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Abstract. In this work, we present an investigation of the optical properties and band structure 

calculations for the photonic crystal structures (PCs) based on one-dimensional (1D)-photonic 

crystal. Here we use 1D SbSI based layers in air background. We have theoretically calculated 

the photonic band structure and optical properties of SbSI based PC superlattices. In our 

simulation, we employed the finite-difference time domain (FDTD) technique and the plane 

wave expansion method (PWE), which implies the solution of Maxwell equations with 

centered finite-difference expressions for the space and time derivatives. 

Keywords: Fibonacci Photonic Crystal, SbSI, Supercell 

1. Introduction

It is well known that the photonic crystal (PC) based superlattices  can play an essential role in the 

controlling of the optical processes in various devices of optoelectronics [1]. Therefore, great attention 

is paid to the investigation of the physical properties of PC based superlattices. The PC based 

superlattices of various types are considered, namely, strictly periodic, disordered, lattices with 

defects, etc. The structures intermediate between the periodic and disordered structures, or quasi-

periodic lattices – the Fibonacci and Thue-Morse superlattices, occupy a special place among the 

superlattices. On the other hand, one of the topics of interest in the optics of PC is the possibility to 

tailor emittance/absorptance by changing the distribution of electromagnetic modes. Emittance 

tailoring by conventional PCs was investigated in [2,3]. One of the structures that may be used in 

emittance tailoring is quasiperiodic multilayers, like the Fibonacci superlattices [4]. Due to their 

structural self-similarity, these show regularities in their transmission/reflection spectra. The strong 

resonances in spectral dependences of fractal multilayers can localize light very effectively [1,5]. In 

addition, long-range ordered aperiodic photonic structures offer a extensive flexibility for the design of 

optimized light emitting devices, the theoretical understanding of the complex mechanisms governing 

optical gaps and mode formation in aperiodic structures becomes increasingly more important. The 

formation of photonic band gaps and the existence of quasi-localized light states have already been 

demonstrated for one (1D) and two-dimensional (2D) aperiodic structures based on Fibonacci and the 

Thue-Morse sequences [1,4]. On the other hand, a one – dimensional Schrödinger equation has been 

examined with a stepwise quasiperiodic potential whose value is equal to either of the two fixed values 

sequentially in accordance with the Fibonacci set [1]. For such a potential, an electron was found to 
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have a “critical wave function” with strong spatial fluctuations. This type of wave function correlates 

with the properties of the energy spectrum. The unusual electron properties of quasiperiodic potentials 

have also stimulated extensive research of the optical counterparts. However, to the best of our 

knowledge, a rigorous investigation of the band gaps and optical properties in the more complex types 

of aperiodic structures has not been reported so far. 

In this paper, we investigated the energy spectrum and optical properties in the Fibonacci-type 

photonic band gap (PBG) structures consisting of ferroelectric material (SbSI) in detail by using the 

finite-difference time-domain (FDTD) method and the plane wave expansion method (PWE). The 

choice of the SbSI crystal as the  active media for our investigation was associated with its unusual 

optical and electronic properties.  It is well known, that SBSI is the ferroelectric material and its 

properties are very sensitive to external influences (temperature, electric field, stress and light) [6-8]. 

Therefore, SbSI based Fibonacci photonic crystal may be used as efficiency material for photonic 

devices.  

2. Computational Details

2.1. Fibonacci Sequences and Model 

Quasiperiodic structures are nonperiodic structures that are constructed by a simple deterministic 

generation rule. In a quasiperiodic system two or more incommensurate periods are superimposed, so 

that it is neither aperiodic nor a random system and therefore can be considered to intermediate the 

two [1]. In other words due to a long-range order a quasiperiodic system can form forbidden frequency 

regions called pseudo band gaps similar to the band gaps of a PC and simultaneously possess localized 

states as in disordered media [5].  The Fibonacci multilayer structure (well-known quasiperiodic 

structure) has been studied in the past decade, and recently the resonant states at the band edge of the 

photonic structure in the Fibonacci sequence have also been studied experimentally [9]. A 1D quasi-

periodic Fibonacci sequence is based on a recursive relation, which has the form, Sj+1={Sj-1, Sj} for 

j≫1, with S0={B}, S1={A}, S2={BA}, S3={ABA}, S4={BAABA} and soon, where Sj is a structure 

obtained after j iterations of the generation rule. Here, A and B are defined as being two dielectric 

materials, with different refractive indices (nA, nB) and have geometrical layer thickness (dA, dB). In 

place of materials A and B, we used air (A) and strongly anisotropic material - antimony sulfoiodide 

(SbSI, B) [10]. In Fig. (1) and (2)   we schematically show the geometry of conventional PCs and 

