9 ONLINE NONLINEAR MODELING VIA SELF-ORGANIZING TREES

Algorithm 2 Self-Organizing Tree Classifier (SOTC).
1: for t = 1 to T do
2: Propagate {xt }t≥1 from the root to the leaf and obtain the visited nodes n0, . . . , nD .
3: Calculate Pt,nd

(xt) for all d ∈ 0, ...,D using (9.18).
4: Calculate wt,nd

(xt) for all d ∈ 0, ...,D using (9.24).
5: Draw a node among n0, . . . , nD with probabilities wt,n0, . . . ,wt,nD

, respectively; suppose that
nd is drawn.

6: Draw a classification output {1,−1} with probabilities Pt,nd
(xt) and 1−Pt,nd

(xt), respectively;
ft (xt) is equated to the selected output.

7: Update the region classifiers (perceptron) at the visited nodes [25].
8: �t (ft) ← 1{ft (xt)�=yt }
9: Update Lt,nd

for all d ∈ 0, ...,D using (9.20).
10: Apply the recursion in (9.22) to update Mt+1,nd

for all d ∈ 0, ...,D.
11: Update the separator parameters φ using (9.27).
12: end for

φt+1,nd
= φt,nd

− η∇E
[
�t (ft)

]
= φt,nd

− (−1)qd+1 η (yt − ft (xt)) s
q ′
d+1

t,nd
(xt)

⎡
⎣ D∑

i=d+1

ft,ni
(xt)

⎤
⎦xt , (9.25)

∀d ∈ {0, . . . ,D − 1}, where η denotes the learning rate of the algorithm and q ′
d+1 represents the com-

plementary letter to qd+1 from the binary alphabet {0,1}. Defining a new intermediate variable

πt,nd
�
{

ft,nd
(xt), if d = D − 1,

πt,nd+1 + ft,nd
(xt), if d < D − 1,

(9.26)

one can perform the update in (9.25) with a computational complexity O(p) for each node nd , where
d ∈ {0, . . . ,D − 1}, resulting in an overall computational complexity of O(Dp) as follows:

φt+1,nd
= φt,nd

− (−1)md+1 η (yt − ft (xt))πt,nd
s
q ′
d+1

t,nd
(xt) xt . (9.27)

This concludes the construction of the algorithm and the pseudocode of the SOT classifier can be found
in Algorithm 2.

9.3.2 CONVERGENCE OF THE ALGORITHM
In this section, we illustrate that the performance of Algorithm 2 is asymptotically as good as the best
partition classifier such that, as T → ∞, we have RT (ft ;f (k)

t) → 0. Hence, Algorithm 2 asymptoti-
cally achieves the performance of the best partition classifier among O(1.52D

) different classifiers that
can be represented using the SOT of depth D with a significantly reduced computational complexity
of O(Dp) without any statistical assumptions on data.

9.4 NUMERICAL RESULTS 213

Theorem 2. Let {xt }t≥1 and {yt }t≥1 be arbitrary and real-valued sequences of feature vectors and
their labels, respectively. Then Algorithm 2, when applied to these data sequences, sequentially yields

max
k∈{1,...,βD}

E
[
RT (ft ;f (k)

t)
]

≤ O

⎛
⎝
√

2D

T

⎞
⎠ , (9.28)

for all T with a computational complexity O(Dp), where p represents the dimensionality of the feature
vectors and the expectation is with respect to the randomization parameters.

Proof of this theorem can be found in Appendix 9.A.2.

9.4 NUMERICAL RESULTS
In this section, we illustrate the performance of SOTs under different scenarios with respect to state-
of-the-art methods. The proposed method has a wide variety of application areas, such as channel
equalization [26], underwater communications [27], nonlinear modeling in big data [28], speech and
texture analysis [29, Chapter 7] and health monitoring [30]. Yet, in this section, we consider nonlinear
modeling for fundamental regression and classification problems.

