
MULTIPLICATION FREE NEURAL
NETWORKS

a thesis submitted to

the graduate school of engineering and science

of bilkent university

in partial fulfillment of the requirements for

the degree of

master of science

in

electrical and electronics engineering

By

Maen M. A. Mallah

January 2018

Multiplication Free Neural Networks

By Maen M. A. Mallah

January 2018

We certify that we have read this thesis and that in our opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

A. Enis Çetin(Advisor)

Muhammet Mustafa Özdal

Ramazan Gökberk Cinbiş

Approved for the Graduate School of Engineering and Science:

Ezhan Karaşan
Director of the Graduate School

ii

ABSTRACT

MULTIPLICATION FREE NEURAL NETWORKS

Maen M. A. Mallah

M.S. in Electrical and Electronics Engineering

Advisor: A. Enis Çetin

January 2018

Artificial Neural Networks, commonly known as Neural Networks (NNs), have

become popular in the last decade for their achievable accuracies due to their

ability to generalize and respond to unexpected patterns. In general, NNs are

computationally expensive. This thesis presents the implementation of a class of

NN that do not require multiplication operations. We describe an implementa-

tion of a Multiplication Free Neural Network (MFNN), in which multiplication

operations are replaced by additions and sign operations.

This thesis focuses on the FPGA and ASIC implementation of the MFNN using

VHDL. A detailed description of the proposed hardware design of both NNs and

MFNNs is analyzed. We compare 3 different hardware designs of the neuron

(serial, parallel and hybrid), based on latency/hardware resources trade-off.

We show that one-hidden-layer MFNNs achieve the same accuracy as its coun-

terpart NN using the same number of neurons. The hardware implementation

shows that MFNNs are more energy efficient than the ordinary NNs, because

multiplication is more computationally demanding compared to addition and

sign operations. MFNNs save a significant amount of energy without degrading

the accuracy. The fixed-point quantization is discussed along with the number

of bits required for both NNs and MFNNs to achieve floating-point recognition

performance.

Keywords: Neural Networks, Machine Learning, Classification, VHDL, Energy,

Fixed-point, Floating-point.

iii

ÖZET

ÇARPMA İŞLEMSİZ SİNİR AĞLARI

Maen M. A. Mallah

Elektrik ve Elektronik Mühendisliği, Yüksek Lisans

Tez Danışmanı: A. Enis Çetin

Ocak 2018

Sinir ağları olarak da bilinen yapay sinir ağları son yıllarda, özellikle

yüksek doğruluk oranlarına erişebilmesi ve önceden tahmin edilemeyen örüntüleri

genelleştirebilmesi sebebi ile son yıllarda tekrar popüler oldu. Genel olarak sinir

ağlarının hesap yükleri fazladır. Bu tez, çarpma işlemi gerektirmeyen bir grup

sinir ağı içermektedir. Bu tezde, Çarpma İşlemsiz Sinir Ağları adı altında, çarpma

işlemlerinin işaret ve toplama işlemleri ile değiştirildiği sinir ağlarının uygulaması

sunulmaktadır.

Bu tezde Çarpma İşlemsiz Sinir Ağlarının VHDL kullanarak FPGA ve ASIC

uygulamarı üzerinde durulmaktadır. Sinir ağları ve Çarpma İşlemsiz Sinir Ağları

için detaylı bir açıklama ve önerilen donanım planı analiz edilmiştir. Bir nörünun

gecikme süresi-donanım kaynağı ödünleşimi açısından, üç farklı donanım için

dizaynı (seri, paralel ve hibrid) performansı karşılaştırılmaktadır.

Bir katmanlı çarpma işlemsiz yapay sinir ağlarının performansının, bir kat-

manlı standart sinir ağlarıyla aynı oranlara erişebildiğini göstermekteyiz. Do-

nanım uygulaması ile ise, çarpma işlemsiz yapay sinir ağlarının, toplama ve

işaret işlemi çarpma işlemine göre çok daha az enerji harcadığı için, enerji

açısından çok daha verimli olduklarını göstermekteyiz. Çarpam işlemsiz Sinir

Ağları, doğruluk performansından fazla ödün vermeden yüksek oranda enerji

tasarrufu sağlamaktadırlar. Kayan noktalı tanıma performansı için, sabit noktalı

sayısallaştırma ile birlikte sinir ağları ve çarpma işlemsiz sinir ağları için gerekli

bit sayısı ayrıca tartışılmıştır.

Anahtar sözcükler : Sinir Ağları, Makine Öğrenimi, Sınıflandırma, VHDL, Enerji,

Sabit nokta, Kayan nokta.

iv

Acknowledgement

I would like to express my deepest appreciation to my supervisor, Dr Prof. A. Enis

Çetin, for his patient guidance, valuable insight, and constructive suggestions. I

have been extremely lucky to have a supervisor who cares so much about my

research, and works so close with me at every step throughout my M.Sc studies.

I am particularly grateful for the guidance given by Mr. Martin Leyh during

my internship at Fraunhofer IIS institute in the past 6 months. His experience

and insight were crucial for the quality of this work.

I would like to extend my thanks to Prof. F. Yarman-Vural and her students

for their fruitful discussions.

I would like to thank TÜBİTAK for supporting me through BİDEB 2215

Scholarship.

Special thanks to Fatima Villa, Diaa Badawi and Hamed Salah, who have

invested their time to assist me with this work.

I would like to thank my family and friends, you should know that your support

and encouragement was worth more than I can express on paper.

Finally, to Mom and Dad, all the support you have provided me over the years

was the greatest gift anyone has ever given me. This one is for you!

v

Contents

1 Introduction 1

1.1 Background . 1

1.1.1 Machine Learning . 1

1.1.2 Classification . 2

1.1.3 Neural Network (NN) . 3

1.1.4 Notation . 4

1.1.5 Multi-Layer Perception (MLP) 4

1.1.6 Training . 6

1.1.7 MNIST Dataset . 10

1.2 Related Work . 11

1.3 Goals and Results . 13

1.4 Outline . 14

vi

CONTENTS vii

2 Neural Networks without Multiplication 15

2.1 Multiplication Free (mf) Operator 16

2.2 Multiplication Free Neural Netowrk (MFNN) 18

2.2.1 SGD with Back-Propagation in MFNN 18

2.2.2 Normalization . 20

2.2.3 SGD and Back-Propagation in MFNNs with Normalization 22

3 Hardware design 23

3.1 VC707 Evaluation Board . 24

3.2 Overall Hardware Design . 26

3.3 Hardware Implementation of The mf Operator 30

3.4 Neuron Hardware Design . 31

3.4.1 Parallel Neuron Hardware Design 31

3.4.2 Serial Neuron Hardware Design 34

3.4.3 Hybrid Neuron Hardware Design 36

3.5 Floating-Point vs. Fixed-Point . 40

3.5.1 Quantization . 40

3.5.2 Non-Linear Activation Functions 41

3.6 Simulation and Synthesis . 42

3.7 Power and Area Measurements 45

CONTENTS viii

4 Results and Discussion 46

4.1 Accuracy . 46

4.1.1 One-Hidden-Layer Networks 47

4.2 Area and Power . 52

4.2.1 Area . 52

4.2.2 Power . 54

4.3 Other Results . 55

4.3.1 Fixed-Point vs. Floating-Point Accuracy 55

4.3.2 Weight Distribution . 56

4.3.3 Pruning . 59

5 Conclusion 62

A Comparison of Operators According to The Universal Approxi-

mation Theorem 70

A.1 The Universal Approximation Theorem for Multiplication Free

Neural Networks . 71

A.2 One-Hidden-Layer Upper Bound 73

A.2.1 Multiplication Free Neural Network 74

A.2.2 Binary-Weight Network 75

A.3 Summary . 76

List of Figures

1.1 Data Separability . 2

1.2 Multilayer Perceptron . 3

1.3 Perceptron . 5

1.4 Sample images from MNIST dataset 10

2.1 Comparison between multiplication and mf operator 17

2.2 Activation functions with their derivatives 21

3.1 VC707 Evaluation Board schematic 25

3.2 VC707 Evaluation Board . 26

3.3 Hardware design diagram . 28

3.4 Parallel neuron diagram . 32

3.5 Serial neuron diagram . 34

3.6 Hybrid neuron diagram . 37

3.7 Approximation of tanh to a piecewise function 41

ix

LIST OF FIGURES x

3.8 Wave from simulation for one-hidden-layer NN 42

3.9 Wave from simulation for one-hidden-layer MFNN 43

3.10 FPGA board operational with output and true labels 45

4.1 Classification error (%) in one-hidden-layer NN 47

4.2 Classification error (%) in one-hidden-layer MFNN without nor-

malization . 48

4.3 Classification error (%) in one-hidden-layer MFNN with normal-

ization . 49

4.4 Classification error prorogation during training of NN 51

4.5 Classification error prorogation during training of MFNN 51

4.6 Area measurements of NN and MFNN for different word lengths . 52

4.7 Relative area of MFNN and NN 53

4.8 Power measurements of NN and MFNN for different word lengths 54

4.9 Classification error (%) for fixed-point one-hidden-layer NN and

MFNN . 55

4.10 Weight distribution in one-hidden-layer NN 56

4.11 Weight distribution in one-hidden-layer MFNN 57

4.12 Weight sparsity in one-hidden-layer NN 58

4.13 Weight sparsity in one-hidden-layer MFNN 58

4.14 Pruning results for one-hidden-layer NN 59

LIST OF FIGURES xi

4.15 Pruning results for one-hidden-layer MFNN 60

4.16 Enhanced pruning results for one-hidden-layer MFNN 61

List of Tables

1.1 List of some activation functions and their derivatives 6

2.1 Comparison between different operators and multiplication 17

3.1 Comparison between neural networks with different hardware neu-

ron designs . 39

3.2 NN and MFNN model parameters 43

3.3 Hardware utilization of one-hidden-layer NN and MFNN 43

3.4 MATLAB results for for one-hidden-layer NN 44

3.5 MATLAB results for for one-hidden-layer MFNN 44

4.1 Classification error (%) in one-hidden-layer NN and MFNN

achieved on MNIST dataset . 50

A.1 Set X points coordinates . 74

xii

Chapter 1

Introduction

1.1 Background

1.1.1 Machine Learning

Machine learning is a computer science field that emerged from artificial intel-

ligence field. As the name suggests, machine learning enables the computers

(machines) to learn without being explicitly programmed [1]. This is done by

building generic models that have a set of parameters into the computers. The

computer determines the models’ parameters using previous collected data. This

process of determining the parameters is refereed to as learning.

Tom M. Mitchell provided a widely quoted, more formal definition of the al-

gorithms studied in the machine learning field: ”A computer program is said to

learn from experience E with respect to some class of tasks T and performance

measure P if its performance at tasks in T, as measured by P, improves with

experience E.” [2]

Machine learning is a wide field. In this work, we focus on the supervised

classification task using neural networks models [3].

1

1.1.2 Classification

Classification is a supervised learning task that studies the problem of identifying

to which set (class) does a new observation belong to. This work, studies single-

class classification, i.e., every point is assigned to one and only one class. The

classification model (classifier) uses previous examples of labeled data (training

set) to classify new observations. Labeled data means that the classes of the

observations are known. Supervised machine learning models have been widely

used to solve classification problems in various fields, e.g. image classification,

computer aided diagnosis and video tracking [4–10].

A classifier f maps an input observation x ∈ RN to an output class y ∈
{c1, c2,, cM} where N is the number of features and M is the number of classes.

f : RN → {c1, c2,, cM} (1.1)

Data can be categorized into: I. Linearly separable where the data can be sepa-

rated by a hyperplane and II. Non linearly separable where the data cannot be

separated by a hyperplane (Fig. 1.1)1.

(a) Linearly separable (b) Non linearly separable

Figure 1.1: Data Separability

1Mekeor (https://commons.wikimedia.org/wiki/File:Separability_NO.svg), ”Sepa-
rability NO”, Mekeor (https://commons.wikimedia.org/wiki/File:Separability_YES.
svg), ”Separability YES”, https://creativecommons.org/licenses/by-sa/3.0/legalcode

2

1.1.3 Neural Network (NN)

The first attempt to build a neuron was performed in 1943 by McCulloch and Pitts

[11]. Later, in 1958, Rosenblatt invented the perceptron [12]. The following years,

neural networks faced some challenges that slowed their improvement. These

challenges are the lack of powerful computers, the lack of training algorithms and

the inability of the perceptron to separate non linearly separable data [13]. The

neural networks exploded in the 1980s after discovering the multilayer perceptrons

[14] and formulating the error back-propagation algorithm to train the weights

[15].

Figure 1.2: Multilayer Perceptron

Artificial Neural Networks, commonly known as Neural Networks (NN), have

become popular in the last decade, following their huge success in the classification

problems, especially after the advent of Convolutional Neural Networks (CNN)

[16]. NN have found applications in business, commerce and industry from image

classification to natural language processing, with accuracies as good as humans

or even better. However, such systems contain up to millions of parameters

that require training and storage to be later used for inference. Moreover, these

many parameters need high computation power and storage space. Therefore,

3

convolutional neural networks are yet to find their way to mobile phones, ARM

processors and embedded systems, where energy is also a big concern [17].

The NN have different architectures. One of them is Multilayer Perceptron

(MLP) [18]. In MLP, the neurons (perceptrons) are organized in layers. Each

neuron is connected to all neurons in the previous layer with different weights.

The layers of the network are of three types: input, hidden and output. In MLP,

there is one input, one output, and any number of hidden layers (Fig. 1.2).

