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Abstract. Rent's rule and related concepts of connectivity such as di-
mensionality, line-length distributions, and separators have found great
use in fundamental studies of di�erent interconnection media, including
superconductors and optics, as well as the study of optoelectronic com-
puting systems. In this paper generalizations for systems for which the
Rent exponent is not constan tthroughout the interconnection hierar-
chy are pro vided. The origin of Rent's rule is stressed as resulting from
the embedding of a high-dimensional information 
ow graph to two- or
three-dimensional physical space. The applicability of these traditionally
solid-wire-based concepts to free-space optically interconnected systems
is discussed.

1 Connectivity ,Dimensionality ,and Rent's Rule

The importance of wiring models has long been recognized and they have been
used not only for design purposes but also for the fundamental study of inter-
connections and communication in computing. A central and ubiquitous concept
appearing in such contexts is the connectivity of a circuit graph or computer net-
w ork. Connectedness has always been a central concept in mathematical graph
theory [1{3], whose extensions play a central role in graph layout [4]. The purpose
of these concepts is to quantify the communication requirements in computer cir-
cuits. This paper aims to discuss several concepts related to the connectivity of
circuits (such as Rent's rule, dimensionality, line-length distributions, and sepa-
rators), provide certain extensions, and brie
y discuss some of their applications.
We �rst discuss generalizations for systems for which the Rent exponent is not
constant throughout the interconnection hierarchy, and present a number of re-
lated results. Special emphasis is given to the role of discontinuities and the
origin of Rent's rule. The applicability of these concepts to free-space optically
in terconnected systems and the role of Rent's rule in fundamental studies of dif-
ferent interconnection media, including superconductors and optics, are brie
y
reviewed.

Graph layout deals with the problem of how to situate the nodes and edges
of an abstract graph in physical space. Optimal graph layout [5] is in general an
NP-complete problem [6]. However, if a hierarc hical decompositionof a graph
is pro vided, this graph can be laid out following relatively simple algorithms. A
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hierarchical decomposition of a graph consisting of N nodes and the associated
decomposition function k( �N) are obtained as follows: First, we remove k(N)
edges in order to disconnect the graph into 2 subgraphs, each of approximately
N=2 nodes. Roughly speaking, we try to do this by removing as few edges as
possible. We repeat this procedure for the subgraphs thus created. The subgraphs
will in general require di�ering numbers of edges to be removed from them to be
disconnected into subsubgraphs of ' N=22 nodes each. We denote the largest of
these numbers as k(N=2). Continuing in this manner until the subgraphs consist
of a single node each, we obtain the function k( �N), the (worst case) number
of edges removed during decomposition of subgraphs of �N nodes. Once such
a decomposition is found, it is possible to lay out the graph in the intuitively
obvious manner by working upwards [7, 4, 6]. Whereas one can always �nd some
such decomposition, �nding the decomposition that leads to a layout with some
optimal property (such as minimal area) is not a trivial problem. We will assume
that we agree on a particular decomposition obtained by some heuristic method.

Now, let us de�ne the connectivity p( �N) and dimensionality n( �N) associated
with the hierarchical level of a decomposition involving subgraphs of �N nodes
by [8]

p( �N) =
n( �N)� 1

n( �N)
= log2

k( �N)

k( �N=2)
: (1)

In general the de�ned quantities satisfy 0 � p( �N) � 1 and 1 � n( �N) � 1. It is
possible to �nd many examples of graphs for which the values of k( �N) and p( �N)
for di�erent values of �N are totally erratic and have no correlation whatsoever.
However, both computer circuits and natural systems are observed to exhibit
varying degrees of continuity of the functions k( �N) and p( �N).

