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Abstract 

Computationalism is the view that computation, an abstract 
notion lacking semantics and real-world interaction, can offer 
an explanatory basis for cognition. This paper argues that not 
only is this view correct, but that computation, properly 
understood, would seem to be the only possible form of 
explanation! The argument is straightforward: To maximise 
their chances of success, cognitive agents need to make 
predictions about their environment. Models enable us to 
make predictions, so agents presumably incorporate a model 
of their environment as part of their architecture. Constructing 
a model requires instantiating a physical "device" having the 
necessary dynamics. A program and the computation it 
defines comprise an abstract specification for a causal system. 
An agent's model of its world (and presumably its entire 
mechanism) can thus be described in computational terms 
too, so computationalism must be correct. Given these 
interpretations, the paper refutes arguments that purport to 
show that everything implements every computation 
(arguments which, if correct, would render the notion of 
computation vacuous.) It then goes on to consider how 
physical systems can "understand" and interact intelligently 
with their environment, and also looks at dynamical systems 
and the symbolic vs. connectionist issue. 

 

Introduction 

Not surprisingly, early digital computers were frequently 
referred to as "electronic brains." Able to perform complex 
mathematical calculations, play games and even write 
simple poetry, these machines clearly displayed 
characteristics previously thought to be the exclusive realm 
of human beings. Moreover, they did these feats with such 
rapidity that it was difficult not to imagine that they would 
one day exceed our own rather limited cognitive abilities, 
leading us either into utopia or into slavery. 

Of course, this hasn't happened yet (at best, we seem to 
have a sort of utopic slavery!), but the idea that the mind 
might be some form of computer has certainly gained 
considerable currency. Indeed, most research programs in 
Cognitive Science and Artificial Intelligence adopt this 
view, known as computationalism –variously the idea that 
cognition is computation or that minds can be described by 
programs. Initial success, however, has given way to a 
series of seemingly insurmountable practical and 
philosophical problems. These difficulties have prompted 
some to search for alternative formulations and to question 

whether computationalism actually has any explanatory 
value after all. 

This paper argues that computationalism, properly 
understood, is an invaluable tool in our quest to understand 
cognition. Indeed, it will become obvious that all the 
alternative proposals are ultimately committed to the very 
same viewpoint. To appreciate this, however, it is necessary 
to first develop a sketch of computation and of what a 
cognitive agent is and how it may function. This perspective 
will then provide the foundation upon which to sensibly 
discuss the meanings and relative merits of the various 
ideas. This approach is somewhat unusual, perhaps, but 
appropriate given the interrelated nature of the concepts 
being investigated. Ultimately, these notions simply cannot 
be understood in isolation, but only as a package, as a 
coherent philosophy of mind (indeed, a philosophy of 
everything.1) 

What is Computation? 

Consider the relatively intuitive notion of a model. A 
model is something that stands in for and which 
"corresponds" in relevant ways, to the system being 
modelled. The model can thus be used to obtain information 
about the real system, without the necessity of actually 
interacting with it. This is clearly advantageous when, for 
instance, the system is too large to manipulate directly (the 
solar system, or the weather) or when it might be dangerous 
or expensive to actually do so (oil spillage from a 
supertanker or the financial collapse of a major company.) 
Notice also, that there may be many different ways to model 
the very same system. Depending on the purpose (the 
answers required) a model may be more or less accurate, 
may include or omit various details, and may be 
implemented in different materials. Models, then, allow for 
predictions about the way things will be, are, or were, in a 
given set of circumstances. 

Models often bear a physical resemblance to the system 
they represent. For example, a model yacht is a scaled down 
version of the real object. Besides being a great play thing, 
it can be used to answer questions, not just about what the 
real yacht looks (or would look) like, but about how it might 
behave in various sea and wind conditions, or how its 
performance might change if the mast were to be moved 
slightly forward or aft. Increasingly, however, abstract 
mathematical/computational models are replacing models 
that physically resemble the phenomena under investigation. 

