
Computationalism: The Very Idea

David Davenport (david@bilkent.edu.tr)
Computer Eng. & Info. Science Dept.,

Bilkent University, 06533 Ankara –Turkey.

Abstract

Computationalism is the view that computation, an abstract
notion lacking semantics and real-world interaction, can offer
an explanatory basis for cognition. This paper argues that not
only is this view correct, but that computation, properly
understood, would seem to be the only possible form of
explanation! The argument is straightforward: To maximise
their chances of success, cognitive agents need to make
predictions about their environment. Models enable us to
make predictions, so agents presumably incorporate a model
of their environment as part of their architecture. Constructing
a model requires instantiating a physical "device" having the
necessary dynamics. A program and the computation it
defines comprise an abstract specification for a causal system.
An agent's model of its world (and presumably its entire
mechanism) can thus be described in computational terms
too, so computationalism must be correct. Given these
interpretations, the paper refutes arguments that purport to
show that everything implements every computation
(arguments which, if correct, would render the notion of
computation vacuous.) It then goes on to consider how
physical systems can "understand" and interact intelligently
with their environment, and also looks at dynamical systems
and the symbolic vs. connectionist issue.

Introduction

Not surprisingly, early digital computers were frequently
referred to as "electronic brains." Able to perform complex
mathematical calculations, play games and even write
simple poetry, these machines clearly displayed
characteristics previously thought to be the exclusive realm
of human beings. Moreover, they did these feats with such
rapidity that it was difficult not to imagine that they would
one day exceed our own rather limited cognitive abilities,
leading us either into utopia or into slavery.

Of course, this hasn't happened yet (at best, we seem to
have a sort of utopic slavery!), but the idea that the mind
might be some form of computer has certainly gained
considerable currency. Indeed, most research programs in
Cognitive Science and Artificial Intelligence adopt this
view, known as computationalism –variously the idea that
cognition is computation or that minds can be described by
programs. Initial success, however, has given way to a
series of seemingly insurmountable practical and
philosophical problems. These difficulties have prompted
some to search for alternative formulations and to question

whether computationalism actually has any explanatory
value after all.

This paper argues that computationalism, properly
understood, is an invaluable tool in our quest to understand
cognition. Indeed, it will become obvious that all the
alternative proposals are ultimately committed to the very
same viewpoint. To appreciate this, however, it is necessary
to first develop a sketch of computation and of what a
cognitive agent is and how it may function. This perspective
will then provide the foundation upon which to sensibly
discuss the meanings and relative merits of the various
ideas. This approach is somewhat unusual, perhaps, but
appropriate given the interrelated nature of the concepts
being investigated. Ultimately, these notions simply cannot
be understood in isolation, but only as a package, as a
coherent philosophy of mind (indeed, a philosophy of
everything.1)

What is Computation?

Consider the relatively intuitive notion of a model. A
model is something that stands in for and which
"corresponds" in relevant ways, to the system being
modelled. The model can thus be used to obtain information
about the real system, without the necessity of actually
interacting with it. This is clearly advantageous when, for
instance, the system is too large to manipulate directly (the
solar system, or the weather) or when it might be dangerous
or expensive to actually do so (oil spillage from a
supertanker or the financial collapse of a major company.)
Notice also, that there may be many different ways to model
the very same system. Depending on the purpose (the
answers required) a model may be more or less accurate,
may include or omit various details, and may be
implemented in different materials. Models, then, allow for
predictions about the way things will be, are, or were, in a
given set of circumstances.

Models often bear a physical resemblance to the system
they represent. For example, a model yacht is a scaled down
version of the real object. Besides being a great play thing,
it can be used to answer questions, not just about what the
real yacht looks (or would look) like, but about how it might
behave in various sea and wind conditions, or how its
performance might change if the mast were to be moved
slightly forward or aft. Increasingly, however, abstract
mathematical/computational models are replacing models
that physically resemble the phenomena under investigation.

1 Davenport (1997), for example, shows how the notion of truth

may be analysed using the ideas herein.

One reason for this is the difficulty, time and cost associated
with crafting such physical models.

