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A Solution to the Diagonalization Problem by
Constant Precompensator and Dynamic
Output Feedback

VASFI ELDEM anp A. BULENT OZGULER

Abstract—A solution is obtained for the problem of diagonalization
(row by row decoupling) by a constant precompensator and a dynamic
output feedback compensator of a p X m linear time-invariant system.
The solvability condition is compact and concerns the dimension of a
single subspace defined via the concepts of ‘‘essential rows’’ and *‘static
kernels’’ associated with the transfer matrix. A characterization of the set
of all solutions to the problem is also given. In solving this dynamic
feedback problem, we also obtain a complete solution to its state-
feedback counterpart, namely, the restricted state-feedback problem of
diagonalization.

1. INTRODUCTION

ONINTERACTING control of linear multivariable systems

occupied a great deal of attention since the early work of
Morgan [10], Rekasius [14], Falb and Wolovich [7], Morse and
Wonham [11], Basile and Marro [1], Cremer [3], and others.
From a pure point of view of ‘‘design,’’ the algebraic theory of
noninteracting control is unsatisfactory and here ‘‘adaptive’’ or
‘‘almost noninteracting control”’ approaches like that of [18] (also
see [17]) or [19] may be preferable. However, as the algebraic (or
‘“‘geometric’’ in the sense of Wonham [17]) studies of systems
taught us, such puristic approaches yield many clues as to the finer
structure of control systems and a knowledge of this is a
prerequisite for a good theory of design.

There is now a renewed interest in noninteracting control
problems mainly because most of these problems remain among
the unsolved in spite of the maturity attained in the algebraic and
geometric techniques used in dealing with such problems. A
recent solution in [9] and [5] to the diagonalization by the state
feedback problem of [10] is another reason for the revival of
interest.

This paper presents a solution to the diagonalization problem by
dynamic output feedback and a constant precompensator of a p X
m transfer matrix. In the special case p = m, the problem was
stated and solved in [2] by an extension of a result of [16]. The
aspect of internal stability has been later incorporated by [6].

(P) Problem Definition: Let Z be a strictly proper transfer
matrix of size p X m. Determine a p X p dynamic feedback
compensator Z. and an m X p constant precompensator K such
that the closed-loop transfer matrix Z, = (I + ZKZ.)"'ZK is
diagonal and nonsingular.

Fig. 1 illustrates the type of compensation used on Z. The
problem (P) can be stated as an open-loop problem by a recent
result of [12]. (P) is solvable if and only if there exists a
constant m X p matrix K such that ZK is DCDD. The concept
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of DCDD is defined in Section II and it is easy to see that *“if ZK
is DCDD, then it is row proper.’” This suggests the idea of solving
the problem in the following two stages.

(P1) Determine a constant matrix L for which ZL is row
proper.

(P2) Determine a matrix K in the class of solutions to (P1) for
which ZK is DCDD. One immediately observes that (P1) is
closely related to another diagonalization problem which is the
state feedback version of (P); see [15]. To be precise: There
exists a constant matrix L of size m X p such that ZL is row
proper if and only if a reachable realization of Z can be
diagonalized by restricted static state feedback. (This result,
although well known, does not seem to be explicitly stated in the
literature.) Solutions to this subproblem have been given in [8]
and [4]. In Theorem (3.5), we present an alternative but closely
related solution to (P1) in a form most suitable to our purpose and
examine the set of solutions to (P1) in detail, obtaining a
characterization in Theorem (4.2). This is a new result on (P1).

An important feature of our solution in Theorem (3.11) to (P) is
that the solvability condition is in closed form and can be checked
by a finite algorithm. Our solution technique also leads in Section
IV to a characterization of the set of all solutions to problems (P1)
and (P2) above. This yields the set of all solutions (K, Z.) to (P) in
Section IV, by making use of some results in [13]. One aspect of
the solvability condition given in Theorem (3.11) which is of
interest but not addressed in this paper is the relation between S,
and the more familiar geometric subspaces of, say, [[7]. One can,
however, foresee that such a relation will be involved enough to
deserve inspection on its own.

Remark I: Given the compensation scheme above, one might
consider more general versions of (P): i) Z, may be required to be
block diagonal with specified block sizes; ii) the precompensator
may be external to the feedback loop; iii) the requirement of the
internal stability of the closed loop may be added; iv) two groups
of outputs: ‘‘controlled’’ and ‘‘measured’’ may be distinguished.
Although this paper does not directly address these generalized
problems, we shall comment on some in Remarks 2 and 3.

I1. EsseNtiaAL ROw FORM, Row PROPERNESS, AND DIAGONAL
CAUSALITY DEGREE DOMINANCE

In this section, we define and examine various concepts like
“‘the essential rows of a constant matrix,’’ ‘‘row properness of a
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rational matrix,”’ and ‘‘diagonal causality degree dominance of a
transfer matrix.”’ These concepts and their properties are used in
obtaining the main results of Section III.

Let K be in R?*™. Following [3], we call the ith row k; of K an
essential row of K iff it is linearly independent of the other rows
of K. It is easy to see that a basis matrix J of the left kernel of
K(JK = 0) has the property that £, is essential iff the /th column
of J is identically zero. An immediate consequence of this is that
the spaces spanned by the essential rows of K and the nonessential
rows of K have zero intersection.

The essential kerne! N,(K') of K is defined by

N,(K) := {lin R™ : k;l=0 for all nonessential rows k; of K'}.

