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The effect of cross-sectional geometry on both the intrasubband plasmon and intersubband 
plasmon of a quantum wire is investigated within a two-subband RPA scheme. Exact 
analytical electronic wavefunctions for circular, elliptical and rectangular wires are 
employed within the infinite barrier approximation. It is found that for fixed cross-sectional 
area and linear electron concentration, the intrasubband plasmon energy is only marginally 
dependent on the wire geometry whereas the intersubband plasmon energy may change 
considerably due to its dependence on the electronic subband energy difference. 
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1. INTRODUCTION. 

There has been considerable interest in the plasmon 
spectrum of quasi-one dimensional (QID) semiconductor 
systems, both theoretical [1-7] and experimental [8-10]. The 
experimental confirmation of the Q1D long wavelength 
intrasubband plasmon via inelastic light scattering by Goni et 
al [8], strongly suggests that such systems behave as Fermi 
liquids, in agreement with the theoretical conclusions of Hu 
and Das Sarma [11]. 

Quantum wire cross-sections vary depending on the 
fabrication process employed. In particular, circular [12], 
so-called 'V-groove' [13], and 'arrowhead' [14] devices 
have recently been fabricated. The cross-sectional geometry 
may therefore be quite different, and as such, it is important 
to investigate any effects that different cross-sections have 
on the plasmon energy. The possible effects of different wire 
cross-sections has recently been raised by Anthony and 
Kelly [15] in the context of quantum wire lasers. 

In this communication we calculate the plasmon 
dispersion for circular, rectangular and elliptical cross- 
sections within the infinite barrier approximation. These 
three geometries are chosen for mathematical convenience 
since the effective mass Schrodinger equation is separable. 
with exact analytical solutions. Any differences between 
them will be indicative of differences between more realistic 
cross-sectional geometries [ 15] which inevitably require the 
numerical solution of the effective mass equation. We defer 
consideration of the plasmon spectra for quantum wires with 
more complex cross-sections to a future detailed article. 

2. THEORY AND NUMERICAL RESULTS. 

The model we employ is a two-subband model at zero 
temperature and we assume that only the first subband is 
occupied. In all calculations the linear electron density, n, is 
taken to be 5xlOScm -1 which corresponds to a Fermi 
wavevector kf of 7.85 x 105em-! and a Fermi energy, Ef of 
3.5meV. The material parameters are those appropriatefor 
GaAs. The quantum wire has an effectively infinite length L 
(in the z-direction) and the electrons are assumed to be 
confined by an infinite potential. We consider wires of 
circular, elliptical and rectangular cross-sections. In the 
circular case the normalised wavefunctions transverse to the 

wire axis are Bessel functions of integer order multiplied by 
a simple angular exponential [2,7], for elliptical wires the 
transverse wavefunctions are Mathieu functions [16,17], and 
for the rectangular wire they have the usual sinusoidal form. 
For brevity we do not dwell on the properties of these 
wavefunctions, but just mention here that for wires of equal 
area, the resultant energy separation between the ground 
state and the fLrSt excited state, AE, is different for the three 
geometries. This has a noticeable effect on the depolarisation 
shift which has a well documented dependence on this 
splitting [e.g.3]. 

The dielectric matrix is obtainable within the random- 
phase approximation (RPA) and is given by [2,3] 

eijran(q, CO) = ¢~im~jn - -  Vijmn(q)Flb(q, CO) (1) 

where the indices label the electronic subbands. In the above 
/-//j (q, co) is the generalised irreducible polarization 

Flij(q, co)= 2 E  f(Ei'k+q ) -  f(Ej'k) 
ttfO + Ei k+q - Ej k +iT/ 

k ' " 

(2) 

and 

e 2 

Vijmn (q) -- 2 ~eeoL' Fijmn (q) (3) 

is the Coulomb matrix element with the structure factor given 
by 

Fijmn(q ) = f d2rl ~ d2r2 I//~ ( r i )  V/j (r ,) 

x K0 (qlrl - r2 D v,* (r2) ~'. (r2) 
(4) 

which is non-zero if i+j+m+n is even. In (4) K0(x) is the 
modified Bessel function, r l and r2 are the appropriate 
particle co-ordinates in the transverse plane and ~i are 
normalised transverse wavefunctions. All other symbols 
have their usual meanings. 