                                                           
1 Davenport (1997), for example, shows how the notion of truth 

may be analysed using the ideas herein. 



One reason for this is the difficulty, time and cost associated 
with crafting such physical models. 

What is a computational model? In essence, it is simply a 
function2; a mapping from input states to output states 
(which may be thought of as a mapping from questions –
including any initial data– to answers.) It is important to 
emphasize that nothing in this view of computation implies 
discreteness, i.e. it is perfectly compatible with continuous 
(real) values. Of course, rather than a single function, the 
mapping may be specified as the joint (sequential and/or 
parallel) application of possibly recursive functions. State 
variables may be used to retain intermediate results between 
function applications. Computation might also be usefully 
viewed as a formal axiomatic system (comprising a set of 
symbols and rules for manipulating them.) These alternative 
views offer different conceptualisations and allow for 
different space/time tradeoffs during implementation, 
however, they do not otherwise add or subtract anything. 

Of course, to actually obtain answers, abstract models 
must be instantiated somehow. This demands a physical 
implementation, either directly, using, for example, a FSA, 
or indirectly, by mentally executing the abstraction or using, 
for example, a digital computer. Implementing an abstract 
model involves mapping states of the abstraction to physical 
states, along with any relevant sequences of such states.3 
There are several approaches to achieving this. One might 
find (or attempt to find) an existing physical entity whose 
functioning happened to coincide with that desired. This 
may prove very difficult though, given the constraints of 
any reasonably complex model.4 Alternatively, rather than 
use an existing system, one could construct such a system 
anew. This then becomes an engineering problem. The thing 
to note, however, is that in both cases we have to rely on 
(known, proven) causal5 interaction to ensure that the 
desired behaviour is actually forthcoming. Of course, we 
now have at our disposal a tool –the digital computer– that 
provides a very quick and easy way to construct an 
implementation for almost any abstraction6. Computer 
programs are the means by which we specify the desired 
states and state transitions to our machine. A program 
(algorithm7, computation) is thus an abstract specification of 
the causal behaviour we desire from the system which is to 
implement our computation (c.f. Chalmers, 1995) 

                                                           
2 In fact, it may actually be a relation –which admits many-to-

many mappings– which may be necessary to properly model 
concurrent systems (c.f. non-deterministic Turing Machines.) 

3 Where states and “sequences” may be real valued or discrete. 
Note also that, strictly, there is probably no reason to suppose 
that the mapping might not be sequence to state and vice versa, 
much like a Fourier transform. Finally, we might accept to 
implement a functionally equivalent computation, in which case 
there need not be an obvious mapping! 

4 Note that the mapping must be repeatable, so that arguments to 
the effect that one might map such a sequence to anything are 
unlikely to be fruitful. This point is discussed in some detail 
below. 

5 Causal may mean nothing more that reliably predictable! 
6 Even Turing Machines are unable to perform some functions, see, 

for example, Turing (1936) and Copeland (1997). 
7 An algorithm is a sequence of (one or more) function 

applications. Algorithms comprising different sequences and/or 
primitive functions may result in the same overall computation.  
A program is an algorithm in a machine understandable format. 

Before moving on to look at cognition and how this view 
of computation is related to it, it is important to dispose of 
the argument, put forward by Putnam (1988), to the effect 
that computation is all pervasive. According to Putnam’s 
proof (in the Appendix of his Reality and Representation), 
any open system, for example, a rock, can compute any 
function. If true, this would render void the 
computationalist’s claim that cognition is simply a 
particular class of computation, since everything, even a 
rock, would be capable of cognition! 

The essence of Putnam’s argument is as follows: Every 
ordinary open system will be in different maximal states, 
say s1, s2, … sn, at each of a sequence of times, t1, t2, … tn.  
If the transition table for a given finite state automaton 
(FSA) calls for it to go through a particular sequence of 
formal states, then it is always possible to map this sequence 
onto the physical state sequence. For instance, if the FSA is 
to go through the sequence ABABA, then it is only 
necessary to map A onto the physical state s1  s3  s5, and 
B onto s2  s4. In this way any FSA can be implemented by 
any physical system. 