In case K had full row rank, we let N, (K) = R™ for
convenience. Let us say that K is in essential row form (erf) iff
all nonzero rows of K are linearly independent, i.e., iff all
nonessential rows (if any) of K are identically zero. We now list
some easy but useful facts, pertaining to the notion of ‘‘essential
rows,”” stated without proofs as they are direct consequences of
the definitions.
Lemma (2.1): Let K be in RP*™ and L be in R™>*".

i) Ker K S N,(K).

ii) K is in erf iff N,(K) = R™.

iii) All the nonessential rows of K are zero in KL iffIm L €
N.(K).

iv) If Im L = N (K), then KL is in erf.

A p X m rational matrix Z can be uniquely represented as
Z=TZy+Y 2.2)

where T' is diagonal and of the form I' = diag {z#i} with y;
denoting the ith row causality-degree of Z, Z, is in R?*™, and Y
is a rational matrix having strictly less row degrees than Z, i.e., Y
is such that '~ 'Y is strictly proper. If a row 7 of Z is zero, then we
let T; = 1 to have T" nonsingular for all Z. The representation
(2.2) of Z will be referred to as the standard representation of
Z. We call Z row proper iff Z,, is of full row rank. If Z is proper,
then u; < 0 is the order (multiplicity) of the zero at infinity of the
ith row of Z; see, e.g., [5]. If Z is strictly proper and has full row
rank, then ' ™' =: D is a strictly polynomial matrix and it will be
called the row degree matrix of Z. Let Z be in R(z)?*™ and let
L be in R™*", By the standard representation of ZL it readily
follows that

Ker L © Ker (ZL);. (2.3)

The relation of (ZL), to Z, L is usually quite intricate. One can
prove, however, the following fact.

Lemma (2.4): Let Zbe in R(z)?*™. If L in R™*" is such that
ZL is row proper, then Z,L is in erf.

Proof:LetZ =TZ, + Yand ZL = T, (ZL), + Y, be the
standard representations of Z and ZL. Since the ith row degree of
ZL is less than or equal to the /th row degree of Z, we have that
I'-1T, is proper. Consequently, I' ™'Y, is strictly proper. We can
write

ZhL:I"*lI‘L(ZL)h_*_I‘*l YL—F71 YL

where the last two terms are strictly proper. It follows that Z, L =
(I'"'T,)o(ZL);, where (A), denotes the coefficient of z° in the
Laurent series expansion of A. By row properness of ZL, we have
all the rows of (ZL), linearly independent. On the other hand,
(P~'T,)o is a diagonal matrix of 0’s and 1s at its diagonal entries.
Therefore, all the nonzero rows of Z,L are linearly indepen-
dent.

Consider now, a nonsingular and strictly proper Z in R(z)?*?;
Z is called diagonally causality degree dominant (DCDD) iff

deg (Z;;)=deg (Z;) +deg (Z); Lj=1, -, p;i#j

where deg(-) denotes the causality degree [13] of its argument.
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This degree inequality implies, by strict properness of Z, that deg
(Z;) < deg (Z;) for all i # j. Hence, a DCDD Z is also row
proper. In fact, if Z is DCDD, then Z, is diagonal and nonsingular
by the latter inequality. A more compact way of expressing the
notion of DCDD is: Z is DCDD iff D(Z).D is proper, where
D is the row degree matrix of Z, and (Z ). denotes the p X p
matrix obtained from Z on replacing its diagonal entries by zeros.
(For a more detailed discussion of DCDD, the reader is referred
to [12].)

Let a strictly proper transfer matrix Z in R(z)?*™ be of full
row rank. Let Z denote the p X m matrix obtained from Z on
replacing its ith row by a zero row. Also let A* denote the strictly
polynomial part of a rational matrix A. Note that any rational
matrix 4 can be uniquely writtenas 4 = A~ + A*, where A~ is
the proper part and A* is the strictly polynomial part in its
Laurent series expansion. We can now state a still different
characterization for the notion of DCDD. (Contrast the case L =
1)

Lemma (2.5): Let L be in R™*7 such that ZL is nonsingular
and let /; denote the ith column of L. The p X p transfer matrix
ZL is DCDD if and only if

(DL)iD 201 =0;  i=1, - (2.6)
where D; is the row degree matrix of ZL.

Proof: The matrix ZL is DCDD iff D, (ZL ) D, is proper.
Noting that the i th column of (ZL ). is given by Z\¥/;, this holds
iff (D) Dy Z91; is proper. This in turn holds iff (2.6) is valid. W

The question we pose at the end of this section is the following.
Given a strictly proper and full row rank Z in R(z)?*™, when is
there a K in B™*? such that ZK is DCDD and the ith row degrees
of Z and ZK are the same? The answer to this question is given by
Theorem (2.8) and is the key to the resolution of (P2).

Let D be the row degree matrix of Z and let [K;:P;] be a
minimal polynomial basis matrix of Ker (D;DZ¥]*;i =1, - -+,
p, where K; denotes the columns of degree zero (constant
columns) and P; denotes the columns of strictly positive degrees in
the basis matrix. Note that although the minimal polynomial basis
of a rational vector space is nonunique, Im K; is nevertheless
unique by the invariance of the column degrees of a minimal
polynomial basis. Define

K(Z):=[K,: " K,]

which is in R"*K with k : = 3;dim {Ker [D;DZ"}* N R™} and
i ranging from 1 to p. Note that some of the blocks in K(Z ) might
be missing depending on whether R™ N Ker [D;DZV]* = {0}
or nonzero. Observe that

ZUK=0;  i=1, -, p. 2.7
In fact, let Z = D~'Z, + Y be the standard representation of Z
and note that 0 = [DiiDZ(i)]+Ki = [D”Z(h’) + DiiDY(i)]+Ki
implies Z{K; = — D '[D;DY"]* K;, where the right-hand side
is strictly proper. This yields (2.7).

