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Abstract—n this paper, a novel inverse halftoning method is a half-tone image is to selectively choose useful information
proposed to restore a continuous tone image from a given half-tone from each subband. This approach is a space-scale domain

image. A set theoretic formulation is used where three sets are de- method and no prior knowledge about the halftoning process is
fined using the prior information about the problem. A new space- assumed

domain projection is introduced assuming the halftoning is per- L .
formed using error diffusion, and the error diffusion filter kernel is The method of projection onto convex sets (POCS) is used

known. The space-domain, frequency-domain, and space-scale do-in [5], [2], [6], where information known about the problem is
main pr_ojections are u_sed alternately to obtain a feasible soIL_Jtion expressed in the form of two constraint sets. In [2], [5], and [6],
for the inverse halftoning problem which does not have a unique o halftoning process is assumed to be knawpriori. Based
solution. L . .

on this information and the smoothness of most natural images,
convex sets are defined. The iterative restoration algorithm is
developed by making successive projections onto the convex
sets. The first sef’; is the set of all contone images when half-
|. INTRODUCTION toned produce the observed half-tone image, and the second is

NVERSE halftoning is the problem of recovering a Contint_he set of all images bandlimited to a certain low-pass band. The

uous tone (contone) image from a given half-tone imag%‘?ﬂpuéat'\?nral ﬁlosht of the space-domain projection in [2] turns
Contone images are needed in many practical applicatioﬂgln(:hise zyer ?/ve define a new family of sefs .. repre
However, inverse halftoning problem is ill-posed because Paper, y ;no [EP

halftoning is a many-to-one mapping, and does not a haveenting the space-domain information. It turns out that the in-

unique solution [1]. Therefore, incorporation of all availab:-%ersectlon of the setS}, , is the seiC’; originally defined in

information significantly improves the quality of the solutio 2]. The use of the setSy, », leads to a computationally more

and this leads to the fact that a set theoretic formulation ebgficient reconstruction algorithm because, in each iteration of

ideally suitable for the inverse halftoning problem that h ! etPOCSda_llgorltIhrPhwe_doln?rt] utpddate :he er;ttlrze Image as |nt[2]
many feasible solutions. ut we modify only the pixels that do not meet the requirements.

The previous inverse halftoning methods employ space-d\{)v-e also take advantage of the frequency, and space-scale (or

main operations, frequency-domain operations, or both, or o eggelet) domain projections which represent the prior knowl-

space-scale domain operations [1]-[8]. The simplest approach © t%bo#trthet ?rr?ihdﬁf:stlorn Iﬁilrtr?r kernel, and the relatively
is low-pass filtering the half-tone image to remove the high-fré;- ooth character of the natural Images. . .
The theory and simulation results are presented in Sections Il

uency components where the halftoning noise is mostly con- . o :
d y b g y d 1, respectively, and it is experimentally observed that

centrated. Different low-pass filters have been used, such SR )
half-band low-pass in [1] pGaussian low-pass, and low-pass ]Jﬂl_gher quality images can be obtained compared to [2], [1], [4].

tering based on singular value decomposition (SVD) [2]. How-
ever, low-pass filtering alone does not work well as this also
destroys high-frequency information of the original image. The block diagram of an error diffusion encoder is given in

A projection algorithm, based on the maximum a posterioFig. 1. The inverse halftoning problem can be stated as follows.
probability (MAP) projection is proposed in [1]. A similar MAP Given the half-toned imagge = y(n1, n») and the two—dimen-
estimation method is also proposed in [3] where a constraingidnal (2-D) finite-impulse response (FIR) error diffusion filter
optimization is solved using iterative techniques. kernelh, estimate the original image = z(n1, n2). In this

Xiong et al. [4] proposed an inverse halftoning schemsection, we first introduce the POCS-based framework and then
using wavelets. The idea behind the wavelet decompositiondsfine the space, frequency, and the space-scale sets that is used

in the reconstruction algorithm.
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out at Bilkent University, Ankara, Turkey. The associate editor coordinating thgise or colomnwise therefore we also represent images using a
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Il. A SET THEORETICINVERSE HALFTONING
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X(S) y UG y(s) is the frequency-domain projection, arf represents the

Q) wavelet-domain space-scale projection which can be im-

- plemented using the algorithm described in [8]. All three
projections, or any two can be used alternately. The algorithm
is globally convergent to a solution which is in the intersection

ecs of all the convex sets regardless of the initial estimate, and the
h order of the projections is immaterial [11]. The iterations are
stopped when the difference between the images at successive
Fig. 1. Block diagram of error diffusion method. iterations become insignificant.