The zero temperature two-subband model with only the 
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ground state occupied implies that H22(q, co)vanishes 
identically, and the plasmon dispersion relation reduces to 
[3] 

[1 - Vll 1 i(q)I7~ 1(q, to)] 
x [ l -  V,212(q){Fl12(q,to)+ Fl2,(q , co)}] = 0 

The intrasubhand plasmon is obtained from 
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Figure 1 compares the structure factors for a circle of 
radius b, an ellipse with semi-major axis, a, twice the semi- 
minor axis, b, (2:1 ellipse) and a 10:1 ellipse. It is seen that 
for F 1 ! 1! (q) the value for the circle is not too different from 
that of the 10:1 ellipse. This surprising result is due to the 

(5) behaviour of the ground state wavefunction as the 
eccentricity of the ellipse increases. For a large eccentricity, 
it has been demonstrated elsewhere [17] that the electronic 
wavefunction is confined to the regions of lowest curvature, 
i.e. away from the 'comers'. This is in contrast to the 

(6) behaviour in the rectangular case, where the wavefunctions 
have a sinusoidal form whatever the dimensions of the 
rectangle. Despite such manifest differences in wavefunction 
characteristics, the difference between the three curves in 
figure 1 is not too great for small values of qb (the regime 
relevant to the numerical determination of the plasmon 
modes). 

The structure factor, F1212(q), appropriate for the 
determination of the intersubband plasmon, is seen from 
figure 1 to be almost constant in the long wavelength region. 
Here the difference between the three curves is rather more 
pronounced. This, together with the differences in AE, are 
responsible for the geometrical dependence of the 
intersubband plasmon energy. 

For comparison, we depict in figure 2 the analogous 
structure factors for a wire with rectangular cross-section of 
width 2a and breadth 2b, for a=b and a=2b (2:1 rectangle) 

1 - V 111 ! ( q )F l l  I (q ,  to)  = 0 

and the intersubband excitation from 

] - V1212(q) {H]2(q ,  t o ) + / / 2 1 ( q ,  to)} = 0 (7) 

In equations (5) to (7) the real parts of the polarizability are 
used, with the imaginary parts defining the single particle 
continua. Further we have employed the symmetry condition 

v~212(q) = v21~2(q) = v~221(q) = v212~(q) (8) 
It is evident that within this theoretical model the effects 

of different cross-sectional geometries will be manifest in the 
form factors (4) (hence Coulomb matrix elements), and, as 
mentioned earlier, the subhand energy separation AE. 
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Figure 1. The structure factors for (a) F l l l l (q )  and (b) 
Fi212(q) against qb where the solid curve corresponds to 
the circle, the dotted curve the 2:1 ellipse and the dashed 
curve the 10:1 ellipse. 
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Figure 2. The structure factors for (a) F l l l l (q )  arid (b) 
F1212(q ) against qb where the sofid curve corresponds to 
the square, the dotted curve the 2:1 rectangle and the dashed 
curve the 10:1 rectangle. 
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Figure 3. The plasmon spectra for (a) the circle (b) the 2:1 
ellipse and (c) the 10:1 ellipse. The shaded regions 
correspond to the single particle continua. 

Figure 4. The plasmon spectra for (a) the square (b) the 
2:1 rectangle and (c) the I0:1 rectangle. The shaded regions 
correspond to the single particle continua. 

and a 10:1 rectangle. It is seen that the order of the curves is 
different from the elliptical case for F l n l ( q )  (figure 2a), in 
particular the square and the 2:1 rectangle give comparable 
values. Again, for small qb,  the different curves give 
comparable values, to each other and to the corresponding 
elliptical case. Figure 2b illustrates F1212(q ) for the 
rectangular wire. For small qb, the order of the curves is 
reversed compared to figure 2a. In particular, there is a 
marked difference between the long wavelength value of 
F1212(q) for the 10:1 rectangular wire compared to that of 
the 10:1 ellipse. This is explained by the different behaviour 
of the wavefunctions in the two cases [17]. 