Let the geometric derivative ~f of a function f at the point x be de�ned
analogous to the usual arithmetic derivative:

~f(x) = lim
�!1+

log�
f(�x)

f(x)
: (2)

If k( �N) is slowly varying, we may pretend that it is a continuous function and
write

p( �N) =
n( �N)� 1

n( �N)
= ~k( �N ); (3)

which may be inverted as

k( �N) = k(1) exp

 Z �N

1

p( �N 0)
�N 0

d �N 0

!
; (4)

where �N 0 is a dummy variable.
Of course, since k( �N) is actually a function of a discrete variable, we cannot

actually let � ! 1. The smallest meaningful value of � in our context is 2. Hence
the geometric derivative should be interpreted in the same sense as we interpret
the common derivative in the form of a �nite di�erence for discrete functions.
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For our de�nition to make sense, k( �N) must be a slowly varying function. As
already noted, this is indeed observed over large variations of �N in both computer
circuits and natural systems. In fact, in many cases it is found that p( �N) and
n( �N) are approximately constant over a large range of �N . Such systems are said
to exhibit self similarity [9, 10], or scale invariance.

Assuming that p( �N) = p = constant, we �nd from equation 4 that k( �N) =
k(1) �Np. Apart from a constant coe�cient, this is nothing but Rent's rule [11,
12] which gives the number of graph edges k( �N) emanating from partitions
of computer circuits containing �N nodes (such as the number of pinouts of an
integrated circuit package containing �N gates). k(1) is interpreted as the average
number of edges per node and p is referred to as the Rent exponent.

Conversely, by taking Rent's rule as a starting point, however allowing the
exponent to be a function p( �N) of �N , we can derive equation 4 by working up
the hierarchy. (Readers wishing to skip this reverse derivation given below may
move directly to the paragraph following equation 9.) We consider a system with
a total of N primitive elements and express N in the form

N = Nm =

mY
i=1

�i; (5)

i.e., we have �m groups of �m�1 groups of . . . of �1 primitive elements. We are
assuming all subgroups of any group to be identical (it is of course possible to
go one step further and remove this restriction as well). The �i are su�ciently
small so that the connectivity requirements within each level of the hierarchy
can be assumed constant. The subtotals at any level are similarly expressed as

Nj =

jY
i=1

�i; 1 � j � m; (6)

with N0 = 1. If we let i and j approach continuous variables we can write this
as

N(j) = exp

�Z j

1

ln �(i) di

�
: (7)

Let it be the case that the �j subgroups forming one of �j+1 groups have con-
nectivity requirements characterized by a Rent exponent of pj . The number of
edges kj emanating from each of the �j+1 groups (each containing �j subgroups)
is

kj = kj�1�
pj
j = k0

jY
i=1

�pii ; (8)

where k0 is the number of edges of the primitive elements. In continuous form
we have

k(j) = k(0) exp

�Z j

1

p(i) ln �(i) di

�
: (9)

Now, it is possible to combine this with equation 7 to eliminate �(i) to obtain
equation 4, completing the derivation.
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The dimensionality and Rent exponent will depend not only on the graph,
but also on the layout of the graph. However, since there must be some layout
of the graph which results in the smallest exponent, this smallest exponent may
be considered intrinsic to the graph and representative of the intrinsic informa-
tion 
ow requirements of the computational problem. The minimum information

ow requirements can be quanti�ed for several relatively structured and simple
problems, such as sorting, fast Fourier transforms, etc. [4]. However, it should
not be forgotten that there may be no e�cient method of �nding the layout
resulting in the smallest exponent, so that it may not be possible to determine
this intrinsic minimum Rent exponent.

We now brie
y discuss the concept of separators. A graph of N nodes is
said to have an S( �N) separator (or to be S( �N) separable) if the graph can be
disconnected into two (roughly equal) subgraphs by removal of S(N) edges and
if the subgraphs thus created are also S( �N) separable [4]. Although we do not
go into the details, we note that a graph with connectivity function p( �N) has a
separator of the form S( �N) / �Nmax[p( �N)] where the maximum is taken over the
whole domain of �N . Separators play a central role in combinatoric approaches
to graph layout [7, 4], sometimes referred to as area-volume complexity theory.
(An alternative way of describing the communication requirements of graphs is
based on what are called bifurcators [6].)