FPCs. 1D photonic crystals are characterized by the refractive index contrast and filling fraction. The 

refractive index contrast is the ratio of the higher refractive index to the lower refractive index in the 

multiplexer system. The filling fraction f is the ratio between the thickness of the lower refractive 

index layer (air) and the period of the PC, i.e., f=d1/(d1+d2).  Typical 1D PCs and FPCs are shown 

Fig.1 and Fig.2  

The thickness of the considered layers of air and SbSI  are  and 

, respectively. The lattice constant is . The filling fraction is set to 0.5. The 

refractive index contrasts of anisotropic SbSI are taken as following: 

na=2.87 nb=3.63 nc=4.55 Tc = 22 ºC (Paraelectric Phase)  

na=2.87 nb=3.57 nc=4.44 Tc ≈ 12 ºC  (Ferroelectric phase) at λ=633 nm. 

The refractive index of the background dielectric medium is assumed as air (nair=1.0). 
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Figure 1. 1-Dimensional SbSI Based Photonic Crystal Structure (PCs). 

Figure 2. 1-Dimensional SbSI Based Fibonacci Photonic Crystal Structure (FPCs). 

2.2. Finite Difference Time Domain (FDTD) Method and Plane Wave Expansion Method (PWE) 

In our calculations, we used the OptiFDTD software package [11]. The OptiFDTD software package 

is based on the finite-difference time-domain (FDTD) method for transmission spectra and the plane 

wave expansion method (PWE) for photonic band structure. Equi-frequency contour of SbSI based 1D 

PCs was calculated with MPB free software [12]. 

The photonic band structures of the proposed PCs were calculated by solving the Maxwell equations. 

The Maxwell equation in a transparent, time-invariant, source free, and non-magnetic medium can be 

written in the following form: 

Where, 

     is the space dependent dielectric function 

    is the speed of light in vacuum. 

  is the magnetic field vector of frequency ω and time dependence . 

This equation is sometimes called the Master Equation, and represents a Hermitian eigen-problem, 

which would not be applicable if the wave equation were derived in terms of the electric field. The 

Bloch theorem states that, due to infinite periodicity, the magnetic field will take the form: 

Where 

for all combinations of lattice vectors  . Thus, Maxwell equation is given  in operator form: 
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By solving these equations for the irreducible Brillouin zone, we can obtain the photonic band 

structure.  

FDTD algorithm is one of the most appropriate calculation tools [13]. For solving Maxwell's equations 

depending on the time, FDTD algorithm divides the space and time in a regular grid. Perfect matched 

layers (PMLs) can be used in the determination of the boundary conditions [14]. In general, the 

thickness of the PML layer in overall simulation area is equal to a lattice constant. FDTD solves 

electric and magnetic fields by rating depending on space and time and deploys that rating in different 

spatial regions by sliding each field component half of a pixel. This procedure is known as Yee grid 

discretization. Fields in these grids can be classified as TM and TE polarization. In our calculations, 

we have used Periodic Boundary Condition (PBC) and (PMLs) at x- and z-directions, respectively. 

3. Results and Discussion

3.1. Photonic Band Structure and Transmittance 

We calculate the spectral properties in the n-th order (n=10) Fibonacci-type quasiperiodic layered 

structures consisting of compounds. The photonic band structures of 1D SbSI based PCs have been 

calculated in high-symmetry directions in the first Brillouin. The band structures with transmittance 

spectrums for SBSI based photonic crystal are shown in Fig. 3. We can see that there exist five 

fundamental photonic band gaps (PBG) from Fig.3. The width of the fundamental photonic band gaps 

are (0.313-0.426) (ωa/2πc) for 1th PBG, (0.700-0.788) (ωa/2πc) for 2nd PBG, (1.091-1.133) (ωa/2πc) 

for 3rd PBG, (1.424-1.544) (ωa/2πc) for 4th PBG and (1.831-1.883) (ωa/2πc) for 5th PBG, 

respectively. When the frequency of an incident electromagnetic wave drops in these PBGs, the 

electromagnetic wave will be reflected completely by the photonic crystal. It can be seen in Fig.3 that 

transmittance is zero in these range of frequencies.  All pseudogaps exist in the frequencies where the 

effective refractive index of the structure are positive and the spectral width of the gaps are invariant 

with the change in the transmittance (see, Tables 1).  