1.1.4 Notation

Throughout this work, all vectors are column vectors and represented by boldface

lowercase letters. Matrices are represented by boldface uppercase letters. olj and

blj are the output and bias terms of the jth neuron in layer l, respectively. wlij

is the connection weight between the ith and jth neurons in layers l − 1 and l,

respectively. Nl is the number of neurons in layer l. Layer l = 1 and l = L

are the input and output layers, respectively, where L is the number of layers

in the MLP. L is restricted such that L ≥ 2 where L = 2 is a network without

any hidden layers, i.e., the network consists of only the input and output layers.

x(n), y(n) and t(n) are the nth input and its corresponding predicted and true

outputs of the network.

1.1.5 Multi-Layer Perception (MLP)

The conventional neuron (Fig. 1.3) in MLP carries out a weighted sum of the

inputs followed by adding a bias term and finally passed through an activation

function:

olj = f
(Nl−1∑

i=1

wlijo
l−1
i + blj

)
(1.2)

where olj and blj are the output and bias term of the jth neuron in the lth layer.

wlij is the weight connection between the ith and jth neurons in layers l− 1 and l,

4

respectively. Finally, f(.) is a non-linear activation function e.g. hyperbolic tan-

gent (tanh), sigmoid or LeakyReLU. Table 1.1 lists some of the famous activation

functions and their derivatives.

Figure 1.3: Perceptron

In matrix notation (1.2) is:

ol = f
(

WlTol−1 + bl
)

(1.3)

where Wl is a matrix of wlij.

In the feed-forward algorithm, the outputs of the network oL are calculated

by carrying out (1.3) for l = 2, ...L, where o1 = x is the input vector. Therefore,

N1 = N (the number of features) and NL = M (the number of classes).

For a sample observation x(n), the final classification y(n) is obtained by

calculating the maximum of oL(n), i.e.:

predicted label = arg max
j

oLj (b) (1.4)

From (1.3), we see that for each layer l > 1 (l = 1 is the input layer where

there is no processing done) in the network there are: Nl−1 × Nl multiplication

operations, (Nl−1 + 1) × Nl addition operations, and Nl non-linear activation

function operations.

5

Activation Function Formula Derivative
Sigmoid sigm(x) = 1

1+e−x sigm(x)(1− sigm(x))

Hyperbolic tangent tanh(x) = ex−e−x

ex+e−x 1− tanh(x)2

Leaky ReLU2 ReLU(x) = max(x, ax) max(1, a)

Table 1.1: List of some activation functions and their derivatives

1.1.6 Training

Neural networks as a statistical classifier involve two main tasks: I. Train the

parameters (weights) of the network using previous data and then II. Inference

on the new data using the parameters obtained in I. The training task is where

time and effort are spent. However, it is done prior to the system deployment

using powerful computers. On the other hand, the inference has to be done

in real-time on the targeted device which requires good computational power.

Otherwise, inference can be performed in the cloud on more powerful servers, but

this requires Internet connectivity and good bandwidth to transfer to the data.

1.1.6.1 Stochastic Gradient Descent (SGD)

The training task is the task of using previous data to find the model parameters

(weights and bias in the case of NN). The model can later use these parameters

to determine the output of new observations.

The learning problem can be seen as an optimization problem formulated as

min
W,b

J(oL(n), t(n)) where W is a collection of all weights {W2,W3,WL},

b is a collection of all bias terms {b2, b3,bL}, and J(oL(n), t(n)) is a cost

function that measures the distance between the predicted output oL(n) and the

true output t(n) of observation n. The model (NN) is optimized (trained) using

stochastic gradient descent (SGD) algorithm [19].

2a is the leakage coefficient (scale) of the Leaky ReLU where ale1

6

SGD is an iterative algorithm that updates the weights as follows:

Wl
iter+1 = Wl

iter − η
∂J(oL(n), t(n))

∂Wl
iter

(1.5)

bliter+1 = bliter − η
∂J(oL(n), t(n))

∂bliter
(1.6)

where η is the step size. Wl
iter are the weights at iteration iter. ∂J(oL(n),t(n))

∂Wl
iter

and

∂J(oL(n),t(n))

∂bliter
are the partial derivative of the cost function w.r.t Wl

iter and bliter,

respectively.

In other words, SGD updates the weights by trying to shift them to minimize

the cost function in the next iteration. That is achieved through the derivatives.

The derivatives are composed of the direction and the magnitude of the increase

in the cost functions. Therefore, updating the weights in the opposite directions

(multiplying by -1) leads to a descent through the cost function. Additionally,

the magnitude is normalized by η < 1 so that the jumps are not drastic. Very

small η can drive the optimization to a local minimum and the learning is very

slow, while, a big η can lead to no convergence in the algorithm.

The cost function is non-convex, thus, the optimization could yield a local

minimum rather than the global one depending on the initial starting point, Wl
0,

bl0, which is usually randomly selected. This problem is addressed by training the

models several times with different starting points.

One of the most widely used cost functions is the Mean Square Error (MSE)

defined as:

J(oL(n), t(n)) =
1

2

M∑
i

(oLi (n)− ti(n))2 (1.7)

where t(n) is the true label vector for observation n defined as:

ti(n) =

{
1 if i = label of observation n

0 otherwise
(1.8)

Cross-Entropy is another example of a widely used cost function.

7

1.1.6.2 Back-Propagation

In order to update the weights using SGD, the partial derivative of the cost

function w.r.t each weight is to be computed. This involves a lot of computations

when performed separately. However, the back-propagation algorithm is used to

propagate the the cost (error) derivate from layer (l = L) to layer (l = 2) [15].

This technique reduces the computations by reusing the values that have already

been calculated.

First, let us defined vj as:

vlj =

Nl−1∑
i=1

wlijo
l−1
i + blj (1.9)

Or in matrix notation:

vl = WlTol−1 + bl (1.10)

Then (1.2) and (1.3) become:

olj = f(vlj) (1.11)

ol = f(vl) (1.12)

Using chain rule, ∂J(oL,t(n)

∂Wl
iter

(n was dropped from oL(n) to simplify the term) is

expressed as follows:

∂J(oL, t(n))

∂Wl
iter

=
∂J(oL, t(n))

∂oL
◦ ∂o

L

∂vL
∂vL

∂Wl
iter

(1.13)

The back-propagation sensitivity term is defined as:

δl =

{
∂J(oL,t(n))

∂oL ◦ ∂oL

∂vL if l = L

Wlδl+1 ◦ ∂ol

∂vl otherwise
(1.14)

where the derivatives of the MSE cost function (1.7) and ∂ol

∂vl are:

∂J(oL, t(n))

∂oL
= oL(n)− t(n) (1.15)

∂ol

∂vl
=
∂f(vl)

∂vl
= f ′(vl) (1.16)

8

Substituting (1.15) and (1.16) into (1.14) gives:

δl =

{
(oL(n)− t(n)) ◦ f ′(vL) if l = L

Wlδl+1 ◦ f ′(vl) otherwise
(1.17)

Finally, using δl from (1.17) in (1.13) yields:

∂J(oL, t(n))

∂Wl
iter

= δlol−1T (1.18)

where ∂J(oL,t(n))

∂bli
can be similarly derived as:

∂J(oL, t(n))

∂bli
= δl (1.19)

Substituting (1.18) and (1.19) in (1.5) and (1.6), the weights and bias updates

become:

Wl
iter+1 = Wl

iter − ηδlol−1T (1.20)

bliter+1 = bliter − ηδl (1.21)

Please note that the Wl term in (1.17) comes from:

∂vlj

∂ol−1k

= wlkj (1.22)

While ol−1 term in (1.18) comes from:

∂vlj
∂wlkj

= ol−1k (1.23)

1.1.6.3 Momentum

There are different variations of the SGD algorithm. One of the methods used to

speed up the training is the momentum method [19]. This is a simple extension

to SGD that has been successfully implemented for decades [20]. The intuitive

idea behind the momentum method is trying to accumulate the derivatives. This

accumulation accelerates the training for dimensions in which the gradient is

consistently pointing to the same direction. On the other hand, the training is

9

slower for dimensions where the gradient sign keeps changing. This is done by

keeping track of past parameter updates with an exponential decay:

∆W l(iter + 1) = µ∆W l(iter) + η
∂J(oL(n), t(n))

∂Wl
iter

(1.24)

where µ < 1 is a constant controlling the decay of the previous parameter updates,

and ∆W l(0) = 0

The final SGD with momentum weight update rule is:

Wl
iter+1 = Wl

iter −∆W l(iter + 1) (1.25)

The final SGD with momentum bias update rule can be similarly derived.

1.1.7 MNIST Dataset

The dataset used to train the networks in this thesis is the Modified National

Institute of Standards and Technology database (MNIST dataset) [21]. MNIST

is a large dataset of handwritten digits images which is commonly used to train

and test the neural networks or other machine learning classifiers [22–24].

The dataset contains 60,000 training images and 10,000 testing images. The

digits are of gray-scale 28× 28 images (Fig. 1.4).

Figure 1.4: Sample images from MNIST dataset

10

1.2 Related Work

In this work, we study a new neural network architecture. This architecture is

based on replacing multiplication with multiplication-free (mf) operator. The

mf-operator was first introduced in [25] and used in several applications in im-

age processing [26–28]. The mf-based neural network was first proposed in [29].

Nevertheless, the classification rate of the mf-based neural network was 10%

less than the ordinary neural network. Later on, state-of-the-art accuracy was

achieved in H&E dataset [30] and in the MNIST dataset [31] using a higher

number of neurons in the mf-based neural network than the conventional neural

network.

Neural networks have become popular in the last decade, for their achievable

accuracies, and because of their ability to generalize and respond to unexpected

patterns [32]. This is due to two main reasons. First, the advancements in com-

puting and storage power made it possible to train huge models with millions of

parameters. Second, the large amount of stored data today provide enough ob-

servations to teach the neural network [33]. However, today’s low-power systems

such as mobile phones, ARM processors and embedded systems do not have the

computational power and battery (energy source) to operate these big models.

Therefore, different approaches and solutions are proposed in order to solve the

computational power and energy problems of NN [34–37].

In [34], the authors propose using Alphabet Set Multiplier (ASM) where the

multiplication is performed using look up tables (alphabet set) followed by shift

and add operations. In this method, the efficiency highly depends on the size

of the alphabet set. Thus, for efficiency purposes they decreased the size of the

alphabet set and approximated the values to the nearest existing multiplication.

However, this approach requires a special hardware changes to save the energy.

Han et al. propose a 3-step approach to save energy and storage by discarding

insignificant features [35]. First, they train the network. Then, they remove

the redundant weights and neurons stochastically to obtain a sparser network.

11

Finally, they retrain the network to compensate the loss in accuracy caused by the

removal of redundant weights and neurons. The method was tested on ImageNet

and VGG-16 causing the reduction of the parameter size of between 9X and 13X

without any accuracy loss.

Two other methods to save energy and memory space in CNN are proposed

in [36]. The first technique, Binary-Weight-Network(BWN), approximates the

weights to binary values (1 or -1). Therefore, the inner product is computed using

only addition and subtraction operations. The second approach is called XNOR-

Networks, where in addition to the weights, the input is also binarized. Thus,

the inner product is computed using XNOR and bit counting operations. This

method offers X58 faster computation on CPU, although it costs 12% reduction

in the accuracy. The BWN reduces the feed-forward multiplication operation to

ol = f(αl ◦ sgn(WlT)ol−1) where αlj = 1
n
||wl

j||1. Whereas, we propose a different

approach to calculate the feed-forward, such that, ol = f(αl ◦ (sgn(WlT)ol−1 +

WlT sgn(ol−1) + bl)) with no restrictions on the values of αl. However, for one-

hidden-layer NN, we found αl = α to be sufficient.

Tong et al. attempted the problem of saving power by limiting the mantissa

bit length of the floating-point arithmetics [37]. They show that significant power

saving can be achieved, without sacrificing any accuracy, by reducing the mantissa

bit length. However, this work can be extended by eliminating floating-point

completely and replacing it with fixed-point.

Hardware implementation of NN using VHDL is detailed in [38, Ch 10]. First,

efficient hardware implementations of the fixed-point non-linear activation func-

tions are proposed. Then, the network architecture is analyzed with the focus

on the neuron component. The neuron component is a basic multiply and ac-

cumulate unit. Two different architectures are compared: I. using one multiply-

accumulate unit for the entire network and II. using one multiply unit and accu-

mulate unit per neuron. The first approach uses minimal area on the board, but

takes significantly more cycles due to the full serial implementation; while the

implementation is half parallel in the latter. However, the book does not discuss

the power consumption or more efficient ways to implement the network.

12

Different hardware designs of neural networks are proposed and implemented

[39, 40]. Cao et al describe the implementation of CNNs into spike-based neuro-

morphic hardware using Spiking Neural Networks (SNNs). SNNs show 2 orders

of magnitude savings in power in simulation. However, they impose many re-

strictions that limit their performance for harder classification tasks. Moreover,

unlike our approach, they need special hardware to be implemented.

Orimo et al. describe the implementation of feed-forward sequential memory

network into FPGA [40]. The paper proposed an FPGA architecture to imple-

ment neural networks. They discuss the design required resources and logic area

but not the power consumption since they are not trying to optimize it.

1.3 Goals and Results

In this work, a novel neural network architecture is devised, in which the neurons

implement modified addition operations instead of multiplications as in conven-

tional neurons [29,31].

Ordinary neurons perform an inner product operation before the nonlinearity.

We developed a multiplication free vector product-like operation based on addi-

tions and sign operations. We use this new vector product in artificial neurons

instead of the regular inner product. Regular inner product induces the `2 norm,

while the new vector product induces the `1 norm [31].

In this work, we prove that the new architecture has the same classification

accuracy achieved by the state-of-the-art NNs for one-hidden-layer networks. We

also prove that the new architecture is more energy-efficient compared to the

conventional one. To prove the energy efficiency, we built a hardware design

of both architectures on FPGA and ASIC using VHDL. The objective of our

hardware implementation is to perform inference on the new observations, while

the training takes place in MATLAB.