In our iterative algorithm summarized by (1), a projection
cycle is completed by performing orthogonal projections onto
0 {0 |6 0 L | -me the sets) ,,, as the original image is clearly a member of them.
3/16 | 5/16 | 116 3116 | -5/16-| -1/16 In our inverse halftoning method, we also use nonorthogonal

h Lh projections during the reconstru_ctio_n process. As dispussed in
[12] and [13], nonorthogonal projections may not only improve

Fig. 2. Kernels for the filterh andI — h. the speed of convergence but also improve the quality of the
reconstructed image. Orthogonal projections onto a convex set
yields an image at the boundary of the set. On the other hand,

CS ~ mndCL" '3?6 s(ejt_of al (é(:)IntoTetlrr]nagetzjoroducmg thﬁ by performing a nonorthogonal projection onto a convex set an
observed error diffused imageClearly, the set€’; ,, are muc image inside the set is obtained.

larger than the séf; and they all contaid’; because any image

in C; produces the individual pixeln] after error diffusion thus _—

itis also inC;_,,. Asn goes from 1 to L, all the pixels af are A. Projection Onto the Se6;, »

covered by the family of set§; ,,, and the se€’; is formed by ~ Consider the error diffusion system shown in Fig. 1.4

the intersection. the image before the quantiz@(.). The errorimage = u—y

The setC; which is used in [6] and [2] or the sets; ,, andu = z + hx* e wherex represents the 2-D convolution. The

are too large to determine the solution of the reconstructiomagex can be expressed in terms of the original imagand

problem. One has to assume other constraints on the origitie output image as follows:

image to estimate the original image. Most natural images are

of low-pass in nature whereas the half-toned image contains a s gL _

lot of high-frequency components. Therefore one can assume u=@ -k (z—hy) (2)

that the or|g|na}l 'mage 1s a memper of a féé)tvyhose MEM- " \vheres is the 2-D unit sample sequence. The kernels for the

bers are bandlimited images by in both directions. Even if ) . oL

the original image is not a strictly bandlimited image most of it';IR filters h andé — h are given in Fig. 2.
9 9 y 9 . The setC; ,, is based on the observation that for a given

energy is concentrated in low frequencies. The errors madeollr}t ut pixely[n], the upper and lower bounds on the pix@]
pixel values by projecting a current iterate onto theGgtan put pixelyini, P b

N n rmin rdin h ntization levels. For ex-
be corrected by subsequent projections onto the(sets can be dete ed according to the quantization levels. For e

The projection onto the sét; is equivalent to ideal low-pass ample, ify[n] = 0 then0 < u[n] < 127 for 1-biterror diffusion
L P J. . . 2 q p' with a uniform quantizer. The set$; ,, can then be defined as
filtering which is simply implemented by an FIR low-pass filter ollows: i
The choice of a small, may blur the image. On the other han '
a largew, may not be effective.

In order to preserve the sharpness of the image, the wavelgt,, = {z : dip., < (6 — k) x(x — hxy)[n] < dup,n}
transform (WT) extrema information can be used. WT extrema
occur at the edge locations which can be easily estimated from n=12...L (3
the half-toned image as the significant edges are clearly visibIIe;I
in a typical half-toned image. Therefore the g&t of images whe
having the same significant WT local extrema as the origi

red;, » andd,, , are, respectively, the lower and upper

ngpunds for the nth pixelt = (n; — 1) X Nz + no. Since the

£9, volution operation is linear, the 38t ,, is essentially a hy-

perslab (a region bounded by two parallel hyperplanes) and it

is, therefore, a closed and convex seRf. For convenience,

we definez = z — h * y. Sinceh andy are known, one

can easily obtainz from T or vice versa. Let us represeat

in terms ofz asu = w * T where the 2-D IIR inverse filter

w = (§ — h)~! can be approximated by a causal 2-D FIR filter

using a method described in [14] for inverse filtering for image
£=0,1,2,... (1) restoration. The pixek[n] = (w * Z)[n] can be expressed as

u(nl, 712) = ZkthEFﬂ, w(kl, kg)f(nl—k'l, ng—kg),Where
whereP, ,, represents the spatial projection which is describea{n, n.) are the coefficients of the filtap, andF,, is the cor-
in the next subsection?, represents low-pass filtering whichresponding causal support region. Since the above equation is a

filtered image. The seaf’; is shown to be convex in [7]—[10].