Theorem (2.8): There exists K, in R™*? such that ZK,, is
DCDD and has the same row degrees as Z if and only if rank
[Z,K] = p, where K := K(Z). Such a K,, when it exists, is
given by K, = KU, where U = diag {u;} is a constant matrix

satisfying Z,K,u; = e;w; fori = 1, - - -, p with e; denoting the i th
column of the identity matrix and 0 # w; is in R.
Proof:

[Only if] Let D be the row degree matrix of Z. If
D(ZK,)oD is proper, then the ith column k, of K, is in Ker
[D:DZP)* by Lemma (2.5). Thus, k,; is in Im K}, i.e., k, =
K;u; for some constant column vector u;. It follows on comparing
the standard representations of Z and ZK, that (ZK,), = Z,K,
which is nonsingular and diagonal by the fact that ZK,, is DCDD.
By (2.7), we have

Z;,KO:Z,,[Klul AN Kpup]:ZhKU
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where U := diag {u;}. It follows that rank [Z,K] = p and
Z,Ku; = e;w; with w; : = (Z,K,); by this equality.

[If] By (2.7), we have rank [Z,K;] < 1 fori =1, - -+, p.
If p = rank [Z,K], then it must be that rank [Z,K;] = 1. Let ;
be such that Z,K;u; = e; fori = 1, --+, p and let U : = diag
{u;}. Note that such ;’s exist again by (2.7). Defining K, : = KU
we have that Z,K, = I and that [D;DZD)* K;u; = 0, foralli =
1, -+ -, p, where K,u; is actually the ith column of X,,. Since Z,K,,
= I, the ith row degree of ZK, is —deg (D;;) which is the ith row
degree of Z. Therefore, by Lemma (2.5), ZK, is DCDD. [ |

We close this section by the following result which will be used
in the next section.

Lemma (2.9): Let K := K(Z) and K, := K(ZKL) for a
given strictly proper transfer matrix Z and a constant nonsingular
L. Then, K, is of full row rank if and only if Z and ZKL have the
same row degrees.

Proof: The “‘only if”” part readily follows since multiplica-
tion on the right by a constant full row rank matrix leaves the row
degrees unchanged. To see the ““if’” part, let K = [K; -+ i K]
and Ky = [Kq i+ - *: K,]. Let D be the row degree matrix of Z,
and hence also of ZKL by hypothesis. By definition of Ky, for 7
=1, ---, p, we have

Im (Ko;) = Ker [D;D(ZKL)D}* N R4
=Ker {[D;D(Z)D}* KL} N R4

where g is the number of columns of K. This implies, as Ker
(KL) <€ Ker {{D;D(Z)D*KL} N R4, that Ker (KL) € Im
Ky; € Im K. Let N, be any constant matrix such that KLN; = K.
By the definition of K;, we have (D;DZ)* K; = 0 implying that
[D;D(ZKL)"}*N; = 0. Hence, Im N; € Im Ky, and Im K, <
Im (KL Ky;). Consequently, Im (KL) € Im (KLK,) < Im (KL)
and we have Im (KL) = Im (KLK,). Therefore,

dim [Im (KL)]=dim [Im K] —dim [Ker (KL) N Im K]
=dim (Im Ky) — dim (Ker KL)

yielding that dim [Im K,] = R or that K}, is of full row rank. W

III. BRINGING A TRANSFER MATRIX TO ROW PROPER AND
DCDD ForMS BY A CONSTANT PRECOMPENSATOR

Throughout this section, Z in R(z)}?*™ is a strictly proper
transfer matrix of full row rank. In this section, we resolve the
following two problems introduced in Section I.

(P1) Determine L in R™*" such that ZL is row proper.

(P2) Determine K in R™*” that ZK is DCDD.

A solution L* to (P1) is called maximal iff for any solution L to
(P1) one has deg (ith row of ZL) =< deg (ith row of ZL*). A
maximal solution K* to (P2) is similarly defined. The existence of
maximal solutions to both problems will also be established in this
section. As mentioned in Section I, the problem (P1) is equivalent
to finding a restricted state feedback such that the closed-loop
transfer matrix is row decoupled (i.e., it is nonsingular and
diagonal). The problem (P2), on the other hand, is equivalent to
the diagonalization problem by dynamic output feedback and
constant precompensator (P) by a main result of {12]. We now
restate this result in our terminology.

Lemma (3.1): The problem (P) is solvable if and only if (P2) is
solvable. ii) If K is a solution to (P2), then the pair

(Kv ZC) L= (Ka - [(ZK)illnff)

is a solution to (P).

Proof: By [12, Lemima (1)], (P) has a solution iff there exists
on m X p constant matrix K such that ZK is nonsingular and
DCDD. The expression for the solution to (P) follows by the
proof of the same lemma. |

In the subsequent paragraphs. we first obtain an alternative
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solution to those of [8] and [4] for (P1) by vigorously exploiting
the notion of ‘‘essential row form.’’ The main reason for our
interest in this alternative solution is that it is most suitable for
obtaining a solution to (P2).

Let us define a sequence {NV;:i = 1} of matrices in R”*" and a
sequence { V;:i = 1} of subspaces of R™ as follows.

Im (N)=N,(Z;) and Im N;, 1 =N,(ZN, -+ Ny) for i=1.
(3.2a)
Vi=Im Nyand Vi=Im (N, -+ N)) fori=1. (3.2b)

We first observe that the subspace V; is independent of the choice
of matrices {N;:j < i} for all i. We prove this fact by the
following lemma.