What is a computational model? In essence, it is simply a
function2; a mapping from input states to output states
(which may be thought of as a mapping from questions –
including any initial data– to answers.) It is important to
emphasize that nothing in this view of computation implies
discreteness, i.e. it is perfectly compatible with continuous
(real) values. Of course, rather than a single function, the
mapping may be specified as the joint (sequential and/or
parallel) application of possibly recursive functions. State
variables may be used to retain intermediate results between
function applications. Computation might also be usefully
viewed as a formal axiomatic system (comprising a set of
symbols and rules for manipulating them.) These alternative
views offer different conceptualisations and allow for
different space/time tradeoffs during implementation,
however, they do not otherwise add or subtract anything.

Of course, to actually obtain answers, abstract models
must be instantiated somehow. This demands a physical
implementation, either directly, using, for example, a FSA,
or indirectly, by mentally executing the abstraction or using,
for example, a digital computer. Implementing an abstract
model involves mapping states of the abstraction to physical
states, along with any relevant sequences of such states.3
There are several approaches to achieving this. One might
find (or attempt to find) an existing physical entity whose
functioning happened to coincide with that desired. This
may prove very difficult though, given the constraints of
any reasonably complex model.4 Alternatively, rather than
use an existing system, one could construct such a system
anew. This then becomes an engineering problem. The thing
to note, however, is that in both cases we have to rely on
(known, proven) causal5 interaction to ensure that the
desired behaviour is actually forthcoming. Of course, we
now have at our disposal a tool –the digital computer– that
provides a very quick and easy way to construct an
implementation for almost any abstraction6. Computer
programs are the means by which we specify the desired
states and state transitions to our machine. A program
(algorithm7, computation) is thus an abstract specification of
the causal behaviour we desire from the system which is to
implement our computation (c.f. Chalmers, 1995)

2 In fact, it may actually be a relation –which admits many-to-

many mappings– which may be necessary to properly model
concurrent systems (c.f. non-deterministic Turing Machines.)

3 Where states and “sequences” may be real valued or discrete.
Note also that, strictly, there is probably no reason to suppose
that the mapping might not be sequence to state and vice versa,
much like a Fourier transform. Finally, we might accept to
implement a functionally equivalent computation, in which case
there need not be an obvious mapping!

4 Note that the mapping must be repeatable, so that arguments to
the effect that one might map such a sequence to anything are
unlikely to be fruitful. This point is discussed in some detail
below.

5 Causal may mean nothing more that reliably predictable!
6 Even Turing Machines are unable to perform some functions, see,

for example, Turing (1936) and Copeland (1997).
7 An algorithm is a sequence of (one or more) function

applications. Algorithms comprising different sequences and/or
primitive functions may result in the same overall computation.
A program is an algorithm in a machine understandable format.

Before moving on to look at cognition and how this view
of computation is related to it, it is important to dispose of
the argument, put forward by Putnam (1988), to the effect
that computation is all pervasive. According to Putnam’s
proof (in the Appendix of his Reality and Representation),
any open system, for example, a rock, can compute any
function. If true, this would render void the
computationalist’s claim that cognition is simply a
particular class of computation, since everything, even a
rock, would be capable of cognition!

The essence of Putnam’s argument is as follows: Every
ordinary open system will be in different maximal states,
say s1, s2, … sn, at each of a sequence of times, t1, t2, … tn.
If the transition table for a given finite state automaton
(FSA) calls for it to go through a particular sequence of
formal states, then it is always possible to map this sequence
onto the physical state sequence. For instance, if the FSA is
to go through the sequence ABABA, then it is only
necessary to map A onto the physical state s1 s3 s5, and
B onto s2 s4. In this way any FSA can be implemented by
any physical system.

Fortunately (for cognitive science), the argument is not as
good as it may at first appear. Putnam’s Principle of Non-
Cyclical Behaviour hints at the difficulty. His proof relies
on the fact that an open system is always in different
maximal states at different times. In other words, it is
possible to perform this mapping operation only once (and
then probably only with the benefit of hindsight!) But this is
of no use whatsoever; for computation, as we have seen, is
about prediction. Not only is Putnam’s “computer” unable
to repeat the computation, ever, but also it can only actually
make one “prediction” (answer one trivial question.) The
problem is that the system is not really implementing the
FSA in its entirety. A true implementation requires that the
system reliably traverse different state sequences from
different initial conditions in accordance with the FSA’s
transition table. In other words, whenever the physical
system is placed in state si it should move into state sj, and
whenever it is in sk it should move to sl, and so on for every
single transition rule. Clearly, this places much stronger
constraints on the implementation. Chrisley (1995),
Copeland (1996) and Chalmers (1996) all argue this point in
more detail. Chalmers also suggests replacing the FSA with
a CSA (Combinatorial State Automata), which is like a FSA
except that its states are represented by vectors. This
combinatorial structure is supposed to place extra
constraints on the implementation conditions, making it
even more difficult to find an appropriate mapping. While
this is true, as Chalmers points out, for every CSA there is a
FSA that can simulate it, and which could therefore offer a
simpler implementation!