13

Finally, we show a comparison of the architectures based on fixed-point and

floating-point arithmetics and study the effect of quantization and limited preci-

sion on accuracy and power consumption.

1.4 Outline

After Chapter 1, this thesis is organized as follows:

In Chapter 2, we introduce the new multiplication free (mf) operator. The

properties and challenges of the mf-operator are detailed by comparison with

other suggested operators and the already established multiplication. Then, mf-

based neural network is introduced with a discussion of the necessary changes in

both inference and training of the network.

We continue in Chapter 3 with the hardware design of both ordinary and

mf-based neural networks. Three types of hardware neurons are compared for

processing time and required hardware resources. Moreover, we discuss the differ-

ences between floating-point and fixed-point arithmetics along with the variables

quantization and activation functions approximation. We also point out gained

advantages of implementing the fixed-point hardware model over the floating-

point one. Finally, the simulation and synthesis results of the hardware designs

are compared to the MATLAB results as proof of concept.

In Chapter 4 we present and discuss our results. First, we present the accuracy

results of both ordinary and mf-based neural networks on the MNIST dataset for

different setups. Second, we compare the area and power measurements of the

hardware design of both networks. Finally, we present other miscellaneous results,

such as fixed-point vs floating-point achieved recognition rates, the distribution

and sparsity of the weights, and the effect of pruning the connection.

Finally, we conclude in Chapter 5 with the most important findings of this

thesis.

14

Chapter 2

Neural Networks without

Multiplication

In general, neural networks are computationally expensive, where most of the

power is consumed by the multiplication operations (as will be shown later). A

new operator is introduced to replace multiplication. This work investigates the

application of this new multiplication free (mf) operator to neural networks and

how the power and accuracy are affected.

This chapter discusses conventional Neural Networks (NN), the new mf

operator, its properties, and how it compares to the conventional multiplica-

tion. This is followed by a discussion on how to apply the mf operator to the

NN to generate Multiplication Free Neural Networks (MFNN) and how to train

them. Finally, the chapter also discusses in details different potential operates to

replace multiplication.

15

2.1 Multiplication Free (mf) Operator

The objective of this work is to make NN less computationally expensive by

replacing multiplication operations with more efficient operations. However, this

improvement should not come at the expense of the network accuracy. Due to

the aforementioned reasons, designing the new proposed operator should take

into account the computational complexity as well as maintaining some of the

multiplication properties. These multiplication properties are:

• sign preservation: for c = a× b, sgn(c) = sgn(a× b) = sgn(a)× sgn(b)

• contribution from both operand values: in c = a × b the value of c is

composed of the values of both operands. This is unlike min function, for

example, where only the value of one operand determines the result’s value.

• absorbing element: a× 0 = 0× a = 0

For two numbers, a and b, the new proposed binary operator symbolized as ⊕
is defined as:

a⊕ b = sgn(ab)(|a|+ |b|) (2.1)

The operator is called multiplication free (mf) operator since it only consists

of sign and addition operations. This makes it energy efficient as shown later

in Chapter 4. The mf operator , just like multiplication, preserves the sign and

has contribution from both operand values. Moreover, the absorbing element is

achieved by using the following sign (signum function) definition:

sgn(x) =

−1 if x < 0

0 if x = 0

1 if x > 0

(2.2)

Then, using this sign definition there exists an absorbing element that is 0,

such that: a⊕ 0 = 0⊕ a = 0

16

Comparison between different operators and how well they approximate mul-

tiplication is presented in Table 2.1, where min, smin (signed min) and binary-

weights [36] operations are defined as follows:

min(a, b) =

{
a if a ≤ b

b if a > b
(2.3)

smin(a, b) = sgn(ab)min(|a| , |b|) (2.4)

binary-weights(a, b) = sign(a)b (2.5)

Properties
Operations × ⊕ min smin binary-weights

sign preservation X X 5 X X
contribution from both
operands values

X X 5 5 5

absorbing element X X 5 X 5

Table 2.1: Comparison between different operators and multiplication

The comparison in Table 2.1 shows the advantages of replacing multiplication

with the mf operator. This work studies the mf operator in detail in the context

of neural networks for both achievable accuracy and power consumption. The mf

operator is visualized in Fig. 2.1 against multiplication.

Figure 2.1: Comparison between a× b (right) and a⊕ b (left)

Using both sgn(ab) = sgn(a)sgn(b) and |a| sgn(a) = a facts, the mf operator

can be rearranged to:

a⊕ b = sgn(a)b+ asgn(b) (2.6)

17

This form of writing the mf operator is advantageous to implement it in hard-

ware and software codes. On the one hand, this form can be used as matrix-vector

operation as in (2.7). This is beneficial in the software training and inference

codes since they are based on matrix-vector multiplication, which could be easily

replaced with matrix-vector mf operation. On the other hand, this form can be

expressed using only XOR and addition operations in the hardware, as illustrated

in Section 3.3.

A⊕ b = sgn(A)b+ Asgn(b) (2.7)

where A is a matrix of size N ×M and b is vector of length M .

2.2 Multiplication Free Neural Netowrk (MFNN)

After demonstrating the proposed mf operator, its properties and how it can

approximate the multiplication, we applied it to neural networks. By replacing

multiplication in the feed-forward calculations in (1.2) it yields:

olj = f
(Nl−1∑

i=1

wlij ⊕ ol−1i + blj

)
(2.8)

Moreover, the compact matrix-vector notation in (1.3) becomes:

ol = f
(

WlT ⊕ ol−1 + bl
)

(2.9)

The network represented by (2.8) and (2.9) does not contain any multiplications.

Thus, it is called Multiplication Free Neural Network (MFNN).

2.2.1 SGD with Back-Propagation in MFNN

For training the MFNN, we used Stochastic Gradient Descent (SGD) with back-

propagation. The algorithm is explained in detail in section 1.1.6. Moreover,

the modification to the NN feed-forward with the new mf operator has to be

incorporated in the training of the new MFNN.

18

First, we isolate the sum term in 2.8 to vlj as follows:

vlj =

Nl−1∑
i=1

wlij ⊕ ol−1i + blj (2.10)

Then, using the mf-operator-based definition of vlj the derivatives in (1.22) and

(1.23) become:
dvlj

dol−1k

= sgn(wlkj) + 2δ(ol−1k)wlkj (2.11)

dvlj
dwlkj

= 2δ(wlkj)o
l−1
k + sgn(ol−1k) (2.12)

where δ(.) is the Dirac delta function [41]. δ(x) = 0 almost everywhere except

for x = 0. In practice, exact values of zero are unlikely to occur. Therefore, the

Dirac delta term can be approximated as δx ≈ 0 and dropped out. The updated

derivatives of (2.11) and (2.12) then become:

dvlj

dol−1k

= sgn(wlkj) (2.13)

dvlj
dwlkj

= sgn(ol−1k) (2.14)

With these changes, the back-propagation sensitivity term in (1.17) of MFNNs

is defined as:

δl =

{
(oL − t(n)) ◦ f ′(vL) if l = L

sgn(Wl)δl+1 ◦ f ′(vl) otherwise
(2.15)

Additionally, the weights and bias updates in (1.20) and (1.21) become:

Wl
iter+1 = Wl

iter − ηδlsgn(ol−1)
T

(2.16)

bliter+1 = bliter − ηδl (2.17)

Please note that no other changes to the SDG are required. The derivatives

of the cost and activation functions stays the same.

19

2.2.2 Normalization

Fig. 2.1 shows that the mf operator is discontinuous around the axes. The

discontinuity is larger for bigger a or b. This makes the operator sensitive during

training, since a small modification of the operands (i.e., the weights during

training) can have a significant impact on the result. This is case when the

change changes the sign of the weight. On the other hand, this is not the case

for normal multiplication, as it is continuous over the whole range.

Moreover, using the mf operator yields larger values than multiplication for

operand values less than 1. That is, for |a| and |b| ≤ 1, |ab| ≤ |a| and |ab| ≤ |b|
while |a⊕ b| ≥ |a| and |a⊕ b| ≥ |b|. These individual larger values lead to a far

larger overall neuron sum i.e., vj. Ideally, it is preferred to have a vj value in the

desired region and avoid the saturation region (see Fig. 2.2). Saturation region

is the region where the derivative of the activation function is zero. The zero

derivative values lead to no weight update during the training of the network.

This is due to the f ′(vl) term in the derivatives of the update rule in (1.17) and

(2.15).

To solve these issues, a layer normalization term α is introduced to normalize

down the sum values (vj) before being passed through the activation functions.

Adding the layer normalization term α to (2.8) and yields:

olj = f
(

1

α

(Nl−1−1∑
i=0

wlij ⊕ ol−1i + blj

))
(2.18)

And in matrix-vector notation in (2.9) becomes:

ol = f
(

1

α

(
WlT ⊕ ol−1 + bl

))
(2.19)

In addition to the α term, the input values are scaled down with an input nor-

malization factor β. Finally, the weights are initialized to small values to insure

convergence.

20

−10 −8 −6 −4 −2 0 2 4 6 8 10

−1

−0.5

0

0.5

1

x

f(
x)

f(x)
desired region
saturation region

(a) tanh(x)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

0.8

1

x

f(
x)

f(x)
desired region
saturation region

(b) sigm(x)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

f(
x)

f(x)
desired region
saturation region

(c) ∂tanh(x)
∂x

−10 −8 −6 −4 −2 0 2 4 6 8 10
−0.1

0

0.1

0.2

0.3

0.4

x

f(
x)

f(x)
desired region
saturation region

(d) ∂sigm(x)
∂x

Figure 2.2: Activation functions with their derivatives

α and β values are restricted to powers of 2. Thus, the division is performed

using shift operations only. Hence, the network is still a multiplication free, even

with the added α and β normalization terms.

The values of α and β are chosen experimentally using validation dataset. The

normalization can extended for harder task. for example, the scalar α for the

whole network could be extended to a scalar for every neuron αlj. Furthermore,

these parameters could be made trainable using the back-propagation algorithm.

21

2.2.3 SGD and Back-Propagation in MFNNs with Nor-

malization

Isolating the sum term vli as in (2.10) yields:

vlj =
1

α

(Nl−1−1∑
i=0

wlij ⊕ ol−1i + blj

)
(2.20)

The added α normalization term is to be reflected to the final derivatives in

(2.13) and (2.14) as follows:

dvlj

dol−1k

=
1

α

(
sgn(wlkj)

)
(2.21)

dvlj
dwlkj

=
1

α

(
sgn(ol−1k)

)
(2.22)

With these changes, the back-propagation sensitivity term in (2.23) of MFNNs

is defined as:

δl =

{
(oL − tn) ◦ f ′(vL) if l = L
1
α
sgn(Wl)δl+1 ◦ f ′(vl) otherwise

(2.23)

Additionally, the weights and bias updates in (1.20) and (1.21) become:

Wl
iter+1 = Wl

iter − ηδl
1

α
sgn(ol−1)

T
(2.24)

bliter+1 = bliter − ηδl (2.25)

22

Chapter 3

Hardware design

After training, testing, and verifying that the new proposed MFNN achieves the

same accuracy as NN, both network architectures are to be examined for power

consumption and computational complexity. For this reason, both architectures

were implemented into hardware using VHSIC Hardware Description Language

(VHDL). The VHDL codes are synthesized for Field-Programmable Gate Arrays

(FPGA) and Application-Specific Integrated Circuit (ASIC) technologies.

The FPGA is used to test the hardware network designs, i.e., to make sure

the hardware inference works as expected and produces the same results as the

software. In addition, using the FPGA ensures that the model is feasible in terms

of hardware resources and timing constraints. Virtex-7 XC7VX485T-2FFG1761C

FPGA board is used for the hardware testing. The board specifications and com-

ponents are analyzed in Section 3.1. On the other hand, the ASIC technologies

synthesis is mainly used for power and area measurements. The power mea-

surements on ASIC are more reliable and accurate because of the synthesis only

generates the specific logic required. This avoids the unwanted power overhead

from the unused FPGA resources/trails.

23

The hardware design is responsible for the inference only, i.e., no training of

the networks is done using the hardware design. The networks are trained before-

hand on more powerful computers using software languages, e.g., MATLAB or

Python. After the training is complete, the trained network parameters (weights

and biases) are loaded into the FPGA RAMs to be used in the real-time inference.

Loading the parameters takes place both at power up or later during run time.

In this section, we discuss the overall hardware design and some of the chal-

lenges and trade-offs between hardware resources, processing time (latency) and

achievable frequency. In addition, several designs of both conventional and mul-

tiplication free neurons are detailed. We also explain how to implement the

nonlinear activation functions in hardware and fixed-point arithmetics. Finally,

we describe the power and area measurements process of the hardware design.

3.1 VC707 Evaluation Board

The VC707 evaluation board was used to test the hardware design. The board

contains a vertex-7 (XC7VX485T) as an FPGA along with other peripheral com-

ponents to facilitate the FPGA [42]. Some of these components are: clock gen-

erators, USB JTAG, LCD, LEDs, push buttons, switches and I2C bus. Fig. 3.1

shows the schematic of the VC707 evaluation board with all the peripherals,

while Fig. 3.2 shows the actual VC707 evaluation board with the components

highlighted.

24

Figure 3.1: VC707 Evaluation Board schematic [42]

The Virtex-7 (XC7VX485T) FPGA has the following specifications [43]:

• Logic Cells: 485,760

• Slices1: 75,900

• DSP Slices2: 2,800

• Block RAM Blocks3: 2,060 (18 Kb) or 1,030 (36 Kb)

• Block RAM Max Size: 37,080 (Kb)

• Max User I/O: 700 (Distributed in 14 banks)

1Each 7 series FPGA slice contains four LUTs and eight flip-flops; only some slices can use
their LUTs as distributed RAM.