Thus, we see that both Rent's rule and separators of the form S( �N) / �Np

are special cases of the more general formalism we have introduced. Apart from
minor technicalities involved in their de�nition, all are essentially equivalent
when p( �N) = constant. In general, p( �N) and n( �N) will be functions of �N .

The dimensionality n( �N) de�ned in equation 3 is a fractal dimension [10, 13{
15]. Fractal dimensions of natural systems, just as those of computer circuits,
may also vary as we ascend or descend the hierarchical structure of a system.
In any event, Rent's rule, fractal geometry and separators are tied together by
the notions of self similarity, scale invariance, and continuity in the relationships
between the volume-like (number of nodes) and surface-like (number of edges)
quantities.

To clarify this point, we o�er the following explanation of why the quantity
de�ned as n = 1=(1 � p) is referred to as a \dimension." The perimeter of a
square region is proportional to the 1=2 power of its area. The surface area of a
cube is proportional to the 2=3 power of its volume. In general, the hyperarea
enclosing a hyperregion of e dimensions is proportional to the (e�1)=e power of
its hypervolume. Let us now make an analogy between \hyperarea", \number
of graph edges emanating from a region," and \hypervolume" , \number of
nodes in the region." According to Rent's rule, the number of edges emanating
from the region is proportional to the pth power of the number of nodes in the
region. Thus, it makes sense to speak of the quantity n de�ned by the relation
p = (n� 1)=n as a \dimension." Note that in general n need not be an integer.

Now, let us assume that a graph with n( �N) = n = constant is laid out
in e-dimensional Euclidean space according to the divide-and-conquer layout
algorithm (i.e., as intuitively suggested by its decomposition) [7, 4]. (e is often
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= 2 but always � 3.) Such a layout will internally satisfy Rent's rule. Donath
[16] and Feuer [17] had shown that such a layout has a distribution g(r) of line
lengths of the form

g(r) / r�
e
n
�1; r � peN 1

e ; (10)

where r denotes line lengths in units of node-to-node grid spacing of the layout.
(We assume the nodes are situated on a regular Cartesian grid.) The relationship
between such inverse-power-law distributions and fractal concepts was discussed
by Mandelbrot [18{20], closing the circle. Using the above distribution, or by
combinatoric methods, we can show that when n > e the average connection
length �r of such a layout of N elements is given by [9]

�r = �(n; e)N
1
e
�

1
n ; (11)

where �(n; e) is a coe�cient of the order of unity. The accuracy of this expression
requires that N1=e�1=n � 1. This result has a simple interpretation. The average
connection length is simply the ratio of the linear extent N1=e of the system
in e-dimensional space to the linear extent N1=n in n-dimensional space. The
node-to-node grid spacing necessary to lay out a graph of dimensionality n is
given by / �r1=(e�1)� � N (n�e)=ne(e�1)�, where � is the line-to-line spacing of
whatever interconnection technology is being used [21{23]. Thus, when n > e,
the area (or volume) per node grows with N . This has been referred to as space
dilation [24]. Examples of graphs with well-de�ned structures which exhibit large
values of n are hypercubes, butter
ies, and shu�e-exchange graphs. It is also
easily veri�ed that the given de�nition of dimension is consistent with that for
multidimensional meshes [25].

Before closing this section, we discuss two further results regarding the cal-
culation of the average and total connection lengths of a layout. Readers wishing
to skip these may directly go to the next section.

First, we discuss the invariance of the total connection length under di�erent
grain-size viewpoints. One might view a computing system as a collection of its
most primitive elements, for instance gates or transistors. Alternately, one might
prefer to view it as a collection of higher-order elements, such as chips or pro-
cessors which are simply taken as black boxes with a certain number of pinouts.
Both viewpoints are perfectly valid, however one must interpret the average con-
nection length with care so as to maintain consistency. The average connection
length will be higher when calculated with reference to the higher-order picture,
as compared to the lower-order picture. This is because the shorter interconnec-
tions inside the black boxes are not being taken into account while computing
the average. Let us quantify this situation by considering N=N1 black boxes
(blocks) with N1 primitive elements in each, representing a simple partitioning
of the total N elements. Let the grid spacing of the black boxes be d1 and that

of the primitive elements be d0. In an e-dimensional space we have d1 = N
1=e
1 d0.