Fortunately (for cognitive science), the argument is not as 
good as it may at first appear. Putnam’s Principle of Non-
Cyclical Behaviour hints at the difficulty. His proof relies 
on the fact that an open system is always in different 
maximal states at different times. In other words, it is 
possible to perform this mapping operation only once (and 
then probably only with the benefit of hindsight!) But this is 
of no use whatsoever; for computation, as we have seen, is 
about prediction. Not only is Putnam’s “computer” unable 
to repeat the computation, ever, but also it can only actually 
make one “prediction” (answer one trivial question.) The 
problem is that the system is not really implementing the 
FSA in its entirety. A true implementation requires that the 
system reliably traverse different state sequences from 
different initial conditions in accordance with the FSA’s 
transition table. In other words, whenever the physical 
system is placed in state si it should move into state sj, and 
whenever it is in sk it should move to sl, and so on for every 
single transition rule. Clearly, this places much stronger 
constraints on the implementation. Chrisley (1995), 
Copeland (1996) and Chalmers (1996) all argue this point in 
more detail. Chalmers also suggests replacing the FSA with 
a CSA (Combinatorial State Automata), which is like a FSA 
except that its states are represented by vectors. This 
combinatorial structure is supposed to place extra 
constraints on the implementation conditions, making it 
even more difficult to find an appropriate mapping. While 
this is true, as Chalmers points out, for every CSA there is a 
FSA that can simulate it, and which could therefore offer a 
simpler implementation!  

One final point before moving on; Searle (1992) argues 
that computation is observer-relative, that syntax is not 
intrinsic to physics, and that his wall might thus be seen to 
implement the Wordstar program. We have seen that the 
latter claim is nonsense, however, there is an element of 
truth in the former ideas. While the relation between the 
physical implementation and the abstract computation is 
highly constrained, it is still up to the observer to decide 
what constitutes a system state and where to draw the 



boundaries of the system. Clearly, it is also the observer 
who interprets the system being modelled in terms of the 
physical states –and thus corresponding abstract 
computational states. Computation, like beauty, is largely in 
the eye of the beholder! 

What is Cognition? 

Agents are usually considered to be small parts of the 
world in which they exist and are thus assumed to have 
limited abilities. Cognitive agents are agents that 
incorporate and use knowledge of the environment to 
improve their chances of success, even survival! 

In order to cope with the vagaries of its world, an agent 
needs to select and execute the action most appropriate to its 
goals. This requires making predictions, both about the 
current state of the un-sensed parts of its world and about 
the effects of its own actions on the world. Prediction, then, 
is the principle around which cognition is organised, and an 
agent’s knowledge thus constitutes a model of its 
environment. The model is a (presumably) physical system 
that implements a computation capable of providing the 
necessary answers. The relation between cognition and 
computation is thus clear. 

An agent’s model may be innate or it may be constructed 
(learnt) as a result of sensing and possibly interacting with 
the environment. It may be static or continuously refined, 
again as a result of interactions. Given such a model of the 
world, sensory input must somehow combine with it to 
determine actions relevant to the agent's present situation 
and goal. Any discrepancy between the model's predictions 
and the subsequent sensory input will indicate errors in the 
model and can thus provide the basis for updating it.  

How an agent actually acquires, represents and 
subsequently utilises the knowledge inherent in its model of 
the world need not concern us here (see Davenport (1992, 
1993) for further ideas in this direction.)  

Computationalism 

Given the interpretations of computation and cognition 
outlined above, is computationalism correct? There are at 
least three ways to interpret this question, (1) Can cognition 
be described (simulated) by computations, (2) Is cognition 
literally computation, and (3) Does the notion of 
computation offer a suitable basis for understanding and 
explaining cognition.  