2Each DSP slice contains a pre-adder, a 25 x 18 multiplier, an adder, and an accumulator.
3Block RAMs are fundamentally 36 Kb in size; each block can also be used as two indepen-

dent 18 Kb blocks.

25

Figure 3.2: VC707 Evaluation Board [42]

3.2 Overall Hardware Design

In this section, we discuss the overall hardware design (Fig. 3.3) with all the

components. Moreover, we shine some light on some of the challenges faced to

realize the hardware model.

The hardware model is implemented using VHDL and organized in components

as follows. The basic backbone components, i.e. the neurons (detailed in section

3.4), are instantiated and organized inside layers. Each layer instantiates Nl

neurons, where Nl is the number of neurons in that l layer. The layers are fully

connected to each other. Any lth layer (except input and output layers) is inter-

connected to two layers, l−1 and l+ 1. The input layer (l = 1) is only connected

to the l = 2 layer; while the output layer is only connected to L− 1 layer.

All the layers and their inter-connections are contained in the CTRL block.

The CTRL block also contains the finite state machine (FSM) that is responsible

for controlling the entire network.

Two types of storage units are used in the model: RAM and ROM. The ROM

is used to store the input data (MNIST images in this case). The RAMs are used

26

to store the biases and the weights of the connections between the layers, where

RAM l stores the weights of the connections between layers l and l − 1.

In the real time system, the input data are to be fed serially through another

data acquisition model. The current setup is build to test the hardware neural

networks; therefore, the images are stored inside a ROM.

The weights and biases are also stored in VHDL package files to be loaded

into the RAMs on start-up. In addition to start-up, the weights and biases can

be loaded into the FPGA RAMs anytime using the I2C bus. This feature allows

updating the weights or biases whenever needed. For example, the weights could

be updated after obtaining more training data and retraining the network.

The FSM is responsible for controlling the network’s processing. It handles

the data flow from the storage (ROM and RAM) into the layers and between

the adjacent layers. The outputs of layer l are inputs to layer l + 1. Thus,

the processing of layer l should be finished completely before the FSM can start

processing layer l + 1.

The FSM controlling a one-hidden-layer network comprises of the following

states that instantiate each other in the order they are mentioned:

• Initialization: in this state, the weights are loaded at power up or later

during operation.

• IDLE: waits for a trigger from Next IMG signal.

• Read IMG and 2nd layer processing: reads the IMG pixels from ROM and

processes them in the 2nd layer neurons.

• 3rd layer processing: processes the 3rd layer neurons where the inputs to the

3rd layer are the 2nd layer outputs.

• Classify IMG: determines the final classification of the network in the MAX

block component.

27

F
ig

u
re

3.
3:

H
ar

d
w

ar
e

d
es

ig
n

d
ia

gr
am

28

The FSM reads the input data from the ROM sequentially (one pixel every

clock cycle). For pixel pi being processed, the FSM reads all the weights connected

to it (i.e all wij, for 1 ≤ j ≤ N2 where N2 is the No. of neurons in the first layer).

After fetching the values, the FSM passes the data (i.e., pi and wij) to the neurons

in the next layer.

The neurons process the data in each layer sequentially (discussed in Section

3.4). The processing is done exactly as the input layer. However, instead of

reading pi for the ROM, the outputs of the previous layer are passed sequentially

through a MUX controlled by the FSM as well.

The classification task is to be carried out after finishing the processing of the

last layer. The outputs of the last layer are passed to the MAX block. MAX block,

also controlled by the FSM, compares the output of the network and produces the

final classification of the network by reporting the label of the maximum output.

All of the FPGA related components are organized in the top level component

FPGA frame. Some of these are: RAMs, ROMs, Switches, Clock Generators, I2C

interface... etc. This enables the configuration of the network into different hard-

ware platforms. It is done by changing the FPGA frame to NEW DEVICE frame

incorporating all the components there to the new hardware platform.

Fig. 3.3 illustrates a detailed diagram of the hardware design with all the

components highlighted.

29

3.3 Hardware Implementation of The mf Oper-

ator

Two implementations of the mf operator were tested in the hardware trying to

minimize the power consumption, the two implementation add 1 and add 2 are

as follows:

f unc t i on add 1 (A, B)

re turn (sgn (A)B + sgn (B)A) ;

// sgn (x) re tuns a two b i t vec to r to r ep r e s e n t −1 ,0 ,1

end func t i on add 1 ;

func t i on add 2 (A, B)

i f (A = 0 or B = 0) then

re turn 0 ;

e l s e

re turn (A(H) XOR B) + (B(H) XOR A) + A(H) + B(H) ;

// A(H) and B(H) are the most s i g n i f i c a n t b i t s o f

// A and B vec to r s r e s p e c t i v e l y .

end i f ;

end func t i on add 2 ;

The second implementation (add 2) proved to be more energy efficient since it

used only bit operations (XOR) and addition to implement the two’s complement

addition with the special case of 0 handled. Whereas, add 1 uses a sign function

that generates a 2 bit vector which requires a additional hardware logic to imple-

ment the result. Therefore, add 2 function was used in the hardware design to

generate the power results.

The basic component that determines the efficiency of the whole design is the

neuron. Therefore, it is discussed in details in the next section.

30

3.4 Neuron Hardware Design

The neuron component is the backbone of the whole neural network design. It

does the heavy work and determines the efficiency of the system. The hardware

implementation of the neurons carries out the calculations in (1.2) and (2.18).

Two hardware designs have been implemented to carry out the neuron’s cal-

culations: I. Parallel neuron and II. Serial neuron. Both of these designs have

trade-offs between computation time and used resources. On one hand, the par-

allel implementation uses more resources but processes the data much faster (1

clock per layer). On the other hand, the serial implementation requires more time

(1 clock per input) but it uses less resources.

We will also introduce a third implementation III. Hybrid neuron of both

previous implementations. This has not been implemented yet. However, we

present it here to show the benefits that can be achieved by implementing this

neuron in the future.

Fig. 3.4, Fig. 3.5 and Fig. 3.6 (parallel, serial and hybrid neurons diagrams,

respectively) illustrate the hardware diagram of the jth neuron in layer l + 1.

There are Nl neurons in the previous layer (l). This means there are Nl inputs

and their respective Nl weight connections between the layer l and one neuron

in layer l + 1. These numbers will be used to calculate the hardware complicity,

i.e., the hardware components used to construct the network in this design.

3.4.1 Parallel Neuron Hardware Design

This hardware implementation carries out all the multiplications or the multi-

plication free operations at the same time. Fig. 3.4 illustrates the hardware

diagram of one parallel neuron, where OP is a binary operator defined as con-

ventional multiplication in NNs or mf operator in MFNNs. Adder is a full Adder

component that adds 2 operands (not more). alpha is the normalization factor

31

in MFNNs. alpha = 1 in the case of NNs. Finally, f(.) is a non-linear activation

function.

Figure 3.4: Parallel neuron diagram of the jth neuron in layer l + 1

For each neuron in layer Nl+1, there are Nl OP operations carried out si-

multaneously. There are log2(Nl) levels of Adders, where each level k con-

tains Nl/2
k Adders (and one Adder for the bias term). In total, these make

1 +
∑log2(Nl)

k=1 Nl/2
k = Nl + 1 Adders. Additionally, there is one division by α,

however, as α is restricted to powers of 2, the division can be reduced to only shift

operations. Finally, each neuron carries out one f(.) (Hardware implementation

of nonlinear activation functions is discussed in 3.5.2).

In the parallel implementation, all these operations take place at the same

time (in one clock cycle). Thus, dedicated hardware resources are to be allocated

accordingly. In total, every neuron in layer Nl+1 requires total hardware resources

(H l+1
Neuron(j)) to be built:

H l+1
Neuron(j) = Nl HOP +Nl HAdder +HShift +HF (3.1)

32

where HOP , HAdder, HShift and HF stand for the hardware resources required to

implement OP, Adder, 1/α and f(.) operations, respectively.

Moreover, there are Nl+1 neurons in layer l + 1. Therefore, the amount of

hardware resources required to build one layer (HLayer(l + 1)) is:

HLayer(l + 1) =

Nl+1−1∑
j=0

Hj+1
Neuron(j)

= Nl+1(Nl HOP +Nl HAdder +HShift +HF)

(3.2)

Note that H l+1
Neuron(j) is constant ∀j ∈ layer(l + 1) .

Finally, the amount of hardware resources required to build an entire parallel-

neuron-based network with M layers (HP
Net(M)) is:

HP
Net(M) =

L∑
l=2

HLayer(l)) (3.3)

From the previous analysis, we see that the parallel neuron implementation re-

quires a lot of hardware resources. However, when this implementation was tested

it proved to be impractical. The required hardware resources are too big for one

FPGA to handle. Even a relatively small one-hidden-layer network with 100

neurons did not fit in the FPGA.

This parallel implementation requires one cycle to compute one layers out-

puts. Therefore, an entire network with L layers can be computed in L − 1

cycles. Moreover, compared to the serial and hybrid implementations, the paral-

lel implementation is less complex since there is no need for a finite state machine

or controlling signals. That is because there is no Scheduling needed. In the con-

trary, the serial and hybrid designs requires a FSM to control the network for

scheduling the data.

To summarize, the parallel neuron implementation is fast to compute and

easies to implement(less complex). However, it requires a lot of hardware re-

sources. These hardware resources requirements could not be met using the

Virtex-7 (XC7VX485T) FPGA. For this reason, the parallel-neuron-based net-

work is impractical to be synthesized.

33

3.4.2 Serial Neuron Hardware Design

After testing the design of the parallel neuron and finding out it is impractical,

we designed a serial hardware neuron. Fig. 3.5 illustrates the hardware diagram

of one serial neuron, where OP is a binary operator defined as conventional mul-

tiplication in NNs or mf operator in MFNNs. Adder is a full Adder component

that adds 2 operands (not more). alpha is the normalization factor in MFNNs.

alpha = 1 in the case of NNs. Finally, f(.) is the non-linear activation function.

Figure 3.5: Serial neuron diagram of the jth neuron in layer l + 1

The previous parallel design (Fig. 3.4) carries out all the operations (OP) for

all input data at the same time(one clock cycle). In contrast, the serial neuron

design carries out one OP operation per clock cycle. Therefore, the whole neuron

processing takes place over sequential clock cycles. The result of OP operation is

accumulated in the register by adding it up to the previous partial sum. The final

sum is scaled with α and then passed through the nonlinear activation function

f(.). This implements (1.2) and (2.18).

The Register is initialized to bj so that it is accumulated in the sum.

34

The serial neuron in layer l + 1 needs Nl + 1 clock cycles to finish the com-

putation. Nl cycles are needed to carry out Nl OP on the input data from the

previous layer. The additional one clock is needed to process the sum with α and

f(.). Unlike the parallel design, since the computations take place sequentially in

different clock cycles, there is only one OP and Adder hardware resources needed.

This model requires an additional Register to store the partial sum. The serial

neuron requires the same hardware resources as the parallel neuron to process α

and f(.).

In total, every neuron in layer Nl+1 requires total hardware resources

(H l+1
Neuron(j)) to be built:

H l+1
Neuron(j) = HOP +HAdder +HRegister +HShift +HF (3.4)

where HOP , HAdder,HRegister, HShift and HF stand for the hardware resources

required to implement OP, Adder, Register, 1/α and f(.) operations, respectively.

Moreover, there are Nl+1 neurons in layer l + 1. Therefore, the amount of

hardware resources required to build one layer (HLayer(l + 1)) is:

HLayer(l + 1) =

Nl+1−1∑
j=0

H l+1
Neuron(j)

= Nl+1(HOP +HAdder +HRegister +HShift +HF)

(3.5)

Note that H l+1
Neuron(j) is constant ∀j ∈ layer(l + 1).

Finally, the amount of hardware resources required to build an entire serial-

neuron-based network with L layers (HS
Net(L)) is:

HS
Net(L) =

L∑
l=2

HLayer(l)) (3.6)

The hardware resources required by the serial-neuron-based network (HS
Net(L))

compared to the parallel-neuron-based one (HP
Net(L)) are as follows:

HP
Net(L)

HS
Net(L)

=

∑L
l=2Nl+1(Nl HOP +Nl HAdder +HShift +HF)∑L

l=2Nl+1(HOP +HAdder +HRegister +HShift +HF)

≈
∑L

l=2NlNl+1∑L
l=2Nl+1

(3.7)

35

The Approximation is valid for Nl >> 1 where:

Nl HOP +Nl HAdder >> HRegister +HShift +HF (3.8)

For one layer the hardware usage factor becomes Nl.

From the previous analysis, we see that the serial neuron implementation re-

quires less hardware resources than the parallel one. Therefore, the serial imple-

mentation is practical in the sense there are enough hardware resources in the

FPGA for the serial-neuron-based network. However, this comes at the expense

of the execution time. The serial-neuron-based layer (l + 1) takes Nl + 1 cycles

to be processed in comparison to one cycle for the parallel-neuron-based layer.

3.4.3 Hybrid Neuron Hardware Design

The two previous hardware neuron designs show two extremes. On one hand, the

parallel design carries out all the computation parallelly in one clock cycle. On

the other hand, the parallel design carries out one OP operation per cycles, thus,

one layer takes many clock cycles to finish processing.

The parallel design is more efficient in terms of latency as it computes and

processes the data faster than the serial one. However, the design proved to

be impractical since there are not enough hardware resources for all the parallel

processing units. On the contrary, the serial design is tested to be practical

although it requires more processing time. However, as discussed in the synthesis

results later (3.6), the serial design does not utilize the FPGA 100%. Therefore, a

hybrid hardware neuron between serial and parallel neurons is designed to utilize

the hardware resources.

Please note that the hybrid neuron is designed for future work to enhance the

network processing time by utilizing more hardware resources. This design is not

implemented or tested yet.