Let us consider n = constant > e. We let �̀ denote the average interconnection
length in real units, as opposed to �r which is the average connection length
in grid units. `total will denote the total interconnection length. Furthermore,
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assume N
1=e�1=n
1 � 1 and (N=N1)

1=e�1=n � 1. The �ne-grain picture yields

�̀= �rd0 = �N
1
e
�

1
n d0; (12)

whereas the large-grain picture yields

�̀= �(N=N1)
1
e
�

1
n d1 = �N

1
e
�

1
nN

1
n

1 d0; (13)

from which we see that indeed the large-grain picture yields a larger value of �̀

(unless n ! 1). However, in calculating the total system size, it is not �̀ but
rather `total that is the signi�cant quantity. For the �ne grain picture we have

`total = k0N �̀= k0�N
p+ 1

e d0; (14)

since p = 1� 1=n. For the large-grain picture we use the number of pinouts as

given by k1 = k0N
p
1 = k0N

1�1=n
1 , so that

`total = k1(N=N1)�̀= k0�N
p+ 1

e d0; (15)

identical to what we found with the �ne grain picture. So whatever way we choose
to look at it we always will end up calculating the total system size consistently.

This result means that we can ignore the contributions of the local intercon-
nections in calculating the total area (or volume) required for wiring. The longer
interconnections, although much fewer in number, constitute most of the wiring
volume. The total interblock wiring length is, once again

k0N
1� 1

n

1 (N=N1)�(N=N1)
1
e
�

1
n d1; (16)

whereas the total local wiring length is

(N=N1)k0N1�N
1
e
�

1
n

1 d0: (17)

The ratio of the former to the latter is

Total interblock wire length

Total local wire length
= (N=N1)

1
e
�

1
n ; (18)

which we had assumed to be � 1 from the beginning. When n is bounded
away from e and when N1 and N=N1 are large, it is the higher level of the
interconnection hierarchy that limits how dense the elements can be packed.
This conclusion can also be traced to the fact that the integrand rg(r) in the
�rst moment integral of g(r) decays slower than 1=r when n > e.

Once `total is obtained, calculation of the system linear extent N1=ed0 is
easy. We simply equate the total available area (volume) to the total wire area
(volume) [26]

Nde0 = `total�
e�1; (19)

where � is the line spacing. Thus, within a wiring ine�ciency factor we obtain

N
1
e d0 = (k0�N

p)
1

(e�1) �: (20)

1077Connectivity Models for Optoelectronic Computing Systems



Next, we derive an expression for the layout area for a system with arbitrary,
possibly discontinuous k( �N) in two dimensions. So as to simplify the represen-
tation of the results, we will restrict ourselves to p( �N) > 1=2. First, consider a
group of �1 primitive elements. This group can be laid out with linear extent
d1 = k0�1�

p1
1 � = k1�1� where �1 is the coe�cient corresponding to p1. Thus,

the total system linear extent must be at least (N=�1)
1=2 = (N=N1)

1=2 times the
extent of this group, where in general Nj is given by equation 6. Now consider a
supergroup of �2 such groups. Taking � = 1, the linear extent of this supergroup
satis�es

max(k2�2; �
1
2
2 d1) � d2 � k2�2 + �

1
2
2 d1: (21)

In general,

max(kj�j ; �
1
2
j dj�1) � dj � kj�j + �

1
2
j dj�1: (22)

kj�j is the wiring requirement obtained at the jth level. �
1=2
j dj�1 is the require-

ment inherited from lower levels. The maximum and summation represent best
case and worst case assumptions on how these requirements interact. Taking
d0 = 1, and expanding the recursion on both sides leads to the following bounds
for the linear extent dm of the complete system:

max

"
ki�i

�
N

Ni

� 1
2

#m
i=1

� dm �
mX
i=1

ki�i

�
N

Ni

� 1
2

: (23)