Lemma (3.3): Let {N;:i = 1} and {M;:i = 1} be two
sequences of matrices in R™*™ satisfying (3.2a). Then

ImN, --- N)=Im (M, - M) for all i=1.
Proof: The required equality will be established by induction

oni. Fori = 1, the equality clearly holds. If, for some j = 1, one
has Im (N, -+ N;) = Im (M, - -+ M)), then M, --- M; = N,

- N;K for some nonsingular K in R™*". It follows on
comparing the standard representations of ZN, -+ N; and ZM,
-+ M;that (ZM, --- M}), = (ZN, --+ N;),K. Since Im N;
= N{ZN, -+ N)), and Im M;,, = N(ZM, -~ M), by
definition, we further have that (ZN, * -+ N;),KM;., is in erf, by
Lemma (2.1-iv). Hence, by Lemma (2.1-iii), Im (KM;,,) €
NA(ZN, -+ Nj), = Im N;,,. Using nonsingularity of K, we
similarly obtain Im K~ !N, € Im M, . Therefore, Im (KM, )
= Im N;.y, ie., M;,, = K-'N;. L for some nonsingular L in
Rm=m: yielding M, -~ M;,, = Ny --* Njy,LorlIm (M, ---
A4j+1) = Im (N, A,j+l) n

As {V;:i = 1} is a decreasing sequence, i.e., V; 2 V;,  forall
i = 1, there is an integer r < dim V; < matwhich V, = V.

Lemma (3.4): The following statements are equivalent:

l) V, = Vr+1;

ii) (ZN, - -+ N,), is in erf;

iil) ZN; --- N, and ZN,; --- N,N,,, have the same row
degrees.

Proof: [ii) implies i)] By ii) and (2.1-ii), N, is nonsingular
yielding i). [i) implies iii)] By i), Ny * < NN,y = N, -+ NM
for some nonsingular constant M implying ZN, -+ N,,, = ZN,
-+ N, M. This last equality clearly yields the row degree equality
as M is nonsingular. [iii) implies ii)] By iii), the row degrees of
ZN, :++ N, remain unchanged when multiplied by N,,, on the
right. It must be that (ZN; - - - N,), is in erf since otherwise, by
the definition of N,,; and by (2.1-iii), there would have been
degree reductions in those rows of ZN, * - - N, that correspond
to the nonessential rows in (ZN, - -+ N,),. [ |

This result implies that V;, = V,,, for all j = r, since by
Lemma (2.1-i1) N,,,, as well as N, for j = r + 1, have to be
nonsingular. We have thus shown that the decreasing sequence of
subspaces { V;:i = 1} converge to V, in at most m steps. We can
now give a solution to (P1).

Theorem (3.5): The problem (P1) has a solution if and only if

dim [V,/(V, N Ker Z)]=p.

In case (PI) is solvable, a maximal solution L* is given by L*
Ny« -+ N, which is related to any other solution L of (P1) by L
L*M, for some M in R™*™,

Proof: Let L be a solution to (P1) for Z, i.e., L in R™*™ is
such that (ZL), has full row rank. By Lemma (2.2), Z, L is in erf
and by Lemma (2.1-iii) L = N, M, for some M, in R"*™  Now,
M, is a solution to (P1) for the transfer matrix ZN, implying as
above that M, = N,M, for some M, in R™*™. Thus, by
induction, we have L = N, + -+ N;M,, for some M; in R *™ and

(Il
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for any i/ = 1. In particular, L = -+ N,M,. On the other
hand, as ZL = ZN, -++ N.M,, and hence, ZN, - -+ N, has full
row rank, we further have

p=dim [Im (ZN, -+ N,)]=dim [Im (N, - -+ N,)]

—dim [Ker Z N Im (N| <- - N,)]

or equivalently, dim [V,/(V, N Ker Z)] = p. Conversely,
suppose p = dim [ V,/(V, N Ker Z)] so that dim [Im (ZN; - -+
N} = p. Consider L* = N, - -+ N, for which ZL* has full row
rank. By Lemma (3.4), we know further that (ZL*), is in erf.
Consequently, (ZL*), must have all its rows essential, i.e
(ZL*), must have full row rank. It follows that L* is a solution to
(P1). The constructed solution L* is related, by above, to any
other solution L by L = L*M,, for some M, in R"*", Now, L*
is a ‘“‘maximal’’ solution to (P1) in the sense that the /th row
degree of ZL* is greater or equal to the ith row degree of ZL fora
solution L to (P1). B

Given any strictly proper transfer matrix Y of size p X ¢, let
L(Y) denote a basis matrix for the limit V,(Y') as i increases of
the sequence { V;(Y);i = 1}, where V,(Y) is the subspace given
by (3.2) in which Z is replaced by Y. Theorem (3.5) shows that a
maximal solution to (P1) for Y is given by the completion
[L(Y):0] of L(Y) to a t X f square matrix provided dim
{VAY)[VA(Y) N Ker Y1} is equal to p.

We now consider (P2) for Z. Let us define two sequences of
constant matrices {L;:i = 1} and {K;:i = 1} by

L,=L(Z), Ki=K(ZL)),

Liw=L(ZL, - LK), K., =K(ZL, - - LiK:L;.,);

iz1

(3.6)

and a sequence of strictly proper transfer matrices { ¥;:i = 0} by

Y():: Z, Y,‘:: ZLI L,K,, i=1
where K(Y') for a transfer matrix Y has been defined prior to
Theorem (2.8) in Section II. The decreasing sequence of

subspaces

{S;:=Im(L,K, - LK): izl}
will play a crucial role in the resolution of (P2).
We first show that S; is independent of the choice of matrices

{Li:1 <= j < i}and {K;:1 <j =< i}

Lemma (3.7): If {L;:i = 1} and {K;::i = 1} are two
sequences of matrices also satisfying (3.6), then
Im (LK, - LiK)=Im (L K, - LK}); i=1.