The POCS-based iterative algorithm starts with an initial e
timate o, which is successively projected onto the séts,,
C,, andC; as follows:

ip1 = (Proo...0oP oP;0Ps)x,
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The projection givenin (6) is performed pixel by pixel involving
the block defined by the causal support regign During each
iteration, only the pixels defined h¥,, are updated.

Equation (6) is essentially the projection onto one of the hy-
perplanes bounding the &t ,,. Once an estimate for the image
T is obtained, an estimate faris obtained frome =z + h + y.

This scheme can be easily extended to the case of multilevel
error-diffusion in which the quantizer is not binary. In the bi-
nary case, the bounds,, ,, andd,,;, ,, can take only-128 and
255, 128 and 255128, respectively, for 8 bit/pel images. In the
multilevel case, the bounds are simply determined according to
the quantization levels.

This space-domain projection is different from the space-do-
main projection described in [2] in two aspects:

1) the convex sets that we define are different from the set
C1, defined in [2];

2) our method is developed for the widely used Floyd—-Stein-
berg error diffusion method, whereas [2] is developed for
a sigma—delta type error diffusion algorithm.

Fig. 3. Zelda image error-diffused to 1 bpp. Due to the nature of our convex s&fs ,,, the projection op-
eration described in (6) is very simple to implement. This leads
2-D convolution operation, it is a hyperplane &f. The con- to acomputationally more efficient reconstruction algorithm be-
straints oru(n1, no) given in (3) can be rewritten as cause, in each iteration of the POCS algorithm, we do not update
the entire image as in [2], but we modify only the pixels that do
dio,n < Z w(ky, k2)T(n1—ky, no—k2) < dup,n  (4) not meet the requirements.
k1, ko €Fy The computational cost of the projections onto the 6&ts
e?gascribed in (6) is comparable to the projection operation per-
ormed in another domain in [6]. Both projections are essentially
based on the convolution operation. The support redigrin
(6) is larger than the support of the filter used in [6]. On the other
hand, filtering is performed over the entire image in [6], whereas
we update only the pixels that do not meet the requirements.

20 40 80 80 100 120 140 160 180 200

which is a hyperslab (a region bounded by two parallel hyp
planes), and therefore it is a closed and convex sBtinSince

the upper and lower bound&,, , andd;, ,, and the kernel
w(k1, k2) are known, the projection onto the g&t ,, can be

obtained as follows. Let,, be the current iterate. The next it-
eratex, is obtained by solving the optimization problem

min ||Z,41 — Z,||* subject to (4) (5) B. Frequency-Domain Projection

An important property of most natural images is smooth-

If z, satisfies the constraints (4), thep,, = Z,. Otherwise |\ . - mnared to artificial images. This information can be im-

Tpar(ly, 1) =Tp(l1, 1) + A po_sed into the restoration process in Fhe fo.rm pf low-pass fil-
tering. Therefore, the frequency-domain projection onto the set
dy— Z wky, k2)Tp(n1—k1, no—ko) C, consists of bandlimiting the observed signal in some way.
Ky ko The simplest approach is to low-pass filter the image in order to
X ; . . .
Z w(ky, k2)? remove the high-frequency content which contains halftoning

noise. For the frequency-domain projection, we either use a
i i _ i _ —(n,2+n,2/202)
simple Gaussian low-pass filtgfn;, ny) = Ke "1tz ,
xw(ny —ly, ng = o) ®)  for—3 < n1, n2 < 3, wherekK is a scaling factor used to make
; ; ) 5 )
wherel; = 1,2, ..., Ny;ly = 1, 2, ..., N andd, is either :Ee Idc gain off_tl?e fllter unity. ':'he cont][_(latls the_?ﬁndmﬂth (()jf f
dio. s if (@ % Zp)[n] < dio,n OF dy = dup. s if (@ * )] > e low-pass filter; or we use low-pass filters with passbands o

dup. n,» and\ is a relaxation parameter, and if it remains betwedn 7/ 2 7/2 %[~ /2, 7 /2], [-2n /3, 2m /3] x[~2n /3, 27 /3],
zero and two, the convergence of the POCS procedure is ass{elq 37/4; 3/4] x [=3m/4, 37 /4].