One final point before moving on; Searle (1992) argues
that computation is observer-relative, that syntax is not
intrinsic to physics, and that his wall might thus be seen to
implement the Wordstar program. We have seen that the
latter claim is nonsense, however, there is an element of
truth in the former ideas. While the relation between the
physical implementation and the abstract computation is
highly constrained, it is still up to the observer to decide
what constitutes a system state and where to draw the

boundaries of the system. Clearly, it is also the observer
who interprets the system being modelled in terms of the
physical states –and thus corresponding abstract
computational states. Computation, like beauty, is largely in
the eye of the beholder!

What is Cognition?

Agents are usually considered to be small parts of the
world in which they exist and are thus assumed to have
limited abilities. Cognitive agents are agents that
incorporate and use knowledge of the environment to
improve their chances of success, even survival!

In order to cope with the vagaries of its world, an agent
needs to select and execute the action most appropriate to its
goals. This requires making predictions, both about the
current state of the un-sensed parts of its world and about
the effects of its own actions on the world. Prediction, then,
is the principle around which cognition is organised, and an
agent’s knowledge thus constitutes a model of its
environment. The model is a (presumably) physical system
that implements a computation capable of providing the
necessary answers. The relation between cognition and
computation is thus clear.

An agent’s model may be innate or it may be constructed
(learnt) as a result of sensing and possibly interacting with
the environment. It may be static or continuously refined,
again as a result of interactions. Given such a model of the
world, sensory input must somehow combine with it to
determine actions relevant to the agent's present situation
and goal. Any discrepancy between the model's predictions
and the subsequent sensory input will indicate errors in the
model and can thus provide the basis for updating it.

How an agent actually acquires, represents and
subsequently utilises the knowledge inherent in its model of
the world need not concern us here (see Davenport (1992,
1993) for further ideas in this direction.)

Computationalism

Given the interpretations of computation and cognition
outlined above, is computationalism correct? There are at
least three ways to interpret this question, (1) Can cognition
be described (simulated) by computations, (2) Is cognition
literally computation, and (3) Does the notion of
computation offer a suitable basis for understanding and
explaining cognition.

Based on our analysis, the answer to the first form of the
question, "Can cognition be described by computations?"
would seem to be "yes." Clearly, we can construct
computational simulations of cognition at various levels; the
question though, presumably, refers to description at the
“lowest” physical-level (if there is any sense to this notion.)
Assuming that the mind/brain has a purely physical basis
(i.e. no part of it –the soul, perhaps– would continue to exist
were its material components to be destroyed) then, since a
program/computation is simply a description of a causal
system, answering the question in the affirmative requires
another physical system having equivalent causal dynamics
that we can utilise as the model. This is an empirical
problem. It may be the case that the underlying physics of

certain cognitive systems do not occur elsewhere. In such a
case we might model a specific agent by employing another
such agent –if one exists. We could not, however, model the
class of such agents in this manner or, equivalently, use the
only existing agent to model itself (which would be
nonsense –having no predictive value!)

The second form of the question, "Is cognition literally
computation?" cannot be answered quite so easily.
Computation is certainly part of cognition (specifically, the
agent’s model of the environment.) But what of the other
elements, the input and output pathways linking the model
to the environment, the goals, the matching and decision-
making mechanism, etc., are they also computational?
Again, if they are physical/causal systems, then,
presumably, they too can be interpreted computationally, in
which case we should also accept that cognition is quite
literally a matter of implementing the right form of
computational system. Of course, this account does not
directly explain the subjective aspects of mind (feelings,
desires, etc.) but that is another story.8

The final interpretation, “Does the notion of computation
fail to have explanatory value when it comes to
understanding cognition?” is of more immediate concern to
cognitive science and artificial intelligence researchers.
Most work in the field tacitly assumes that computation is
an appropriate basis, so if this turns out to be wrong there
are likely to be massive upheavals! The case against
computationalism has been growing stronger of late, with
claims to the effect that computation lacks semantics, is
disembodied, is insensitive to real-world timing constraints,
is at the wrong level, and, most dramatically, that since
every system can compute every function, it is just too
pervasive to be meaningful.