Based on our analysis, the answer to the first form of the 
question, "Can cognition be described by computations?" 
would seem to be "yes." Clearly, we can construct 
computational simulations of cognition at various levels; the 
question though, presumably, refers to description at the 
“lowest” physical-level (if there is any sense to this notion.) 
Assuming that the mind/brain has a purely physical basis 
(i.e. no part of it –the soul, perhaps– would continue to exist 
were its material components to be destroyed) then, since a 
program/computation is simply a description of a causal 
system, answering the question in the affirmative requires 
another physical system having equivalent causal dynamics 
that we can utilise as the model. This is an empirical 
problem. It may be the case that the underlying physics of 

certain cognitive systems do not occur elsewhere. In such a 
case we might model a specific agent by employing another 
such agent –if one exists. We could not, however, model the 
class of such agents in this manner or, equivalently, use the 
only existing agent to model itself (which would be 
nonsense –having no predictive value!) 

The second form of the question, "Is cognition literally 
computation?" cannot be answered quite so easily. 
Computation is certainly part of cognition (specifically, the 
agent’s model of the environment.) But what of the other 
elements, the input and output pathways linking the model 
to the environment, the goals, the matching and decision-
making mechanism, etc., are they also computational? 
Again, if they are physical/causal systems, then, 
presumably, they too can be interpreted computationally, in 
which case we should also accept that cognition is quite 
literally a matter of implementing the right form of 
computational system. Of course, this account does not 
directly explain the subjective aspects of mind (feelings, 
desires, etc.) but that is another story.8  

The final interpretation, “Does the notion of computation 
fail to have explanatory value when it comes to 
understanding cognition?” is of more immediate concern to 
cognitive science and artificial intelligence researchers. 
Most work in the field tacitly assumes that computation is 
an appropriate basis, so if this turns out to be wrong there 
are likely to be massive upheavals! The case against 
computationalism has been growing stronger of late, with 
claims to the effect that computation lacks semantics, is 
disembodied, is insensitive to real-world timing constraints, 
is at the wrong level, and, most dramatically, that since 
every system can compute every function, it is just too 
pervasive to be meaningful. 

Clearly, computation is important from a practical 
perspective and also, perhaps, from a historical one. It has 
already served as a vital step in the evolution of ideas that 
will ultimately lay bare the mysteries of cognition. In fact, 
the case against the computational view of mind is 
misguided. We have already seen that, while every system 
can indeed be viewed as implementing some computation, 
every system simply cannot implement every computation. 
Moreover, the fact that computation lacks certain elements 
of mind, such as semantics, is not important, since our 
objective must be to explain how these features arise. If 
computation did possess them it certainly could not provide 
any basis for understanding them! Besides, the notion of a 
computational model is clearly central to the cognitive 
process and, at least in the case of semantics, it would 
appear that we can actually develop explanations in these 
terms, as the following section explains. 

                                                           
8 My intuition here is that there is nothing else! Feelings and the 

like are a natural “by-product” of certain sufficiently complex 
biological cognitive systems. In any case, we seem to have little 
choice but to proceed on the assumption that, as Searle (1992) 
put it, “the mental can be physical too.” Note that, even if true, 
this is not to say that all talk of the mental is redundant. Quite 
clearly, explanations/models at this level allow for efficiency in 
our everyday activities. It would be quite impossible for us to 
function if all “processing” had to proceed at the molecular-
level. 



Meaning and Representation 

What gives some symbols/states meaning? The answer 
seems obvious, minds do! But this is of no help when the 
objective is to understand how the mind works. How can 
mental representations have meaning? AI researchers first 
suggested that they gained their meaning from other 
representations. Searle's (1980) infamous Chinese Room 
Argument was the first nail in the coffin of this idea. Harnad 
(1993) provided a clearer demonstration of its futility, 
however, likening the situation to trying to understand the 
meaning of a word in a foreign language dictionary. Each 
word is defined in terms of other words, such that, unless 
someone provides the meanings for a few primitive words, 
there is no hope of understanding anything! 