[11]. If X = 1, then the projection is an orthogonal projection. ) L

When0 < X\ < 1, an image inside the s€t, ,, is obtained C. Space-Scale Domain Projection

without effecting the convergence process. In fact, the use ofThe edges in an image produce local WT extrema in the
nonorthogonal projections improves the speed of convergersgace-scale domain in wavelet subimages (or in high-low, low-

k1,k2

and the quality of the reconstructed image. high, and high-high subimages) [7]. Itis proved that the wavelet
The projection operation described in (6) is a local operati@xtrema information corresponds to convex sets in the set of
around the pixel:,[n] = x(n1, n2) (or equivalentlyz,[n] = square summable imagés[7]-[9]. Therefore, the edge infor-

Zp(n1, n2)), because the filtew is only nonzero in the support mation can be used in the reconstruction algorithm by properly
region F,,, whereas the pixel range is from= 1ton = L. defining a set corresponding to the significant local extrema
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in the wavelet domain. Let the s€l;, contain all the images which is a half-space inkRl'. Therefore, it corresponds to
having the same significant WT local extrema as the original closed and convex set. The projection onto this set can
image. The key idea is to estimate the edges of the origirm carried out as follows. Let, be the current iterate. If
image from the half-toned image by selecting the significa@khkz p(k1, k2)(Pwav(no +1—Fk1, mo —k2) — hyaw(no —

WT extrema of the half-toned image, and the restored image, m, — k2)) < 0 thenz,4; = x, otherwise

is forced to have the same extrema in the wavelet space-scale

domain. This provides sharpness to the restored image by pfo+1(1; 12) = zp(l1, l2)

tecting the significant high-frequency components of the image,

whereas a simple low-pass filtering characterized bgsewill > Bua(ky, ko)zp (ki ko)

smooth out all of the sharp e(_iges of j[he original image. _ FY Lt hoa(ls, 1) (12)
In a typical half-toned or dithered image, edges of the orig- Z ha(k1, k2)2

inal image are clearly visible. In order to highlight the signif- .

icant edges, one can manually mark them. Let us assume that

Twav(Me, M,) is a local maximum in the wavelet domain. iwvherely =1, 2, ..., Nijlp =1, 2, ..., Ny;andhya(ky, k2)

can be expressed as = hwav(no — ki, mo = k2) = hwav(no +1 = ki, mo — ka).
Similarly, z. 00 (76, Mo+1) < Zyau(no, Mo). This defines an-
Tyav (o, Mo) = Z z(k1, k2)hwav other half-space with boundady’, . #(k1, k2)(hwav(no —
ke, ko kla mo + 1- k?) - hwa'v (no - kla Mo — k?)) =0.The prOjeC-
(2% 0y — ki, 2 X my — ko) (7) 'Eif;)operation onto the above half-space can be carried out as in

wherez is the original image an#,,.., is a 2-D filter used in  Another approach is to use the wavelet-based single step in-
the filterbank structure implementing the WT. If oversamplederse halftoning method [4]. Although this method cannotbe con-
WT is used then the above equation becomes sidered as an orthogonal projection due to the cross-scale correla-
tion operation, itis relatively easy toimplement and can be incor-
Twav (Mo, Mo) = Z @by k2)lwas(no—ky, mo—kz) (8) poratgd into the iterative reystora){ion prr:)cedure. In [4], important
k1, ke high-frequencyinformation describing the signal, particularlyin-
which is simply the 2-D convolution evaluatedat,, m,) loca- formation in edge regions, are retained by choosing the WT ex-
tion. Thisisaconvexseti x ¢ (the setof 2-D square summablerema locations selectively from each subband resulting from the
sequences), and it also corresponds to a convex &t.in wavelet decomposition of the half-toned image. In our iterative
The projection onto this set can be carried out as follows [8fstoration algorithm, this methodis used as aninitial stepin some

of the simulation results.
Tpy1(ly; I2)