Clearly, computation is important from a practical
perspective and also, perhaps, from a historical one. It has
already served as a vital step in the evolution of ideas that
will ultimately lay bare the mysteries of cognition. In fact,
the case against the computational view of mind is
misguided. We have already seen that, while every system
can indeed be viewed as implementing some computation,
every system simply cannot implement every computation.
Moreover, the fact that computation lacks certain elements
of mind, such as semantics, is not important, since our
objective must be to explain how these features arise. If
computation did possess them it certainly could not provide
any basis for understanding them! Besides, the notion of a
computational model is clearly central to the cognitive
process and, at least in the case of semantics, it would
appear that we can actually develop explanations in these
terms, as the following section explains.

8 My intuition here is that there is nothing else! Feelings and the

like are a natural “by-product” of certain sufficiently complex
biological cognitive systems. In any case, we seem to have little
choice but to proceed on the assumption that, as Searle (1992)
put it, “the mental can be physical too.” Note that, even if true,
this is not to say that all talk of the mental is redundant. Quite
clearly, explanations/models at this level allow for efficiency in
our everyday activities. It would be quite impossible for us to
function if all “processing” had to proceed at the molecular-
level.

Meaning and Representation

What gives some symbols/states meaning? The answer
seems obvious, minds do! But this is of no help when the
objective is to understand how the mind works. How can
mental representations have meaning? AI researchers first
suggested that they gained their meaning from other
representations. Searle's (1980) infamous Chinese Room
Argument was the first nail in the coffin of this idea. Harnad
(1993) provided a clearer demonstration of its futility,
however, likening the situation to trying to understand the
meaning of a word in a foreign language dictionary. Each
word is defined in terms of other words, such that, unless
someone provides the meanings for a few primitive words,
there is no hope of understanding anything!

Obviously, these primitive terms can only acquire
meaning as a result of their relation to the world
(environment). Attention thus turned to solving this so-
called Symbol Grounding Problem. Connectionists saw
ANN's (artificial neural networks) as the solution. Others, in
particular Harnad, favoured a hybrid approach, whereby a
neural network would sit between the environment and a
symbol system, isolating appropriate symbols and providing
the necessary grounding. Given the apparent limitations of
ANN's (lack of compositional structure, etc. as pointed out
by Fodor & Pylyshyn (1989), but refuted by later
developments, e.g. recurrent neural networks), Harnad's
proposal seemed reasonable. On the other hand, the
fundamental problem remains. What exactly is the relation
between the mental state and the world? Simply
"connecting" it (providing a causal pathway) to the
environment doesn't exactly resolve this question. Indeed, it
probably isn't even a necessary condition. Many alternative
explanations, such as co-variance, seem similarly flawed.

Actually, given the analysis of cognition in terms of
models, the solution is basically straightforward. A
representation (state) has meaning for the agent just in case
it has predictive value. On relevant occasions the symbol
might be activated via causal connections with the
environment, indicating that the particular feature it
represents is present. On other occasions it may become
active as a consequence of the execution of the model and
thus constitute a prediction. It may not even have a real-
world counterpart, but simply be part of a theory (model),
which provides answers in the absence of anything better
(the ether or charmed quarks, for instance.) It is not, of
course, necessary that the predictions always be correct in
order for the state to be counted as a meaningful
representation. Neither is it necessary that the agent ever
display behaviour based on the representation. This is in
contrast to the Interactivist theory of Bickhard and Treveen
(1995), which, while similar in other respects, claims that
interaction is necessary for real meaning. This seems
patently wrong. Few people have "played" with the planets
or with electrons, yet we would surely wish to say that they
did understand these concepts. If not, education would seem
to be a waste of time!

Identifying Symbols & Rules

An agent's model of its world might be viewed as a
formal system comprising symbols and inference rules. A
number of questions thus arise, first, and foremost of which
concerns the origin of these symbols and rules. Are they,
perhaps, innate, or does the agent somehow select an
appropriate set of symbols? Acquiring (and maintaining) a
suitable set of base symbols for a given environment is
likely to be one of the primary determinants of success or
failure for an agent.