9.4.1 NUMERICAL RESULTS FOR REGRESSION PROBLEMS
Throughout this section, “SOTR” represents the self-organizing tree regressor defined in Algorithm 1,
“CTW” represents the context tree weighting algorithm of [16], “OBR” represents the optimal batch
regressor, “VF” represents the truncated Volterra filter [1], “LF” represents the simple linear filter,
“B-SAF” and “CR-SAF” represent the Beizer and the Catmull–Rom spline adaptive filter of [2], re-
spectively, and “FNF” and “EMFNF” represent the Fourier and even mirror Fourier nonlinear filter of
[3], respectively. Finally, “GKR” represents the Gaussian-kernel regressor and it is constructed using n

node regressors, say d̂t,1, . . . , d̂t,n, and a fixed Gaussian mixture weighting (that is selected according
to the underlying sequence in hindsight), giving

d̂t =
n∑

i=1

f
(
xt ;μi ,�i

)
d̂t,i ,

where d̂t,i = vT
t,ixt and

f
(
xt ;μi ,�i

)
� 1

2π
√|�i |e

− 1
2 (xt−μi)

T �−1
i (xt−μi),

for all i = 1, . . . , n.
For a fair performance comparison, in the corresponding experiments in Subsection 9.4.1.2, the de-

sired data and the regressor vectors are normalized between [−1,1] since the satisfactory performance
of several algorithms requires the knowledge on the upper bounds (such as the B-SAF and the CR-
SAF) and some require these upper bounds to be between [−1,1] (such as the FNF and the EMFNF).

214 CHAPTER 9 ONLINE NONLINEAR MODELING VIA SELF-ORGANIZING TREES

Moreover, in the corresponding experiments in Subsection 9.4.1.1, the desired data and the regressor
vectors are normalized between [−1,1] for the VF, the FNF and the EMFNF algorithms due to the
aforementioned reason. The regression errors of these algorithms are then scaled back to their original
values for a fair comparison.

Considering the illustrated examples in the respective papers [2,3,16], the orders of the FNF and
the EMFNF are set to 3 for the experiments in Subsection 9.4.1.1 and 2 for the experiments in Sub-
section 9.4.1.2. The order of the VF is set to 2 for all experiments. Similarly, the depth of the trees
for the SOTR and CTW algorithms is set to 2 for all experiments. For these tree-based algorithms,
the feature space is initially partitioned by the direction vectors φt,n = [φ(1)

t,n , . . . , φ
(p)
t,n]T for all nodes

n ∈ ND \ LD , where φ
(i)
t,n = −1 if i ≡ l(n) (mod D), e.g., when D = p = 2, we have the four quad-

rants as the four leaf nodes of the tree. Finally, we use cubic B-SAF and CR-SAF algorithms, whose
number of knots are set to 21 for all experiments. We emphasize that both these parameters and the
learning rates of these algorithms are selected to give equal rates of performance and convergence.

9.4.1.1 Mismatched Partitions
In this subsection, we consider the case where the desired data is generated by a piece-wise linear model
that mismatches with the initial partitioning of the tree-based algorithms. Specifically, the desired signal
is generated by the following piece-wise linear model:

dt =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

wT xt + πt , if φT
0 xt ≥ 0.5 and φT

1 xt ≥ 1,

−wT xt + πt , if φT
0 xt ≥ 0.5 and φT

1 xt < 1,

−wT xt + πt , if φT
0 xt < 0.5 and φT

2 xt ≥ −1,

wT xt + πt , if φT
0 xt < 0.5 and φT

2 xt < −1,

(9.29)

where w = [1, 1]T , φ0 = [4, −1]T , φ1 = [1, 1]T , φ2 = [1, 2]T , xt = [x1,t , x2,t]T , πt is a sample func-
tion from a zero mean white Gaussian process with variance 0.1 and x1,t and x2,t are sample functions
of a jointly Gaussian process of mean [0, 0]T and variance I 2. The learning rates are set to 0.005 for
SOTR and CTW, 0.1 for FNF, 0.025 for B-SAF and CR-SAF, 0.05 for EMFNF and VF. Moreover, in
order to match the underlying partition, the mass points of GKR are set to μ1 = [1.4565, 1.0203]T ,
μ2 = [0.6203, −0.4565]T , μ3 = [−0.5013, 0.5903]T and μ4 = [−1.0903, −1.0013]T with the same
covariance matrix as in the previous example.