Fig. 3.6 illustrates the hardware diagram of one hybrid neuron, where OP is

36

Figure 3.6: Hybrid neuron diagram of the jth neuron in layer l+ 1 with a parallel
degree of D OP operations per cycle

a binary operator defined as conventional multiplication in NNs or mf operator

in MFNNs. Adder is a full Adder component that adds 2 operands (not more).

alpha is the normalization factor in MFNNs. alpha = 1 in the case of NNs.

Finally, f(.) is the non-linear activation function.

Similar to the serial neuron, the hybrid neuron carries out the computations

sequentially over multiple clock cycles. However, instead of only one OP operation

per clock cycle in the serial neuron, the hybrid neuron carries outD OP operations

per clock cycle. The results of the D OP operations are added up using log2(D)

levels of Adders, where, every level k contains D/2k Adders. In total, these make∑log2(D)
k=1 D/2k = D Adders. This result is accumulated in the register by adding

it up to the previous partial sum. The final sum is scaled with α and then passed

through the nonlinear activation function f(.). This implements (1.2) and (2.18).

37

The Register is initialized to bj so that it is accumulated in the sum.

In the hybrid implementation, D operations and (D + 1) additions take place

at the same time (in one clock cycle). Thus, dedicated hardware resources are to

be allocated accordingly. The hybrid neuron in layer l+1 needs dNl/De+1 clock

cycles to finish the computation. dNl/De cycles are needed to carry out Nl OP

(D OP operations/cycle × dNl/De cycles) on the input data from the previous

layer. The additional one clock is needed to process the sum with α and f(.).

In total, every neuron in layer Nl+1 requires total hardware resources

(H l+1
Neuron(j)) to be built:

H l+1
Neuron(j) = D HOP + (D + 1)HAdder +HRegister +HShift +HF (3.9)

where HOP , HAdder,HRegister, HShift and HF stand for the hardware resources

required to implement OP, Adder, Register, 1/α and f(.) operations, respectively.

D is the parallel degree of the hybrid design.

Moreover, there are Nl+1 neurons in layer l + 1. Therefore, the amount of

hardware resources required to build one layer (HLayer(l + 1)) is:

HLayer(l + 1) =

Nl+1−1∑
j=0

H l+1
Neuron(j)

= Nl+1(D HOP + (D + 1)HAdder +HRegister +HShift +HF)

(3.10)

Note that H l+1
Neuron(j) is constant ∀j ∈ layer(l + 1) . Finally, the amount of

hardware resources required to build an entire hybrid-neuron-based network with

L layers (HHyb
Net (L)) is:

HHyb
Net (L) =

L∑
j=2

HLayer(l)) (3.11)

The hardware resources required by the serial-neuron-based network (HS
Net(L))

compared to the hybrid-neuron-based one (HHyb
Net (L)) are as follows:

HHyb
Net (L)

HS
Net(L)

=

∑L
j=2Nl+1(D HOP + (D + 1)HAdder +HShift +HF)∑L
j=2Nl+1(HOP +HAdder +HRegister +HShift +HF)

≈ D

(3.12)

38

The Approximation is valid for D >> 1 where:

D HOP + (D + 1)HAdder >> HRegister +HShift +HF (3.13)

From the previous analysis, we see that the hybrid neuron implementation re-

quires less hardware resources than the parallel one. Therefore, the hybrid im-

plementation is practical in the sense there are enough hardware resources in the

FPGA for the hybrid-neuron-based network. Moreover, the hybrid neuron imple-

mentation requires less processing time per layer since it utilizes the hardware.

Table 3.1 compares different neural networks w.r.t their hardware neuron de-

signs (serial, parallel and hybrid hardware neuron designs).

Relative requi-
red hardware

HNet(L)

HS
Net(L)

Processing time Pratical Simplicity

Serial neuron 1
∑L−1

j=1 Nl + L X Complex

Parallel neuron
∑L

l=2NlNl+1∑L
l=2Nl+1

L 5 Simple

Hybrid neuron D
∑L−1

j=1 dNl/De+ 1 X Complex

Table 3.1: Comparison between neural networks with different hardware neuron
designs

Please note that the processing time in Table 3.1 is only of the layers. The

total processing time of the network should account for the MAX calculations.

The total processing time then becomes:

total processing time = processing time +NL (3.14)

where NL is the No. of neurons in the last layer, which is also the No. of classes

M . This is because the MAX block carries out NL comparisons to classify the

image. Each comparison takes place in one clock cycle.

To sum up, the comparison in Table 3.1 shows the advantages of the parallel-

neuron-based network in terms of processing time and the simplicity of the hard-

ware design. However, this design proved impractical. Therefore, the serial-

neuron-based network is selected instead.

39

For future work, a new hybrid-neuron-based network is analyzed as a compro-

mise between the serial and hardware neuron design. The hybrid design exploits

the hardware resources of the FPGA, that are not utilized by the serial design.

3.5 Floating-Point vs. Fixed-Point

The main goal of this work is to reduce the power consumed by the neural network.

Using fixed-point variables and arithmetic over floating-point saves a significant

amount of power [37, 44]. Using fixed-point instead of floating-point yields less

logic resources usage which inherently leads to lower power consumption [45].

Using fixed-point instead of floating-point does not suppose large accuracy

losses, e.g. image classification was found to only require INT8 or less fixed-

point precision to keep satisfactory recognition rates [46, 47]. We show later in

Section 4.3.1 that fixed-point quantization for both NN and MFNN achieves the

floating-point recognition performance.

The used fixed-point word is defined as IL.FL, where IL (integer length) and

FL (fractional length) are the number of bits used for the integer part and the

fractional part of the word, respectively. The total word length (WL) is then

calculated as follows: WL = IL + FL + 1 (the additional one is the sign bit).

Moreover, the IL is allowed to have negative values. In such a case, the IL most

significant bits of the fractional part are not used.

3.5.1 Quantization

The hardware design is implemented using fixed-point variables and arithmetics

due to the aforementioned reasons. However, the trained networks, NN and

MFNN, are implemented on MATLAB using floating-point variables and arith-

metics. Therefore, quantization of these trained networks is needed.

40

All the inputs (images) are quantized using 8 bits. The images are then stored

in fixed-point format of variable length. The input and neuron outputs are quan-

tized using the same fixed-point length. The weights are quantized separately

from the inputs and neuron outputs. This is to increase the hardware design

flexibility.

3.5.2 Non-Linear Activation Functions

The quantization of the non-linear activation functions is not as simple as the

other variables and operations. Some of the most famous activation functions

such as sigmoid and hyperbolic tangent include exponential terms, i.e., ex. This

term makes the functions harder to implement. The activation functions can

still be implemented but it would be costly in terms of hardware resources and

processing time [48].

-3 -2 -1 0 1 2 3

x

-1

-0.5

0

0.5

1

f(
x)

tanh
cust_tanh

Figure 3.7: Approximation of tanh to a piecewise function

Fig. 3.7 presents and alternative solution that was used in this work. In this

solution, the hyperbolic tangent is approximated to a 1st order piecewise function.

This approximation does not cause any degradation in the networks’ recognition

rates.

41

3.6 Simulation and Synthesis

The overall serial-neuron-based NN and MFNN are implemented in VHDL. Both

networks are trained on MNIST dataset. 10 sample images (one from each class)

are loaded to the FPGA ROM. The networks weights are loaded into the FPGA

RAMs.

Both NN and MFNN designs were first simulated using ModelSim to verify the

correctness of the hardware design. The simulation results of the values of the

neurons in the output layer along with the true and classified classes are shown

in Fig. 3.8 (NN) and Fig. 3.9 (MFNN).

Figure 3.8: Wave from simulation for one-hidden-layer NN

The above mentioned figures show the simulation result of one-hidden-layer NN

and MFNN, respectively. The networks parameters of both networks are listed

in details in Table 3.2. Fixed-point registers and arithmetic are used with word

length of 16 (5.10 with an extra sign bit). In VHDL the fixed-point variable is

stored as STD LOGIC VECTOR of length WL (WL = IL + FL + 1) bits, where

the location of the point (the split between the fractional and integer parts) is

to be tracked manually. ModelSim is not aware of the location of the fixed-

point. Therefore, the output values are scaled accordingly, i.e., 1 = 210 = 1024.

Moreover, we also observe the model latency due to the long processing time of

the serial neuron (785(l = 1) + 101(l = 2) + 10(MAX calculation) = 896 cycles).

42

NN MFNN
No. of neurons 100 100

α 1 4
β 1 16

Activation function tanh
LeakyReLU
scale = 1/16

Table 3.2: NN and MFNN model parameters

Figure 3.9: Wave from simulation for one-hidden-layer MFNN

The same NN and MFNN were tested in MATLAB (fixed-point inference) to

verify the correctness of the model and that all the computations were carried

out as expected. The results of the inference along with the true and classified

labels are shown in Table. 3.4 (NN) and Table. 3.5 (MFNN). Both ModelSim

simulation and MATLAB fixed-point inference produce the same results.

NN MFNN

LUTs
slices 15523 10808
util 20.4% 14.2%

DSP units 110 0

Memory
Blocks 59 59

util 5.73% 5.73%

Table 3.3: Hardware utilization of one-hidden-layer NN and MFNN

After verifying the hardware networks in ModelSim with MATLAB results,

43

they were synthesized to the FPGA using Vivado 2017.1. The hardware resources

occupied on the FPGA for both NN and MFNN are listed in Table 3.3. It is worth

noting that, in the MFNN synthesis, there are no DSP units used. This is because

DSP units are used to preform the multiplications in NN. One DSP is used per

neuron (100 hidden neurons + 10 output neurons). This is one reason why we

used ASIC to measure power (avoid mapping to DSP units) [49].

0 1 2 3 4 5 6 7 8 9
o0 1024 -2 -102 53 -8 -20 5 -5 46 -25
o1 -6 1024 62 15 -9 43 6 9 15 5
o2 91 64 1024 96 91 93 102 109 332 326
o3 1 -133 -58 594 22 -29 22 1 12 -4
o4 41 11 120 13 1024 126 39 34 87 -21
o5 17 -82 39 48 -8 326 7 5 27 40
o6 -37 -32 -62 47 1 594 594 6 -8 -4
o7 -22 -56 -49 -3 2 15 -12 1024 25 -77
o8 -126 -91 -54 160 -64 118 1 -21 860 -12
o9 -3 -41 0 -18 33 81 -45 -89 -19 860

out label 0 1 2 3 4 6 6 7 8 9
true label 0 1 2 3 4 5 6 7 8 9

Table 3.4: MATLAB results for for one-hidden-layer NN

0 1 2 3 4 5 6 7 8 9
o0 820 -1 -2 9 -26 -28 25 -10 74 -6
o1 260 865 72 84 144 32 66 -1 177 114
o2 -19 -19 871 185 -22 -5 20 -2 132 -15
o3 43 -16 190 566 -5 -7 25 180 -9 -10
o4 -4 293 -15 152 1119 495 94 323 200 449
o5 171 247 66 -3 175 760 245 92 297 72
o6 5 -7 395 114 -12 326 755 -11 257 -10
o7 -3 93 46 84 238 61 77 1041 47 141
o8 -2 -15 -14 283 -14 -18 -1 -2 456 -20
o9 49 523 134 61 252 500 73 155 151 997

out label 0 1 2 3 4 5 6 7 8 9
true label 0 1 2 3 4 5 6 7 8 9

Table 3.5: MATLAB results for for one-hidden-layer MFNN

44

Fig. 3.10 shows the actual working FPGA. The true and output labels are

displayed on the LEDs to verify that the hardware network functions as expected

when deployed on the FPGA.

(a) Img label = 0 (b) Img label = 1

(c) Img label = 3 (d) Img label = 5

Figure 3.10: FPGA board operational with output and true labels

3.7 Power and Area Measurements

Section 3.6 listed the FPGA utilization of both one-hidden-layer NN and MFNN

with 100 neurons. MFNN does not use any DSP units, and instead, replaces them

with logic as LUTs. Moreover, measuring the power on the synthesized design on

the FPGA includes all rails power consumption and all the leakage power. Thus,

the power and area measurement on the FPGA is not very accurate and also not

detailed since no specific info can be extracted.

For these reasons, the power and area measurements were carried out using

Synopsys tool. Both NNs and MFNNs with different parameters were synthesized

to ASIC (Application-specific integrated circuit) 55 nm technology. The synthe-

sized designs were later used to produce the detailed area and power reports.

45

Chapter 4

Results and Discussion

The main objective of this work is to provide a new more energy efficient NN

architecture. Therefore, we first have to show that the new proposed MFNN

is able to classify the data correctly. Then, we demonstrate the power and area

comparisons of both networks to show the achievable potential savings when using

MFNNs instead of NNs.

Finally we present some results about the weights’ distribution, sparsity and

comparison between floating-point and fixed-point arithmetics in both NNs and

MFNNs.

4.1 Accuracy

First, we present and discuss the classification accuracy results on one-hidden-

layer networks for various combinations of parameters. Then, we expand the

discussion to two-hidden-layer networks.

46

4.1.1 One-Hidden-Layer Networks

4.1.1.1 Conventional NN

One-hidden-layer NNs with different No. of neurons were trained on the MNIST

dataset. Fig. 4.1 presents the classification error as measured on the test dataset.

The models were trained 10 times for 300 epochs using µ(Momentum factor) =

0.1, η(update rate) = 0.1 and batch size of 200 instances, where one epoch com-

prises 60.000 instances, i.e., the entire training dataset. Min (best case), mean,

standard deviation (vertical bars on the mean curve) and max (worst case) statis-

tics are presented.

0 100 200 300 400 500 600
3

4

5

6

7

8

9

10
NN

No. of Neurons

cl
a
ss
ifi
ca
ti
o
n
er
ro
r
(%

)

mean
min
max

Figure 4.1: Classification error (%) in one-hidden-layer NN

Fig. 4.1 shows the effect of increasing the number of neurons in NNs. The opti-

mal case is around 100-150 neurons. Beyond that, the NN achieves less accuracy

which is probably due to the bigger model and higher degree of freedom. These

larger models require more training time or/and more input training instances.