How then, might an agent "discover" the symbols it
needs? An outline answer might go something like this.
Agents have a number of sensors and actuators. The
problem for any agent is to decide which actuator (if any) to
invoke at any particular moment. Its objective is to satisfy
its needs (food, sex, comfort, etc.) In some cases evolution
may have endowed it with automatic (innate) mechanisms
that restore it to its "ideal" state. In other situations,
however, it will need to instigate "deliberate" actions in the
hope of achieving these goals. On the (necessary)
assumption that there is some regularity in the environment
(and lacking any other prior knowledge), the best an agent
can do is to store past sensory input patterns and then match
the current situation against these in the hope that they
might repeat. The matching process will thus produce a set
of expectations, and assuming that the agent has also stored
information about its past actions and their effects, it should
then be able to compute the "intersection" between these, its
perceived situation and its goals, and hence select the most
appropriate action to take.

Given the variation in input patterns, the initial problem is
to identify sets of sensor inputs that regularly occur
together. Having isolated these initial sets, the agent can
further group them into less frequently occurring sets, and
so on. Gradually, it should also be able to determine
combinations of these sets that are mutually exclusive of
each other (by observing that they share terms, for
example.) All of these groupings form the agent's (internal)
symbols. Another set of symbols (external ones) is formed
when the agent acquires language. Meaning in these
symbols involves an additional mapping from the word
itself to the representation of the corresponding concept.

As for the inference rules, they must be basically logical –
since the agent must make the correct, rational, "logical"
choices. We can thus expect logical rules to be part of an
agent’s makeup, i.e. in biological agents, evolution will
have produced/favoured mechanisms which behave as if
they were performing logical inferences. Classical Logic,
being the result of abstraction from our spoken language, is
evidence for this, although, of course, it does not account
for all our observed reasoning. There have been many
attempts to extend Logic (e.g. modal logics, temporal and
non-monotonic logics, etc.,) some, however, would argue
that the very foundation upon which Logic is built is in need
of revision! For some thoughts in this direction, see Kosko
(1993) and Davenport (1999). Certainly, human beings
frequently fail to reason perfectly (perhaps due to biological
limitations, lack of time, incorrect or incomplete knowledge,
etc.), but the fact remains that an agent’s mechanism must
be inherently logical.

Symbolic, Connectionist or Dynamicist?

Which is the correct view, the symbolic or connectionist
one? Or do we need a hybrid solution? Or perhaps another
solution altogether, as, for example, the dynamicists would
have us believe? It should be clear from the foregoing that,
since cognition is described in functional terms, this is
essentially an implementation (organisational) issue. Indeed,
the same is true of computation. There may be several ways
of instantiating the very same computation. They may differ
in many respects –energy consumption, speed, reliability,
even method9, etc.– but these are all irrelevant to the
computation itself.

In fact, it is far from clear what precisely defines or
distinguishes the two archrivals, the symbolic and
connectionist paradigms. The symbolic paradigm is usually
considered to be closely associated with conventional digital
computers whereas the connectionist paradigm is essentially
defined by artificial neural network architectures. The
situation is not so clear-cut, however. For one thing,
ultimately, both can be implemented using the very same
technologies, for example, voltages on wires. Another
confusion arises from the fact that ANN's can be
implemented on (or at least approximately by) symbolic
computers and there is reason to believe that the converse is
also true. McCulloch and Pitts (1943) purported to show just
this, by demonstrating that it was possible to construct logic
gates from ANN-like threshold elements. This, however, is
not really sufficient since the neural elements are not in
practice organised (connected) in this fashion. Some of the
limitations on the processing capabilities of connectionist
systems, as pointed out by Fodor and Pylyshyn (1989), have
been overcome, however, the analysis of this paper clearly
points to one remaining shortcoming. Any reasonably
sophisticated agent must be able to carry out predictions
independent of its current sensor inputs. But most ANN's
are simple feed-forward devices and even recurrent ANN's
only delay the input one "step." Meeting this predictability
requirement would seem to be possible, in principle,
although it may demand more complex ANN's, perhaps,
ones in which individual neurons retain state information.

So, –assuming that they are both capable of supporting
the necessary computational structures– the choice is an
organisational one and cognitive agents could equally well
employ either. Of course, there may be other reasons to
prefer one form to the other. It may be that one is easier to
implement in a particular technology; silicon, biology, or
beer cans! Or that it requires less hardware or works more
reliably.