The right hand side of the above can be at most m times greater than the left
hand side. Since m � log2N , the system linear extent is given by the left hand
side within this logarithmic factor. In continuous form, the linear extent is given
by

N
1
2 max

�
k( �N)�( �N)

�N
1
2

�
�N

; (24)

where �( �N) � 1 is only weakly dependent on �N .
If k( �N) is slowly varying, it may be expressed by equation 4 over the whole

range of �N . Now if p( �N) > 1=2 as we have assumed, it is possible to show that
k( �N) grows faster than �N1=2 so that the expression in the square brackets above
is maximized for �N = N . Thus, the system linear extent is given by

k(N)�(N) � k(N): (25)

That is, the system size is set by the highest level of interconnections if k( �N)
is a slowly varying function and p( �N) > 1=2. This implies that the choice of
interconnection technology for the highest level is the most critical.

2 Discontinuities and the Origin of Rent's Rule

Whereas it is observed that the function k(N) exhibits considerable continuity
over large variation of N , it is also observed that it occasionally exhibits sharp
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discontinuities. In other words, it no longer becomes possible to predict the
value of the function k(N) for certain N by knowing its values at nearby N .
For instance, in the context of Rent's rule, it may not be possible to predict
the number of pinouts of a VLSI chip by observing its internal structure, or
vice versa [13]. However, this does not imply that Rent's rule (in its generalized
form, as given by equation 4) is useless. Consider a multiprocessor computer.
Rent's rule may be used to predict the wiring requirements internal to each of
the processors. It may also be used for similar purposes for the interconnection
network among the processors. In fact, the Rent exponent may even be similar
in both cases. However, the function k(N) may exhibit a steep discontinuity
(often downward), as illustrated in �gure 1 [8]. As is usually the case, a �nite
number of discontinuities in an otherwise smooth function need not inhibit us
from piecewise application of our analytical expressions. Such discontinuities are
often associated with the self-completeness of a functional unit [12, 13]. Similar
examples may be found in nature. For instance, mammalian brains seem to
satisfy n > 3 (i.e. p > 2=3), since the volume per neuron has been found to be
greater in species with larger numbers of neurons [27]. The human brain has
1011 neurons each making about 1000 connections [28]. Thus, we would expect
at least 1000(1011)2=3 � 1010 \pinouts." However, we have only about 106 �bers
in the optic nerve and 108 �bers in the corpus callosum.

log N

log k(N)

1000 100 x 1000

_

_

Fig. 1. k( �N) for a system of N = 100 � 1000 primitive elements consisting of 100
processors of 1000 elements each. The number of \pinouts" of the processors bears no
relationship to their internal structure. Equation 4 may be used directly for the range
1 < �N < 1000, and with a shift of origin for the range 1000 < �N < 100� 1000.

In the context of microelectronic packaging, a quote from C. A. Neugebauer
o�ers some insight as to why such discontinuities are observed: \Since the I/O
capacity (of the chip carrier) is exceeded, a signi�cant number of chips can be
interconnected only if the pin/gate ratio can be drastically reduced, normally
well below that predicted by Rent's rule. Rent's rule can be broken at any level
of integration. The microprocessor chip is an example of the breaking of Rent's
rule in its original form for gate arrays on the chip level. Being able to delay
the breaking of Rent's rule until a much higher level is always an advantage
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because it preserves many parallel data paths even at very high levels of inte-
gration, and thus o�ers higher systems performance and greater architectural

exibility." [29] The breaking of Rent's rule seems to be a technological neces-
sity, and undesirable from a systems viewpoint. We will later discuss studies
which indicate that superconducting or optical interconnections may allow the
maintainment of a large dimensionality and Rent exponent throughout higher
levels of the hierarchy.