Fig. 9.3 shows the normalized time accumulated regression error of the proposed algorithms. We
emphasize that the SOTR algorithm achieves a better error performance compared to its competitors.
Comparing the performances of the SOTR and CTW algorithms, we observe that the CTW algorithm
fails to accurately predict the desired data, whereas the SOTR algorithm learns the underlying parti-
tioning of the data, which significantly improves the performance of the SOTR. This illustrates the
importance of the initial partitioning of the regressor space for tree-based algorithms to yield a satis-
factory performance.

In particular, the CTW algorithm converges to the best batch regressor having the predetermined
leaf nodes (i.e., the best regressor having the four quadrants of two-dimensional space as its leaf nodes).
However that regressor is suboptimal since the underlying data is generated using another constellation;
hence its time accumulated regression error is always lower bounded by O(1) compared to the global
optimal regressor. The SOTR algorithm, on the other hand, adapts its region boundaries and captures

9.4 NUMERICAL RESULTS 215

FIGURE 9.3

Regression error performances for the second-order piece-wise linear model in (9.29).

the underlying unevenly rotated and shifted regressor space partitioning perfectly. Fig. 9.4 shows how
our algorithm updates its separator functions and illustrates the nonlinear modeling power of SOTs.

9.4.1.2 Chaotic Signals
In this subsection, we illustrate the performance of the SOTR algorithm when estimating chaotic data
generated by the Henon map and the Lorenz attractor [31].

First, we consider a zero mean sequence generated by the Henon map, a chaotic process given by

dt = 1 − ζ d2
t−1 + η dt−2, (9.30)

known to exhibit chaotic behavior for the values of ζ = 1.4 and η = 0.3. The desired data at time
t is denoted as dt whereas the extended regressor vector is xt = [dt−1, dt−2,1]T , i.e., we consider a
prediction framework. The learning rate is set to 0.025 for B-SAF and CR-SAF, whereas it is set to
0.05 for the rest.

Fig. 9.5 (left plot) shows the normalized regression error performance of the proposed algorithms.
One can observe that the algorithms whose basis functions do not include the necessary quadratic terms
and the algorithms that rely on a fixed regressor space partitioning yield unsatisfactory performance.
On the other hand, VF can capture the salient characteristics of this chaotic process since its order is set
to 2. Similarly, FNF can also learn the desired data since its basis functions can well approximate the
chaotic process. The SOTR algorithm, however, uses a piece-wise linear modeling and still achieves
asymptotically the same performance as the VF algorithm, while outperforming the FNF algorithm.

Second, we consider the chaotic signal set generated using the Lorenz attractor [31] that is defined
by the following three discrete-time equations:

xt = xt−1 + (σ (y − x))dt,

yt = yt−1 + (xt−1(ρ − zt−1) − yt−1)dt, (9.31)

216 CHAPTER 9 ONLINE NONLINEAR MODELING VIA SELF-ORGANIZING TREES

FIGURE 9.4

Changes in the boundaries of the leaf nodes of the SOT of depth 2 generated by the SOTR algorithm at time
instances t = 0,1000,2000,5000,20000,50000. The separator functions adaptively learn the boundaries of the
piece-wise linear model in (9.29).

FIGURE 9.5

Regression error performances of the proposed algorithms for the signal generated by the Henon map in (9.30)
(left figure) and for the Lorenz attractor in (9.31) with parameters dt = 0.01, ρ = 28, σ = 10 and β = 8/3 (right
figure).