Given a particular type of agent (e.g. ourselves), it might
be useful to be able to determine which form it was
employing. Whether this is possible depends on exactly
what distinguishes the two paradigms. One point of
difference would appear to lie in the mode of storage. In
symbolic systems, if a token is to appear in several
"expressions" then each will contain a copy of the token. In

9 We may wish to distinguish between the function being

computed and the method of computing it. For instance, there are
several ways of actually multiplying two values (using repeated
addition, shift /add, etc.)

contrast, the connectionist approach10 is to retain only one
instance of a token, and then to create a link to this instance
from each expression in which it participates. It may also be
possible to distinguish the paradigms along the lines of how
they "view" the world. Symbolic systems often take sets of
mutually exclusive tokens (e.g. blue, red, green... or car,
bike, truck...) as their starting point, whereas connectionist
systems tend to start with (expect) conjunctions of terms.
The latter is attempting to identify sets of inputs that always
occur together, the former, ones that never occur together.
In reality both are impossible to guarantee, so that, as
indicated earlier, the only realistic option is for an agent to
store input patterns in the hope that they may happen to
repeat.

And what of the dynamicist view, is it a viable
alternative? Van Gelder (1995) characterises cognitive
processes as "state-space evolution within dynamical
systems." The archetypical example of a dynamical system
he suggests is Watt's centrifugal governor for controlling the
speed of a steam engine. Simplifying a little, the basic
argument is that the system is not computational since there
are no representations or, at the very least, no symbolic
representations. From the characterisation of computation
given at the beginning of this paper, it will be clear that a
system can be computational irrespective of whether or not
it displays identifiable symbols. The system clearly has a
representation of the current engine speed (via the gearing
constant.) Furthermore, since it accurately predicts the
amount of steam needed to maintain a steady speed, it must
have some representation of the desired engine speed
(actually encoded in the mechanical design, weights, arm
lengths, angles, etc.) And, of course, while it can be
described by complex differential equations, it can also be
described by (symbolic) difference equations or, even
qualitative language/symbols, although in each case with
correspondingly less precision.

Many physical systems do (like the governor) appear to
exhibit properties that are not "naturally" separable, i.e. they
appear continuous. Conceptually, perhaps, if the universe
were (ultimately) comprised of particles and neat slots, it
might be possible to agree upon an appropriate set of states
(symbols) to employ in describing any system. On the other
hand, if, as seems more likely, the universe is not made up
of nice discrete entities, then what we decide to call a state
is entirely up to us! Indeed, whatever the underlying
physics, we as macro agents are continually faced with such
situations. We are perhaps fortunate in that most physical
entities happen to form relatively static “islands” widely
separated from each other. For this reason we find little
difficulty in identifying everyday objects, but we quickly
begin to falter when faced with gaseous clouds or subatomic
particles.

There would thus appear to be no principled way, or
reason, to distinguish dynamical systems from any other
forms. Indeed, both symbolic and connectionist systems are
ultimately dynamical systems. Kentridge (1995) provides a

10 Here we assume the exemplar connectionist system to be a

perceptron-like structure that does not employ distributed
representations.

good discussion of this showing how rules and differential
equations can be equally good descriptions of ANN’s.

Timing

Another criticism frequently levelled against
computationalism is its failure to say anything about the
timing of events. This is because the very notion of
computation has traditionally abstracted out time,
concerning itself only with sequence. Thus, whether a step
in an algorithm takes a second or a millennium doesn't
matter, the end result will (must) be the same. The
increasing use of GUI's and embedded systems, however,
seems to make the traditional (Turing Machine inspired)
view of computation, –as a purely formal system in which
each state is always followed by the very same next state–
rather less appropriate. Today, computer systems must
handle asynchronous input from the environment and
respond in a timely manner. So, the question is whether it is
necessary to complicate the classical picture of computation
with actual time values or whether pure sequences can still
suffice.

Obviously, a system has to be fast enough to cope with
the demands made upon it, otherwise it will fail to "keep
up." Every technology has its limits though, biological ones
perhaps more so than others, so there will always be
situations that an agent constructed with a given technology
will be unable to handle. Engineers, asked to design/build a
system guaranteed to cope with events having certain
temporal characteristics, need to be concerned with the
actual minimal response times of their system, and may,
perhaps, choose a faster technology if necessary. On the
other hand, if the technology is fixed, as for example is our
own, then there is little more that can be done (after
selecting an optimal algorithm.)