The origin of Rent's rule has intrigued many researchers. Donath had shown
that Rent's rule is a consequence of the hierarchical nature of the logic design
process [30, 31]. Some have viewed it merely as an empirical observation obtained
from an examination of existing circuits. Others have suggested that it is as
natural as the branching of trees or the human lung (a consequence of their
growth process), or that it represents the adaptation of computer circuits to
serve the needs of percolation of information. Fractal concepts have been quite
successful in describing natural phenomena. However, it is often more challenging
to explain why fractal forms come up so often. Why do computer circuits lend to
such a description? One suspects that fractal forms may exhibit certain optimal
properties. For instance, bitonic (divide-and-conquer) algorithms can be viewed
as elementary fractal forms. Is it possible to postulate general principles (such
as the principle of least action in mechanics) regarding optimal information

ow or computation that would lead to an inverse-power-law distribution of line
lengths (a constant fractal dimension)? Mandelbrot has postulated maximum
entropy principles to predict the observed inverse-power-law distribution of word
frequencies (linguistics) [19] and monetary income (economics) [20]. Christie has
pursued the idea that the wires in a computing system should obey Fermi-Dirac
statistics, based on the observation that the wires are indistinguishable (any
two wires of same length can be exchanged) and that they obey an exclusion
principle (only one wire need connect two points) [32, 33]. Keyes [27] has shown
how the number of distinct ways one can wire up an array of elements increases
with average wire length. In [34] we showed that the number of distinct ways
one can \wire up" an optical interconnection system increases similarly with
a fundamental quantity known as the space-bandwidth product of the optical
system, and thus the average interconnection length.

The author �nds the following viewpoint especially illuminating. At the mi-
croscopic level, all information processing involves the distributed manipulation
and back-and-forth transfer of pieces of information. There is a certain require-
ment on the amount of information that must 
ow or percolate depending on
the particular problem we are trying to solve. This requirement can be embod-
ied in an information 
ow graph. The dimensionality of this graph can then be
taken as a measure of the information 
ow requirements of the problem. For
some problems which require little transfer of information, this dimension may
be small. For others, it may be large. When the dimensionality associated with
the problem exceeds the dimensions of the physical space in which we construct
our circuits (often 2 but at most 3), we are faced with the problem of embedding
a higher-dimensional graph into a lower-dimensional space. This is what leads
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to Rent's rule: the fact that we try to solve problems with inherently higher
dimensionality of information 
ow than the two- or three-dimensional physical
spaces we build our computers in.

Several structured problems, such as sorting and discrete Fourier transform-
ing, are known to have global information 
ow requirements leading to separators
which are / �N , corresponding to large dimensions and nearly unity Rent expo-
nents. The dimensionality associated with general purpose computing may also
be presumed to be large. In any event, it certainly seems that quite a fraction
of interesting problems have dimensions higher than two or three, so that the
space dilation e�ect associated with Rent's rule is expected.

Despite these considerations, Rent's rule may not apply to a particular circuit
we examine. The challenges involved in dealing with greater numbers of intercon-
nections may lead designers to reduce the number of physical ports and channels,
and to shift the \communication burden" to other levels of the computational
hierarchy [35]. Careful examination often reveals that the price of reducing the
number of wires is often paid in terms of computation time, intermediated by
techniques such as multiplexing or breaking the transfer of information into mul-
tiple steps. Clever schemes can reduce the number of wires that are apparently
needed, but these often essentially amount to reorganizing the processing of in-
formation in such a way that the same information is indirectly sent in several
pieces or di�erent times. Ultimately, a certain 
ow and redistribution of infor-
mation must take place before the problem is solved.