Figure 3. TM Band structure and transmittance spectra of anisotropic SbSI. 
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(1.806-

1.944) 
7.350 

(2.297-

2.391) 
4.009 
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0.7 
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0.722) 
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Table 2 Variation of full band gap size for TE modes with filling factor for anisotropic SbSI based 

layers in air background. 
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0.1 
(0.401-

0.498) 
21.633 

(0.829-
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17.704 

(1.287-

1.466) 
13.036 

(1.769-

1.916) 
7.976 

(2.263-

2.336) 
3.156 

0.2 
(0.346-

0.490) 
34.383 

(0.775-

0.925) 
17.704 

(1.262-

1.279) 
1.301 

(1.622-

1.754) 
7.810 

(2.041-

2.196) 
7.304 

0.3 
(0.314-

0.471) 
39.805 

(0.763-

0.810) 
5.927 

(1.109-

1.248) 
11.815 

(1.528-

1.619) 
5.767 

(1.911-
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0.4 
(0.293-

0.439) 
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(0.708-

0.761) 
7.180 

(1.037-

1.161) 
11.268 

(1.419-

1.518) 
6.710 

(1.790-

1.876) 
4.653 

0.5 
(0.280-

0.402) 
35.689 

(0.634-

0.748) 
16.476 

(1.024-

1.038) 
1.355 

(1.311-

1.437) 
9.144 

(1.672-

1.776) 
6.040 

0.6 
(0.271-

0.366) 
29.720 

(0.584-

0.713) 
19.801 

(0.935-

1.018) 
8.539 

(1.289-

1.301) 
0.931 

(1.563-

1.667) 
6.412 

0.7 
(0.266-

0.334) 
22.620 

(0.552-

0.662) 
18.221 

(0.860-

0.979) 
12.942 

(1.184-

1.275) 
7.329 

(1.517-

1.549) 
2.075 

0.8 
(0.263-

0.306) 
15.114 

(0.534-

0.612) 
13.593 

(0.813-

0.915) 
11.802 

(1.102-

1.214) 
9.646 

(1.398-

1.507) 
7.516 

0.9 
(0.262-

0.282) 
7.421 

(0.526-

0.564) 
6.990 

(0.791-

0.848) 
6.934 

(1.058-

1.129) 
6.492 

(1.327-

1.411) 
6.129 

Table 1 Variation of full band gap size for TM modes with filling factor for anisotropic SbSI based 

layers in air background. 

Filling
Factor TM1 TM2 TM3 TM4 TM5 
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The numerical results of the variation of a full band gap with a changing filling factor from 0.1 to 0.9 

are given in Table 1 and Table 2. The variation of band gap sizes (%) as a function of filling factor are 

shown for TM mode in Fig. 4.  It is clear that the size of the gap increases with filling factor for the 

first band gap. The largest gap size is about 38% when filling factor is as high as 0.4, but it decrease 

when filling factor continues to increase. On the other hand, the fifth band gap size does not change 

too much according to filling factor, but it reaches the minimum value when filling factor is 0.7.  We 

also calculated the field distribution of the TM modes in our n-th (7) order Fibonacci sample, 

following a standard PWE method. The magnitude of the magnetic field (E) at the left interface of the 

dielectric layer is simply related to H at the right interface of the same layer by using matrix relation 

[15]. For 1D structures, it is also possible to compute the magnetic field distribution inside the sample 

(Fig. 5). The insets show the normalized field intensity distribution for the λ=1.55 μm wavelength on 

the n-th (n=7) interface. 

Figure 4. TM Filling factor for anisotropic SbSI. 

Figure 5. TM Magnetic field distribution in SbSI based PCs. 
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Figure 6. TM Transmittance spectra of 1D SbSI based PCs. 

Figure 7. TM Transmittance spectra of 1D SbSI based FPCs. 

Figs. 6-7 show the transmittance spectra of SbSI based both normal PCs and FPCs from 8 to 89 layers 

for the transverse-magnetic (TM)-polarized incident electromagnetic wave. The positions of the 

minima in the transmission spectrum correlate with the gaps obtained in the calculation. A 

transmission spectrum of a simple eight-layer (also n=8, 13, 21, 34, 55, 89) 1D SbSI based PC is 

compared in Fig. 6-7 with an eight-layer (also n=8, 13, 21, 34, 55, 89) 1 D SbSI based FPC. One full 

period in spectrum is presented which corresponds to the frequency range (0.2-0.5) (ωa/2πc). 

Although there is still a gap in the transmission spectrum of the Fibonacci structure around (0.2-0.5) 

(ωa/2πc) the spectrum modified significantly. Notably, the total number of transmission peaks in both 

cases equal to the total number of elementary layers in the structure. This is general property of 

multilayer structures. In addition, the spectral regularities inherent in Fibonacci structures have also 

been derived in analytical form based on the transfer matrix approach. Fibonacci structures feature a 

transmission band in the center which first splits into two and then into three subbands (Fig. 7). This 

central triplet is indicative for the Cantor triadic set and for higher generations definite self-similar and 

scaling features develop that are inherent in fractals. Different portions of transmission spectra for the 

same high-order generation of Fibonacci structure do exhibit similar spectral shape which becomes 

apparent when using the “exciton in quantum dot” lowest state energy expansion [1]. The transmission 

spectra of Fibonacci structures also show scalability which means that the spectra of different 

generations have a similar shape when the frequency axis is properly scaled. Notably, the transmission 
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spectra of generic Fibonacci structures exhibit perfect transmission bands. Many among well resolved 

peaks have a transmission coefficient close to unity. 