9.4 NUMERICAL RESULTS 217

zt = zt−1 + (xt−1yt−1 − βzt−1)dt,

where we set dt = 0.01, ρ = 28, σ = 10 and β = 8/3 to generate the well-known chaotic solution
of the Lorenz attractor. In the experiment, xt is selected as the desired data and the two-dimensional
region represented by yt , zt is set as the regressor space, that is, we try to estimate xt with respect to yt

and zt . The learning rates are set to 0.01 for all algorithms.
Fig. 9.5 (right plot) illustrates the nonlinear modeling power of the SOTR algorithm even when

estimating a highly nonlinear chaotic signal set. As can be observed from Fig. 9.5, the SOTR algorithm
significantly outperforms its competitors and achieves a superior error performance since it tunes its
region boundaries to the optimal partitioning of the regressor space, whereas the performances of the
other algorithms directly rely on the initial selection of the basis functions and/or tree structures and
partitioning.

9.4.2 NUMERICAL RESULTS FOR CLASSIFICATION PROBLEMS
9.4.2.1 Stationary Data
In this section, we consider stationary classification problems and compare the SOTC algorithm with
the following methods: Perceptron, “PER” [25]; Online AdaBoost, “OZAB” [32]; Online Gradient-
Boost, “OGB” [33]; Online SmoothBoost, “OSB” [34]; and Online Tree–Based Nonadaptive Compet-
itive Classification, “TNC” [22]. The parameters for all of these compared methods are set as in their
original proposals. For “OGB” [33], which uses K weak learners per M selectors, essentially resulting
in MK weak learners in total, we use K = 1, as in [34], for a fair comparison along with the logit loss
that has been shown to consistently outperform other choices in [33]. The TNC algorithm is nonadap-
tive, i.e., not self-organizing, in terms of the space partitioning, which we use in our comparisons to
illustrate the gain due to the proposed self-organizing structure. We use the Perceptron algorithm as
the weak learners and node classifiers in all algorithms. We set the learning rate of the SOTC algo-
rithm to η = 0.05 in all of our stationary as well as nonstationary data experiments. We use N = 100
weak learners for the boosting methods, whereas we use a depth-4 tree in SOTC and TNC algorithms,
which corresponds to 31 = 25 − 1 local node classifiers. The SOTC algorithm has linear complexity
in the depth of the tree, whereas the compared methods have linear complexity in the number of weak
learners.

As can be observed in Table 9.1, the SOTC algorithm consistently outperforms the compared meth-
ods. In particular, the compared methods essentially fail to classify Banana and BMC datasets, which
indicates that these methods are not able to extend to complex nonlinear classification problems. On the
contrary, the SOTC algorithm successfully models these complex nonlinear relations with piece-wise
linear curves and provides a superior performance. In general, the SOTC algorithm has significantly
better transient characteristics and the TNC algorithm occasionally performs poorly (such as on BMC
and Banana data sets) depending on the mismatch between the initial partitions defined on the tree and
the underlying optimal separation of the data. This illustrates the importance of learning the region
boundaries in piece-wise linear models.

9.4.2.2 Nonstationary Data: Concept Change/Drift
In this section, we apply the SOTC algorithm to nonstationary data, where there might be continuous
or sudden/abrupt changes in the source statistics, i.e., concept change. Since the SOTC algorithm pro-
cesses data in a sequential manner, we choose the Dynamically Weighted Majority (DWM) algorithm

218 CHAPTER 9 ONLINE NONLINEAR MODELING VIA SELF-ORGANIZING TREES

Table 9.1 Average classification errors (in percentage) of
algorithms on benchmark datasets

Data Set PER OZAB OGB OSB TNC SOTC
Heart 24.66 23.96 23.28 23.63 21.75 20.09
Breast cancer 5.77 5.44 5.71 5.23 4.84 4.65
Australian 20.82 20.26 19.70 20.01 15.92 14.86
Diabetes 32.25 32.43 33.49 31.33 26.89 25.75
German 32.45 31.86 32.72 31.86 28.13 26.74
BMC 47.09 45.72 46.92 46.37 25.37 17.03
Splice 33.42 32.59 32.79 32.81 18.88 18.56
Banana 48.91 47.96 48.00 48.84 27.98 17.60

FIGURE 9.6

Performances of the algorithms in case of the abrupt and continuous concept changes in the BMC dataset. On
the left figure, at the 600th instance, there is a 180◦ clock-wise rotation around the origin that is effectively a
label flip. On the right figure, at each instance, there is a 180◦/1200 clock-wise rotation around the origin.