We now come to the numerical evaluation of the 
plasmon dispersion relation. It is convenient to introduce the 
following dimensionless variables 12 = 8oo I E f  and 

Q = q I k f  together with 

A - I . .  m*e 2 v ~ F l l l l ( q )  intra I ,q)=--v- - - - -  ^ ~ 
7t"~F, go n [Fi212(q ) inter 

(9) 

= Q2 + 2Q+ AE (10) 
EF 

(1"2~ for the intrasubband plasmon is given by (10) with 
AE = 0 ) .  Note that the single panicle continua are defined 

by 

~_[ ~ ,0 _< ,0+ (11) 

with the Q=O value for the intersubband continuum yielding 
the subband separation. The plasmon energy/2 is given for 
both inter- and intra-subband modes by 

e AQ - 1 (12) 

It is instructive to consider the long wavelength limit of 
(12). We obtain for the intrasubband mode 

1 

(13) 

with x a characteristic length dependent on the cross- 
sectional geometry. This long wavelength expansion is well 
established [e.g.7]. A similar expansion for the intersubband 
excitation yields the following result in agreement with [3] 

a2 =IAE~ 2 8 , ~  
) 

(14) 
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The second term on the fight hand side is the depolarisation 
shift which depends on the cross-sectional geometry via AE 
and, as it turns out, to a lesser extent on A(q). 

Figure 3 shows the dispersion relation for the plasmons 
corresponding to the wires of a circle of radius 150A, a 2:1 
ellipse and a 10:1 ellipse both with the same area as the 
circle. It is seen that as the eccentricity of the ellipse 
increases, the energy of the intrasubband plasmon is hardly 
changed. In contrast, the intersubband plasmon energy 
decreases as the eccentricity increases due mainly to the 
reduction in the subband separation, although the change in 
the structure factor also contributes. Figure 4 illustrates the 
plasmon spectrum corresponding to the rectangular wires of 
figure 2 all with the same area as the circle in figure 3. The 
trends displayed in moving from square, 2:1 to 10:1 are 
similar to those of figure 3. It is more revealing to compare 
corresponding curves between figures 3 and 4. A 
comparison of figures 3a and 4a (circle and square) shows 
that both the intra- and inter- subband plasmons are 
practically the same for both geometries. Comparisons of 
figures 3b and 4b, and 3c and 4c on the other hand, illustrate 
quite clearly differences in the intersubband plasmon 
frequencies of around 3.5meV, which is within experimental 
resolution [8-10]. Further, the intersubband single particle 
regions are also significantly different. It is therefore of 
interest to investigate experimentally such geometric effects. 

3. CONCLUSIONS. 

In this communication, we have considered the effects 
of cross-sectional geometry on the plasmon modes of 

quantum wires. We kept within the two subband RPA 
regime for simplicity, although extension to higher subbands 
is not too difficult, the algebra being rather more involved. 
We have considered circular, elliptical and rectangular wires, 
all having the same cross-sectional areas and linear carrier 
concentration. Numerical calculations illustrated differences 
in the Coulomb matrix elements between the different 
geometries, and in the resultant intersubband plasmons. It 
was also shown that the intrasubband plasmon is practically 
unaffected by any change in geometry, and this is expected 
to hold for the rather more realistic cross-sections studied 
recently [15]. The intersubband plasmon is shown to be 
more sensitive to the wire geometry, and it should therefore 
be of interest to investigate these excitations for other, more 
complex geometries. 

It is worth noting that the assumption of an infinite 
barrier, which has been employed here and elsewhere 
[e.g.2,7] need not be the only one considered. In fact, 
harmonic confining potentials have also been used [e.g.5], 
and an investigation along the lines carried out in this 
communication using harmonic potentials would also be of 
interest, especially because harmonic potentials do not 
produce depolarisation shifts (to first order) as a 
consequence of the generalised Kohn's theorem [5]. Work 
along these lines is now in progress. 
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