Proof: Let us show that given a p X f transfer matrix Y and
a nonsingular constant matrix M, one has

L(YM)=M"'L(Y)H, (3.8)

K(YM)= M"'K(Y)J 3.9)
for some constant nonsingular matrices H and J. To see the first
equality, note by (3.2) that V(YM) = M 'V,(Y) for any
constant nonsingular M. Thus, any basis matrices for V,(Y ) and
V.(YM) are related by (3.8) as claimed. To see (3.9), let K(Y)
= [K| -+ K,], where K; is the submatrix consisting of the
constant columns of a minimal polynomial basis matrix [K;:P;]
for the kernel of [D;DY“]* with D being the row degree matrix
of Y. Since D is also the row degree matrix of YM for any
nonsingular constant matrix M and since (YM)® = YOM, it
follows that M~ ![K;: P;] is a minimal polynomial basis of Ker
[D;D(YM)¥]* . Note that M~ 'K; is the submatrix consisting of
the constant columns of M~'[K,: P;]. Consequently, M~ 'K(Y)
is a possible choice for K( YM ). By the invariance of Im K under
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different choices of minimal polynomial bases for Ker
[D;DY®*, it follows that K(Y) and K(YM ) are related as in
(3.9) for a nonsingular “‘block diagonal’’ constant matrix J. We
can now prove the lemma by induction on i. Let i = 1 and note
that L, = L, M, for some constant nonsingular M, as L, and L,
are basis matrices for V,(Z). By (3.9) this implies that K, =
M/ 'K, J, for some constant nonsingular J; as K, = K(ZL,M;)
and K, = K(ZL,). Thus, L K, = L, K; M, and the lemma holds
fori = 1.If LK, - LK—LKl' LKMforsomej>1
then by definition LJH = L(Y), L,y = L(YM)), K;,, =
K(YL;,\), K;y1 = K(Y;L;,1). By (3 8) and (3.9), it follows
that L;., = M; 'L, \H; and K, = H; 'K;,,J; for some
constant nonsmgularH and J;. Thls yields L Kl LKy =
LK, -+ L;,K;,,J; proving the lemma for i = j + 1. l
Lemma (3.10): The following statements hold: i) If Y, and
Y, ;1 have the same row degrees, then ( Y;), and (Y, ), are both
in erf. ii) If S, = S,.y, then Y, and Y,,, have the same row
degrees. i) If S, = S,.1,then §; = §;forall /, jsuchthatg < ¢
=< j.
Proof: i) Since Y, and Y,,, have the same row degree
matrix, it follows by their standard representations that

(Yq+l)h:(Yq)th+1Kq+\-

By the definition of L, , we have that Im (L., K, ) € N,(Y,)
which implies by Lemma (2.1-iii) that all nonessential rows of
(Y,), are zero in (Y,,,),. By the definition of the highest
coefficient matrix and by the equality of the row degrees again,
there cannot be any nonzero and nonessential rows of (Y,),, i.e.,
(Y,). is in erf. It also follows that (Yqﬂ),, is in erf since the
existence of a nonzero nonessential row in (Y, ), implies that
the corresponding row in (Y,), is nonzero and nonessemlal [i1),
iy IfsS, = S;., then L K, -+ L K, = LK, -+ L, .\ K, M
for some full row rank constant matrix M. Thus, ¥, = Y .. M
implying that the /th row degree of Y. is less than or equal to
the ith row degree of Y,. On the other hand, Y,., =
Y,L;. 1K, 1, which yields the equality of row degrees. By part i)
of this lemma, (Y,. )y is in erf which implies by Lemma (2.1-1i)
and the definition of L., that L, , is nonsingular. Now by
Lemma (2.9), K, ., is of full row rank. Consequently, Im (L, K,
Lq+l +l) =Im (LK, - q+2Kq+2), 0qu+1 = Sq+2- By

induction, the statement ii) follows |

As a consequence of this lemma, it follows that the decreasing
sequence of subspaces {S;:i = 1} converges to S, in at most g <
dim (Im L,) < m steps.

We can now state the first main result of the paper.

Theorem (3.11): The problem (P2) has a solution if and only if

dim [S,/(S4 N Ker Z)]=p.

In case (P2) is solvable, there exists a maximal solution K* which
is givenby K* = L\K, --- L,,,K,,, U for some constant matrix
U satisfying (Y, L, ) K, 1 U=1

Proof: Let K be a solution to (P2) so that ZK is DCDD (and
row proper) and the completion [ K:0] of K to an m X m matrix is
a solution to (P1) for Z. By Theorem (3.5), there exists J, in
R™*P such that K = L,J,. Note that J, is a solution to (P2) for
ZL, implying by Lemma (2.5) that [D;D(ZL))""*j; = 0 for
each column j; of j;, where D is the row degree matrix of ZK =
ZL,J,. Let E be the row degree matrix of ZL, and note that
E~'D is polynomial and ED~! is proper. Hence,

[EZE(ZL) V) ={E;ED" \ D~ '[D;D(ZL})"* }*

where E;ED 'D"" is proper. This implies that [E,E (ZL)"1" j;
= 0 for each column j; of J,. Therefore, Im J, is inIm K, i.e., J,
= K, M, for some M,. We now observe that M, is a solution to
(P1) for the transfer matrix ZL,K,. By induction, it follows that