47

4.1.1.2 MFNN without Normalization

One-hidden-layer MFNNs with different No. of neurons were trained on the

MNIST dataset. Fig. 4.2 presents the classification error as measured on the

test dataset. The models were trained for 300 epochs using µ = 0.1, η = 0.1,

the layer normalization α = 1, the input normalization β = 1 and batch size

of 200 instances. The networks were trained 10 times each. Min (best case),

mean, standard deviation (vertical bars on the mean curve) and max (worst

case) statistics are presented.

0 100 200 300 400 500 600
80

85

90

95
MFNN

No. of Neurons

cl
a
ss
ifi
ca
ti
o
n
er
ro
r
(%

)

mean
min
max

Figure 4.2: Classification error (%) in one-hidden-layer MFNN without normal-
ization

Fig. 4.2 shows that a MFNN without normalization does not converge. The

classification error is about 90% that is the classification accuracy is 10%. Since

we have 10 equal probable classes, the accuracy of random guess is 1/10 = 10%%.

Therefore, we can say that the MFNN without normalization was not trained.

48

4.1.1.3 MFNN with Normalization

One-hidden-layer MFNNs with different No. of neurons were trained on the

MNIST dataset. Fig. 4.2 presents the classification error as measured on the

test dataset. The models were trained for 300 epochs using µ = 0.1, η = 0.1,

the layer normalization α = 4, the input normalization β = 16 and batch size

of 200 instances. The networks were trained 10 times each. Min (best case),

mean, standard deviation (vertical bars on the mean curve) and max (worst

case) statistics are presented.

0 100 200 300 400 500 600
3

4

5

6

7

8

9

10
MFNN

No. of Neurons

cl
a
ss
ifi
ca
ti
o
n
er
ro
r
(%

)

mean
min
max

Figure 4.3: Classification error (%) in one-hidden-layer MFNN with normalization

Fig. 4.3 shows the effect of increasing the number of neurons in MFNNs.

Similar to NN, the MFNN achieves optimal results for 100-150 neurons. However,

contrary to NN, the accuracy of MFNN does not decrease with increasing the

models’ size, which stabilizes around the optimal error.

49

From the previous figures, we see that one-hidden-layer MFNN with normal-

ization achieves the same accuracies as its counterpart NN using the same number

of neurons. The mean accuracy achieved by MFNN is slightly less than the NN

one. However, comparing the best case, both achieve the same accuracies using

the same number of neurons. The convergence of the SGD optimization depends

on the initial starting point and shuffling of the training dataset. It is a common

practice in such optimization problems to train the model several times and then

using and reporting the best model with regard to classification accuracy. With

this argument, we can compare the best case results between NNs and MFNNs.

The best case is the minimum error achieved by the different runs of the networks.

From Fig. 4.1 and Fig. 4.3 we see that MFNN is slightly less stable than NN

in terms of convergence. In other words, training MFNN for several times yields

varying test accuracies that have higher standard deviation compared to NN. The

values of this standard deviation are shown in the graphs as the vertical bars over

the mean curves. The length of the bars is the standard deviation value.

Table 4.1 summarizes the classification errors achieved on the test datasets for

one-hidden-layer NNs and MFNNs for different No. of neurons using different

values for α and β.

No. of neurons 10 100 150 200 300 400 500
NN 8.45 4.1 4.08 4.25 4.42 4.22 4.32

MFNN

α β
1 1 90 89 89 87 89 89 90
4 16 12.2 4.13 4.0 4.13 4.05 3.7 4.14
8 8 18.5 5.4 4.3 4.0 3.95 3.8 4.0

Table 4.1: Classification error (%) in one-hidden-layer NN and MFNN achieved
on MNIST dataset

MFNNs achieve classification error rates same as NNs for the same number of

neurons. For some cases, e.g., 400 neurons, α = 4 and β = 16, the MFNN even

got significantly less error rate (3.7% vs. 4.22%). However, these are special

cases, where most of the cases have almost the same error rates. Therefore, we

can say that the MFNN and NN have the same performance for one-hidden-layer

networks.

50

For better understanding of the convergence of test and training classification

errors, we plotted them for 10 runs of one-hidden-layer NN and MFNN using 100

neurons. The models were trained for 300 epochs using µ = 0.1, η = 0.1, the

layer normalization α = 4, the input normalization β = 16 and batch size of 200

instances. The networks were trained 10 times each.

0 50 100 150 200 250 300

5

10

15

20

25

30
NN

epoch

cl
a
ss
ifi
ca
ti
o
n
er
ro
r(
%
)

(a) Training error

0 50 100 150 200 250 300

5

10

15

20

25

30
NN

epoch

cl
a
ss
ifi
ca
ti
o
n
er
ro
r(
%
)

(b) Test error

Figure 4.4: Classification error prorogation during training of NN

0 50 100 150 200 250 300

5

10

15

20

25

30
MFNN

epoch

cl
a
ss
ifi
ca
ti
o
n
er
ro
r(
%
)

(a) Training error

0 50 100 150 200 250 300

5

10

15

20

25

30
MFNN

epoch

cl
a
ss
ifi
ca
ti
o
n
er
ro
r(
%
)

(b) Test error

Figure 4.5: Classification error prorogation during training of MFNN

We see how that MFNN is less stable during the training process. Although

the error is decreasing, there are still small sudden jumps. This is probably due

to the discontinuity problem addressed before in Chapter 2.

51

4.2 Area and Power

The hardware design was synthesized into ASIC 55 nm technology to obtain the

power and area results. This is to avoid mapping hardware logic to DSPs and

to have a better understanding of the hardware components areas and power

measures [49].

4.2.1 Area

To better understand the power analysis and how the energy is consumed by the

network, we did a detailed analysis of the synthesized design area. The area and

power are linearly proportional [50]. The total area (AT) of the MFNN and NN

was measured. Moreover, we measured the neurons’ area (AN), i.e., the area only

occupied by the neurons computations. The total and neurons’ areas for MFNN

and NN for different world lengths are presented in Fig. 4.6. AT (NN) and

AT (MFNN) refer to the total area of NN and MFNN, respectively. Similarly,

AN(NN) and AN(MFNN) refer to the area occupied by the neurons in NN and

MFNN, respectively.

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

9
x 10

5

No. of neurons

A
re
a
(µ
m

2
)

Neurons area (AN)

NN, WL = 8
NN, WL = 16
MFNN, WL = 8
MFNN, WL = 16

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14
x 10

5

No. of neurons

A
re
a
(µ
m

2
)

Total area (AT)

NN, WL = 8
NN, WL = 16
MFNN, WL = 8
MFNN, WL = 16

Figure 4.6: Area measurements of NN and MFNN for different word lengths

52

Fig. 4.6 shows significant amount of savings in the area used by the neurons

in MFNN over NN, when compared for the same word lengths. Moreover, the

whole MFNN occupies around 58% and 40% of the area occupied by NN for

WL=8 and 16, respectively. The AT includes the areas of neurons, and some

other components such as the controlling logic, registers... etc. These other

components have the same area in NN and MFNN since we only change the

computation operation inside the neuron. Therefore, the savings in the total

area are not as much as they are in the neurons.

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100

No. of neurons

%

AN/AT

NN, WL = 8
NN, WL = 16
MFNN, WL = 8
MFNN, WL = 16

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100

No. of neurons

%

AN (MFNN)/AN (NN)

WL = 8
WL = 16

Figure 4.7: Relative area of MFNN and NN

Fig. 4.7 presents the relative area of the neurons w.r.t the total area

(AN(NN)/AT (NN), AN(MFNN)/AT (MFNN)) and the MFNN neurons’ area

w.r.t the NN neurons’ area (AN(MFNN)/AN(NN)). It is obvious that MFNN

neurons occupy much less area than NN ones. AN(MFNN)/AN(NN) ≈ 8% and

15% for WL=8 and 16, respectively.

We also see that, in NNs, the neurons occupy 70% and 60% for WL=8 and

16, respectively. This is a significant amount, since the neurons, more specifically

multiplications, are responsible for most of the area and equivalently the power

consumption. . These number are reduced to 8% and 24% when using MFNNs.

53

4.2.2 Power

In the previous section we have shown that the multiplication operations are

occupying most of the area needed for the network. More area means more

consumed energy by that component. Thus, multiplication operations are shown

to consume significant amounts of power in NNs. This area is saved in MFNNs

by replacing the multiplication with the mf operator. The saving in the area is

to be translated in savings in the consumed power (Fig. 4.8).

0 5 10 15 20
0

5

10

15

20

25

30

Word Length

P
ow

er
(m

W
)

NN

internal
switching
leakage
total

0 5 10 15 20
0

5

10

15

20

25

30

Word Length

P
ow

er
(m

W
)

MFNN

internal
switching
leakage
total

Figure 4.8: Power measurements of NN and MFNN for different word lengths

Fig. 4.8 shows the internal, leakage, switching and total powers consumed by

one-hidden-layer NN and MFNN with 100 hidden neurons. All the powers are

significantly improved using MFNNs. The improvement is better for longer word

lengths. For examples, MFNN saves about 40% of the total power consumed in

NN for a word length of 10 bits, while it saves about 60% for a word length of 20

bits. This is because for larger word length the neurons occupy more area in the

network design. This finding is consistent with the area results. Thus, the power

only consumed by the neurons can be inferred from the total power. The MFNN

neurons save about 75% and 80% of the power consumed by the NN neurons for

world lengths of 10 and 20 bits, respectively.

54

4.3 Other Results

4.3.1 Fixed-Point vs. Floating-Point Accuracy

In order to implement the NN and MFNN into hardware, the floating-point op-

erations are replaced with fixed-point ones so all variables are quantized accord-

ingly. Moreover, the power results in Section 4.2 show that the word length is a

determining factor of the power consumption of the network. Thus, a detailed

comparison is performed to show the accuracy achieved on both NN and MFNN

using different word lengths.

The fixed-point word is illustrated as IL.FL, where IL (integer length) and

FL (fractional length) are the number of bits used for the integer part and the

fractional part of the word, respectively. The total word length (WL) is then

calculated as follows: WL = IL + FL + 1 (the additional one is the sign bit).

Moreover, the IL is allowed to have negative values. In such a case, the IL most

significant bits of the fractional part are not used.

0 5 10 15 20

10

20

30

40

50

60

70

80

90

100
NN

FL

C
la
ss
ifi
ca
ti
o
n
er
ro
r(
%
)

0 5 10 15 20 25

10

20

30

40

50

60

70

80

90

100
MFNN

FL

C
la
ss
ifi
ca
ti
o
n
er
ro
r(
%
)

IL = 3
IL = 2
IL = 1
IL = 0
IL =-1
IL =-2
IL =-3
FP baseline

IL =-3
IL =-4
IL =-5
IL =-6
IL =-7
IL =-8
IL =-9
FP baseline

Figure 4.9: Classification error (%) for fixed-point one-hidden-layer NN and
MFNN

55

One-hidden-layer NN and MFNN with 100 neurons are analyzed on the MNIST

dataset for fixed-point operations (Fig. 4.9). The results show that the fixed-

point-based NN requires a min WL of 8 bits (FL=6, IL=1) to reach the accuracies

achieved by the floating-point-based NN. Similarly, the fixed-point-based MFNN

requires also a min WL of 8 bits (FL=13, IL=-6). Therefore, both architectures

require the same word length for this particular application. MFNN operates on

lower significant bits than NN, which is expected due to the α and β normalization

terms.

4.3.2 Weight Distribution

For a better understanding of MFNNs and NNs behavior, the weights of both

networks are presented. The histograms of weights are computed to show the

distribution of the weights. The histograms of the NN and the MFNN are pre-

sented in Fig. 4.10 and 4.11, respectively.

−2 −1 0 1 2
10

0

10
1

10
2

10
3

10
4

10
5 w in hid

weights

F
re
u
en
cy

−2 −1 0 1 2
10

0

10
1

10
2

10
3 w hid out

weights

F
re
u
en
cy

Figure 4.10: Weight distribution in one-hidden-layer NN

56

−0.1 −0.05 0 0.05 0.1
10

0

10
1

10
2

10
3

10
4

10
5 w in hid

weights

F
re
u
en
cy

−0.04 −0.02 0 0.02 0.04 0.06
10

0

10
1

10
2

10
3 w hid out

weights
F
re
u
en
cy

Figure 4.11: Weight distribution in one-hidden-layer MFNN

From the above mentioned figures, we see that the distribution of weights in

both networks takes a natural bell-shaped distribution with a mean ≈ 0. The

weights in MFNN have much smaller values than in NN.

A very important measure is a sparsity one, which plays a key factor in de-

termining how to store the weights and how many connections could be pruned

without affecting the performance. For a vector x with a length of k, the sparsity

measure used is defined as:

S(x) =
k − ||x||1
k − ||x||∞

(4.1)

where ||x||1 and ||x||∞ are the `1 and `∞ norms of x. Here, S(x) = 0, whenever

the vector is dense and S(x) = 1, whenever the vector is sparse.

Since the sparsity is defined for vectors, it is computed over the weight vectors

wl
j = [wl1j, w

l
2j...w

l
Nlj

], which comprises all the weights connected to neuron j.

This measure shows that the weights in both MFNNs and NNs have high sparsity.

However, MFNNs are slightly more sparse with, mean ≈ 0.995, than NNs, with

mean ≈ 0.96. Fig. 4.12 and Fig. 4.13 show the sparsity of weight vectors in

one-hidden-layer NN and MFNN, respectively.