Obviously, these primitive terms can only acquire 
meaning as a result of their relation to the world 
(environment). Attention thus turned to solving this so-
called Symbol Grounding Problem. Connectionists saw 
ANN's (artificial neural networks) as the solution. Others, in 
particular Harnad, favoured a hybrid approach, whereby a 
neural network would sit between the environment and a 
symbol system, isolating appropriate symbols and providing 
the necessary grounding. Given the apparent limitations of 
ANN's (lack of compositional structure, etc. as pointed out 
by Fodor & Pylyshyn (1989), but refuted by later 
developments, e.g. recurrent neural networks), Harnad's 
proposal seemed reasonable. On the other hand, the 
fundamental problem remains. What exactly is the relation 
between the mental state and the world? Simply 
"connecting" it (providing a causal pathway) to the 
environment doesn't exactly resolve this question. Indeed, it 
probably isn't even a necessary condition. Many alternative 
explanations, such as co-variance, seem similarly flawed. 

Actually, given the analysis of cognition in terms of 
models, the solution is basically straightforward. A 
representation (state) has meaning for the agent just in case 
it has predictive value. On relevant occasions the symbol 
might be activated via causal connections with the 
environment, indicating that the particular feature it 
represents is present. On other occasions it may become 
active as a consequence of the execution of the model and 
thus constitute a prediction. It may not even have a real-
world counterpart, but simply be part of a theory (model), 
which provides answers in the absence of anything better 
(the ether or charmed quarks, for instance.) It is not, of 
course, necessary that the predictions always be correct in 
order for the state to be counted as a meaningful 
representation. Neither is it necessary that the agent ever 
display behaviour based on the representation. This is in 
contrast to the Interactivist theory of Bickhard and Treveen 
(1995), which, while similar in other respects, claims that 
interaction is necessary for real meaning. This seems 
patently wrong. Few people have "played" with the planets 
or with electrons, yet we would surely wish to say that they 
did understand these concepts. If not, education would seem 
to be a waste of time! 

Identifying Symbols & Rules 

An agent's model of its world might be viewed as a 
formal system comprising symbols and inference rules. A 
number of questions thus arise, first, and foremost of which 
concerns the origin of these symbols and rules. Are they, 
perhaps, innate, or does the agent somehow select an 
appropriate set of symbols? Acquiring (and maintaining) a 
suitable set of base symbols for a given environment is 
likely to be one of the primary determinants of success or 
failure for an agent. 

How then, might an agent "discover" the symbols it 
needs? An outline answer might go something like this. 
Agents have a number of sensors and actuators. The 
problem for any agent is to decide which actuator (if any) to 
invoke at any particular moment. Its objective is to satisfy 
its needs (food, sex, comfort, etc.) In some cases evolution 
may have endowed it with automatic (innate) mechanisms 
that restore it to its "ideal" state. In other situations, 
however, it will need to instigate "deliberate" actions in the 
hope of achieving these goals. On the (necessary) 
assumption that there is some regularity in the environment 
(and lacking any other prior knowledge), the best an agent 
can do is to store past sensory input patterns and then match 
the current situation against these in the hope that they 
might repeat. The matching process will thus produce a set 
of expectations, and assuming that the agent has also stored 
information about its past actions and their effects, it should 
then be able to compute the "intersection" between these, its 
perceived situation and its goals, and hence select the most 
appropriate action to take. 

Given the variation in input patterns, the initial problem is 
to identify sets of sensor inputs that regularly occur 
together. Having isolated these initial sets, the agent can 
further group them into less frequently occurring sets, and 
so on. Gradually, it should also be able to determine 
combinations of these sets that are mutually exclusive of 
each other (by observing that they share terms, for 
example.) All of these groupings form the agent's (internal) 
symbols. Another set of symbols (external ones) is formed 
when the agent acquires language. Meaning in these 
symbols involves an additional mapping from the word 
itself to the representation of the corresponding concept. 

