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ABSTRACT

AN OBJECT RECOGNITION FRAMEWORK USING
CONTEXTUAL INTERACTIONS AMONG OBJECTS

Fırat Kalaycılar

M.S. in Computer Engineering

Supervisor: Assist. Prof. Dr. Selim Aksoy

August, 2009

Object recognition is one of the fundamental tasks in computer vision. The

main endeavor in object recognition research is to devise techniques that make

computers understand what they see as precise as human beings. The state of

the art recognition methods utilize low-level image features (color, texture, etc.),

interest points/regions, filter responses, etc. to find and identify objects in the

scene. Although these work well for specific object classes, the results are not

satisfactory enough to accept these techniques as universal solutions. Thus, the

current trend is to make use of the context embedded in the scene. Context

defines the rules for object - object and object - scene interactions. A scene

configuration generated by some object recognizers can sometimes be inconsistent

with the scene context. For example, observing a car in a kitchen is not likely in

terms of the kitchen context. In this case, knowledge of kitchen can be used to

correct this inconsistent recognition.

Motivated by the benefits of contextual information, we introduce an object

recognition framework that utilizes contextual interactions between individually

detected objects to improve the overall recognition performance. Our first con-

tribution arises in the object detector design. We define three methods for object

detection. Two of these methods, shape based and pixel classification based ob-

ject detection, mainly use the techniques presented in the literature. However,

we also describe another method called surface orientation based object detec-

tion. The goal of this novel detection technique is to find objects whose shape,

color and texture features are not discriminative while their surface orientations

(horizontality or verticality) are consistent across different instances. Wall, table

top, and road are typical examples for such objects. The second contribution

is a probabilistic contextual interaction model for objects based on their spatial

relationships. In order to represent the spatial relationships between objects,
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we propose three features that encode the relative position/location, scale and

orientation of a given object pair. Using these features and our object inter-

action likelihood model, we achieve to encode the semantic, spatial, and pose

context of a scene concurrently. Our third main contribution is a contextual

agreement maximization framework that assigns final labels to the detected ob-

jects by maximizing a scene probability function that is defined jointly using both

the individual object labels and their pairwise contextual interactions. The most

consistent scene configuration is obtained by solving the maximization problem

using linear optimization.

We performed experiments on the LabelMe [27] and Bilkent data sets by

both utilizing and not utilizing the scene type (indoor or outdoor) information.

While the average F2 score increased from 0.09 to 0.20 without the scene type

assumption, it increased from 0.17 to 0.25 when the scene type is known on

the LabelMe dataset. The results are similar for the experiments performed

on the Bilkent data set. F2 score increased from 0.16 to 0.36 when the scene

type information is not available and it increased from 0.31 to 0.44 when this

additional information is used. It is clear that the incorporation of the contextual

interactions improves the overall recognition performance.

Keywords: Context, object recognition, spatial relationships.



ÖZET

NESNELER ARASINDAKİ BAĞLAMSAL
ETKİLEŞİMLERİ KULLANAN BİR NESNE TANIMA

ÇERÇEVESİ

Fırat Kalaycılar

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Yard. Doç. Dr. Selim Aksoy

Ağustos, 2009

Nesne tanıma, bilgisayarlı görme alanının en temel problemlerinden biridir.

Bilgisayarlar gördüklerini insanlar gibi anlayabilsin diye teknikler geliştirmek

nesne tanıma araştırmalarındaki ana uğraştır. Bir sahnedeki nesneleri bul-

mak ve tanımlayabilmek için en çok kullanılan yöntemlerde, alt-düzey görüntü

öznitelikleri (renk, doku, vb.), ilgi noktaları/bölgeleri, süzgeç tepkileri, vb.

özelliklerden yararlanılmaktadır. Bunlar belirli nesne sınıfları için düzgün çalışsa

da, genel bir çözüm olmaktan uzaktırlar. Bu yüzden, sahne bağlamını kullanmak

güncel bir eğilim halini almıştır. Bağlam nesneler arası ve nesne - sahne arası

ilişkilerin kurallarını belirlemektedir. Nesne tanıyıcıların ortaya çıkardığı sahne

düzenleşimleri bazı durumlarda sahne bağlamıyla örtüşmemektedir. Örneğin, bir

mutfak ortamında araba görülmesi mutfak bağlamı açısından pek olası değildir.

Bu durumda, mekanın bir mutfak olduğunu bilmek bu tür çelişkili tanımlamaları

engellemekte kullanılabilir.

Bağlamsal bilginin getirdiği faydaları hesaba katarak, bu tezde, nesne tanıma

başarımını arttırmak için tek tek sezilmiş nesneler arasındaki bağlamsal et-

kileşimlerden yararlanan bir nesne tanıma çerçevesi anlatılmaktadır. İlk katkımız

nesne sezicilerin tasarımında görülmektedir. Çerçevemizde üç farklı nesne sezim

yöntemi tanımlanmıştır. Bunlardan ikisi, şekil bazlı ve piksel sınıflandırması

bazlı nesne sezicilerdir ve tasarımlarında genel olarak varolan yöntemlerden yarar-

lanılmaktadır. Bunlardan başka, yüzey doğrultusu bazlı nesne sezici isimli üçüncü

bir yöntem geliştirilmiştir. Bu yeni nesne sezim yöntemindeki ana amaç, şekil,

renk ve doku özellikleri ayırt edici olmasa da yüzey doğrultuları (diklik ya da

yataylık durumları) tutarlı olan nesnelerin sezilebilmesini sağlamaktır. Duvar,
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masa üstü, yol, vb. nesneler bu gruba dahil edilmektedir. İkinci katkımız, nes-

neler arasındaki uzamsal ilişkilere dayanan bağlamsal etkileşim modelidir. Nes-

neler arasındaki uzamsal ilişkileri göstermek için göreli konum, ölçek ve doğrultu

bilgilerini içeren üç tane öznitelik tanımlanmıştır. Bu öznitelikleri ve nesne

etkileşim olurluğu modelini kullanarak sahnenin anlamsal, uzamsal ve duruş

bağlamları aynı anda ifade edilebilmektedir. Üçüncü ana katkımız, bireysel nesne

etiketlerine ve nesne ikilileri arasındaki etkileşimlere bağlı olan sahne olasılık

fonksiyonunun enbüyütülerek, nesnelerin en son etiketlerinin atanmasıdır. En

tutarlı sahne düzenleşimini bulmak için bu enbüyütme problemi, doğrusal eni-

yileme kullanılarak çözülmüştür.

LabelMe [27] ve Bilkent veri kümelerinde, hem sahne türünü (iç mekan ya

da dış mekan) hesaba katarak hem de katmayarak deneyler gerçekleştirilmiştir.

LabelMe veri kümesinde sahne türü bilgisi kullanılmadığında F2 başarı ölçütü

0.09’dan 0.20’ye yükselmiştir. Sahne türü bilgisinden yararlanıldığında F2 ölçütü

0.17’den 0.25 değerine ulaşmıştır. Benzer başarım artışları Bilkent veri kümesinde

gerçekleştirilen deneylerde de görülmüştür. Sahne türü hesaba katılmadığında F2

ölçütü 0.16’dan 0.36’ya yükselirken, sahne türü dikkate alındığında ölçüt, 0.31

değerinden 0.44 değerine yükselmiştir. Bu deneyler sonucunda, bağlamsal et-

kileşimlerin nesne tanıma başarımına olumlu bir etkisi olduğu gösterilmiştir.

Anahtar sözcükler : Bağlam, nesne tanıma, uzamsal ilişkiler.
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Chapter 1

Introduction

1.1 Overview and Related Work

Object recognition is one of the fundamental tasks in computer vision. It is defined

as the identification of objects that are present in the scene. For a human being,

recognition of objects is a straightforward action. This ability works well for

the identification of objects in both videos and still images. The success in this

task is not affected drastically even when the scene properties alter. For example,

human vision system is nearly invariant to the changes in illumination conditions.

Therefore, recognizing an object in a darker scene is not very much different

than doing this in a brighter environment as long as the level of illumination is

reasonable. Similarly, the occlusion of objects does not influence the recognition

performance in a serious way. When the background clutter is considered, again

human beings are good at disguishing an object from a complex background.

Likewise, the different poses or visual diversity of objects do not have a significant

effect on the recognition quality of the human vision system.

However, when a computer is programmed to mimic this seemingly simple

ability of recognizing objects, unfortunately, the results are usually not satisfac-

tory. Factors like illumination, occlusion conditions, background clutter, variety

in pose and appearance are important challenges for computer vision. Thus, for

1
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decades, vision scientists have been trying to develop algorithms to make com-

puters understand what they see as precise as human beings.

There are different lines of research for the object recognition task. One of

them is to decide if a member of an object class is present or absent in a given

image regardless of its location. In [5, 8, 19], examples of this approach are

described. The methods work well for images that contains a single object of

interest and a relatively simple background. In this approach, first of all, some

features (color, texture, etc.) and/or interest points (SIFT [21], Harris interest

points [22] and etc.) are extracted. Then, decision on the existence of the object

is made using the features and interest points.

The second line of research includes region-based methods that use segmen-

tation to determine the boundaries of each object, and identify the objects by

classifying these segments. An example work using this approach is explained

in [3]. Although this method seems intuitive, it is often not possible to have a

perfect segmentation. The most of the segmentation algorithms work well for

scenes where objects have definite texture and color features. However, most of

the objects are composed of parts with different properties so algorithms often

segment these objects into several useless parts. To avoid this problem, multiple

segmentation approaches have been used [13, 24, 26]. The idea behind multi-

ple segmentations is that using different segmentation algorithms or running the

same algorithms with different parameters may yield different segmentations of

the image. Using the sets of pixels that are grouped into the same segments for

different settings as consistency information, these methods try to decide on the

most stable segmentation and use it for object recognition. Unfortunately, this

approach usually works well when the number of objects in the scene is small.

The third line of research is direct detection where the input image is divided

into overlapping tiles, and for each tile, the classifier decides if there is an object

of a particular class or not [11, 28]. Alternatively, the detectors can make use

of feature responses to determine the probable location of a target object [32].

After deciding on the tiles or the locations of target objects, detectors report

the bounding boxes and the associated probabilities of existence. Another direct
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detection method is part-based object recognition. In this method, first of all,

discriminative parts of an object are detected. Then, using the individual parts

and the part-based object model (relationship between the parts), the entire

object can be captured. Example work using part-based object recognition can

be found in [9, 10, 12].

None of these object recognition methods provides a universal methodology

to solve the object recognition problem. The reason is that they do not make use

of any high level information. They analyze the low level image features, filter

responses, interest points, segmentations, etc. They do not take the structure

and the constraints of the scene into account during the analysis. Actually, there

is a rich source of high level information called context that can be used to

enhance the recognition quality. Context refers to the rules and constraints of the

object-object and object-scene interactions. Human vision and computer vision

researchers [2, 15, 23] acknowledge that these contextual rules and constraints

are useful while recognizing an object.

The literature on the visual perception [23] shows that context has influences

at different levels. The semantic context represents the meaningfulness of the

co-occurrences of particular objects. While table and chair have higher tendency

to be found in the same scene, observing a car and a keyboard in the same

environment is not likely. The spatial context puts constraints on the expected

positions and locations of the objects. For instance, when a person sees an object

flying in the sky, he knows that it is likely to be a bird or an airplane. The reason

is that his cognitive system is aware that the probability of observing a flying

tree, building, car, etc. is significantly low. In addition, the pose context defines

the tendencies in the relative poses of the objects with respect to each other. For

instance, we, human beings, anticipate that a car is oriented meaningfully on the

road while driving.