K=L1K1 L,‘K,'M,'; izl



ELDEM AND OZGULER: SOLUTION TO THE DIAGONALIZATION PROBLEM

for constant matrices M;. Since Im (L, --- L,K;) 2 Im (L, - --
L;.1K;,,) at some integer g, we must have the equality for
subsequent images. Since ZK is nonsingular, S, = Im (L, ---
L,K,) is nonzero and in point of fact, dim [S,/(S, N Ker Z})] =
p as rank (ZL, --- L K,) = p. Conversely, if this equality
holds, then rank (Y;) = p and since S, = S,., we have, by
Lemma (3.10), that Y, and

Yq+l:ZLIKI e Lq+1Kq+1: Yqu+qu+1

have the same row degrees and that (Y, ), is in erf. Hence, rank
(Y,) = rank (Y,,,) = p and both transfer matrices are row
proper with the same row degrees. By row properness of Y, ,, it
holds that rank (Y,.,), = rank [(Y,L,.)»K;,1] = p. By
Theorem (2.8), there exists a constant matrix U such that
(YyLyi1)nKyo iU = I and K, U is a solution to (P2) for
Y,L,., which has the same row degrees as Y, U. Clearly, K*
=LK, -+ L, K, Uisasolution to (P2) for Z. This solution
is maximal since by the “‘only if*” part of this proof, any solution
K to (P2) for Zis givenby K = LK, -+ L, K,.\M,,, for
some M, , ;. The ith row degree of ZK is less than or equal to the
ith row degree of Y, L., by this expression for K which in turn is
equal to the ith row degree of ZK*. |
An Example: Consider the 3 X 5 transfer matrix

@@+ 1D/z2 /2 (ZP+ D/ 1/72 1/7°
Z= 1/72 1/z% @2+ 1)/z5 1/73 /24
0 1/22 0 /728 1778

A basis matrix for Ker Z is given by the columns of

0 a(z)
B(z)/z B(z)/z?
W= 0 —(z+ 1)/7°
-B) 0
0 —B(z)

where a(z) 1= [(z + DQRz* + z + D}/z®and B(z) := (1 — z
— z%/z7. We first check the solvability of (P1). Note that

10000

11000 -100 00
Zy=11 100 0}, N= 01000
01000 00100
00010

and V| = Im (N}). It is easy to see that dim (Ker Z N V) = dim
Vi + dim (Ker Z) — dim (Im[W:N,]) = 4 + 2 — § =1
yielding dim {[V,/(Kerz N V})] = 4 — 1 = 3 = p. Therefore,
by Theorem (3.5), (P1) is solvable for Z and, by the sufficiency
part of the same theorem, a maximal solution is L* = N, yielding

/22 @+ 1)/z2% 1/z22 1/25 0
ZL,= 0 2+ 1)/z° 17723 1/24 0
—1/z? 0 1/ 1/72° 0

We now check the solvability of (P2) for Z. The row degree
matrix of Y, = ZL* = ZL,is D = diag {z?, z°, z%}. We thus
have

:00:
:00:
:00:
:10:
:01:

K1:[K1 :K22K3]:

-0 O OO
-0 O oo
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where K; is the matrix consisting of the constant columns of a
minimal polynomial basis of Ker [ZD,;D(ZL*)%"]* fori = 1, 2,
3. It thus turns out that

0000 0
0000 0
Si=Im(L,K)=Im | 0000 | =Im | 0
0000 0
1011 1

and dim (S; N Ker Z) = Oyielding dim [S;/(S, N Ker Z)} = 2
< p. Therefore, by Theorem (3.11), there is no solution to (P2)
for Z.

Remark 2: Our technique of solution to (P2) implies the
following directions concerning generalizations i), ii), and iv)
mentioned in Remark 1. 1) If Z; is required to be block diagonal
with specified block sizes, then one has to generalize the notions
of “‘essential rows’’ and ‘‘DCDD’’ to, respectively, ‘‘essential
block rows’” and “‘block-DCDD’’; both of which can actually be
done. Thus, in principle, the generalization i) is possible although
at the time of this writing these results are notationally too
complex to state here. ii) This problem has been investigated in
[12, Theorem 2] and in the case Z is row proper, a similar degree-
dominance condition to DCDD reduces the problem again to an
open loop, constant precompensator problem. The solvability of
the problem (P1) is not necessary, however, for the solvability of
this problem. Consequently, a nontrivial but plausible extension
of the above method is called for in order to solve the general
problem ii). Similar remarks apply to problem iv), the measured
output case.

IV. SET OF ALL SOLUTIONS

Let (P1) and (P2) be solvable for Z throughout this section. In
Theorems (3.5) and (3.11), we have determined maximal solu-
tions to (P1) and (P2). Since there are actually an infinite number
of solutions to both problems, it would be of interest to examine
the solution sets

L(Z):= {L in R™ ™ : ZL is row proper}
K(Z):= {K in R™*" ; ZK is DCDD}

more closely. We now show that it is possible to determine all the
elements of sets L(X') and K(Z) by an essentially finite process.

Consider the quotient sets Lo(Z ) := {[L]} and Ko(Z) : =
{[K1} with respect to the equivalence relation “‘L, = L,
(respectively, K; = K,) iff ZL, and ZL, (respectively, ZK, and
ZK,) have the same row degrees.’” Obviously, each equivalence
class [L] and [ K] has infinitely many elements since if ZL is row
proper, then ZLN is row proper with the same row degrees for
any nonsingular N in R™*" and if ZK is DCDD, then ZKM, is
also DCDD with the same row degrees for any diagonal
nonsingular M, in R?*?. On the other hand, the quotient sets
Ly(Z) and K(Z) are finite as we show below.