(DWM) [35] with Perceptron (DWM-P) or naive Bayes (DWM-N) experts for the comparison, since
the DWM algorithm is also an online algorithm. Although the batch algorithms do not truly fit into our
framework, we still devise an online version of the tree-based local space partitioning algorithm [24]
(which also learns the space partitioning and the classifier using the coordinate ascent approach) using
a sliding-window approach and abbreviate it as the WLSP algorithm. For the DWM method, which
allows the addition and removal of experts during the stream, we set the initial number of experts to 1,
where the maximum number of experts is bounded by 100. For the WLSP method, we use a window
size of 100. The parameters for these compared methods are set as in their original proposals.

We run these methods on the BMC dataset (1200 instances, Fig. 9.6), where a sudden/abrupt con-
cept change is obtained by rotating the feature vectors (clock-wise around the origin) 180◦ after the
600th instance. This is effectively equivalent to flipping the label of the feature vectors; hence the
resulting dataset is denoted as BMC-F. For a continuous concept drift, we rotate each feature vector
180◦/1200 = 0.15◦ starting from the beginning; the resulting dataset is denoted as BMC-C. In Fig. 9.6,
we present the classification errors for the compared methods averaged over 1000 trials. At each 10th

9.A APPENDIX 219

Table 9.2 Running times (in seconds) of the compared methods when
processing the BMC data set on a daily-use machine (Intel(R) Core(TM)
i5-3317U CPU @ 1.70 GHz with 4 GB memory)

PER OZAB OGB OSB TNC DWM-P DWM-N WLSP SOTC
0.06 12.90 3.57 3.91 0.43 2.06 6.91 68.40 0.62

instance, we test the algorithms with 1200 instances drawn from the active set of statistics (active
concept).

Since the BMC dataset is non-Gaussian with strongly nonlinear class separations, the DWM method
does not perform well on the BMC-F data. For instance, DWM-P operates with an error rate fluctuating
around 0.48–0.49 (random guess). This results since the performance of the DWM method is directly
dependent on the expert success and we observe that both base learners (Perceptron or the naive Bayes)
fail due to the high separation complexity in the BMC-F data. On the other hand, the WLSP method
quickly converges to steady state, however it is also asymptotically outperformed by the SOTC algo-
rithm in both experiments. Increasing the window size is clearly expected to boost the performance
of WLSP, however at the expense of an increased computational complexity. It is already significantly
slower than the SOTC method even when the window size is 100 (for a more detailed comparison,
see Table 9.2). The performance of the WLSP method is significantly worse on the BMC-C data set
compared to the BMC-F data set, since in the former scenario, WLSP is trained with batch data of a
continuous mixture of concepts in the sliding windows. Under this continuous concept drift, the SOTC
method always (not only asymptotically as in the case of the BMC-F data set) performs better than
the WLSP method. Hence, the sliding-window approach is sensitive to the continuous drift. Our dis-
cussion about the DWM method on the concept change data (BMC-F) remains valid in the case of the
concept drift (BMC-C) as well. In these experiments, the power of self-organizing trees is obvious as
the SOTC algorithm almost always outperforms the TNC algorithm. We also observe from Table 9.2
that the SOTC algorithm is computationally very efficient and the cost of region updates (compared to
the TNC algorithm) does not increase the computational complexity of the algorithm significantly.