Figure 1.1 shows an example emphasizing the importance of the contextual

interactions [33] for human vision systems. When the whole scene is not visible,

it is sometimes impossible to recognize the object of interest. But, recognition

becomes easier when we see an object in the context of the scene it belongs to.
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(a) Object (coffee machine) without scene con-
text.

(b) Object (coffee machine) inside the scene
(kitchen) context.

Figure 1.1: Example of object (coffee machine) - scene (kitchen) interaction [33].

In Figure 1.1(a), only the object of interest is shown. By just looking at that

image, it is very hard to determine the type of the object. But, when it is known

that it is a kitchen scene, it can be easily understood that it is a coffee machine

as shown in Figure 1.1(b).

Motivated by the benefits of context for human visual perception, computer

vision researchers devise techniques in which this rich information is incorporated

into the entire recognition process. In [31], Torralba introduced a framework that

models the relationship between the context and objects using the correlation

between the statistics of the low-level features extracted from the whole scene

and individual objects. In another work, Torralba et al. [33] proposed a context-

based vision system in which global features are used in the scene prediction. The

contextual information originating from that scene provides prior information for

the local detectors. The main drawback of these approaches is that the scene

context is modeled in terms of low-level features that may vary from image to

image.

Besides the methods that deal with the correlations between low-level features,

more intuitive models also exist. In [26], context in the scene is modeled in
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terms of the co-occurrence likelihoods of objects (semantic context). An image

is segmented into stable regions, and for each region, the class labels are sorted

from the most to the least likely. By the help of the contextual model, the

method manages to disambiguate each region and assigns a final class label. The

main drawback of this method is its dependency on the quality of the image

segmentations. The most of the natural scenes are composed of many objects

of interest and a cluttered background. The state of the art algorithms often

cannot segment such natural scene images meaningfully. Thus, this method can

work best for the images with relatively simpler scene configurations that are

appropriate for the segmentation algorithms.

There are also several methods that make use of the spatial context besides

the semantic context. In [13], in addition to co-occurrences, the relative location

information (spatial relationships) is also considered as contextual information.

[25] also uses co-occurrences, location and relative scale as contextual interactions.

The common aspect of these studies is the use of the conditional random field

(CRF) framework for incorporation of the contextual information. Note that

only a few number of objects as variables can be handled using CRF due to its

computational complexity.

Use of pairwise relations between region/object as spatial context is common

[4, 14, 18, 20, 29]. Incorporation of region/object spatial relationships such as

above, below, right, left, surrounding, near, etc, into the decision process has

been shown to improve the recognition performance in satellite image analysis

[1]. However, the models that extract such relationships from a 2D image taken

from a top view of the Earth may not be valid for generic views in natural scenes.

Since these relationships are not invariant to changes in perspective projection,

an actual spatial relationship defined in the real 3D world can be perceived very

differently in the image space. Figure 1.2 shows such a setting. In both of the

images, the car with the red marker is parked behind the car with the green

marker. However, when the 2D spatial relationships of the cars are interpreted,

they seem to have different relative positions. Therefore, naming the observed

2D relationships as above, below, etc. does not always make sense in generic

views. In [17], we proposed a method that probabilistically infers the real world
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(a) A car is parking behind the other.

(b) The same relationship from a different angle of view.

Figure 1.2: Similar object relationships in the 3D world can appear in many
different configurations in 2D images.
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Figure 1.3: Overview of the contextual object recognition framework.

relationships (defined in 3D space) between objects and use them as spatial con-

text. Although the results are promising, the scalability of the context model is

problematic due to issues with training real world relationship models.

In this work, we introduce a contextual object recognition framework where

the main goal is the determination of the best scene configuration for a still image

of a natural indoor/outdoor scene with a complex background and many objects

of interest. For this purpose, first, all object detectors are run on the input

image. This procedure yields the initial object detections with the class mem-

bership probabilities. Then, the contextual interactions among these candidate

objects are estimated. Three new spatial relationship features that encode the

relative position/location, scale and orientation are extracted for each object pair

and used to compute object - object contextual interaction likelihoods. These

likelihoods measure the meaningfulness of the interactions (relative position, lo-

cation and pose) between the objects. Finally, our framework finds the best

scene configuration by maximizing the contextual agreement between the object

class labels and their contextual interactions encoded in a novel scene probability

function. In our framework, finding the best scene configuration corresponds to
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the elimination of the objects that are inconsistent with the scene context and

the disambiguation of the multiple class labels possible for a single object. The

overview of the framework is shown in Figure 1.3.

1.2 Summary of Contributions

Our contextual object recognition framework has three main parts: object de-

tection, spatial relationship feature extraction, and contextual agreement maxi-

mization. We have contributions for each of these parts. First, we define three

methods for object detection. Two of these methods, shape based and pixel

classification based object detection, mainly use the techniques presented in the

literature. However, we also describe another method called surface orientation

based object detection. The goal of that detection technique is to find objects

whose shape, color and texture features are not discriminative. Wall, table top,

and road are typical examples for such objects. In order to recognize the instances

of these object classes, we designed a novel object detector that makes use of the

surface orientations. Details are given in Section 2.3.

Another contribution of this work is about spatial relationship features that

are the measures of object-object contextual interactions. We define three novel

features that encode the relative position, location, scale and orientation ex-

tracted from a given object pair. The oriented overlaps feature is the numerical

representation of the overlaps observed in the projections of the objects in various

orientations. Note that the overlap ratio without orientation is widely used to

represent the object relationships. Since an overlap ratio without orientation is a

scalar value, it lacks the direction information. On the other hand, our oriented

overlaps feature contains rough information regarding the direction based on the

orientations. By this way, it can encode the relative position of two objects. The

second feature, oriented end points, is designed to represent the relative location

of the objects in different orientations. It compares the end points of the objects

in the projection space generated by projecting the objects to an orientation of

interest. Note that both oriented overlaps and oriented end points are normalized
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features so that scaling the objects does not change the feature values. Finally,

horizontality feature captures the relative horizontality of two objects as a cue

about their support relationship. When these features are used in the same prob-

abilistic model, inference about the likelihood of the object interactions can be

made more robustly. More information about our features and their relation to

object interactions are explained in Chapter 3.

The most important contribution is made in the contextual agreement maxi-

mization part of our framework. This part combines individual detections (output

of the detectors) and the spatial relationships between them to obtain the best

scene configuration (best choices for object class labels). For this purpose, we

define a novel scene probability function whose maximization results in the con-

figuration we seek. This function is defined jointly using individual object class

labels and their pairwise spatial relationship features. In addition, it can easily

be decomposed into computable probabilistic terms (object detection confidences

and object interaction likelihoods). The values of the terms come from object de-

tector outputs and the probabilistic contextual interactions models based on our

spatial relationship features. Finally, our scene probability function can be easily

extended so that its maximization can also lead to additional information about

the scene configuration besides object class labels. Such additional information

regarding the scene is the type of the relationships (on, under, beside, attached,

etc.) between the objects. Complete description of this contextual agreement

maximization framework is presented in Chapter 4.

1.3 Organization of the Thesis

The rest of the thesis is organized as follows. In the following chapters, details

regarding our contextual object recognition framework are given. Chapter 2

deals with object detector designs we use to obtain initial objects. Next, in

Chapter 3, spatial relationship features and object interaction likelihood models

are explained. Chapter 4 shows how initial objects and their interactions are used

together to reach the best scene configuration. Our data sets and experimental
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results are presented in Chapter 5. Finally, conclusions together with future work

are given in Chapter 6.



Chapter 2

Object Detectors

The first step for building the contextual scene model is the detection of the

individual scene elements. In this chapter, important details regarding object

detection are discussed.

Object detection is the localization and classification of objects found in the

scene. Since each object class carries different characteristics, there is no perfect

solution which works for every class. In other words, a universal object detector

does not exist. This fact leads to the idea of designing different type of detec-

tors for different types of objects. For example, some objects such as cars have

distinctive shape properties while their color and texture features demonstrate

diversity. Thus, designing a car detector that depends on color features does not

make sense. It is better to make a detector that utilizes the shape information

to recognize a car. On the other hand, for the grass class, considering shape

features is not meaningful. This time, a color based detector may work better

because grass tends to appear green. Hence, it is clear that the characteristics of

a particular class must be taken into account during detector design.

Although there are differences in the design of detectors, their outputs should

be compatible so that they can be handled identically by our framework. This

can be achieved by the following requirements. Firstly, the detectors used in our

framework must report the object they found as a binary image mask associated

11
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(a) Input image. (b) Detection mask corresponding to grass.

Figure 2.1: Sample detection mask.

with a detection confidence score. A sample detection mask is shown in Figure

2.1. Secondly, the confidence scores must be values between 0 and 1, so they can

be interpreted as class membership probabilities.

To represent these probabilities, we use the notation P (Xi = c|Di). Here, Xi

is the variable for the object class label and Di is the detector type. Therefore,

P (Xi = c|Di) is the probability of assigning class label c to the i’th object that

is detected by a detector of type Di. Here, detector type, Di, has an impor-

tant role. According to the value of Di, the domain of the object class label

variable, Xi, is determined. Let Di be an object detector that can detect ob-

jects of classes c1, c2, . . . , ck. In this case, the domain of Xi is defined as the set

Ci = {c1, c2, . . . , ck, unknown}. Here, unknown is also crucial because it corre-

sponds to the case of not being able to call an object a member of the set of

classes detectable by Di. The unknown label will be used to reject a detection if

it is not compatible with contextual agreement in the scene in Chapter 4.

These definitions lead to a final requirement of total probability as∑
u∈Ci

P (Xi = u|Di) = 1. (2.1)

This requirement can be used to compute the probability of Xi being unknown

as

P (Xi = unknown|Di) = 1−
∑
u∈C′i

P (Xi = u|Di) (2.2)
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where C ′i = Ci − {unknown}.

An example regarding the requirements can be given as follows. Assume that

the i’th object is detected by a flower detector which can recognize the classes

rose and tulip. In this case, Di = flower and Ci = {rose, tulip, unknown}.
This detector must report the following 3 probabilities beside the detection mask

corresponding to the i’th object:

1. P (Xi = rose|Di = flower) = prose,

2. P (Xi = tulip|Di = flower) = ptulip,

3. P (Xi = unknown|Di = flower) = 1− prose − ptulip.

After discussing the detector requirements of our framework, explanations

about specific detector designs are given in the rest of this chapter. Although

any kind of object detector satisfying the requirements about the mask and the

score can be integrated into our framework, we handle three types of detectors

in this work. Detectors regarding object classes with discriminative shape prop-

erties are described in Section 2.1. Then, in the Section 2.2, pixel classification

based approach is presented. Finally, an object detection approach using surface

orientations is explained in Section 2.3.

2.1 Shape Based Object Detectors

The details of shape based object detectors are explained in this section. These

detectors are useful in finding objects whose color and texture features demon-

strate changes across different instances while shape remains nearly unchanged.

Objects like car, person and window can be put in this group. In order to deal

with such objects, we use two different approaches in our framework:

1. Object detection with boosting [32],

2. Object detection based on histograms of oriented gradients (HOG) [7].
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The boosting-based detector [32] uses combination of several weak detectors

to build a strong detector. Each weak detector performs template matching using

normalized cross correlation between the input image and a patch extracted from

the training samples. Since patch - object center relationships are available in

the training samples, using the correlation output, weak detector votes for the

object center. Consequently, weighted combinations of these votes are computed

and used to fit bounding boxes on candidate objects. Besides, detection confi-

dence scores (class membership probabilities) are reported based on the votes.

Original version of this detector works only in a single scale of the image. In

order to increase the applicability of the detector, we implemented a multi-scale

version using Gaussian pyramids. Note that this is a single class object detector.

Thus, a separate detector for each object class is learned using training examples

represented using bounding boxes of sample objects.