=zp(ly, L)+ A [ll. SIMULATION RESULTS

Zwan(Mo, Mo) — Zhwa'u(klak2)$p(no_k17mo_k2) To demon;trate the performance of_ our _POCS-based _in-
e verse halftoning method, we present simulation results using
X 5 512 x 512 Peppers and Zelda images. We compare the new
Z huwaw (K1, k2) method with some state-of-the-art inverse halftoning techniques

b1k in terms of their PSNRs. In the first group of simulations, we
X Pyarw (Mo — 11, Mo — l2) (9) use space-domain and frequency-domain projections alter-
. nately. The first estimate of the contone image is obtained by

wherel; = 1,2,..., Ni; o = 1,2, ..., Na; x, is the cur-

low-pass filtering the half-toned image wig{n1, n2). Then

we perform our spatial projections. After that, we again use
eIrEJR/v—pass filtering, and go on in an alternating fashion. A section
of the original 8 bpp Zelda image error-diffused to 1 bpp is
Rhown in Fig. 3. After low-pass filtering, the resultant image
With PSNR = 32.85 dB is shown in Fig. 4(a). This image is
used as an initial estimate and after two sets of iterations, an
image shown in Fig. 4(b) wit?SNR = 33.45 dB is obtained.
Z 2kt k2)han(no + 1 — ki, mo — ko) The resulting image is quite sharp, and its visual quality is high.
e Feo The details are restored while much of the halftoning noise

existing in the first estimate is removed.
< Z w(k1, k2)hwav(no — k1, mo —k2) (10)  We compare our results with those in [2] in Table | for the

rent iterate; ande,: is the projection. In (9)A = 1 cor-
responds to the orthogonal projection. In order to implem
the above iteration the value of the extremum,.(n,, m,)
must be known. This may not be exactly available in a ty|
ical dithering problem. But this problem can be overcome
follows. Sincezrq.(n,, m,) is a local maximume,,q.,(n, +
1, my) € Zyan(no, m,), and this means that

k1, ke Lenaimage. The PSNR improvement achieved by the proposed
or method is about 0.8 dB higher than the ones in [2], and the image
o ) ) quality is higher.
Z ok, k2)(Pwau(o +1 = ki, mo = k2) Apart from the binary error diffusion coding, we carried out

ki, bz simulation studies for images error-diffused to 2 bpp, as shown

—hwav(no — k1, my —k2)) <0 (11) in Fig. 5 for the Zelda image. We use our method tailored for
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Fig. 4. (a) First estimateDSNR = 32.85 dB). (b) Restored Zelda image Fig. 5. (a) Zelda image error-diffused to 2 bpp. (b) Restored Zelda image
(PSNR = 33.45 dB). (PSNR = 35.39 dB).

TABLE | Peppers image in [4] and let, be the resulting image after
COMPARISON OFPSNRS (dBJFOR THE INVERSE HALF-TONING METHODS IN

[2], AND OUR METHOD FOR THELENA IMAGE. GLPF, LPFAND SVD DENOTE applylng our method. The Image 1S obtained after a smgle
THE TYPE OF FREQUENCY-DOMAIN PROJECTION set of iterations, i.eze = (P10 P 20...P )z, The
resulting improvement is about 0.5 dB over the image The
2] (GLPF) | [2] (SVD) | Our Method (GLPF, LPF) imagez. is_ shown in Fig. 6 which hasRSNR :_30.90 dB. o
Comparison of the POCS-based method with other existing
29.4 30.4 31.93 methods are given in Table |l for the Peppers sitix 512 Lena

images. Our method results in a higher PSNR than the other two
methodsin[1], [4]forbothoftheimages. In[6],aPSNRo0f32.41is
the multilevel case. The PSNR improvement over the initial estieported for 00 x 200region containing Lena’sface. Inthe same
mate is about 0.6 dB with our POCS-based method after two setgion, we getaPSNR of32.51. Inorderto reconstructthisimage,
of iterations, and our restoration results in a sharp and faithfuk start with wavelet-based space-scale domain projection. After
reproduction, as can be seen in FigF3NR = 35.39 dB). this, we performfour cycles of orthogonaland nonorthogonal pro-
We can use wavelet-based space-scale domain projectiofeittions onto the sets; ,, with A = 1, 0.75, 0.5, and0.25. We
[4] as the initial estimate in our method. Let, be the restored low-pass filter the resulting image and then perform another two
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