As for the inference rules, they must be basically logical –
since the agent must make the correct, rational, "logical" 
choices. We can thus expect logical rules to be part of an 
agent’s makeup, i.e. in biological agents, evolution will 
have produced/favoured mechanisms which behave as if 
they were performing logical inferences. Classical Logic, 
being the result of abstraction from our spoken language, is 
evidence for this, although, of course, it does not account 
for all our observed reasoning. There have been many 
attempts to extend Logic (e.g. modal logics, temporal and 
non-monotonic logics, etc.,) some, however, would argue 
that the very foundation upon which Logic is built is in need 
of revision! For some thoughts in this direction, see Kosko 
(1993) and Davenport (1999). Certainly, human beings 
frequently fail to reason perfectly (perhaps due to biological 
limitations, lack of time, incorrect or incomplete knowledge, 
etc.), but the fact remains that an agent’s mechanism must 
be inherently logical. 



Symbolic, Connectionist or Dynamicist? 

Which is the correct view, the symbolic or connectionist 
one? Or do we need a hybrid solution? Or perhaps another 
solution altogether, as, for example, the dynamicists would 
have us believe? It should be clear from the foregoing that, 
since cognition is described in functional terms, this is 
essentially an implementation (organisational) issue. Indeed, 
the same is true of computation. There may be several ways 
of instantiating the very same computation. They may differ 
in many respects  –energy consumption, speed, reliability, 
even method9, etc.– but these are all irrelevant to the 
computation itself. 

In fact, it is far from clear what precisely defines or 
distinguishes the two archrivals, the symbolic and 
connectionist paradigms. The symbolic paradigm is usually 
considered to be closely associated with conventional digital 
computers whereas the connectionist paradigm is essentially 
defined by artificial neural network architectures. The 
situation is not so clear-cut, however. For one thing, 
ultimately, both can be implemented using the very same 
technologies, for example, voltages on wires. Another 
confusion arises from the fact that ANN's can be 
implemented on (or at least approximately by) symbolic 
computers and there is reason to believe that the converse is 
also true. McCulloch and Pitts (1943) purported to show just 
this, by demonstrating that it was possible to construct logic 
gates from ANN-like threshold elements. This, however, is 
not really sufficient since the neural elements are not in 
practice organised (connected) in this fashion. Some of the 
limitations on the processing capabilities of connectionist 
systems, as pointed out by Fodor and Pylyshyn (1989), have 
been overcome, however, the analysis of this paper clearly 
points to one remaining shortcoming. Any reasonably 
sophisticated agent must be able to carry out predictions 
independent of its current sensor inputs. But most ANN's 
are simple feed-forward devices and even recurrent ANN's 
only delay the input one "step." Meeting this predictability 
requirement would seem to be possible, in principle, 
although it may demand more complex ANN's, perhaps, 
ones in which individual neurons retain state information.  

So, –assuming that they are both capable of supporting 
the necessary computational structures– the choice is an 
organisational one and cognitive agents could equally well 
employ either. Of course, there may be other reasons to 
prefer one form to the other. It may be that one is easier to 
implement in a particular technology; silicon, biology, or 
beer cans! Or that it requires less hardware or works more 
reliably.  

Given a particular type of agent (e.g. ourselves), it might 
be useful to be able to determine which form it was 
employing. Whether this is possible depends on exactly 
what distinguishes the two paradigms. One point of 
difference would appear to lie in the mode of storage. In 
symbolic systems, if a token is to appear in several 
"expressions" then each will contain a copy of the token. In 

                                                           
9 We may wish to distinguish between the function being 

computed and the method of computing it. For instance, there are 
several ways of actually multiplying two values (using repeated 
addition, shift /add, etc.) 

contrast, the connectionist approach10 is to retain only one 
instance of a token, and then to create a link to this instance 
from each expression in which it participates. It may also be 
possible to distinguish the paradigms along the lines of how 
they "view" the world. Symbolic systems often take sets of 
mutually exclusive tokens (e.g. blue, red, green... or car, 
bike, truck...) as their starting point, whereas connectionist 
systems tend to start with (expect) conjunctions of terms. 
The latter is attempting to identify sets of inputs that always 
occur together, the former, ones that never occur together. 
In reality both are impossible to guarantee, so that, as 
indicated earlier, the only realistic option is for an agent to 
store input patterns in the hope that they may happen to 
repeat. 