Sample boosting-based detections are shown in Figure 2.2. It is clear that in

addition to locating a target object successfully, the detector also reports many

false alarms. For objects like mouse that usually looks like a small blob, the num-

ber of false alarms can actually be very high. We will show that our framework

is good at reducing the false alarm rate by eliminating the detections that are

contextually inconsistent. Therefore, we prefer to use these simple detectors that

usually do not miss a target object at the expense of several false matches.

The other method we use is HOG based detection [7]. In this method, a

sliding window approach is used to detect objects. The image tile under the

window is classified and assigned a detection confidence score. During classifica-

tion, first of all, HOG features are extracted by dividing the tile into small cells

and computing 1D histogram of edge orientations or gradient directions for each

cell. To obtain the HOG descriptor of a tile, histograms obtained from the cells

are combined. Finally, this descriptor is used in classification of the current tile

under the detection window. If a tile is found to be a target object, then it will

be reported as a bounding box associated with a confidence score. Note that for

better detection outputs, this detector is also run in multiple scales of the input

image. Figure 2.3 shows sample detections performed by HOG based detectors.
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(a) Screen detection (b) Mug detection

(c) Mouse detection

Figure 2.2: Boosting based detection examples.
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(a) Car detection (b) Person detection

Figure 2.3: HOG based detection examples.

In contrast to high false alarm rates of boosting based detectors, HOG based

detectors do not tend to report false detections. Although this seems like an

advantage, the possibility of missing a target object is higher. Nevertheless, for

specific object classes like car and person, we observed that the output of HOG

based detectors are more meaningful than the outputs of the boosting based

detectors.

Although there are differences in these two shape based detection algorithms,

their outputs are identical: bounding boxes and scores. In order to make the

detectors compatible with our framework, the bounding boxes are represented as

binary image masks.

Another similarity between two approaches is that both detectors work for

the single class case. Thus, for the i’th object, the set Ci (possible values of Xi) is

{c, unknown} where c is the particular object class. Then, probabilities reported

by the detector should be P (Xi = c|Di = c) and P (Xi = unknown|Di = c).

Using (2.2), P (Xi = unknown|Di = c) is calculated as

P (Xi = unknown|Di = c) = 1− P (Xi = c|Di = c). (2.3)

For example, consider the leftmost car shown in Figure 2.3(a). In this case,

P (Xi = car|Di = car) = 0.57, so P (Xi = unknown|Di = car) must be equal to

0.43.
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2.2 Pixel Classification Based Object Detectors

After explaining shape based detection methods, details about pixel classification

based approach are given in this section. These detectors are useful in detect-

ing objects whose pixel level features (e.g. color, texture) are discriminative for

identification. Example classes having this property are grass, soil, sky, etc. In

an image, regions corresponding to such objects do not tend to demonstrate a

constant shape. Thus, shape based detectors are not good at finding these ob-

jects. Instead, in this case, a bottom-up approach where objects are detected by

grouping pixels with similar features is used.

At the heart of this method lies pixel classification. So, first of all, a pixel

level feature must be defined. For example, sky is made up of blue and white

pixels. Thus, choosing RGB as the pixel level feature is intuitive. Secondly,

a classifier must be trained based on the chosen feature. This classifier should

output a probability of being a pixel of a given object class. In sky detection

case, this classifier is expected to report high probabilities when RGB values of a

blue or white pixel is given. In order to create such classifiers, in our framework,

we use one-class classification using the mixture of Gaussians (MoG) distribution

as explained in [30]. It utilizes expectation-maximization algorithm to estimate

the mixture weights, means and covariances.

The posterior probability of being a target pixel, P (wT |y), is computed as

P (wT |y) =
p(y|wT )P (wT )

p(y|wT )P (wT ) + p(y|wO)P (wO)

=
p(y|wT )× 0.5

p(y|wT )× 0.5 + p(y|wO)× 0.5

=
p(y|wT )

p(y|wT ) + p(y|wO)

(2.4)

where y is a pixel level feature, wT represents the target class, wO is the case

of being an outlier (non-target) pixel. Then, p(y|wT ) is the MoG distribution

learned using examples and p(y|wO) is the uniform distribution assumed for the

outlier pixels. Finally, P (wT ) and P (wO) are the prior probabilities for target and

outlier pixels, respectively. In our framework, prior probabilities are assumed to
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be 0.5.

We have explained the training and usage of the pixel level classifiers. Re-

call that our main goal is object detection. For this purpose, firstly, features

corresponding to each pixel of the given image are extracted. Using these fea-

tures and (2.4), each pixel is assigned a probability of being a target object class

pixel. Then, pixels with probabilities under a certain threshold are labeled as

background. Afterwards, connected components among the remaining forground

pixels are extracted. Connected components (regions) with number of pixels less

than a threshold are also labeled as background. Then, holes (background pixels)

inside each region are filled. These final regions correspond to the image masks,

in other words, target object detections. Recall that our framework also requires

detection confidence scores. In order to obtain them, posterior probabilities of

each pixel of the detected region are averaged and used as confidence scores (class

membership probabilities) as

P (Xi = c|Di = c) =
1

Mi

Mi∑
j=1

P (c|yj). (2.5)

Here, Mi is the number of pixels in the object (region) and P (c|yj) is the posterior

probability of the j’th pixel of the region. Then, P (Xi = unknown|Di = c) can

be computed as

P (Xi = unknown|Di = c) = 1− P (Xi = c|Di = c). (2.6)

Although this detector seems to be a single class detector, it can easily be

extended to detect multiple classes. Consider the classes grass and tree. When

RGB pixel level features of both classes are taken into account, they are not

easily distinguishable. In this case, it is better to create a vegetation detector. Let

vegetation detector work as a single class pixel classification based object detector.

Then, we have the following outputs: P (Xi = vegetation|Di = vegetation),

P (Xi = unknown|Di = vegetation), and the image masks corresponding to

vegetation objects. Given these probabilities, P (Xi = grass|Di = vegetation)
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(a) Sky detection. (b) Vegetation detection.

Figure 2.4: Pixel classification based object detection examples.

can be computed as

P (Xi = grass|Di) = P (Xi = vegetation,Xi = grass|Di)

= P (Xi = grass|Xi = vegetation,Di)P (Xi = vegetation|Di)

= P (Xi = grass|Xi = vegetation)P (Xi = vegetation|Di).

(2.7)

Note that every grass is also a vegetation object. Thus, event of {Xi = grass} is

identical to the event of {Xi = vegetation ∩Xi = grass}.

Similarly, P (Xi = tree|Di = vegetation) is calculated as

P (Xi = tree|Di) = P (Xi = tree|Xi = vegetation)P (Xi = vegetation|Di).

(2.8)

Probabilities, P (Xi = grass|Xi = vegetation) and P (Xi = tree|Xi =

vegetation), are estimated using a training set with manual object labels as

P (Xi = grass|Xi = vegetation) =
#(vegetation objects labeled as grass)

#(vegetation objects)
(2.9)

and

P (Xi = tree|Xi = vegetation) =
#(vegetation objects labeled as tree)

#(vegetation objects)
, (2.10)

respectively.
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In multiclass version, computation of P (Xi = unknown|Di = c) is still per-

formed using (2.6).

Sample pixel based object detection outputs are shown in Figure 2.4.

2.3 Surface Orientation Based Object Detectors

We have discussed the cases where objects have discriminative features like spe-

cific shape, color and texture. However, there are also object classes which do not

demonstrate a pattern in terms of these features. Instances of such classes usu-

ally appear in arbitrary but uniform color and texture. For example, wall, table

top, floor and ceiling share this property. Consider a circular wooden table and

a rectangular plastic table. They seem completely different, so classifying them

into same class using specific values of their color, texture or shape features does

not make sense. Objects demonstrating this property are called surface objects

in our framework.

Hoiem [16] developed a method for recovering the surface layout from a single

still image. The method labels the regions of an image with geometric classes like

support and vertical. Support regions refer to the objects that are approximately

parallel to the ground (eg. road, table tops). Vertical image areas correspond to

the objects such as walls, trees, pedestrians and buildings. We use this method

to obtain confidence maps for the geometric classes horizontal (0 degree) and

vertical (90 degrees) relative to the ground plane.

Detection of surface objects begins with finding associated image regions. In

order to do so, we group the individual pixels into few partitions by applying

k-means clustering to the verticality and horizontality confidences of pixels. For

k-means clustering, each pixel’s horizontality and verticality confidence are con-

catenated and used as feature vector. After clustering, connected components

are extracted using pixels assigned to same group. Components with number of

pixels less than a threshold are labeled as background. Remaining ones are kept

as image masks showing detected surface objects.
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Second step in the detection is the determination of class membership prob-

abilities of the detected objects. For this purpose, again we use the verticality

and horizontality confidence maps. First of all, the horizontality and vertical-

ity probabilities for each detected surface object are computed by averaging the

values in the corresponding regions of the confidence maps. We denote the hor-

izontality and verticality probabilities as P (Gi = horizontal |Di = surface) and

P (Gi = vertical |Di = surface), respectively, where Gi represents the geometric

class label and Di represents the type of the detector. The probability of a surface

not being horizontal or vertical is computed as

P (Gi = unknown|Di = surface) = 1− P (Gi = horizontal |Di = surface)

− P (Gi = vertical |Di = surface).
(2.11)

The horizontal and vertical surfaces can be further divided into categories

such as road, table, etc. for horizontal, and wall, building, etc. for vertical. The

i’th object’s probability of being a surface object of type c can be computed as

P (Xi = c|Di = surface) =
∑
Gi

P (Xi = c,Gi|Di = surface)

=
∑
Gi

P (Xi = c|Gi)P (Gi|Di = surface).
(2.12)

Note that P (Xi = c|Gi = horizontal) = 0 if c is not a horizontal surface type,

P (Xi = c|Gi = vertical) = 0 if c is not a vertical surface type, and P (Xi =

unknown|Gi = unknown) is always equal to 1. Then probabilities for horizontal

objects are computed as

P (Xi = ch|Di = surface)

= P (Xi = ch|Gi = horizontal)

P (Gi = horizontal |Di = surface) (2.13)

and the probabilities for vertical objects are computed as

P (Xi = cv|Di = surface)

= P (Xi = cv|Gi = vertical)

P (Gi = vertical |Di = surface) (2.14)
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(a) Desk detection. (b) Road detection.

Figure 2.5: Surface orientation based detection examples.

where P (Xi = ch|Gi = horizontal) and P (Xi = cv|Gi = vertical) are estimated

from the percentage of the number of horizontal surface objects labeled as ch

among all horizontal surface objects, and the percentage of the number of verti-

cal surface objects labeled as cv among all vertical surface objects, respectively.

Finally, the possibility of not being able to label a surface object is modeled by

the probability

P (Xi = unknown|Di = surface)

=
∑
Gi

P (Xi = unknown|Gi)P (Gi|Di = surface)

= P (Xi = unknown|Gi = unknown)P (Gi = unknown|Di = surface)

= P (Gi = unknown|Di = surface).

(2.15)

Figure 2.5 shows sample surface object detection results.



Chapter 3

Interactions Between Scene

Components

Contextual interactions observed in a scene must be incorporated into the de-

cision process about that scene to achieve a better detection performance. A

candidate interaction is the co-occurrence of the objects. Learning this contex-

tual information is relatively easy when the data set contains an adequate number

of groundtruth class label assignments. However, co-occurrences alone may not

be sufficient to encode the whole context in the scene. For example, cars and

buildings tend to co-occur, but it is not usual to observe a building located under

a car. Suppose these objects are accidentally detected in the scene. Since they

are consistent according to the co-occurrence likelihood, the system will favor

such unreasonable configuration.