We first review a few facts established in [13]. Given a strictly
proper p X m transfer matrix Z of full row rank, an open-loop
diagonalizer of Z is an m X p proper rational matrix 7 satisfying
ZT = T, where T" is a nonsingular (strictly proper) diagonal
matrix. Such a Z always admits an open-loop diagonalizer and, in
particular, there are some which yield the maximum causality
degrees for the nonzero entries (I';) of I'. These are called the
maximal open-loop diagonalizers of Z. Thus, if Z,, is a
maximal open-loop diagonalizer of Z, then ZZ,, = Ty, for a
diagonal strictly proper matrix I'y, which has deg (T')); equal to
the negative of the /th essential order [5]e;; i = 1, ---, p. It can
easily be shown [13] that there exists a maximal open-loop
diagonalizer T,, of Z such that T',, = ZT,, is in the form

I',=diag {z~°, ---, 27%}
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where the nonnegative integers {e;, -~ -, €,} are the essential
orders of Z. By [13, Lemma 1], T' ~' is proper for any open-loop
diagonalizer T of Z such that ZT = T.

Let E,, be a diagonal polynomial matrix such that

P,:=E,Z

is a polynomial matrix and deg (E,,); is minimum for each i = 1,
-+, p. Thus, f; : = deg (E,,); is the McMillan degree of the ith
row of Z.
Theorem (4.1); If L is in L(Z), then
e,< —deg (ZL)y=f; i=1, -, p.

Proof: Let D be the row degree matrix of ZL so that DZL
=: B is biproper. Thus, LB~ is an open-loop diagonalizer of Z
and, by the previous paragraph, I' ~! is proper, or equivalently,
DT, is polynomial, i.e.,

deg (D);= —deg (ZL);= —deg I')u=e;  i=1, ---, p.
Further, P,,L = BE, D! implying that deg (D~'E,); = deg
(P,L); = 0fori =1, ---, pas B is biproper. Therefore,

deg (D);= —deg (ZL);=deg (Ey);i=/fi

yielding the result. |

A consequence of this theorem is that Ly(Z) is a finite set.
Moreover, since the completion [K:0] of any K in K(Z) to a
square matrix is in L(Z), finiteness of L,(Z) implies that
Ko(Z) is also finite. Also note that Theorem (4.1) yields upper
and lower bounds on row degrees of ZL for any solution L to
(P1). This is also a bound on the row degrees of ZK for any
solution K to (P2).

We now turn to a characterization of the equivalence class [L]
and show that [ L] has a representative element L, (‘‘g’’ stands for
‘‘generator’’) which can be determined by a finite algorithm.

Theorem (4.2): Every equivalence class [L] in Ly(Z ) has an
element L, with the property ‘““Lisin[L] ifandonly if L = L, T
for some constant T such that rank [(ZL,),T] = p.”” This
element is of the form

Ly=L*M;q,L*D -+ M, L1

where the index i(j)isin {1, -+, p}forj =1, ---, kwithk <
m — p, m;(j ) is a basis matrix for the kernel of the i( j )th row of

[ZL*M,-(I)L*’“) RN M,-(j,l)L*"(jfl)]h
and L*'Y) is a maximal solution to (P1) for the transfer matrix
ZL*M,“)L*"“) . M,‘(jAl)L*i(j‘l)M[(j)

with L* being a maximal solution to (P1) for Z.

Proof: Let L be in [L] with ZL having the row degree
matrix D. By Theorem (3.5), L = L*T for some constant 7. If
deg;(ZL) = deg;(ZL*)foralli = 1, - - -, p, then both L and L*
are in [ L]. By the fact that ZL is row proper with the same row
degrees as ZL*, rank [(ZL*),T] = p. Thus, in this case L, : =
L*. If deg;y (ZL) < deg;y (ZL*) for some i(1) in {1, -+, p},
then L = L*M;,T, for some constant matrix 7, since (ZL*), T
has its /(1)th row zero. Now, T is a solution to (P1) for ZL*M;,
and, by Theorem (3.5), T} = L*'"§, for some S; in R"*" 1f ZL
and ZL*M;,,L*'V have the same row degree matrix, then
L*M,)L*'D is in [L]. Otherwise, deg;» [ZL*M;q,L*' V] <
deg;2(Z!) for some index i(2) in {1, -+, p}. Hence, S; =
M, T, for some constant 75 as, by the last degree inequality,
[ZL*M,;;, L*V], S has its i(2)th row zero. Moreover, T, =
L*®S, for some S, since T, is a solution to (Pl) for
ZL*M; ) L*' DM, ). We now claim that

rank [L*M{(])L*i“)] >rank [L*M[(I)L*l(l)Mi(Z)]. (4.3)
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To see this, note that [ ZL*¥M,; L*' VY, = A L*M,q, L*'" for
some constant A4, by (2.3); which has rank p by definition of
L*0_ Thus, p = rank [A,L*M;,L*®], = dim {Im [L*M,,]}
— dim {Ker A; N Im [L*M;q,L*""]}. Since M is a basis
matrix for the kernel of the i(2)th row of [ZL*M,,L*/V],, we
have

p>rank (A, L*Mo) L*" VM)
=dim {Im [L*M;,,L* VM ]}
—dim {Ker A} N Im [L*M;,L*""M;0)]}
zdim {Im [L*M;)L*" DM}
—dim {Ker A; (O Im [L*M;, L= (D]}
=rank [L*M;, L*"OM, )]
+ p—rank [L*M,“)L*i(l)]

proving (4.3). Consequently, by successive application of the
process above, in at most m — p steps (i.e., k = m — p) we
arrive at