Several levels of graphs can come between the n � 1 dimensional graph
characterizing the information 
ow requirements of the problem to be solved,
and the e � 3 dimensional physical space. These graphs correspond to di�erent
levels of the computational hierarchy, ranging from the abstract description of
the problem to the concrete physical circuits. The dimensionality of these graphs
provide a stepwise transition from n dimensions to e dimensions (�gure 2). Level
transitions involving large steps (steep slopes) are where the greatest implemen-
tation burden is felt. For line a in �gure 2, this burden is felt at the relatively
concrete level, and for line c at the relatively abstract level. The burden is more
uniformly spread for line b. Shifting the burden from one level to the others
may be bene�cial because of the di�erent physical and technological limitations
associated with each level. Techniques such as algorithm redesign, multiplexing,
parallelism, use of di�erent kinds of local or global interconnection networks,
use of alternative interconnection technologies such as optics, can be used to
this end. Better understanding and deliberate exploitation of these concepts and
techniques may be expected to translate into practical improvements.

A particular question that may be posed in this context is whether the bur-
den should lean primarily towards the software domain or primarily towards the
hardware domain. An embodiment of the �rst option may be a nearest-neighbor
connected mesh-type computer in which the physical interconnect problem is
minimized. Global 
ows of information are realized indirectly as pieces of infor-
mation propagate from one neighbor to the next. The second option, in contrast,
might rely on direct transfer of information through dedicated global lines which
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n

e

dimensionality

abstract <--  levels -->  concrete

c
a

b

Fig. 2. The dimensionality of graphs corresponding to di�erent levels for a hypothetical
system with four levels.

result in heavy physical interconnect congestion. Although determination of the
proper balance between these two extremes is in general a very complex issue,
it has been addressed in a speci�c context in [36]. The conclusion is that use of
direct global lines is more bene�cial than simulating the same information 
ow
on a locally connected system. This conclusion assumes the use of optical lines
to overcome the severe limitations associated with resistive interconnections.

Contexts in which the nature of the problem to be solved does require global
information 
ows, but only at a relatively low rate, may result in poor utilization
of dedicated global lines, which nevertheless contribute signi�cantly to system
area or volume. This situation can be especially common with optical intercon-
nections which can exhibit very high bandwidths which are di�cult to saturate.
For this reason, techniques have been developed for organizing information 
ow
such that distinct pairs of transmitters and receivers can share common high-
bandwidth channels to make the most of the area or volume invested in them
[37].

3 Free-Space Optical Interconnections

The concepts discussed in this paper are immediately applicable to three-dimen-
sional layouts [38{40], including those based on optical waveguides or �bers.
However, the extension of results originally developed for \solid wires" to free-
space optics, which can o�er much higher density than waveguides and �bers, is
not immediate.

Since optical beams can readily pass through each other, it has been suggested
that optical interconnections may not be subject to area-volume estimation tech-
niques developed for solid wires. However, proper accounting for the e�ects of
di�raction leads to the conclusion that from a global perspective, optical inter-
connections can also be treated as if they were solid lines for the purpose of area
and volume estimation, so that most of the concepts discussed in this paper are
applicable to free-space optical systems as well.
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This conclusion is based on the following result [41]: The minimum total

communication volume required for an optical system whose total interconnection

length is `total is given by `total�
2. This result is stated globally; it does not

imply that each optical channel individually has cross-sectional area �2, but
only that the total volume must satisfy this minimum. Indeed some channels
may have larger cross-sectional areas but share the same extent of space with
other channels which pass through them. The bottom line is that even with
the greatest possible amount of overlap and space sharing, the global result is
as if each channel required a cross-sectional area of �2, as if they were solid
wires. If the average connection length in grid units is given by �r = �Np�2=3 as
before, then the minimum grid spacing d must satisfy Nd3 = Nk�rd�2, leading
to a minimum system linear extent of N1=3d = (k�Np)1=2�, just as would be
predicted for solid wires of width � (equation 20 with e = 3 and the subscript 0
suppressed) [42].

In many optical systems, the devices are restricted to lie on a plane, rather
than being able to occupy a three-dimensional grid. Although in general these
systems are subject to the same results, certain special considerations apply
[43{46].

The above does not imply that there is no di�erence between optical and elec-
trical interconnections. Optical interconnections allow the realization of three-
dimensional layouts. Optical beams can pass through each other, making routing
easier. Furthermore, the linewidth and energy dissipation for optical intercon-
nections is comparatively smaller for longer lines. (This latter advantage is also
shared by superconducting lines.)