Therefore, a more sophisticated system should consider the relative posi-

tions/locations, scales and orientations observed among the objects. This cor-

responds to the use of spatial realtionships. If a system is aware of the most

likely spatial relationships between the objects, it can handle unlikely situations

with a higher precision. Algorithms that can model topological (set relationships,

adjacency), distance-based (near, far) and relative position-based (above, below,

23
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right, left) relationships have been successfully applied to satellite image analy-

sis for improving the classification accuracy [1]. However, relationships that are

defined in the 2D image space are not always applicable to generic scene analysis

because object relationships in the 3D world can appear in many different con-

figurations in a 2D image. Example images for these configurations are shown in

Figure 1.2. In these images, the car with the red marker is parked behind the car

with the green marker. However, when the 2D spatial relationships of the cars

are interpreted, they seem to have different relative positions. Hence, naming the

spatial relationships by just analyzing the relative positions is problematic.

Although both ways of handling context have some disadvantages, they can be

combined into a more powerful approach. In our proposed method, co-occurence

likelihood’s robustness to the wrong estimations of the spatial relationship types

and the strength of relative position/location, scale and orientation are handled in

the same probabilistic model. For this purpose, three different spatial relationship

features are introduced and explained in Section 3.1. Then, we mention how we

use these features to estimate object interaction likelihoods in Section 3.2.1. Since

we have chosen co-occurrence likelihoods as a baseline approach to be compared

with our proposed model during experiments (Chapter 5), we also explain how

co-occurrence probabilities can be utilized as interaction likelihoods in Section

3.2.2.

3.1 Spatial Relationship Features

A single spatial relationship feature is not sufficient to describe the observed

relationship between objects. Therefore, we use multiple features to encode the

interactions. By this way, we can analyze the pairwise interactions from different

perspectives and take advantage of different measures.

Feature values are calculated using the binary image masks corresponding to

the objects. Since features used in our framework are relative, during feature

extraction for an object pair, one of them is chosen as the reference object.
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Figure 3.1: Projection of an object onto the line with orientation θ. Blue region:
object to be projected, red line: orientation of projection, blue line segment:
projected object.

Throughout this section, suppose that spatial relationship features are extracted

for object oi with respect to reference object oref .

Let Pi be the set of pixels constituting the object oi and Zi be the 2 ×Mi

matrix whose columns are the (x, y)-coordinates of oi’s pixels (foreground pixels

in the binary image mask) where Mi = |Pi|. Then,

Zi =

[
xi,1 xi,2 xi,3 . . . xi,Mi

yi,1 yi,2 yi,3 . . . yi,Mi

]
. (3.1)

Some of the features we will introduce require projections of the objects. Let

Aθ be the transformation matrix which projects the objects onto the line with

orientation θ relative to the horizontal axis as

Aθ =
[
cos θ sin θ

]
. (3.2)

Then, Zi,θ is the 1×Mi vector containing pixel coordinates in the projected space

as

Zi,θ = AθZi. (3.3)
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An example projection is given in Figure 3.1. When an object is projected

on a line, the image region corresponding to that object is converted to a line

segment. For some features, end points of this line segment are required. Lower

and higher end points are denoted by Zl
i,θ and Zh

i,θ, respectively as

Zl
i,θ = min {Zi,θ} (3.4)

Zh
i,θ = max {Zi,θ}. (3.5)

Details of our spatial relationship features are explained in the following sub-

sections.

3.1.1 Oriented Overlaps Feature

Overlap ratios of two regions are widely used features. An example of its usage

can be seen in [13]. It is simply calculated by dividing the number of pixels in

the overlapping area by the number of pixels in one of the objects. However, this

simple feature does not capture the relative location of the participating regions.

Thus, it is not sufficient to encode the observed relationship. To overcome this

issue, overlap features are mostly used with relative centroid positions. Since

centroid of an object with arbitrary shape is not always representative enough to

describe the location of the entire object, this combined feature does not work as

expected. In addition, the units of overlap ratio and centroid differences are not

compatible (while overlap ratio is unitless, centroid feature is measured in pixels).

Therefore, the feature space generated by the combination of these features is not

meaningful.

Here, we introduce an overlap based feature called oriented overlaps. It en-

codes the relative overlap and position in a unified representation. This feature

is extracted as follows. First of all, some orientations of interest are selected. Let

the set of these orientations be Θ = {θ1, θ2, . . . , θ|Θ|}. Then, for each element

of Θ, Zl
ref,θj

and Zh
ref,θj

are computed, where 1 < j < |Θ|. Recall that these

represent the lower and higher end points of the line segment corresponding to

the object oref in the projection space, respectively. Let the set Pi,ref,θj
be the
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Figure 3.2: The computation of ρi,ref,θj
. Here, the reference object, oref , is shown

as a blue region. The object whose oriented overlaps feature is being computed,
oi, is shown as a red-cyan region. The red portion of oi is composed of the
pixels whose projections are values in the [Zl

ref,θj
,Zh

ref,θj
] interval (the blue line

segment). Thus, ρi,ref,θj
is calculated as (number of oi’s red pixels)/(total number

of oi’s pixels).

subset of oi’s pixels whose projections are values in the [Zl
ref,θj

,Zh
ref,θj

] interval.

Then, the overlap ratio, ρi,ref,θj
, observed in orientation θj is calculated as

ρi,ref,θj
=
|Pi,ref,θj

|
Mi

. (3.6)

Illustration corresponding to the computation of ρi,ref,θj
is shown in Figure

3.2.

The oriented overlaps feature vector, Oi,ref , is formed by concatenating the

features for all orientations as

Oi,ref =
[
ρi,ref,θ1 ρi,ref,θ2 ρi,ref,θ3 . . . ρi,ref,θ|Θ|

]
. (3.7)

In our framework, to keep the feature space simple enough, we chose Θ as

the set {0, 90}. Although information coming from other orientations is also

important, in order to avoid high dimensionality problems, we preferred 0 and 90

degree orientations.

In Figure 3.3, feature space of oriented overlaps feature is shown. Blue dots
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Figure 3.3: Oriented overlaps feature space. While x-axis shows values of ρi,ref,0,
y-axis corresponds to ρi,ref,90. Features are extracted for the red object (oi) with
respect to the green object (oref ). See text for more details.
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are the features extracted using object pairs found in one of the data sets (a

subset of LabelMe [27]) we use in the experiments. The double-headed arrows

show how the relationship between the red (oi) and green (oref ) boxes change as

the feature values vary in the specified direction. Note that the range of feature

values is [0, 1] for both ρi,ref,0 and ρi,ref,90.

Consider the boxes shown in group A. Using any of the four red boxes in

feature extraction with the green box (the reference object) results in the same

feature vector, (0, 0). As ρi,ref,0 (x-axis) increases, the positions of the red boxes

change as shown in the transitions A → H, H → G, C → D and D → E.

Similarly, as ρi,ref,90 (y-axis) value increases, the positions change as shown in

the transitions A→ B, B→ C, G→ F and F→ E.

Note that although there are usually more than one possible relative position

for a single oriented overlaps feature vector, the relationship observed in each

position is similar regardless of the direction.

3.1.2 Oriented End Points Feature

Although the oriented overlaps feature is informative about the relative positions,

it cannot distinguish the spatial relationships in which direction is important. For

example, a mouse can be found either on the left or right of a keyboard. It is clear

that direction of the relationship is not significant in the keyboard and mouse case,

so the oriented overlaps feature is sufficient to encode the relationship between

them. However, the situation is different for the grass and sky classes. In a

natural scene, the sky is expected to appear above the grass. But, if the oriented

overlaps feature is used, observing sky below the grass will be encoded similarly.

The reason is that the oriented overlaps feature encodes only the amount of

overlap (a scalar value, i.e. no direction information) in different orientations.

In order to distinguish the relationships in which direction is also important

besides the orientation, we define another feature called oriented end points. Ex-

traction of this feature is as follows. First of all, an orientation of interest, θ,
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Figure 3.4: An example computation of Ei,ref,θ. Here, the reference object, oref ,
is shown as a blue region. The object whose oriented end points feature is being
computed, oi, is shown as a green region. After the projection and normalization
steps, the end points of the objects take the values shown in the figure. Thus,
Ei,ref,θ is computed as (−1.69, 0.28).

is selected. Then values, Zl
i,θ, Zh

i,θ, Zl
ref,θ and Zh

ref,θ, are calculated. Recall that

these values are the end points of the line segments representing the objects in

the space of projection.

This feature is expected to encode the relative positions of the line segments.

For this purpose, a transformation function, Γ, that normalizes the reference

object’s line segment is defined as

Γ(z) =
2z − Zl

ref,θ − Zh
ref,θ

Zh
ref,θ − Zl

ref,θ

(3.8)

where Γ(Zl
ref,θ) = −1.00 and Γ(Zh

ref,θ) = 1.00. Using the same transformation

function, oriented end points feature, Ei,ref,θ, is constructed as

Ei,ref,θ =
[
Γ(Zl

i,θ) Γ(Zh
i,θ)
]
. (3.9)

Since this is a normalized feature, it encodes both the relative position and

the relative scale in the same representation.

An example computation of Ei,ref,θ is shown in Figure 3.4.
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Figure 3.5: Oriented end points feature space for θ = 0. While x-axis shows
values of Γ(Zl

i,0), y-axis corresponds to Γ(Zh
i,0). Features are extracted for the red

object (oi) with respect to the green object (oref ). See text for more details.
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Figure 3.6: Oriented end points feature space for θ = 90. While x-axis shows
values of Γ(Zl

i,90), y-axis corresponds to Γ(Zh
i,90). Features are extracted for the

red object (oi) with respect to the green object (oref ). See text for more details.
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In our framework, we extract oriented end points features for orientations

0 and 90. Therefore, there are two feature vectors, Ei,ref,0 and Ei,ref,90, to be

extracted for each object pair.

Figure 3.5 shows the feature space for oriented end points feature where θ = 0.

Blue dots are the features extracted using object pairs found in the subset of

LabelMe images. The double-headed arrows show how the relationship between

the red (oi) and green (oref ) boxes change as the feature values vary in the

specified direction. Note that Γ(Zl
i,0) ≤ Γ(Zh

i,0) and the range of feature values is

(−∞,+∞) for both Γ(Zl
i,0) and Γ(Zh

i,0).

As the Γ(Zl
i,0) (x-axis) increases, the size of the red object decreases as shown

in transitions C → D and D → E. On the other hand, when Γ(Zh
i,0) (y-axis)

increases, the size of the object increases as shown in transitions A → B and

B → C. Note that besides changes in size, the position of the red object also

varies in those transitions. The diagonal transitions like A → F and F → E

affect only the position of the red object. On the contrary, the transition F→ C

changes the size instead of the position.

The feature space of oriented end points where θ = 90 is available in Figure

3.6. This figure can be similarly interpreted as the feature space shown in Figure

3.5.

3.1.3 Horizontality Feature

We have explained two spatial relationship features that try to encode relative

position and scale observed between objects. Both features are extracted using

the observations from the 2D image space. However, objects are found in a 3D

environment in real world. Therefore, in order to encode a relationship, infor-

mation coming from 3D space is also useful. The horizontality feature is defined

for this purpose. This feature measures the relative horizontality confidence of oi

with respect to oref . Recall the Hoiem’s technique [16] to find surface layout from

a single still image. We use this technique to find surface objects as explained in
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Section 2.3. In order to extract the horizontality feature, the horizontality confi-

dence for oi and oref are computed by averaging the values in the corresponding

regions of the horizontality confidence map. Let Hi and Href be the confidence

values of the objects. The scalar horizontality feature, Hi,ref , is simply calculated

as

Hi,ref = Hi −Href . (3.10)

There is no need to compute a verticality feature, because there is a high

correlation between horizontality and verticality. In [16], for each image, confi-

dence maps for three main classes are extracted: support, vertical, and sky, where

the sum of three confidence values for a pixel is equal to 1. Therefore, relative

verticality is equal to

Vi − Vref = (1−Hi − Skyi)− (1−Href − Skyref )

= −(Hi −Href )− (Skyi − Skyref )

= −Hi,ref − (Skyi − Skyref ).