And what of the dynamicist view, is it a viable 
alternative? Van Gelder (1995) characterises cognitive 
processes as "state-space evolution within dynamical 
systems." The archetypical example of a dynamical system 
he suggests is Watt's centrifugal governor for controlling the 
speed of a steam engine. Simplifying a little, the basic 
argument is that the system is not computational since there 
are no representations or, at the very least, no symbolic 
representations.  From the characterisation of computation 
given at the beginning of this paper, it will be clear that a 
system can be computational irrespective of whether or not 
it displays identifiable symbols. The system clearly has a 
representation of the current engine speed (via the gearing 
constant.) Furthermore, since it accurately predicts the 
amount of steam needed to maintain a steady speed, it must 
have some representation of the desired engine speed 
(actually encoded in the mechanical design, weights, arm 
lengths, angles, etc.) And, of course, while it can be 
described by complex differential equations, it can also be 
described by (symbolic) difference equations or, even 
qualitative language/symbols, although in each case with 
correspondingly less precision.  

Many physical systems do (like the governor) appear to 
exhibit properties that are not "naturally" separable, i.e. they 
appear continuous. Conceptually, perhaps, if the universe 
were (ultimately) comprised of particles and neat slots, it 
might be possible to agree upon an appropriate set of states 
(symbols) to employ in describing any system. On the other 
hand, if, as seems more likely, the universe is not made up 
of nice discrete entities, then what we decide to call a state 
is entirely up to us! Indeed, whatever the underlying 
physics, we as macro agents are continually faced with such 
situations. We are perhaps fortunate in that most physical 
entities happen to form relatively static “islands” widely 
separated from each other. For this reason we find little 
difficulty in identifying everyday objects, but we quickly 
begin to falter when faced with gaseous clouds or subatomic 
particles. 

There would thus appear to be no principled way, or 
reason, to distinguish dynamical systems from any other 
forms. Indeed, both symbolic and connectionist systems are 
ultimately dynamical systems. Kentridge (1995) provides a 

                                                           
10 Here we assume the exemplar connectionist system to be a 

perceptron-like structure that does not employ distributed 
representations. 



good discussion of this showing how rules and differential 
equations can be equally good descriptions of ANN’s. 

Timing 

Another criticism frequently levelled against 
computationalism is its failure to say anything about the 
timing of events. This is because the very notion of 
computation has traditionally abstracted out time, 
concerning itself only with sequence. Thus, whether a step 
in an algorithm takes a second or a millennium doesn't 
matter, the end result will (must) be the same. The 
increasing use of GUI's and embedded systems, however, 
seems to make the traditional (Turing Machine inspired) 
view of computation, –as a purely formal system in which 
each state is always followed by the very same next state– 
rather less appropriate. Today, computer systems must 
handle asynchronous input from the environment and 
respond in a timely manner. So, the question is whether it is 
necessary to complicate the classical picture of computation 
with actual time values or whether pure sequences can still 
suffice. 

Obviously, a system has to be fast enough to cope with 
the demands made upon it, otherwise it will fail to "keep 
up." Every technology has its limits though, biological ones 
perhaps more so than others, so there will always be 
situations that an agent constructed with a given technology 
will be unable to handle.  Engineers, asked to design/build a 
system guaranteed to cope with events having certain 
temporal characteristics, need to be concerned with the 
actual minimal response times of their system, and may, 
perhaps, choose a faster technology if necessary. On the 
other hand, if the technology is fixed, as for example is our 
own, then there is little more that can be done (after 
selecting an optimal algorithm.) 