L:L*M,-(I)L*itl) . M,'(k)L*i(k)Sk

for some constant S;, where ZL and ZL, have the same row
degree matrix with L, := L*M;,L*"V -+ M;,L**®) The
matrix L, satisfies rank [(ZL,),S;] = p as both ZL and ZL, are
row proper with the same row degrees. Conversely, given any
constant matrix 7"such that rank [(ZL,),T] = p,then L := L, T,
is in {L] provided T, is chosen as either a submatrix or a
completion [T:0] of T having m columns such that rank
(ZL)wTol = p. u

Theorem (4.2) yields, in effect, a finite algorithm to determine
all elements of L(Z) up to right multiplication by nonsingular
matrices as follows. Let L* be a maximal solution to (P1)
achieving the row degree matrix D* for ZL*. Clearly, L* is a
generator for the equivalence class [L*]. Determine all possible
values for i(1); these are the indexes in {1, - -+, p} such that (P1)
has a solution for ZL*M,,,,. Note that if (P1) is unsolvable for any
of ZL*M{(i = 1, -+, p), then [L*] is the only element of
Lo(Z) by the result of the theorem. Otherwise, replace Z by
ZL*M,,, and repeat the above process. Since the number of
choices for the ordered set (i(1), i(2), -+, i(k)) with i(j) in {1,
---,pyand k < m — pis finite, the above procedure yields all
generators L, in a finite number of steps.

Given an equivalence class {K] in Ko(Z), let L, be a generator
for [[K:0]] considered as an element of Ly(Z). Let

K:= K(ZL)=1K,:--: K,}

and let U := diag {u,;} be such that (ZL,),KU = I. Such a
constant matrix U exists by the fact that ZK is DCDD and by
Theorem (2.8).

Theorem (4.4): All elements of [ K] are of the form

K=L,K(U+ V)W,
for some constant matrices ¥ and W, such that

Im (KV;) € Ker (ZL,), N Im K}; j=1, " p
where V) is the jth column of V and W, is diagonal, nonsingular.
Proof: Let ZK be DCDD and have the same row degrees as
ZL,sothat K = L, T for some constant matrix 7 by the fact that
[K:0] is in [L,] and by Theorem (4.2). By Theorem (2.8), T =
K H for some constant matrix H = diag {h,, -, h,} such that
(ZL),Kih; = e;w;, where w; is a nonzero real number. By the
definition of U, we also have that (ZL,),Ku; = e; so that
(ZL)nKv; = Owithv;: = lyw ! — w;fori =1, - -+, p. Hence,
(ZL)yKV; = Oforj = 1, -+, p where V; is the j th column of
V= diag {v,, -, v,}. It follows that Im (K'V;) < Ker (ZL,),
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and, by the special form of V;, Im (K'V;) € Im (K}). This proves
the claimed inclusion and with W, := diag {w,, -+, w,}, we
also have K = L KHW, = L, K(U + V)W,. Conversely,
given a K in this form, by the definition of K and by Lemma (2.5),
it easily follows that ZK is DCDD with the same row degrees as
ZL,. a

\i/e conclude this section giving an explicit description of the set
of all solutions to Problem (P). For this, we need a characteriza-
tion of the set of all solutions to (P) for the case K = I and Z
nonsingular.

Lemma (4.5): Let Z be square and nonsingular and fix K : = I.
If Z is DCDD, then the set of all solutions to (P) is given by: {Z.}
= {YAZ Vg — (Z Vo : Y4 is diagonal and strictly proper
rational }.

Proof: If Z is DCDD, then it follows that (Z~ 1), is proper
and (Z7"), is nonsingular and biproper. Given any Z. in the set,
wehave Z(UI + Z,Z) ' = Z[I + YA Z NeZ ~ (Z~ Ve Z]™!
=[Z'"+ YAZ N — (Z Do) ™' = UZ D + YAZ7))!
= (Z Y] ' + Y )~!, where the last expression is diagonal,
nonsingular (and proper by strict properness of Y,). Thus, every
element of the set is a solution to (P). On the other hand, if Z(/ +
Z.Z) ' = X, for some nonsingular diagonal X, then (Z,), =
(X))~ — (Z7Y)y4, and hence (Z~ Y, Xy = I — (Z.)qX, with
(Z.), X, strictly proper. Hence, Y, := (X)) '[Z" D), ]7"' = Iis
strictly proper and it satisfies Z, = Y, (Z7 D — (Z Vo
Therefore, any solution is in the above set. ]

We can now describe the set of all solutions to (P).

Corollary (4.6): The set of all solutions of Problem (P) is given
by: {(K, Z,) : K is in K(Z) and Z. = Y,[(ZK) 'l4 —
[(ZK )~ Y., where Y, is a diagonal strictly proper p X p rational
matrix } .

Proof: For any K in K(Z), ZK is nonsingular and DCDD
and it remains to describe the set of admissible Z, such that Z, =
(I + ZKZ,)"'ZK is diagonal and nonsingular. But, this is by
Lemma (4.5) above. ]

Remark 3: A procedure may be described for searching for a
solution to the problem (P) with internal stability, as the problem
i) of Remark 3. Recall that the result of [6] yields a solution to
this problem for a nonsingular Z. Corollary (4.6) yields an
exhaustive characterization of all solutions to (P2). Thus, one can
check whether a solution for iii) exists for various values of V of
Theorem (4.4) and construct one by the synthesis method of [6]
whenever it exists. However, note that this does not, yet, yield a
solution to jii) since the set of all such V is not finite.

Remark 4: The construction of a solution to (P2) of Theorem
(3.11) and the set of solutions to (P) of Corollary (4.6) can be
presented in the format of an algorithm. This has been the main
theme of [20] where an alternative exposition of the solvability
condition to (P2) is also given.
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