(3.11)

For objects other than sky, (Skyi− Skyref ) ' 0, so relative verticality is approx-

imately equal to −Hi,ref . Therefore, using horizontality feature is sufficient.

Feature space for Hi,ref is simple. It takes values from −1 to 1 inclusively. As

the value approaches to −1, verticality of oi increases. Conversely, values close

to 1 shows that object is more horizontal. For example, Hscreen,desk is expected

to have a value closer to −1.

3.2 Object Interaction Likelihood

The meaningfulness of the interactions (co-occurrence, relative position, loca-

tion and pose) between objects can be measured in terms of interaction likeli-

hoods that are computed with respect to the training examples. It is denoted as

p(Si,j|Xi, Xj). This is the probability of observing Si,j, the interaction between

two objects, oi and oj, having object class labels Xi and Xj, respectively.
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We focus on how the spatial relationship features and the co-occurrence prob-

abilities are utilized to represent the object interactions in Sections 3.2.1 and

3.2.2, respectively.

3.2.1 Spatial Relationship Feature Based Interaction

Likelihood

In our proposed method, we use the spatial relationship features to estimate how

likely a particular interaction between two objects is by learning probabilistic

models for each object class pair using these features. Then, for a new object

pair, likelihood of the interaction is computed using the associated model. The

value of p(Si,j|Xi, Xj) is calculated as

p(Si,j|Xi, Xj) =
∏

ωi,j∈Ωi,j

p(ωi,j|Xi, Xj) (3.12)

where Ωi,j is the set of spatial relationship features extracted for the (oi, oj) pair.

In the full probabilistic model, Ωi,j is taken as the set {Oi,j,Ei,j,0,Ei,j,90,Hi,j}.
Then, p(Si,j|Xi, Xj) is computed as

p(Si,j|Xi, Xj) = p(Oi,j|Xi, Xj)p(Ei,j,0|Xi, Xj)p(Ei,j,90|Xi, Xj)p(Hi,j|Xi, Xj).

(3.13)

Note that using full model is not mandatory. Any subset of the full set can

be used to estimate interaction likelihoods.

Individual p(ωi,j|Xi, Xj)’s are calculated as smoothed histogram estimates.

For this purpose, from a training set where individual objects are manually la-

beled, we collect feature vectors for each object class pair like (screen, desk), (sky,

building), (keyboard, keyboard), (grass, road), etc. Since our feature vectors are

extracted with respect to a reference object, we also collect features for (desk,

screen), (building, sky) and (road, grass) pairs. This means that we extract two

feature vectors for each object class pair due to possible asymmetry in the cor-

responding relations. Then, we estimate the object pair conditional density of
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Table 3.1: Properties of the spatial relationship feature histograms.

Feature #Bins Range Gaussian Kernel

Oriented overlaps 20× 20 ρi,ref,0 ∈ [0, 1] 3× 3

ρi,ref,90 ∈ [0, 1] σ = 0.75

Oriented end points 20× 20 Γ(Zl
i,0) ∈ [−50, 50] 3× 3

(θ = 0) Γ(Zh
i,0) ∈ [−50, 50] σ = 0.75

Oriented end points 20× 20 Γ(Zl
i,90) ∈ [−50, 50] 3× 3

(θ = 90) Γ(Zh
i,90) ∈ [−50, 50] σ = 0.75

Horizontality 1× 20 Hi,ref ∈ [−1, 1] 1× 3

σ = 0.75

these features, pωu,v(ωi,j), using the non-parametric histogram estimate as

pωu,v(ωi,j) =
kωu,v(ωi,j)

nωu,vV
ω
u,v

(3.14)

where kωu,v(ωi,j) is the value in the histogram bin where ωi,j falls in, nωu,v is the

sum of the values in all bins and V ω
u,v is the bin volume. Note that the histogram

estimates of (building, sky) and (sky, building) pairs are not the same.

The original histograms may not be appropriate for the estimation of pωu,v(ωi,j)

values due to zero frequency problem and sharp changes in the adjacent bins.

Thus, we assume a uniform prior by incrementing each histogram bin by one

in order to avoid zero frequency problem observed due to zero counts in the his-

tograms. Moreover, we avoid sharp changes in the adjacent bins by smoothing the

histogram using a Gaussian kernel. Consequently, we obtain the final smoothed

histograms that are used to calculate the interaction likelihood for a new object

pair. Table 3.1 summarizes the properties of the histograms for oriented overlaps,

oriented end points and horizontality features. Note that although the range of

oriented end points feature values is (−∞,+∞), we limit the range of these val-

ues to [−50, 50] in the histograms. The reason is that feature vectors out of this

range are not observed very frequently and the number of bins does not need to

be significantly increased for such rare cases. Thus, any value less than −50 is

mapped to −50 and any value greater than 50 is replaced by 50.
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Example smoothed histograms extracted from the LabelMe data set are shown

in Figure 3.7. Since a sky object is usually observed above a grass object, their

overlap ratio in orientation 90 is very small. Thus, the oriented overlaps feature

histogram for the sky-grass pair contains high values only in the bins that cor-

respond to low overlap ratios in 90 degree orientation. Similarly, a keyboard is

mostly found on a desk, i.e. the oriented overlaps feature measured using a key-

board with respect to a desk is usually close to (1, 1). Hence, the corresponding

histogram has its highest values in the bins close to (1, 1) as expected. However,

this tendency is not observed in the oriented overlaps feature histogram for the

desk-keyboard pair. In this case, the features are more diverse due to the high

variability of the overlap ratios.

Unlike the oriented overlaps feature histograms, ones based on the oriented

end point features resemble each other. In these histograms, features are mostly

accumulated in the center of the feature space. However, for the pairs like sky-

grass, the end point variability can cause an increase in the values of the bins

that are far from the center.

Interpretation of the horizontality feature histograms is more intuitive when

compared to the histograms of the other features. For example, a grass object

is expected to be more horizontal than a sky object. Thus, the sky-grass hori-

zontality feature histogram has its highest values for the bins corresponding to

negative relative horizontality. On the other hand, since a keyboard and a desk

are both horizontally oriented objects, their histogram reaches its maximum in

the bins around 0 relative horizontality.

The smoothed histograms are used to calculate the final interaction likelihood

based on a particular feature, ωi,j, as

p(ωi,j|Xi = u,Xj = v) = min{pωu,v(ωi,j), pωv,u(ωj,i)} (3.15)

where pωu,v(ωi,j) is the smoothed histogram estimate using the histogram for the

(u, v) class pair, while pωv,u(ωj,i) is the smoothed histogram estimate using the

histogram for the (v, u) pair. For example, the interaction likelihood according
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to the oriented overlaps feature is calculated as

p(Oi,j|Xi = screen,Xj = desk) = min{pOscreen,desk(Oi,j), p
O
desk,screen(Oj,i)}.

(3.16)

Note that in (3.15), we take the minimum of two asymmetric smoothed his-

togram estimates. By this way, being in a likely interaction can only be achieved

by having higher minimum density estimate.

Recall that context has effects at different levels: semantic, spatial config-

uration and pose [23]. The semantic context corresponds to the co-occurrence

tendencies of objects. Our interaction likelihoods give low values for objects that

do not tend to be found in the same image. Thus, our method encodes the seman-

tic context in this sense. The spatial configuration level specifies the expected

positions and locations of the objects. Since our interaction likelihoods are based

on spatial relationship features, they also capture the spatial context. Finally, the

pose context indicates the possible poses of objects with respect to each other.

Our horizontality feature roughly encodes the relative surface poses of objects.

Hence, our interaction likelihoods also encode the pose context to an extent. As

a result, we model the semantic, spatial and pose context of objects in a uni-

fied probabilistic framework using spatial relationship feature based interaction

likelihoods.

3.2.2 Co-occurrence Based Interaction Likelihood

The co-occurrence based interaction likelihoods are chosen as the baseline ap-

proach. For this purpose, we also learn co-occurrence probabilities for the object

class pairs and use them as interaction likelihoods. In this case, p(Si,j|Xi, Xj) is

computed as

p(Si,j|Xi, Xj) = P (C|Xi, Xj) (3.17)

where P (C|Xi, Xj) represents the probability of co-occurrence of objects having

class labels Xi and Xj. Co-occurrence probability does not depend on the in-

stances of object classes. For a given class pair, it is a constant value that is
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learned from a training set where manual object labels are present:

P (C|Xi = u,Xj = v) = min{Cu,v,Cv,u}, (3.18)

Cu,v =
(Number of images containing objects of classes u and v) + 1

(Number of images containing objects of class v) + 1
, (3.19)

Cv,u =
(Number of images containing objects of classes u and v) + 1

(Number of images containing objects of class u) + 1
, (3.20)

Cu,u =
(Number of images containing at least 2 objects of class u) + 1

(Number of images containing objects of class u) + 1
. (3.21)

Here, Cu,v, Cv,u and Cu,u are the co-occurrence probabilities for class pairs.

Note that we increment both numerator and denominator by one in the above

equations. By this way, we try to avoid the zero frequency problem. There are two

sources for zero counts: impossibility of observation and insufficiency of training

samples. In our framework, we assume that every object can co-occur with each

other. Thus, the source of zero frequency problem is accepted as insufficiency of

training samples. To solve this problem, we prefer adding a pseudocount of one

to obtain probabilities other than zero.

Note that as in (3.15), we take minimum of two co-occurrence probabilities

in (3.18). By this way, we avoid high probabilities that may come from objects

observed in a few images. Suppose that class A object is only present in a

single image and class B objects are found in 200 images. Also assume that

class A object and one of the class B objects belong to the same image. Then,

CA,B = (1 + 1)/(200 + 1) ' 0.01 and CB,A = (1 + 1)/(1 + 1) = 1.00. It is clear

that choosing the minimum one represents the co-occurrence likelihood better.

We handle this simple contextual information using our interaction likelihood

model. Unlike spatial relationship based interaction likelihoods, co-occurrences

can only encode the semantic context. In this sense, it is not as strong as the

information coming from our relationship features.



Chapter 4

Contextual Agreement

Maximization

In Chapters 2 and 3, the sub-components of a scene are described in details. These

are the individual objects and the pairwise interactions between them. These sub-

components are the building blocks of our contextual scene model. Given these

components, the goal of our framework is to decide on the best label for each

object by maximizing the contextual agreement between the scene elements. In

order to do so, Section 4.1 introduces a scene probability function which is a

joint probability defined using object class labels and pairwise object interations.

This function is important in the sense that its maximization corresponds to the

maximization of contextual agreement between scene elements. Then, Section

4.2 describes the method pursued in maximization of scene probability function.

Finally, in Section 4.3, the extendibility of our contextual model is explained.

4.1 Scene Probability Function (SPF)

In this framework, the unknown full 3D model of a scene is approximated in

terms of its sub-components, namely the objects and their contextual interactions.

41
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Therefore, we define the scene probability function SPF as the joint probability

SPF = P (X|D,S) (4.1)

of set of variables

X = {X1, X2, . . . , Xn} (4.2)

that represent the class labels of objects (Xi, i = 1, . . . , n) computed using

D = {D1, D2, . . . , Dn} (4.3)

S = {S1,2, S1,3, . . . , Sn−1,n} (4.4)

that represent the detectors (Di, i = 1, . . . , n) and the interactions (Si,j, i, j =

1, . . . , n, i 6= j) where n is the number of initially detected objects.