Another possible concern relates to situations in which 
the agent may respond too quickly and hence fail to achieve 
its goal. While this may be solved by the addition of timing 
information, (e.g. explicit time delays) it might also be 
handled by finding conditions for invoking the actuator that 
are more specific. In reality, this might include taking inputs 
from naturally occurring "clock" signals (e.g. the human 
heart beat); however, this would not constitute timing 
information, per se.  

The final reason that timing might be important, relates to 
stability concerns. Avoiding oscillation in control systems is 
clearly important and the development of the mathematical 
tools necessary to guarantee this has been one of the major 
achievements of modern control theory. Unfortunately, even 
in the case of relatively simple linear systems, the analysis 
is very complex, and there would seem to be no natural way 
to extend it to non-linear systems many orders of magnitude 
more complex. The only hope would seem to be systems 
that could learn and adapt so as to automatically stem 
oscillation as much as possible. 

In our quest to understand cognition, extending the notion 
of computation to include timing information thus seems 
unnecessary. On the other hand, techniques that would 
allow performance criteria to be evaluated would certainly 
be beneficial. 

Summary & Concluding Remarks 

Does computation, an abstract notion lacking semantics 
and real-world interaction, offer a suitable basis for 
explaining cognition? The answer would appear to be yes, 
indeed, it would seem to offer the only possible explanation! 

The basic argument of this paper is as follows. Models 
enable us to make predictions. Constructing a model 
requires building a physical "device" whose states and 
dynamics map onto those of the target system. A convenient 
way to do this is to write a program that can be executed on 
a digital computer. The program, and the computation it 
defines, is thus an abstract specification of the desired 
causal system. To maximise their chances of success, 
cognitive agents need to make predictions about their 
environment. It therefore seems reasonable to assume that 
their architecture must include a model that can be used to 
make such predictions. This model can be described and 
interpreted in computational terms, so computationalism 
must offer an appropriate basis for explanation. 

While connectionists and dynamicists claim to offer 
alternative models, it is clear that these relate to 
organisational concerns and thus do not deflect the essential 
computational explanation, for they too are computations! 
The argument put forward by roboticists, psychologists and 
social theorists, that intelligence/representation demands 
situated interaction, would appear to be essentially correct 
on the analysis presented here. A state is representational 
only on the basis of its predictive value to the agent. From 
the computational viewpoint this is perfectly natural and 
answers the question of semantics. Finally, the 
philosophical argument, which claims to show that 
computation is a potentially vacuous concept, was seen to 
be misleading. Mapping every computation to every system 
is simply not possible because the proper causal structure is 
lacking. Computation is about prediction and while it is 
possible to map any specific computational sequence onto 
(almost) any physical system, there is little predictive value 
in so doing.  

Using these ideas we might envisage a hierarchy of 
systems based on their cognitive abilities. At the bottom 
would be FSA-like machines that have no inputs or outputs. 
Above them, purely reactive systems with a few inputs and 
outputs but fixed causal pathways and no internal state. 
Next would come adaptive systems, slightly more 
sophisticated, being able to modulate their behaviour within 
the limits of their fixed physical structure. These may be 
followed by FSA that do have inputs and outputs. Above 
these would come systems like the modern digital computer 
and the Turing Machine that have I/O, a significant number 
of states and a practically infinite ability to reconfigure their 
causal structure. Lastly, at the top of the hierarchy we might 
place systems that not only have the ability to rewire 
themselves, but also to expand the number of inputs, outputs 
and states available to them. 

A major objective of this work was to establish a simple 
coherent framework within which to understand the notions 
of computation and cognition, and the relation between 
them. By taking a broad view of computation and 
examining what it is to implement one, we have hopefully 



made progress in a way that respects the mass of existing 
theoretical work and yet retains our intuitions. 
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