APPENDIX 9.A
9.A.1 PROOF OF THEOREM 1
For the SOT of depth D, suppose d̂

(k)
t , k = 1, . . . , βd , are obtained as described in Section 9.2.2. To

achieve the upper bound in (9.15), we use the online gradient descent method and update the combina-
tion weights as

wt+1 = wt − 1

2
ηt∇e2

t (wt) = wt + ηtet d̂ t , (9.32)

where ηt is the learning rate of the online gradient descent algorithm. We derive an upper bound on the
sequential learning regret Rn, which is defined as

RT �
T∑

t=1

e2
t (wt) −

T∑
t=1

e2
t (w

∗
n),

220 CHAPTER 9 ONLINE NONLINEAR MODELING VIA SELF-ORGANIZING TREES

where w∗
T is the optimal weight vector over T , i.e.,

w∗
T � arg min

w∈Rβd

T∑
t=1

e2
t (w).

Following [36], using Taylor series approximation, for some point zt on the line segment connecting
wt to w∗

T , we have

e2
t (w

∗
T) = e2

t (wt) +
(
∇e2

t (wt)
)T

(w∗
T − wt) + 1

2
(w∗

T − wt)
T ∇2e2

t (zt)(w
∗
T − wt). (9.33)

According to the update rule in (9.32), at each iteration the update on weights are performed as wt+1 =
wt − ηt

2 ∇e2
t (wt). Hence, we have

∣∣∣∣wt+1 − w∗
T

∣∣∣∣2 =
∣∣∣∣∣∣wt − ηt

2
∇e2

t (wt) − w∗
T

∣∣∣∣∣∣2
= ∣∣∣∣wt − w∗

T

∣∣∣∣2 − ηt

(
∇e2

t (wt)
)T

(wt − w∗
T) + η2

t

4

∣∣∣∣∣∣∇e2
t (wt)

∣∣∣∣∣∣2 .

This yields

(
∇e2

t (wt)
)T

(wt − w∗
T) =

∣∣∣∣wt − w∗
T

∣∣∣∣2 − ∣∣∣∣wt+1 − w∗
T

∣∣∣∣2
ηt

+ ηt

∣∣∣∣∇e2
t (wt)

∣∣∣∣2
4

.

Under the mild assumptions that
∣∣∣∣∇e2

t (wt)
∣∣∣∣2 ≤ A2 for some A > 0 and e2

t (w
∗
T) is λ-strong convex

for some λ > 0 [36], we achieve the following upper bound:

e2
t (wt) − e2

t (w
∗
T) ≤

∣∣∣∣wt − w∗
T

∣∣∣∣2 − ∣∣∣∣wt+1 − w∗
T

∣∣∣∣2
ηt

− λ

2

∣∣∣∣wt − w∗
T

∣∣∣∣2 + ηt

A2

4
. (9.34)

By selecting ηt = 2
λt

and summing up the regret terms in (9.34), we get

Rn =
n∑

t=1

{
e2
t (wt) − e2

t (w
∗
T)
}

≤
n∑

t=1

∣∣∣∣wt − w∗
T

∣∣∣∣2(1

ηt

− 1

ηt−1
− λ

2

)
+ A2

4

n∑
t=1

ηt

= A2

4

n∑
t=1

2

λt
≤ A2

2λ
(1 + log(n)) .

REFERENCES 221

9.A.2 PROOF OF THEOREM 2
Since Zt is a summation of terms that are all positive, we have Zt ≥ 2−J (k) exp

(
−bL

(k)
t

)
and after

taking the logarithm of both sides and rearranging the terms, we get

−1

b
logZT ≤ L

(k)
T + J (k) log 2

b
(9.35)

for all k ∈ {1, . . . , βD} at the (last) iteration at time T . We then make the following observation:

ZT =
T∏

t=1

Zt

Zt−1
=

T∏
t=1

βD∑
k=1

2−J (k) exp
(
−bL

(k)
t−1

)
Zt−1

exp
(
−b �t (f

(k)
t)

)

≤ exp

(
−bLT (ft) + T b2

8

)
, (9.36)

where the second line follows from the definition of Zt and the last line follows from the Hoeffding in-

equality by treating the w
(k)
t = 2−J (k) exp

(
−bL

(k)
t−1

)/
Zt−1 terms as the randomization probabilities.