The original form of the SPF is an unevaluatable joint probability. So, it must

be decomposed into computable pieces. For this purpose, we make assumptions:

Assumption 1: The type of the detectors and the interactions are independent

given labels of objects.

Assumption 2: Since each object is detected separately, the class label of an

object depends only on the type of the detector that recognized it.

Under these assumptions, the SPF in (4.1) becomes

SPF = P (X|D,S)

=
p(D,S|X)P (X)

p(D,S)

=
P (D|X)p(S|X)P (X)

p(D,S)

=

P (X|D)P (D)
P (X)

p(S|X)P (X)

p(D,S)

=
P (D)

p(D,S)
P (X|D)p(S|X).

(4.5)

SPF is used for maximization purposes, so the constant term, P (D)
p(D,S)

, can be
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discarded. The final form of SPF can be written as

SPF = P (X|D)p(S|X)

=

(
n∏
i=1

P (Xi|Di)

)(
n−1∏
i=1

n∏
j=i+1

p(Si,j|Xi, Xj)

)
.

(4.6)

Terms, P (Xi|Di) and p(Si,j|Xi, Xj), are already defined in Chapter 2 and

Section 3.2, respectively.

In order to maximize the contextual agreement, we must find the values of

the variables Xi’s ∀i that maximize the SPF.

4.2 Maximization of SPF

Maximizing SPF is equivalent to maximizing the log-probability function. We

can formulate this maximization problem as a binary integer program with an

objective function f defined as

f =

(
n∑
i=1

∑
u∈Ci

αiu logP (Xi = u|Di)

)

+

(
n−1∑
i=1

n∑
j=i+1

∑
u∈Ci
v∈Cj

βijuv log p(Si,j|Xi = u,Xj = v)

) (4.7)

where Ci is the set of class labels that Xi can be assigned to. αiu is an indicator

variable for object i being of type u, and βijuv is an indicator variable for object

i being of type u and object j being of type v.

The problem can be written as
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max f

s.t.
∑

u∈Ci αiu = 1, ∀i∑
u∈Ci
v∈Cj

βijuv = 1, ∀i < j

βijuv ≤ αiu, ∀i < j, u ∈ Ci, v ∈ Cj
βijuv ≤ αjv, ∀i < j, u ∈ Ci, v ∈ Cj
αiu ∈ {0, 1}, ∀i, u ∈ Ci
βijuv ∈ {0, 1}, ∀i < j, u ∈ Ci, v ∈ Cj

(4.8)

Solution of this original formulation is computationally very expensive, due

to its NP-hard nature. Fortunately, solving a relaxed version of the problem

does not violate the constraints of the original problem. Therefore, we can safely

replace αiu ∈ {0, 1} with 0 ≤ αiu ≤ 1 and βijuv ∈ {0, 1} with 0 ≤ βijuv ≤ 1. This

relaxation is a linear program, so the problem becomes solvable in polynomial

time.

Although usually solution gives 0 and 1 for the variables αiu and βijuv as ex-

pected, sometimes intermediate values can be observed. In this case thresholding

is applied and variables are assigned to either 0 or 1. If an αiu is equal to 1, it

means that among all possible class labels, u is the best choice for object i. This

is called best class label and denoted as Xb
i . Therefore, when αiu is 1, Xb

i = u.

Although our probabilistic model is composed of computable terms, for certain

values of Xi, undefined probability values arise. Recall the object class unknown

defined in Chapter 2. It corresponds to the classes our system does not know

about and cannot recognize. Therefore, it is impossible to make observations

regarding an unknown object. Consequently, the following terms that appear in

the body of the objective function are undefined

• p(Si,j|Xi = unknown,Xj = v),

• p(Si,j|Xi = u,Xj = unknown),

• p(Si,j|Xi = unknown,Xj = unknown).
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These densities are assumed to be uniform distributions over the spatial relation-

ship feature space. By this way, this undefined densities can be computed and

used in our model without any problem.

4.3 Extendibility of the Model

The original formulation of our contextual model aims to determine Xb
i ’s. How-

ever, since it is an extendible model, new unknown variables can easily be inte-

grated. So, best options for other unknowns can be determined besides Xb
i ’s. We

show how our model can be extended to determine the type of spatial relationship

between objects in this section.

Let Ri,j be the label of spatial relationship between objects i and j. The

possible values of Ri,j are on, under, attached and etc. In this extended version

of the model, we will try to determine the name of the relationship between the

objects by finding the best spatial relationship labels, Rb
i,j.

SPF′, the extended scene probability function, is defined as

SPF′ = P (X,R|D,S) (4.9)

of sets of variables

X = {X1, X2, . . . , Xn} (4.10)

R = {R1,2, R1,3, . . . , Rn−1,n} (4.11)

that represent the class labels of objects (Xi, i = 1, . . . , n) and their spatial rela-

tionships (Ri,j, i, j = 1, . . . , n, i 6= j) computed using

D = {D1, D2, . . . , Dn} (4.12)

S = {S1,2, S1,3, . . . , Sn−1,n} (4.13)

that represent the detectors (Di, i = 1, . . . , n) and the interactions (Si,j, i, j =

1, . . . , n, i 6= j) where n is the number of initially detected objects.

Decomposition of SPF′ into computable terms also requires the assumptions

made for SPF. In addition, we make one more assumption:
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Assumption 3: The spatial relationship label for an object pair depends only

on the labels of the participant objects and the interaction between them.

SPF′ = P (X,R|D,S)

= P (X|D,S)P (R|X,D,S)

= P (X|D,S)P (R|X,S)

=
p(D,S|X)P (X)

p(D,S)
P (R|X,S)

=
P (D|X)p(S|X)P (X)

p(D,S)
P (R|X,S)

=

P (X|D)P (D)
P (X)

p(S|X)P (X)

p(D,S)
P (R|X,S)

=
P (D)

p(D,S)
P (X|D)p(S|X)P (R|X,S)

=
P (D)

p(D,S)
P (X|D)p(S,R|X)

=
P (D)

p(D,S)
P (X|D)P (R|X)p(S|X,R)

' P (X|D)P (R|X)p(S|X,R)

=

(
n∏
i=1

P (Xi|Di)

)(
n−1∏
i=1

n∏
j=i+1

P (Ri,j|Xi, Xj)p(Si,j|Xi, Xj, Ri,j)

)

(4.14)

There are two new terms:

P (Ri,j|Xi, Xj): Probability of observing relationship Ri,j between objects with

class labels Xi and Xj. It is estimated from a manually labeled training set

as
Number of (Xi, Xj) pairs having relationship Ri,j

Number of (Xi, Xj) pairs
(4.15)

p(Si,j|Xi, Xj, Ri,j): Similar to p(Si,j|Xi, Xj), but this distribution is learned using

the interactions of object pairs having relationship Ri,j.

After these definitions, we can introduce the objective function which will be
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maximized using (4.8) as

f ′ =

(
n∑
i=1

∑
u∈Ci

αiu logP (Xi = u|Di)

)

+

(
n−1∑
i=1

n∑
j=i+1

∑
u∈Ci
v∈Cj

βijuv max
r∈R

log(P (Ri,j = r|Xi = u,Xj = v)p(Si,j |Xi = u,Xj = v,Ri,j = r))

)

(4.16)

where R is the set of possible spatial relationship labels.

After obtaining values of αiu and βijuv’s as the result of optimization, the

determination of the best real world spatial relationship label for the object pair

(i, j), Rb
i,j, is straightforward:

Rb
i,j = argmax

r∈R

(
P (Ri,j = r|Xb

i , X
b
j )p(Si,j|Xb

i , X
b
j , Ri,j = r)

)
. (4.17)

Similar extensions can be applied on the model by looking at this example.

However, since there are not enough groundtruth data and manual labels to train

probability models arise in the extended versions, we used the original formulation

which just aims to find the best class labels for inidividually detected objects in

the experiments.



Chapter 5

Experiments and Evaluation

This chapter is allocated for the experiments we perform to measure the effective-

ness of our contextual object recognition framework. First of all, we will describe

the data set we use for experimentation in Section 5.1. Then, the object classes

of interest and the details regarding the training of the object detectors are pre-

sented in Section 5.2. Finally, we will explain the experiments we performed in

Sections 5.3 and 5.4, and report the results in Section 5.5.

5.1 Data Sets

We used two data sets for the performance evaluation. The first one is a subset

of LabelMe [27] that contains 684 indoor and 1291 outdoor images (1975 images

in total). Sample LabelMe images are shown in Figure 5.1. The second one

is Bilkent data set that contains 62 indoor and 92 outdoor images (154 images

in total). Sample Bilkent images are available in Figure 5.2. Images of both

data sets are taken from a large variety of viewing angles and contain more than

one object of interest. Thus, these natural scenes are suitable for learning and

applying the contextual interaction models.

48
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Figure 5.1: Sample images from the LabelMe data set.
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Figure 5.2: Sample images from the Bilkent data set.
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5.2 Object Detectors

There are totally 14 object classes we used in the experiments. The categorization

of these object classes with respect to their detection methods is presented below:

1. Shape based object detector with boosting [32]: computer screen,

keyboard, mouse, mug.

2. Shape based object detector using HOG [7]: car, person.

3. Pixel classification based object detector: sky, tree, grass.

4. Surface orientation based object detector: wall, desk, floor, road,

building.

The screen, keyboard, mouse, mug and car detectors were trained using man-

ually labeled bounding boxes of the objects in an independent subset of LabelMe.

For the person class, we directly used the detector provided in INRIA Object De-

tection and Localization Toolkit [6]. While sky was detected by a one-class pixel

classification based object detector, the tree and grass classes were recognized by

a multiple class pixel classification based object detector called vegetation detec-

tor. The vegetation and sky detectors were trained using manually labeled masks

of objects in an image set consisting of the outdoor images of Bilkent University

Campus. Note that these images do not belong to the Bilkent data set we used

to test our framework. In order to estimate the probability of being a grass or

tree object, we computed their frequencies by counting the groundtruth instances

found in the training set. These frequencies and the vegetation confidence score

were used to estimate the final probabilities of being a grass and tree object as

described in Section 2.2. Finally, for surface orientation based object detectors

(wall, desk, floor, road and building classes), there was no need for training. As

in the grass and tree case, we only computed the frequency of each surface object

class. These frequencies were multiplied by the verticality/horizontality confi-

dences to obtain the probability of being a particular surface object as described

in Section 2.3.
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Table 5.1: The groundtruth object counts in the LabelMe subset with 1975 im-
ages.

Class Count Class Count
Building 2390 Mug 143

Car 1295 Person 1176
Desk 658 Road 1048
Floor 95 Screen 906
Grass 910 Sky 963

Keyboard 592 Tree 3262
Mouse 428 Wall 480

5.3 Experiments on the LabelMe Data Set

We performed 5-fold cross validation using the LabelMe subset. Thus, for each

validation, 395 independent images were reserved as validation data and remain-

ing 1580 images were allocated for the training. We used the training images to

extract the spatial relationship features, estimate co-occurrence probabilities and

train the object interaction likelihood models as explained in Section 3.2. Table

5.1 shows the total number of the groundtruth objects found in the LabelMe

subset and Table 5.2 shows the distribution of these groundtruth objects in each

validation and training data.

There are 18 independent experimental settings. Recall that there are 4 differ-

ent spatial relationship features we are interested in. These are oriented overlaps,

oriented end points (θ = 0), oriented end points (θ = 90) and horizontality.

24−1 = 15 of 18 settings utilize all possible combinations of these features as the

contextual information using our contextual agreement maximization framework.