3.2. Equi-frequency surface 

Because, the momentum conservation law is satisfied at the reflection and refraction of waves, it is 

convenient to analyze the reflection and refraction of a certain wave in the space of wave numbers 

 by introducing the equi-frequency surface of the wave. This surface is directly 

described by the dispersion relation of the anisotropic medium at the fixed frequency ω. Then, the 

group velocity  of the wave in an anisotropic medium can be found as the frequency gradient in the 

space of wave vectors [16]. It is known that for an electromagnetic wave propagating in an anisotropic 

medium with a fixed frequency ω, the equi-frequency surface represents a sphere. In this case, the 

wave vector  and group velocity vector , which determines the ray direction, are always parallel. 

However, equi-frequency surface is not spherical for anisotropic media and the vectors  and  are 

not parallel. By analogy with 3D case, the propagation, reflection, and refraction of the wave in 2D 

structure can be described in terms of the equi-frequency dependence which can be considered as the 

section of the dispersion surface  in the space of variables  by the plane 

corresponding to constant frequency. It is well known that the analysis of equi-frequency dependences 

is most efficient in the studies of 2D geometries, especially in solving problems when only 

orientations of the  and  vector of incident, reflected, and refracted waves are of interest, and are 

not the amplitudes of the reflected and refracted rays. The equi-frequency dependence has a simple 

physical meaning for the analysis of 2D geometries: since this dependence describe all the possible 

waves with the given frequency ω and various wave vectors, the directions of the reflected and the 

refracted rays can be determined by simply finding the points in equi-frequency dependences of media 

that satisfy the momentum conservation law at a known orientation of the boundary and a given angle 

of incidence of the wave. Now, we present some numerical examples for our PC structures. In all of 

these examples, we exploit symmetry to calculate the equi-frequency surfaces over the irreducible 

Brillouin Zone of the entire Brillouin Zone. First, we consider the equi-frequency surface of a square 

lattice of SbSI based dielectric layers in an air medium for the –polarization.  

Here, the map was discretized using six field points per edge of the unit cell for the first band in Figure 

8 (a). The map was discretized using four field points per edge of the unit cell for the second band. 

The curves shown correspond to equi-frequency surfaces of the lowest order band up to frequencies 

just below the band gap starting at around 0.11 (2πc/a).  For the second band, the curves shown 

correspond to equi-frequency surfaces of the lowest order band up to frequencies just below the band 

starting at around 0.16 (2πc/a). 

(a) (b) 

Figure. 8 Equi-frequency contour of SbSI based 1D PCs for TM1 band in 2D (a) and 3D (b). 

RCBJSF–2014–FM&NT IOP Publishing
IOP Conf. Series: Materials Science and Engineering 77 (2015) 012020 doi:10.1088/1757-899X/77/1/012020

8



3.3. Group velocity 

We believe that a pulse of light propagating along the PC let the pulse be finite in dimension along the 

direction of propagation. Theoretically, such a pulse can be represented as a wave packet formed as a 

superposition of the modes, but with a different propagation constant [17]. From [17], it follows that 

the envelope of the wave packet propagates with the velocity , where  is propagation 

constant. The direct calculation of the derivative of the dispersion relation calculated numerically is 

not always convenient and can give an error. As shown in [18], the group velocity of the wave packet 

, is equal to the velocity of energy transfer by the mode . Thus, by using the results of [19] the 

group velocity can always be calculated with more accuracy, irrespective of the number of points in 

the dispersion curve. Fig. 9 show the results of calculations of the group velocity of the wave packet 

formed of the differently polarized localized modes in PC with SbSI dielectirc layers in an air 

background in 1D. 

From Fig. 9, it is evident that the components of the group velocity versus the high symmetry direction 

(0- ) vary over wide limits. The dependences , which describe the wave packets of 

localized modes of any polarization and any order, exhibit (generally) a maximum at certain 

propagation constants. This means that the dispersion of group velocity can be positive, negative, or 

zero [19]. Therefore, as can be seen in Figure 9, the group velocity of TE-polarized wave packets is 

almost always higher than that of the TM-polarized packets. 

Figure 9. TM Group velocity of  anisotropic SbSI. 

4. Conclusion

In the present paper the photonic band structures and transmission properties of the 1D SbSI PCs 

consisting of dielectric layers immersed in air were studied for the first time. We have investigated 

transmittance spectra of SbSI based both normal PCs and FPCs from 8 to 89 layers. The results show 

that the number of the repetition period also has a great influence on the average transmittance of the 

pass band of the both normal PCs and FPCs. 
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