57

0 10 20 30 40 50 60 70 80 90 100
0.85

0.9

0.95

1
S
p
a
rs
it
y

Neurons

w in hid

1 2 3 4 5 6 7 8 9 10
0.92

0.93

0.94

0.95

0.96

0.97

0.98

S
p
a
rs
it
y

Neurons

w hid out

Figure 4.12: Weight sparsity in one-hidden-layer NN

0 10 20 30 40 50 60 70 80 90 100
0.994

0.996

0.998

1

S
p
a
rs
it
y

Neurons

w in hid

1 2 3 4 5 6 7 8 9 10
0.993

0.994

0.995

0.996

0.997

0.998

S
p
a
rs
it
y

Neurons

w hid out

Figure 4.13: Weight sparsity in one-hidden-layer MFNN

58

4.3.3 Pruning

A very important method of saving energy is pruning the weights of the network

[51, 52]. Pruning in NNs is the method of getting rid of the connections with

insignificant weights. We observed in the previous section that the NNs and

MFNNs weights are sparse. This means that small percentage of the weights

store the important information about the network. We investigate the effect of

pruning NNs and MFNNs on the classification error and the amount of saved

storage. We implement a simple pruning technique:

wlij =

{
0 if

∣∣wlij∣∣ ≤ T ||wl
j||p

wlij otherwise
(4.2)

where T ≤ 1 is the pruning threshold and ||wl
j||p is the p-norm of wl

j [53]. For

our experiments, p =∞ is selected. In this case, ||wl
j||∞ = max

i

∣∣wlij∣∣.

10
−4

10
−3

10
−2

10
−1

10
0

0

10

20

30

40

50

60

70

80

90

100

Thershold (T)

P
er
ce
nt
a
g
e
(%

)

Pruned weights

Storage required

Classification error

Figure 4.14: Pruning results for one-hidden-layer NN

Fig. 4.14 and Fig. 4.15 show the pruning results for one-hidden-layer NN

and MFNN using different pruning thresholds T . We display the percentage of

weights pruned, the percentage of the required storage for the remaining weights

versus the classification error after pruning the network. The required storage is

59

calculated as follows:

storage =
1−Np

N
100% (4.3)

where Np and N are the amount of pruned and total weights, respectively.

We see that, in NNs, we can prune approximately 85% of the weights without

losing any accuracy (black reference line). This leads to approximately 85% sav-

ings in the storage (15% required storage). These numbers are less for MFNN.

In order not to degrade the accuracy rates of MFNN, we can only prune approx-

imately 30% of the weights (black reference line). This leads to approximately

30% savings in the storage (70% required storage). This is due to the aforemen-

tioned discountability problem of MFNN. In MFNN, a lot of the information is

stored in the signs of the weights rather than the values. Thus, when mapping

to 0 the sign is completely lost which affects the performance severely.

10
−4

10
−3

10
−2

10
−1

10
0

0

10

20

30

40

50

60

70

80

90

100

Thershold (T)

P
er
ce
nt
a
g
e
(%

)

Pruned weights

Storage required

Classification error

Figure 4.15: Pruning results for one-hidden-layer MFNN

To solve the issue of pruning MFNN weights discussed above. We changed the

pruning rule to:

wlij =

0+ if

∣∣wlij∣∣ ≤ T ||wl
j||p and wlij > 0

0− if
∣∣wlij∣∣ ≤ T ||wl

j||p and wlij < 0

wlij otherwise

(4.4)

60

where sgn(0+) = 1, |0+| = 0, sgn(0−) = −1 and |0−| = 0. The mf operator

reduces to a ⊕ b = sgn(a)b, when a ∈ 0+, 0−. In this case, one bit is needed to

store the sign of the pruned weight, thus, the required storage becomes:

storage =
WL(N −Np) +Np

WL N
100% (4.5)

where WL is the word length, Np and N are the amount of pruned and total

weights, respectively. We proved earlier that, in fixed-point-based networks,

WL = 8 is sufficient to achieve the floating-point-based network accuracies.

Therefore, we used this value to calculate the required storage.

The results of performing this pruning on the same one-hidden-layer MFNN

as before are presented in Fig. 4.16. We can prune approximately 95% of the

weights without losing any accuracy (black reference line). This pruning leads

to approximately 83% savings in the storage. When T = 1, the MFNN reduces

to the Binary-weight Network [36]. We lose a total of 2% for dropping all the

weight values and keeping the signs. Hence, most of the information is stored in

the sign term of the mf-operator, however, there is small information stored in

the value term that can be significant to very sensitive applications.

10
−4

10
−3

10
−2

10
−1

10
0

0

10

20

30

40

50

60

70

80

90

100

X: 1
Y: 6.2

Thershold (T)

P
er
ce
nt
a
g
e
(%

)

X: 0.0001
Y: 4.13

Pruned weights

Storage required

Classification error

Figure 4.16: Enhanced pruning results for one-hidden-layer MFNN

61

Chapter 5

Conclusion

This thesis propose a new multiplication free neural network (MFNN), in which,

the multiplication operations of the conventional NN are replaced with modified

additions (multiplication free operator). We prove that most of the power is

consumed by the multiplication operations carried out by the neurons. The con-

sumption varies depending on the word length used. On average, multiplication

operations account for roughly 60% of the power consumption of the entire NN.

We also show that MFNNs achieve the same recognition rates as NNs, in

one-hidden-layer networks, for the same number of neurons. Moreover, we show

that using fixed-point over floating-point arithmetics does not yield any loss in the

accuracy for both networks. Both architectures require the same fixed-point world

length of 8 bits to achieve the floating-point-based architectures performance.

Furthermore, we show that, using pruning, both NNs and MFNNs can save

up to 85% of the required storage in one-hidden-layer networks. Hence, saving

the energy required to fetch and process those pruned weights. However, this

requires a different data structure to carry out the vector operations efficiently

with sparse representation and storage. Furthermore, we show that in one-hidden-

layer MFNNs, we are capable of saving up to 87.5% of the required storage by

saving only the signs of the weights while getting rid of all the values.

62

Finally, we demonstrate that MFNNs save a significant amount of energy com-

pared to the conventional NNs without any loss in accuracy. The savings range

from 40% to 60% of the total power depending on the word length of the fixed-

point number format.

Deep and ”convolutional” versions of MFNNs can be also realized in FPGA.

In this class of NNs, the convolution operation is replaced by a sliding vector

product based on the new operator defined in Chapter 2. In general, a significant

amount of energy savings can be achieved by the multiplication free convolutional

neural networks because of the reduced number of multiplication operations per

layer.

63

Bibliography

[1] A. L. Samuel, “Some studies in machine learning using the game of checkers,”

IBM Journal of research and development, vol. 44, no. 1.2, pp. 206–226, 2000.

[2] T. M. Mitchell, “Machine learning. 1997,” Burr Ridge, IL: McGraw Hill,

vol. 45, no. 37, pp. 870–877, 1997.

[3] T. Hastie, R. Tibshirani, and J. Friedman, “Overview of supervised learn-

ing,” in The elements of statistical learning, pp. 9–41, Springer, 2009.

[4] F. Sebastiani, “Machine learning in automated text categorization,” ACM

computing surveys (CSUR), vol. 34, no. 1, pp. 1–47, 2002.

[5] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. E.

Hubbard, and L. D. Jackel, “Handwritten digit recognition with a back-

propagation network,” in Advances in neural information processing systems,

pp. 396–404, 1990.

[6] S. B. Kotsiantis, I. Zaharakis, and P. Pintelas, “Supervised machine learning:

A review of classification techniques,” 2007.

[7] K. Polat and S. Güneş, “Breast cancer diagnosis using least square support

vector machine,” Digital Signal Processing, vol. 17, no. 4, pp. 694–701, 2007.

[8] L. Jack and A. Nandi, “Fault detection using support vector machines and

artificial neural networks, augmented by genetic algorithms,” Mechanical

systems and signal processing, vol. 16, no. 2-3, pp. 373–390, 2002.

64

[9] O. Chapelle, P. Haffner, and V. N. Vapnik, “Support vector machines for

histogram-based image classification,” IEEE transactions on Neural Net-

works, vol. 10, no. 5, pp. 1055–1064, 1999.

[10] D. Ciregan, U. Meier, and J. Schmidhuber, “Multi-column deep neural net-

works for image classification,” in Computer Vision and Pattern Recognition

(CVPR), 2012 IEEE Conference on, pp. 3642–3649, IEEE, 2012.

[11] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent

in nervous activity,” The bulletin of mathematical biophysics, vol. 5, no. 4,

pp. 115–133, 1943.

[12] F. Rosenblatt, “The perceptron: A probabilistic model for information stor-

age and organization in the brain.,” Psychological review, vol. 65, no. 6,

p. 386, 1958.

[13] M. Minsky and S. Papert, “Perceptrons.,” 1969.

[14] S. Grossberg, “Contour enhancement, short term memory, and constancies

in reverberating neural networks,” pp. 332–378, 1982.

[15] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning representations

by back-propagating errors. na, 1986.

[16] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,

no. 7553, pp. 436–444, 2015.

[17] S. Sarkar, V. M. Patel, and R. Chellappa, “Deep feature-based face detection

on mobile devices,” in Identity, Security and Behavior Analysis (ISBA), 2016

IEEE International Conference on, pp. 1–8, IEEE, 2016.

[18] M. W. Gardner and S. Dorling, “Artificial neural networks (the multilayer

perceptron)—a review of applications in the atmospheric sciences,” Atmo-

spheric environment, vol. 32, no. 14, pp. 2627–2636, 1998.

[19] N. Qian, “On the momentum term in gradient descent learning algorithms,”

Neural networks, vol. 12, no. 1, pp. 145–151, 1999.

65

[20] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal

representations by error propagation,” tech. rep., California Univ San Diego

La Jolla Inst for Cognitive Science, 1985.

[21] Y. LeCun, “The mnist database of handwritten digits,” http://yann. lecun.

com/exdb/mnist/, 1998.

[22] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning

applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,

pp. 2278–2324, 1998.

[23] E. Kussul and T. Baidyk, “Improved method of handwritten digit recognition

tested on mnist database,” Image and Vision Computing, vol. 22, no. 12,

pp. 971–981, 2004.

[24] R. Salakhutdinov and H. Larochelle, “Efficient learning of deep boltzmann

machines,” in Proceedings of the Thirteenth International Conference on Ar-

tificial Intelligence and Statistics, pp. 693–700, 2010.

[25] H. Tuna, I. Onaran, and A. E. Cetin, “Image description using a multiplier-

less operator,” IEEE Signal Processing Letters, vol. 16, no. 9, pp. 751–753,

2009.

[26] A. Suhre, F. Keskin, T. Ersahin, R. Cetin-Atalay, R. Ansari, and A. E.

Cetin, “A multiplication-free framework for signal processing and applica-

tions in biomedical image analysis,” in Acoustics, Speech and Signal Pro-

cessing (ICASSP), 2013 IEEE International Conference on, pp. 1123–1127,

IEEE, 2013.

[27] C. E. Akbaş, O. Günay, K. Taşdemir, and A. E. Çetin, “Energy efficient co-

sine similarity measures according to a convex cost function,” Signal, Image

and Video Processing, vol. 11, no. 2, pp. 349–356, 2017.

[28] H. S. Demir and A. E. Cetin, “Co-difference based object tracking algorithm

for infrared videos,” in Image Processing (ICIP), 2016 IEEE International

Conference on, pp. 434–438, IEEE, 2016.

66

[29] C. E. Akbaş, A. Bozkurt, A. E. Çetin, R. Çetin-Atalay, and A. Üner,

“Multiplication-free neural networks,” in Signal Processing and Communica-

tions Applications Conference (SIU), 2015 23th, pp. 2416–2418, IEEE, 2015.

[30] D. Badawi, E. Akhan, M. Mallah, A. Üner, R. Çetin-Atalay, and A. E. Çetin,

“Multiplication free neural network for cancer stem cell detection in h-and-e

stained liver images,” in SPIE Commercial+ Scientific Sensing and Imaging,

pp. 102110C–102110C, International Society for Optics and Photonics, 2017.

[31] A. Afrasiyabi, B. Nasir, O. Yildiz, F. T. Y. Vural, and A. E. Cetin, “An

energy efficient additive neural network,” pp. 1–4, 2017.

[32] I. Aleksander and H. Morton, An introduction to neural computing, vol. 3.

Chapman & Hall London, 1990.

[33] M. Hilbert and P. López, “The world’s technological capacity to store, com-

municate, and compute information,” science, vol. 332, no. 6025, pp. 60–65,

2011.

[34] S. S. Sarwar, S. Venkataramani, A. Raghunathan, and K. Roy, “Multiplier-

less artificial neurons exploiting error resiliency for energy-efficient neural

computing,” in Design, Automation & Test in Europe Conference & Exhibi-

tion (DATE), 2016, pp. 145–150, IEEE, 2016.

[35] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and con-

nections for efficient neural network,” in Advances in Neural Information

Processing Systems, pp. 1135–1143, 2015.

[36] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net: Imagenet

classification using binary convolutional neural networks,” in European Con-

ference on Computer Vision, pp. 525–542, Springer, 2016.

[37] J. Y. F. Tong, D. Nagle, and R. A. Rutenbar, “Reducing power by op-

timizing the necessary precision/range of floating-point arithmetic,” IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 8, no. 3,

pp. 273–286, 2000.

67

[38] A. R. Omondi and J. C. Rajapakse, FPGA implementations of neural net-

works, vol. 365. Springer, 2006.

[39] Y. Cao, Y. Chen, and D. Khosla, “Spiking deep convolutional neural net-

works for energy-efficient object recognition,” International Journal of Com-

puter Vision, vol. 113, no. 1, pp. 54–66, 2015.

[40] K. Orimo, K. Ando, K. Ueyoshi, M. Ikebe, T. Asai, and M. Motomura,

“Fpga architecture for feed-forward sequential memory network targeting

long-term time-series forecasting,” in ReConFigurable Computing and FP-

GAs (ReConFig), 2016 International Conference on, pp. 1–6, IEEE, 2016.