Note that LT (ft) represents the expected loss of the final algorithm; cf. (9.19). Combining (9.35) and
(9.36), we obtain

LT (ft)

T
≤ L

(k)
T

T
+ J (k) log 2

T b
+ b

8

and choosing b =√
2D/T , we find the desired upper bound in (9.28) since J (k) ≤ 2D+1 − 1, for all

k ∈ {1, . . . , βD}.

ACKNOWLEDGMENTS
The authors would like to thank Huseyin Ozkan for his contributions in this work.

REFERENCES
[1] M. Schetzen, The Volterra and Wiener Theories of Nonlinear Systems, John Wiley & Sons, NJ, 1980.
[2] M. Scarpiniti, D. Comminiello, R. Parisi, A. Uncini, Nonlinear spline adaptive filtering, Signal Processing 93 (4) (2013)

772–783.
[3] A. Carini, G.L. Sicuranza, Fourier nonlinear filters, Signal Processing 94 (0) (2014) 183–194.
[4] N.D. Vanli, M.O. Sayin, I. Delibalta, S.S. Kozat, Sequential nonlinear learning for distributed multiagent systems via

extreme learning machines, IEEE Transactions on Neural Networks and Learning Systems 28 (3) (March 2017) 546–558.
[5] D.P. Helmbold, R.E. Schapire, Predicting nearly as well as the best pruning of a decision tree, Machine Learning 27 (1)

(1997) 51–68.
[6] E. Takimoto, A. Maruoka, V. Vovk, Predicting nearly as well as the best pruning of a decision tree through dynamic

programming scheme, Theoretical Computer Science 261 (2001) 179–209.
[7] E. Takimoto, M.K. Warmuth, Predicting nearly as well as the best pruning of a planar decision graph, Theoretical Computer

Science 288 (2002) 217–235.
[8] D.P. Bertsekas, Nonlinear Programming, Athena Scientific, 1999.

222 CHAPTER 9 ONLINE NONLINEAR MODELING VIA SELF-ORGANIZING TREES

[9] A.H. Sayed, Fundamentals of Adaptive Filtering, John Wiley & Sons, NJ, 2003.
[10] S. Dasgupta, Y. Freund, Random projection trees for vector quantization, IEEE Transactions on Information Theory 55 (7)

(2009) 3229–3242.
[11] W.-Y. Loh, Classification and regression trees, Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery

1 (1) (2011) 14–23.
[12] L. Brieman, J. Friedman, C.J. Stone, R.A. Olsen, Classification and Regression Trees, Chapman & Hall, 1984.
[13] J. Gama, Functional trees, Machine Learning 55 (3) (2004) 219–250.
[14] O.J.J. Michel, A.O. Hero, A.-E. Badel, Tree-structured nonlinear signal modeling and prediction, IEEE Transactions on

Signal Processing 47 (11) (Nov 1999) 3027–3041.
[15] H. Ozkan, N.D. Vanli, S.S. Kozat, Online classification via self-organizing space partitioning, IEEE Transactions on Signal

Processing 64 (15) (Aug 2016) 3895–3908.
[16] S.S. Kozat, A.C. Singer, G.C. Zeitler, Universal piecewise linear prediction via context trees, IEEE Transactions on Signal

Processing 55 (7) (2007) 3730–3745.
[17] N.D. Vanli, M.O. Sayin, S.S. Kozat, Predicting nearly as well as the optimal twice differentiable regressor, CoRR,

arXiv:1401.6413, 2014.
[18] A.V. Aho, N.J.A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly 11 (1970) 429–437.
[19] N.D. Vanli, K. Gokcesu, M.O. Sayin, H. Yildiz, S.S. Kozat, Sequential prediction over hierarchical structures, IEEE Trans-

actions on Signal Processing 64 (23) (Dec 2016) 6284–6298.
[20] C. Scott, R.D. Nowak, Minimax-optimal classification with dyadic decision trees, IEEE Transactions on Information The-

ory 52 (4) (2006) 1335–1353.
[21] C. Strobl, A.-L. Boulesteix, T. Augustin, Unbiased split selection for classification trees based on the Gini index, Compu-

tational Statistics & Data Analysis 52 (1) (2007) 483–501.
[22] H. Ozkan, M.A. Donmez, O.S. Pelvan, A. Akman, S.S. Kozat, Competitive and online piecewise linear classification, in:

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), May 2013, pp. 3452–3456.
[23] F.M.J. Willems, Y.M. Shtarkov, T.J. Tjalkens, The context-tree weighting method: basic properties, IEEE Transactions on

Information Theory 41 (3) (1995) 653–664.
[24] J. Wang, V. Saligrama, Local supervised learning through space partitioning, in: Advances in Neural Information Processing

Systems (NIPS), 2012, pp. 91–99.
[25] Y. Freund, R.E. Schapire, Large margin classification using the perceptron algorithm, Machine Learning 37 (3) (1999)

277–296.
[26] K. Kim, N. Kalantarova, S.S. Kozat, A.C. Singer, Linear MMSE-optimal turbo equalization using context trees, IEEE

Transactions on Neural Networks and Learning Systems 61 (12) (April 2013) 3041–3055.
[27] D. Kari, N.D. Vanli, S.S. Kozat, Adaptive and efficient nonlinear channel equalization for underwater acoustic communi-

cation, Physical Communication 24 (2017) 83–93.
[28] F. Khan, D. Kari, I.A. Karatepe, S.S. Kozat, Universal nonlinear regression on high dimensional data using adaptive hier-

archical trees, IEEE Transactions on Big Data 2 (2) (2016) 175–188.
[29] T. Kohonen, Self-Organizing Maps, 3rd edition, Springer-Verlag, Inc., New York, 2001.
[30] H.G. Basara, M. Yuan, Community health assessment using self-organizing maps and geographic information systems,

International Journal of Health Geographics 7 (1) (Dec 2008).
[31] E.N. Lorenz, Deterministic nonperiodic flow, Journal of the Atmospheric Sciences 20 (2) (1963) 130–141.
[32] N.C. Oza, S. Russell, Online bagging and boosting, in: Artificial Intelligence and Statistics, 2001, pp. 105–112.
[33] C. Leistner, A. Saffari, P.M. Roth, H. Bischof, On robustness of on-line boosting-a competitive study, in: IEEE 12th Inter-

national Conference on Computer Vision Workshops, 2009, pp. 1362–1369.
[34] S.-T. Chen, H.-T. Lin, C.-J. Lu, An online boosting algorithm with theoretical justifications, in: International Conference

on Machine Learning, 2012.
[35] J. Zico Kolter, Marcus Maloof, Dynamic weighted majority – an ensemble method for drifting concepts, Journal of Machine

Learning Research 8 (2007) 2755–2790.
[36] E. Hazan, A. Agarwal, S. Kale, Logarithmic regret algorithms for online convex optimization, Machine Learning 69 (2–3)

(2007) 169–192.

	9 Online Nonlinear Modeling via Self-Organizing Trees
	9.1 Introduction
	9.2 Self-Organizing Trees for Regression Problems
	9.2.1 Notation
	9.2.2 Construction of the Algorithm
	9.2.3 Convergence of the Algorithm

	9.3 Self-Organizing Trees for Binary Classiﬁcation Problems
	9.3.1 Construction of the Algorithm
	9.3.2 Convergence of the Algorithm

	9.4 Numerical Results
	9.4.1 Numerical Results for Regression Problems
	9.4.1.1 Mismatched Partitions
	9.4.1.2 Chaotic Signals

	9.4.2 Numerical Results for Classiﬁcation Problems
	9.4.2.1 Stationary Data
	9.4.2.2 Nonstationary Data: Concept Change/Drift

	Appendix 9.A
	9.A.1 Proof of Theorem 1
	9.A.2 Proof of Theorem 2

	 Acknowledgments
	 References