Following strategies were used in the remaining 3 settings:

• co: using co-occurrence probabilities as contextual information in our con-

textual agreement maximization framework,

• max : choosing the class label with the maximum class membership proba-

bility (no contextual information, unknown class was not used),
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Table 5.2: The groundtruth object counts in each LabelMe validation and training
data. Column V.i shows the number of the groundtruth objects for each class of
interest (shown in the Class column) for the i’th validation data. Column T.i
shows the number of the groundtruth objects for each class of interest for the i’th
training data.

Class V.1 T.1 V.2 T.2 V.3 T.3 V.4 T.4 V.5 T.5
Building 444 1946 543 1847 471 1919 449 1941 483 1907

Car 252 1043 264 1031 253 1042 255 1040 271 1024
Desk 136 522 141 517 129 529 134 524 118 540
Floor 16 79 20 75 19 76 25 70 15 80
Grass 183 727 213 697 172 738 179 731 163 747

Keyboard 112 480 109 483 124 468 129 463 118 452
Mouse 86 342 82 346 89 339 92 336 79 349
Mug 27 116 29 114 30 113 37 106 20 123

Person 208 968 271 905 250 926 196 980 251 925
Road 210 838 208 840 214 834 194 854 222 826
Screen 167 739 195 711 185 721 190 716 169 737

Sky 181 782 189 774 201 762 195 768 197 766
Tree 649 2613 680 2582 646 2612 621 2641 666 2596
Wall 90 390 106 374 86 394 92 388 106 374

• max/u: choosing the class label with the maximum class membership prob-

ability (no contextual information, unknown class was used).

Suppose that {car : 0.7, unknown : 0.3}, {grass : 0.2, tree : 0.5, unknown : 0.3}
and {wall : 0.05, desk : 0.04, floor : 0.05, road : 0.01, building : 0.15, un-

known : 0.7} are three objects detected initially in an image where the values

after the class names are the class membership probabilities. As we mention

above, the max approach does not make use of the unknown class. Thus, after

using the max approach, these three objects are assigned car, tree and building

labels, respectively. On the other hand, according to the max/u approach con-

sidering the unknown class, the final labels are car, tree and unknown. Recall

that the unknown class corresponds to the elimination of the initially detected

objects. Thus, the max/u approach eliminates the third object. Note that this

elimination rule holds for all settings except the max approach.

Table 5.3 shows the list of experimental settings and their associated codes

for further references.
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Table 5.3: Experimental settings and their codes.

Code Setting

O {oriented overlaps}

E0 {oriented end points (0)}

E90 {oriented end points (90)}

H {horizontality}

OE0 {oriented overlaps, oriented end points (0)}

OE90 {oriented overlaps, oriented end points (90)}

OH {oriented overlaps, horizontality}

E0E90 {oriented end points (0), oriented end points (90)}

E0H {oriented end points (0), horizontality}

E90H {oriented end points (90), horizontality}

OE0E90 {oriented overlaps, oriented end points (0), oriented end points (90)}

OE0H {oriented overlaps, oriented end points (0), horizontality}

OE90H {oriented overlaps, oriented end points (90), horizontality}

E0E90H {oriented end points (0), oriented end points (90), horizontality}

OE0E90H full model

co co-occurrences

max choosing the label with maximum probability (unknown not used)

max/u choosing the label with maximum probability (unknown used)
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Table 5.4: Categorization of 14 classes as indoor or outdoor object.
Indoor Object Classes Outdoor Object Classes

Screen Car
Keyboard Person

Mouse Grass
Mug Tree
Desk Sky
Wall Road
Floor Building

Table 5.5: The groundtruth object counts in the Bilkent data set with 154 images.
Class Count
Car 41

Grass 45
Keyboard 77

Mouse 64
Mug 32

Person 241
Screen 77

Each validation subset was tested using the 18 settings twice. Firstly, we did

not make any assumption regarding the type of the scene. In other words, we

conducted the experiments without considering if the input scene is an indoor or

outdoor image. Therefore, all detectors were run on all images. Secondly, we only

considered the indoor (outdoor) object classes for an indoor (outdoor) scene by

running only the detectors for that particular scene type. By this way, we could

compare how the additional knowledge of scene type influences contextual object

recognition performance. The categorization of 14 classes as indoor and outdoor

objects is available in Table 5.4.

5.4 Experiments on the Bilkent Data Set

We also conducted experiments on the Bilkent data set having 154 images. Table

5.5 shows the number of groundtruth object labels found in the Bilkent data set.

We used the images of LabelMe subset for training interaction models. Note that
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all 14 object classes were utilized for contextual agreement maximization, but the

performance was measured using 7 classes available as groundtruth. The tests

were performed using the same 18 settings shown in Table 5.3. The effect of the

scene type information (indoor or outdoor) was again observed by performing

experiments on the Bilkent data set twice.

5.5 Results

We use three measures while evaluating the results of the experiments. These

are precision, recall and F score. Precision is the fraction of correctly detected

objects among all detections. Thus, precision is calculated as

p =
number of correct detections

total number of detections
. (5.1)

Recall measures the ratio of the correctly detected groundtruth objects as

r =
number of correct detections

number of groundtruth objects
. (5.2)

Neither precision nor recall alone is sufficient to represent the overall success

rate. A recognition system detecting a small number of objects with very high

confidence would have high precision but low recall. Another recognition system

detecting lots of objects even in a single image would yield high recall but low

precision. Thus, precision and recall should both be as high as possible in or-

der to regard a system as successful. For this purpose, another commonly used

performance measure called F score is calculated as

Fβ =
(1 + β2)× p× r
β2 × p+ r

(5.3)

where p is the precision, r is the recall and β is the importance factor of the

recall when compared to the precision. We assume that the ratio of the correctly

detected groundtruth objects is more important than the proportion of the correct

detections among all detections for an object recognition system. In other words,

the recall values are assumed to be more significant than the precision values.
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(a) Average precision.

(b) Average recall.

(c) Average F2 score.

Figure 5.3: Average overall performance measurements for 5-fold cross validation
applied on the LabelMe data set. The scene type assumption was not used. The
settings are sorted in ascending order of the measure used.
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(a) Average precision.

(b) Average recall.

(c) Average F2 score.

Figure 5.4: Average overall performance measurements for 5-fold cross validation
applied on the LabelMe data set under the scene type assumption. The settings
are sorted in ascending order of the measure used.
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(a) Precision.

(b) Recall.

(c) F2 score.

Figure 5.5: Overall performance measurements for the experiments performed on
the Bilkent data set. The scene type assumption was not used. The settings are
sorted in ascending order of the measure used.
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(a) Precision.

(b) Recall.

(c) F2 score.

Figure 5.6: Overall performance measurements for the experiments performed on
the Bilkent data set under the scene type assumption. The settings are sorted in
ascending order of the measure used.
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Therefore, while computing F scores, we set β as 2 in order to give twice more

importance to recall than precision.

Figures 5.3, 5.4, 5.5 and 5.6 present the overall precision, recall and F2 scores

for the experiments performed on the LabelMe and Bilkent data sets using the

18 settings. The assumption regarding the scene type was not used for the ex-

periments whose results are shown in Figures 5.3 and 5.5. On the other hand,

Figures 5.4 and 5.6 show the results under the scene type assumption.

When only the precision values are considered in all of the figures, the win-

ning approach is to choose the class label with the maximum class membership

probability by taking the unknown class into account (max/u) and the worst ap-

proach is to select the class label with the maximum class membership probability

without considering the unknown class (max ). This is an expected result. Recall

that if an object’s label is chosen as unknown, this corresponds to its elimina-

tion. If the probability of being unknown is greater than the other possible class

membership probabilities, the object is removed in the max/u approach. Thus,

when objects with low detection confidences are totally eliminated, a relatively

higher precision is obtained. On the contrary, max approach corresponds to di-

rectly using the initial detection outputs. This approach is the only one that

does not include any object eliminations. This is what makes the precision of

max approach the lowest.

When only the recall values are considered in each figure, the best approach

is found to be max. This is reasonable in the sense that other methods may

mistakenly remove some of the correctly detected objects during the elimination

of the wrong detections. The max approach does not have that risk owing to

no elimination. By this way, it can keep the recall value high. The winner of

the precision values, max/u, does not perform well when the recall is considered.

This shows that eliminating objects having high probability of being unknown

is not the best strategy. This approach increases the probability of removing a

correct detection.

It is clear that methods not using any contextual information are only good at

either recall or precision. However, a recognition system has to be good at both



CHAPTER 5. EXPERIMENTS AND EVALUATION 62

values. Thus, when F2 scores are considered, neither max nor max/u approach

seems promising. Our contextual agreement maximization framework using spa-

tial relationship features as object interactions is the best approach in terms of

F2 scores. Although in Figure 5.3(c), co and max/u approaches seem better than

some of spatial relationship based interaction models, all of our models outper-

form max, max/u and co in Figures 5.4(c), 5.5(c) and 5.6(c).

When the scene type information is utilized, the precision, recall and F2

score values are greater than the values observed in the cases of no additional

information. The precision increases, because a detector of an indoor (outdoor)

object is not run for the outdoor (indoor) images. Therefore, the number of

possible wrong detections decreases which causes an increase in the precision.

The recall remains constant for max and max/u approaches. However, the recall

increases for co and spatial relationship based object interaction models. This is

because the maximization of contextual agreement in the scene is more meaningful

for the indoor (outdoor) objects using the indoor (outdoor) context. Suppose

that one screen, one keyboard, one car and one road are detected in a scene. It

is apparent that some of these objects contradict with the scene context. When

the scene type is unknown, the possibility of keeping the wrong objects and

eliminating the correct ones is higher. Therefore, in order to have better recall

values for a contextual object recognition system, the additional information of

the scene type should be taken into account.

The experiments on the LabelMe data set show that performance using the

settings including the horizontality feature is relatively higher. However, this

feature is not significant in the results of the Bilkent data set based experiments.

When both data sets are considered, it is clear that the best performing features

are the oriented end points features. On the other hand, the oriented overlaps

demonstrate an average success in each experiment. These interpretations lead

to the fact that there is no best feature combination to be used as contextual

interactions. The best combination depends on the object classes of interest used

in the experiments.
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The F2 scores of our context based baseline approach, co, are lower when com-

pared to the spatial relationship based methods. This shows that using the spatial

(oriented overlaps and oriented end points) and pose context (horizontality) in

addition to the semantic context (co-occurrences) results in better recognition

performance.

Tables 5.6, 5.7, 5.8 and 5.9 show F2 scores for each object class used in

the experiments on the LabelMe and Bilkent data sets. Recall that shape based

object detectors using HOG (car and person detectors) do not tend to report false

detections. Thus, their precision values are high when compared to their recall

values. So, their precision cannot be improved drastically using the methods that

can eliminate some of the initial detections. Consequently, F2 score cannot be

also improved. This makes the max approach the best option for HOG based

detectors. The objects like car and person are the reliable sources of the scene

context since the detection confidence scores are high in these detectors.

Boosting based detectors are different in the sense that they are low precision

but high recall recognizers. Thus, using max/u approach seems to be the best

option in some cases. For example, max/u performance is highest for the classes

like keyboard, mouse and mug with very low precision in Table 5.6. The reason

is that the context based methods are not always as good as max/u approach at

removing objects with low class membership probabilities. Only the screen class

whose shape is more discriminative than the others can be detected with higher

precision. Thus, context based methods perform better for the screen class.