[41] A. Oppenheim, A. Willsky, and S. Nawab, Signals and Systems. Prentice-

Hall signal processing series, Prentice Hall, 1997.

[42] Xilinx, VC707 Evaluation Board for the Virtex-7 FPGA User Guide, August

2016. Available at https://www.xilinx.com/support/documentation/

boards_and_kits/vc707/ug885_VC707_Eval_Bd.pdf, v1.7.1, last accessed

on 05-Dec-2017.

[43] Xilinx, 7 Series FPGAs Data Sheet: Overview, August 2017.

Available at https://www.xilinx.com/support/documentation/data_

sheets/ds180_7Series_Overview.pdf, v2.5, last accessed on 05-Dec-2017.

[44] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep learning

with limited numerical precision,” in Proceedings of the 32nd International

Conference on Machine Learning (ICML-15), pp. 1737–1746, 2015.

[45] A. Finnerty and H. Ratigner, “White paper: Reduce power and cost by con-

verting from floating point to fixed point,” Tech. Rep. WP491, Xilinx, March

2017. Available at https://www.xilinx.com/support/documentation/

white_papers/wp491-floating-to-fixed-point.pdf, v1.0, last accessed

on 11-Dec-2017.

[46] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep

neural networks with pruning, trained quantization and huffman coding,”

arXiv preprint arXiv:1510.00149, 2015.

68

[47] P. Gysel, M. Motamedi, and S. Ghiasi, “Hardware-oriented approximation

of convolutional neural networks,” arXiv preprint arXiv:1604.03168, 2016.

[48] A. Boudabous, F. Ghozzi, M. Kharrat, and N. Masmoudi, “Implementation

of hyperbolic functions using cordic algorithm,” in Microelectronics, 2004.

ICM 2004 Proceedings. The 16th International Conference on, pp. 738–741,

IEEE, 2004.

[49] I. Kuon and J. Rose, “Measuring the gap between fpgas and asics,” IEEE

Transactions on computer-aided design of integrated circuits and systems,

vol. 26, no. 2, pp. 203–215, 2007.

[50] L. Deng, K. Sobti, and C. Chakrabarti, “Accurate models for estimating area

and power of fpga implementations,” in Acoustics, Speech and Signal Process-

ing, 2008. ICASSP 2008. IEEE International Conference on, pp. 1417–1420,

IEEE, 2008.

[51] A. Lazarevic and Z. Obradovic, “Effective pruning of neural network classifier

ensembles,” in Neural Networks, 2001. Proceedings. IJCNN’01. International

Joint Conference on, vol. 2, pp. 796–801, IEEE, 2001.

[52] E. D. Karnin, “A simple procedure for pruning back-propagation trained

neural networks,” IEEE Transactions on Neural Networks, vol. 1, no. 2,

pp. 239–242, 1990.

[53] E. Kreyszig, Introductory functional analysis with applications, vol. 1. wiley

New York, 1989.

[54] G. Cybenko, “Approximation by superpositions of a sigmoidal function,”

Mathematics of Control, Signals, and Systems (MCSS), vol. 2, no. 4, pp. 303–

314, 1989.

[55] K. Hornik, “Approximation capabilities of multilayer feedforward networks,”

Neural networks, vol. 4, no. 2, pp. 251–257, 1991.

[56] S.-C. Huang and Y.-F. Huang, “Bounds on the number of hidden neurons in

multilayer perceptrons,” IEEE transactions on neural networks, vol. 2, no. 1,

pp. 47–55, 1991.

69

Appendix A

Comparison of Operators

According to The Universal

Approximation Theorem

The universal approximation theorem states that a one-hidden-layer neural net-

work can approximate any arbitrary function defined on a unit hypercube [54,55].

Theorem A.0.1 (Universal Approximation Theorem). Let ϕ(.) be a nonlinear,

bounded, sigmoidal function. Let Im donate the m-dimentional hybercube [0, 1]m.

Then given any ε > 0 and any continuous function, f(x), defined on x ∈ Im,

there exists an integer N, real constants vi, bi ∈ R and a real vectors wi ∈ Rm

such that we may define F (x) as

F (x) =
N∑
i=1

viϕ(wT
i x+ bi) (A.1)

such that F (x) is an approximation of f(x), that is:

|F (x)− f(x)| < ε (A.2)

In other words, F (x) is dense on L1(Im). The theorem still holds for any compact

subset of Rm replacing Im.

70

A.1 The Universal Approximation Theorem for

Multiplication Free Neural Networks

Let the multiplication free neurons be defined as:

ol = al ◦Wl ⊕ ol−1 + bl (A.3)

where al is a normalization vector and ◦ is the element-wise product.

Proposition 1. The Multiplication Free Neural Network (MFNN) with identity

activation functions, f(x) = x, is capable of realizing functions that are dense in

L1(Im).

To prove the previous proposition, the following two lemmas are proved first:

Lemma A.1.1. There exist a MFNN with identity activation functions that can

compute g1(x;w′, b′) = w′Tx+ b′.

Proof. Composing a MFNN that computes g1(x;w′, b′) = w′Tx+ b′ is enough to

prove this lemma. First we define 0+ term, such that sgn(0+) , 1 and |0+| , 0.

Remember that, sgn(0) , 0. Now, we can construct a two-layer MFNN that

computes g1(x;w′, b′) = w′Tx + b′ for any given w′ ∈ Rm and b′ ∈ R with the

following parameters:

• Hidden layer 1,

W1 =

0+ 0 0 . . . 0

0 0+ 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0+

 b1 =

0

0
...

0

 a1 =

w′1

w′2
...

w′m

• Hidden layer 2,

W2 =

0+

0+

0+

0+

 b2 =
[
b′
]
a2 =

[
1
]

71

Then, the hidden layers outputs o1 and o2 can be represented as follows:

o1 = a1 ◦W1 ⊕ x+ b1 =

w′1x1

w′2x2
...

w′mxm

o2 = a2 ◦W2 ⊕ o1 + b2 = w′

T
x+ b′ = g1(x;w′, b′)

Lemma A.1.2. There exist a MFNN defined with the identity activation function

that can compute g2(x) = sgn(x).

Proof. Similar to the proof of A.1.1, composing a MFNN that computes g2(x) =

sgn(x)′ is enough to prove this lemma. We can construct a two-layer MFNN that

computes g2(x) = sgn(x) with the following parameters:

• Hidden layer 1,

W1 =
[
2 1

]
b1 =

[
0 0

]T
a1 =

[
1 1

]T
• Hidden layer 2,

W2 =
[
2 1

]T
b2 =

[
0
]
a2 =

[
1
]

The output of the network can be simplified using the fact that, ∀x ∈ R and ∀b ∈
R+,

sgn(x+ bsgn(x)) = sgn(x)

Then, the hidden layers outputs o1 and o2 can be represented as follows:

o1 = a1 ◦W1 ⊕ x+ b1 =

[
x1 + 2sgn(x1)

x2 + sgn(x2)

]

o2 = a2 ◦W2 ⊕ o1 + b2 = sgn(x) = g2(x)

72

Proof of Proposition 1. Using Lemma A.1.1 and Lemma A.1.2 we can construct

yi(x;w′i, b
′
i) = g2(g1(x;w′i, b

′
i)) = sgn(w′i

Tx+ b′i) for i = 1, 2 ..., N .

Then we use Lemma A.1.1 again to perform the weighted sum over y = {yi}Ni=1

as follows:

F (x; {vi}Ni=1, {w′i}Ni=1, {bi}Ni=1) = g1(y(x; {w′i}Ni=1, {bi}Ni=1);v
′,0)

= vTy + 0

=
N∑
i=1

viyi

=
N∑
i=1

visgn(w′i
T
x+ bi)

(A.4)

We see that the computed functions F (x) realized by MFNNs satisfy the Univer-

sal Approximation Theorem A.0.1, since sgn is a sigmoidal function. Therefore,

the functions computed using MFNNs are dense in L1(Im). Moreover, two hidden

layers are needed to implement g2(x) = sgn(x), which can be avoided by using a

sigmoidal activation function on the output of g1(x).

A.2 One-Hidden-Layer Upper Bound

Theorem A.0.1 states that conventional neural network with one-hidden-layer is

capable of realizing functions that are dense in L1(Im). However, the number of

hidden neurons needed N is not restricted. Huang et al. proved an upper bound

for the number of hidden neurons needed for a finite input subset S ∈ Em [56].

The upper bound found k is the input subset size.

For this to hold, there should be at least one separable element in S. That is,

there exist an x1 ∈ S such that:

sgn(wT
1 x+ b1) =

{
1 if x = x1

0 otherwise
(A.5)

then, we construct S1 = S − {x1}, then, we can similarly separate x2 from S1

and so on. Huang et al. proved that there are w1 and b1 so that A.5 holds. This

analysis is based on the neural network which uses multiplication [56].

73

We proved earlier in Section A.1 that MFNNs with identity activation functions

satisfies the Universal Approximation Theorem. However, we needed more than

one-hidden-layer network. Here we discuss if the upper limit set by Huang et al. is

still valid for the one-hidden-layer MFNNs or the one-hidden-layer Binary-Weight

Networks (BWNs) [36].

A.2.1 Multiplication Free Neural Network

Without any loss in generality, let x ∈ R2 for simplicity,. Consider the set of

points X = {x1,x2,x3,x4,x5,x6,x7,x8} where the coordinates of the points

are defined in Table A.1 where e1 > e2 > 0.

Point x1 x2 x3 x4 x5 x6 x7 x8

Coordinates
e1 e2 −e1 −e2 −e1 −e2 e1 e2
e2 e1 e2 e1 −e2 −e1 −e2 −e1

Table A.1: Set X points coordinates

Let, v1(x) be defined as v1(x) = wT
1 ⊕x+ b1. To separate x1 from the points

in the set there should exist w1 and b1 such that:

h1(x) = sgn(v1(x))

= sgn(sgn(wT
1)x+wT

1 sgn(x1) + b1) =

{
1 if x = x1

0 otherwise

(A.6)

Lemma A.2.1. To separate x1 from x2, sgn(w11) = −sgn(w21) condition should

be met.

Proof. If sgn(w11) = sgn(w21) = 1, then v1(x1) = e1 + w11 + e2 + w21 + b1

and v1(x2) = e2 + w21 + e1 + w11 + b1 = v1(x1). Therefore, h1(x1) = h1(x2) is

always true. This still holds when sgn(w11) = sgn(w21) = −1.

74

Lemma A.2.2. To separate x1 from x3 and x7 sgn(w11) = sgn(w21) condition

should be met.

Proof. Let sgn(w11) = 1 and sgn(w21) = −1, then

v1(x1) = e1 + w11 − e2 + w21 + b1, v1(x3) = −e1 − w11 − e2 + w21 + b1,

v1(x7) = e1 + w11 + e2 − w21 + b1.

From these we get v1(x3) ≤ v1(x1) ≤ v1(x7) since e1 > e2 > 0.

Therefore, we cannot separate x1 from x3 and x7, since no matter what value

b1 we choose, we cannot achieve the criteria of h1(x1) = 1 while h1(x3) = 0 and

h1(x7) = 0. This still holds when sgn(w11) = −1 and sgn(w21) = 1.

From Lemma A.2.1 and Lemma A.2.2 we get a contradiction of the sign values

of w11 and w21. Therefore, x1 cannot be separated from the set X. Similarly we

can prove that any xi ∈X cannot be separated from the set X using a MFNN.

Using a one-hidden-layer MFNN, we can separate x1 from xi for i = 2, 3...6,

but not from x7 and x8.

A.2.2 Binary-Weight Network

Similarly to the discussion of Section A.2.1, let X be the set of points defined in

Table A.1. Let v1(x) be defined as v1(x) = sgn(wT
1)x+ b1. To separate x1 from

the points in the set there should exist w1 and b1 such that:

h1(x) = sgn(v1(x))

= sgn(sgn(wT
1)x+ b1) =

{
1 if x = x1

0 otherwise

(A.7)

75

Lemma A.2.3. To separate x1 from x2, sgn(w11) = −sgn(w21) condition should

be met.

Proof. If sgn(w11) = sgn(w21) = 1, then v1(x1) = e1 + e2 + b1

and v1(x2) = e2 + e1 + b1 = v1(x1). Therefore, h1(x1) = h1(x2) is always true.

This still holds when sgn(w11) = sgn(w21) = −1.

Lemma A.2.4. To separate x1 from x6, sgn(w11) = sgn(w21) condition should

be met.

Proof. If sgn(w11) = 1 and sgn(w21) = −1, then v1(x1) = e1 − e2 + b1

and v1(x6) = −e2 + e1 + b1 = v1(x1). Therefore, h1(x1) = h1(x6) is always true.

This still holds when sgn(w11) = −1 and sgn(w21) = 1.

From Lemma A.2.3 and Lemma A.2.4 we get a contradiction of the sign values

of w11 and w21. Therefore, x1 cannot be separated from the set X. Similarly we

can prove that any xi ∈X cannot be separated from the set X using a BWN.

Using a one-hidden-layer BWN, we can separate x1 from x2,x3,x4, but not

from xi and for x5,x6,x7,x8.

A.3 Summary

We proved earlier that MFNNs satisfy the Universal Approximation Theorem.

Similarly, this could be proven for BWNs. However, both networks require more

than one-hidden-layer. Also we showed that using MFNN is slightly better than

BWN in terms of separating the data, although both fail to separate the data

perfectly using only one-hidden-layer network. Binary-Weight neurons can sep-

arate only half of the selected set X, while the multiplication free neuron can

separate three-quarters of the same selected set X. This is due to the extra

term in the mf-operator. which stores the absolute value of the weight, while the

Binary-Weight operator only uses the sign information.

76