4 Fundamental Studies of Interconnections

Rent's rule and associated line-length distributions have been of great value in
fundamental studies of integrated systems [47{50]. Two considerations are fun-
damental in determining the minimum layout size and thus the signal delay:
interconnection density and heat removal [51{54]. Both considerations are inter-
related since, for instance, the energy dissipation on a line also depends on its
length, which in turn depends on the grid spacing, which in turn depends on both
the total interconnection length and the total power dissipated. The complex in-
terplay between the microscopic and macroscopic parameters of the system must
be simultaneously analyzed. Rent's rule and line-length distributions are indis-
pensable to this end. However, it is necessary to complement these tools with
physically accurate models of interconnection media. Such analytical models for
normally conducting, repeatered, superconducting, and optical interconnections
which take into account the skin e�ect, both unterminated and terminated lines,
optimization of repeater con�gurations, superconducting penetration depth and
critical current densities, optical di�raction, and similar e�ects have been devel-
oped in [43, 44] and subsequently applied to determine the limitations of these
interconnection media and their relative strengths and weaknesses [43, 44, 40,
55{57,36, 58]. Treating inverse signal delay S and bandwidth B as performance
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parameters, these studies characterize systems with N elements by surfaces of
physical possibility in S-B-N space, which are to be compared with surfaces of
algorithmic necessity in the same space.

This approach has allowed comparative studies of di�erent interconnection
media to move beyond comparisons of isolated electrical and optical lines, to
evaluation of the e�ects of their di�erent characteristics at the system level.
These studies clearly show the bene�t of optical and superconducting intercon-
nections for larger systems. One of the most striking results obtained is that
there is an absolute bound on the total rate of information that can be swapped
from one side of an electrically connected system to the other, and that this
bound is independent of scaling. Such a bound does not exist for optics and
superconductors [43, 59].

An interesting extension is to allow the longer lines in a system to be of
greater width to keep their RC delays within bounds. Use of the calculus of
variations has shown that the widths of lines should be chosen proportional to
the cube root of their length for two-dimensional layouts and to the fourth root
of their length for three-dimensional layouts [60]. Staircase approximations to
these analytical expressions can serve as practical design guidelines.

These studies have also been extended to determine how electrical and optical
interconnections can be used together. It is generally accepted that optics is
favorable for the longer lines in a system whereas the shorter lines should be
electrical. Results based on comparisons of isolated lines may not be of direct
relevance in a system context. The proper question to ask is not \Beyond what
length must optical interconnections be used?", but \Beyond how many logic
elements must optical interconnections be used?". Studies have determined that
optical interconnections should take over around the level of 104-106 elements
[61{63].

This body of work has demonstrated that inverse-power-law type line-length
distributions are very suitable for such studies. This is because distributions
which decay faster, such as an exponential distribution, e�ectively behave like
fully local distributions in which connections do not reach out beyond a bounded
number of neighbors. Such layouts are essentially similar to nearest-neighbor
connected layouts, and are already covered by Rent's rule when we choose n = e.
On the other hand, for any layout in which the number of connections per element
is bounded, the behavior is at worst similar to that described by a Rent exponent
of unity. Thus, although all systems may not exhibit a precise inverse-power-law
distribution of line lengths, Rent's rule is nevertheless su�cient to represent the
range of general interest.

5 Conclusion

We believe that many criticisms of Rent's rule are a result of not allowing the
Rent exponent and dimensionality to vary as we ascend the hierarchy and a fail-
ure to recognize discontinuities. It seems that in most cases of practical interest,
the decomposition function k( �N) is piecewise smooth with a �nite number of
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discontinuities. The role of discontinuities in an otherwise smooth decomposi-
tion function, and whether it is bene�cial to construct systems in the form of a
hierarchy of functionally complete entities, are less understood issues. Is it func-
tionally desirable to construct systems that way, or do physical and technical
limitations force us to?

Parts of this work appeared in or were adapted from [8].
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