Results show that the F2 scores of pixel classification and surface orientation

based detectors are improved by the contextual models. Since the frequency of

the tree objects in the training sets is greater than the frequency of the grass

objects, a vegetation object can only be initially labeled as a tree. Therefore,

the max and max/u approaches cannot detect a grass object. However, by the

help of the scene context, the disambiguation of the grass and tree becomes

possible. Thus, F2 scores of the grass class is greater than 0 under context

based experiment settings. The same situation is valid for the surface object

classes, building, desk, floor, road and wall. These frequency based objects can
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Table 5.6: Average F2 scores for each object class used in the experiments on the
LabelMe data set. These experiments were performed without using the scene
type information. The italic values are the lowest of their rows and the bold
ones are the highest.

Setting
max max/u co O E0E90 H OE0E90H

Class

building 0.25 0.26 0.25 0.11 0.17 0.18 0.19
car 0.17 0.02 0.08 0.07 0.08 0.08 0.08

desk 0.00 0.00 0.01 0.15 0.16 0.10 0.15
floor 0.00 0.00 0.00 0.09 0.00 0.07 0.12
grass 0.00 0.00 0.00 0.09 0.06 0.15 0.13

keyboard 0.07 0.39 0.17 0.32 0.32 0.31 0.32
mouse 0.01 0.12 0.07 0.06 0.06 0.06 0.06
mug 0.01 0.13 0.03 0.07 0.07 0.07 0.07

person 0.08 0.01 0.00 0.05 0.05 0.04 0.05
road 0.50 0.52 0.51 0.38 0.36 0.54 0.48

screen 0.42 0.38 0.15 0.52 0.52 0.51 0.52
sky 0.32 0.32 0.32 0.33 0.32 0.36 0.33
tree 0.14 0.01 0.15 0.13 0.15 0.15 0.15
wall 0.00 0.00 0.00 0.03 0.01 0.03 0.02

Table 5.7: Average F2 scores for each object class used in the experiments on
the LabelMe data set. These experiments were performed using the scene type
information. The italic values are the lowest of their rows and the bold ones are
the highest.

Setting
max max/u co O E0E90 H OE0E90H

Class

building 0.30 0.30 0.31 0.29 0.31 0.32 0.32
car 0.17 0.02 0.08 0.07 0.08 0.08 0.08

desk 0.18 0.18 0.15 0.22 0.22 0.12 0.22
floor 0.00 0.00 0.00 0.11 0.00 0.19 0.11
grass 0.00 0.00 0.00 0.10 0.06 0.17 0.16

keyboard 0.18 0.42 0.40 0.46 0.46 0.41 0.46
mouse 0.04 0.14 0.12 0.11 0.11 0.10 0.11
mug 0.03 0.16 0.06 0.15 0.15 0.14 0.15

person 0.08 0.01 0.00 0.04 0.05 0.04 0.05
road 0.55 0.57 0.56 0.52 0.55 0.56 0.53

screen 0.53 0.38 0.41 0.54 0.54 0.52 0.54
sky 0.35 0.35 0.35 0.35 0.35 0.39 0.35
tree 0.17 0.01 0.17 0.14 0.17 0.17 0.17
wall 0.04 0.04 0.05 0.03 0.01 0.05 0.02
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Table 5.8: F2 scores for each object class used in the experiments on the Bilkent
data set. These experiments were performed without using the scene type infor-
mation. The italic values are the lowest of their rows and the bold ones are the
highest.

Setting
max max/u co O E0E90 H OE0E90H

Class

car 0.39 0.03 0.26 0.23 0.26 0.26 0.26
grass 0.00 0.00 0.00 0.03 0.00 0.04 0.04

keyboard 0.15 0.72 0.32 0.59 0.59 0.52 0.59
mouse 0.05 0.17 0.11 0.18 0.18 0.15 0.18
mug 0.05 0.13 0.00 0.20 0.20 0.18 0.20

person 0.64 0.13 0.02 0.39 0.41 0.37 0.41
screen 0.60 0.44 0.34 0.66 0.66 0.66 0.66

Table 5.9: F2 scores for each object class used in the experiments on the Bilkent
data set. These experiments were performed using the scene type information.
The italic values are the lowest of their rows and the bold ones are the highest.

Setting
max max/u co O E0E90 H OE0E90H

Class

car 0.42 0.03 0.26 0.23 0.26 0.26 0.26
grass 0.00 0.00 0.00 0.04 0.00 0.06 0.06

keyboard 0.35 0.74 0.64 0.74 0.74 0.67 0.74
mouse 0.12 0.20 0.27 0.30 0.30 0.27 0.30
mug 0.13 0.15 0.00 0.35 0.35 0.32 0.35

person 0.65 0.13 0.01 0.35 0.41 0.37 0.41
screen 0.73 0.43 0.58 0.69 0.69 0.68 0.69
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also be disambiguated best under the contextual information. Recall that it is

very difficult to detect surface objects using traditional detectors that use color,

texture or shape features. On the other hand, it is clear that the detection of such

objects becomes possible by utilizing the surface orientations in our contextual

framework.

Figures 5.7, 5.8, 5.9 and 5.10 show the sample final label assignments for the

sample input images from both LabelMe and Bilkent data sets using the max,

max/u, co and the best performing spatial relationship feature set settings. Note

that we show examples from the experiments in which the scene type information

was utilized. The detection masks are shown as bounding boxes in the figures in

order to avoid the possible clutter.

The sky object overlapping with the road object could only be eliminated by

our framework using the OE90H setting as shown in Figure 5.7. Similarly, the

final label for the vegetation object located below the leftmost tree could only

be changed from tree to grass class again under the OE90H setting in Figure 5.8.

The screen and the keyboard could only be detected concurrently under the E0

setting as shown in Figure 5.9. Likewise, in Figure 5.10, the mug in addition to

the screen and the keyboard was correctly reported as a final detection when the

E0 setting was used.

Although there are some flaws in the final object detections observed under

the settings utilizing our spatial relationship based contextual interaction models,

they still yield the most reasonable results when compared to other approaches.

Besides precision, recall and F2 score based performance evaluation, the com-

putational time and complexity analysis of our contextual agreement maximiza-

tion framework is also important. As we mentioned in Section 4.2, our scene

probability function is maximized using linear optimization. We used MATLAB’s

Optimization Toolbox [34] that utilizes a primal-dual interior-point method to

solve a linear program in polynomial time. During the experiments, the opti-

mization for each input image was always terminated when an optimum solution

was obtained. Optimization for an image with a few (≤ 20) initially detected ob-

jects took less than 1 second. When the number of the initially detected objects



CHAPTER 5. EXPERIMENTS AND EVALUATION 67

(a) max (b) max/u

(c) co (d) OE90H

Figure 5.7: Sample final label assignments using the max, max/u, co and OE90H
(the best performing feature set) settings for an image from the LabelMe data
set.
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(a) max (b) max/u

(c) co (d) OE90H

Figure 5.8: Sample final label assignments using the max, max/u, co and OE90H
(the best performing feature set) settings for an image from the LabelMe data
set.
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(a) max (b) max/u

(c) co (d) E0

Figure 5.9: Sample final label assignments using the max, max/u, co and E0 (the
best performing feature set) settings for an image from the Bilkent data set.
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(a) max (b) max/u

(c) co (d) E0

Figure 5.10: Sample final label assignments using the max, max/u, co and E0

(the best performing feature set) settings for an image from the Bilkent data set.
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was close to 110, the time taken was approximately 5 minutes. The other context

based approaches in the literature can handle a few number of candidate objects

(initially detected objects) in a relatively longer time. For example, Rabinovich

et al. [26] obtain the candidate objects using a segmentation algorithm which

yields at most 10 segments. They report that the application of the contextual

constraints on a given segmentation takes up to 7 seconds. When 10 candi-

date objects in 7 seconds is compared to 20 objects in 1 second, our framework

outperforms [26] that utilizes the widely used conditional random field (CRF)

framework to implement the contextual inference mechanism. Note that it is also

not feasable to handle 110 candidate objects (variables) in a CRF framework. In

this sense, our framework is more practical than the CRF based methods found

in the literature.



Chapter 6

Conclusions

In this thesis, we described a contextual object recognition framework dedicated

to increase the overall recognition performance. First, all object detectors incor-

porated into our framework are run on the input still image. The initial object

detections with the class membership probabilities are obtained at the end of

this procedure. Next, the contextual interactions among these candidate objects

are estimated. The baseline interaction used in our framework is co-occurrence

probabilities that encode only the semantic context of a scene. On the other

hand, our proposed interactions are based on three different spatial relationship

features. The oriented overlaps feature captures the relative overlap amounts in

different orientations. The oriented end points feature encodes the relative posi-

tions of the objects using their projections to an orientation of interest. These two

orientation based spatial relationship features convey information regarding the

relative scales, positions and locations of the objects which constitute the spatial

context of a scene. There is also a third feature called horizontality. It captures

the relative horizontality of two objects that is a rough representation of the

pose context. Then, an object pair’s interaction likelihood based on our spatial

relationship features is calculated as a smoothed histogram estimate. Next, the

initial object detections and the pairwise contextual interaction likelihoods are

utilized to obtain the best scene configuration using our contextual agreement

maximization framework. Finding the best scene configuration corresponds to
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the elimination of the objects that are inconsistent with the scene context and

the disambiguation of the class labels recognized by the multiple class object de-

tectors. In order to implement the elimination mechanism, we employed an extra

object class called unknown (the case of not being able to call an object a mem-

ber of the classes recognized by our system). This framework maximizes a novel

scene probability function that is defined jointly using both the individual object

labels and their pairwise contextual interactions. This maximization problem is

solved using linear optimization.

We performed experiments on two different data, the LabelMe [27] and Bilkent

data sets whose images are taken from a large variety of viewing angles and con-

tain more than one object of interest. Hence, these natural scenes were suitable

for learning and applying the contextual interaction models. Experimental re-

sults show that the best strategy in an object recognition system is using the

contextual models when the overall F2 scores are considered. Among the con-

text based approaches, spatial relationship based object interactions outperform

the co-occurrence based interactions. This shows that how the spatial and pose

context are important besides the semantic context. We also investigated which

combination of the spatial relationship features performs best in the contextual

agreement maximization. Results show that the best combination depends on

the objects contributing to the overall scene context. Thus, there is no fixed set

of features to be used in our framework. In addition, the results indicate that

the additional information about the scene type (indoor and outdoor) causes an

increase in the F2 scores of the context based approaches.

Besides the overall performance, we also examined how different object classes

behave under different experiment settings. The results show that F2 scores of

the object detectors with high precision relative to their low recall cannot be im-

proved using the contextual information. Instead, they can be used as a reliable

source of context. On the other hand, the detectors with high recall relative to

their low precision can be improved best by choosing the class label with the

maximum class membership probability and eliminating the candidate objects

having low detection confidence scores. However, for pixel classification and sur-

face orientation based object detectors, it is shown that the best strategy is using
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the spatial relationship based context models. The recognition is only possible by

the contextual agreement maximization for the objects whose detections depend

on their frequencies in a training set.

This contextual object recognition system is an extendible framework as ex-

plained in Section 4.3. New unknowns can easily be incorporated into our scene

probability function. Hence, the extended version of the framework together with

more object detectors may be used to build a large scale computer vision system

in the future. Our current framework is observed to be able to efficiently handle

approximately 110 initially detected objects belonging to 14 classes in the exper-

iments. Note that the number of classes would be greater than 14 in a larger

scale system. This would lead to thousands of initially detected objects to be

handled. Then, using the generic linear optimization would not be tractable any

more. Thus, one of our future work is to devise a more efficient algorithm to solve

the maximization problem.

Recall that the contextual agreement maximization using the spatial rela-

tionship feature combinations including the horizontality feature outperform the

other approaches in the experiments performed on the LabelMe data set (Figures

5.3(c) and 5.4(c)). Thus, we will focus on the spatial relationship features that

can model the pose context in a more sophisticated way as another future work.

The overall recognition performance may be improved more by incorporating such

features into our contextual interaction model.
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