Another possible concern relates to situations in which
the agent may respond too quickly and hence fail to achieve
its goal. While this may be solved by the addition of timing
information, (e.g. explicit time delays) it might also be
handled by finding conditions for invoking the actuator that
are more specific. In reality, this might include taking inputs
from naturally occurring "clock" signals (e.g. the human
heart beat); however, this would not constitute timing
information, per se.

The final reason that timing might be important, relates to
stability concerns. Avoiding oscillation in control systems is
clearly important and the development of the mathematical
tools necessary to guarantee this has been one of the major
achievements of modern control theory. Unfortunately, even
in the case of relatively simple linear systems, the analysis
is very complex, and there would seem to be no natural way
to extend it to non-linear systems many orders of magnitude
more complex. The only hope would seem to be systems
that could learn and adapt so as to automatically stem
oscillation as much as possible.

In our quest to understand cognition, extending the notion
of computation to include timing information thus seems
unnecessary. On the other hand, techniques that would
allow performance criteria to be evaluated would certainly
be beneficial.

Summary & Concluding Remarks

Does computation, an abstract notion lacking semantics
and real-world interaction, offer a suitable basis for
explaining cognition? The answer would appear to be yes,
indeed, it would seem to offer the only possible explanation!

The basic argument of this paper is as follows. Models
enable us to make predictions. Constructing a model
requires building a physical "device" whose states and
dynamics map onto those of the target system. A convenient
way to do this is to write a program that can be executed on
a digital computer. The program, and the computation it
defines, is thus an abstract specification of the desired
causal system. To maximise their chances of success,
cognitive agents need to make predictions about their
environment. It therefore seems reasonable to assume that
their architecture must include a model that can be used to
make such predictions. This model can be described and
interpreted in computational terms, so computationalism
must offer an appropriate basis for explanation.

While connectionists and dynamicists claim to offer
alternative models, it is clear that these relate to
organisational concerns and thus do not deflect the essential
computational explanation, for they too are computations!
The argument put forward by roboticists, psychologists and
social theorists, that intelligence/representation demands
situated interaction, would appear to be essentially correct
on the analysis presented here. A state is representational
only on the basis of its predictive value to the agent. From
the computational viewpoint this is perfectly natural and
answers the question of semantics. Finally, the
philosophical argument, which claims to show that
computation is a potentially vacuous concept, was seen to
be misleading. Mapping every computation to every system
is simply not possible because the proper causal structure is
lacking. Computation is about prediction and while it is
possible to map any specific computational sequence onto
(almost) any physical system, there is little predictive value
in so doing.

Using these ideas we might envisage a hierarchy of
systems based on their cognitive abilities. At the bottom
would be FSA-like machines that have no inputs or outputs.
Above them, purely reactive systems with a few inputs and
outputs but fixed causal pathways and no internal state.
Next would come adaptive systems, slightly more
sophisticated, being able to modulate their behaviour within
the limits of their fixed physical structure. These may be
followed by FSA that do have inputs and outputs. Above
these would come systems like the modern digital computer
and the Turing Machine that have I/O, a significant number
of states and a practically infinite ability to reconfigure their
causal structure. Lastly, at the top of the hierarchy we might
place systems that not only have the ability to rewire
themselves, but also to expand the number of inputs, outputs
and states available to them.

A major objective of this work was to establish a simple
coherent framework within which to understand the notions
of computation and cognition, and the relation between
them. By taking a broad view of computation and
examining what it is to implement one, we have hopefully

made progress in a way that respects the mass of existing
theoretical work and yet retains our intuitions.

References

Bickhard, M. H. & Terveen, L. (1995). Foundational Issues
in Artificial Intelligence and Cognitive Science: Impasse
and Solution. Advances in Psychology 109, North-
Holland, Elsevier.

Chalmers, D. J. (1995). On Implementing a Computation.
Minds and Machines 4, pp.391-402.

Chalmers, D.J. (1996). Does a Rock Implement Every
Finite-State-Automaton? Synthese, Vol.8 No.3, pp.309-
333, Kluwer Academic Pub.

Chrisley, R.L. (1995). Why Everything Doesn’t Realize
Every Computation. Minds and Machines 4, pp403-420,
Kluwer.

Copeland, B.J. (1996). What is Computation? Synthese,
Vol.8 No.3, pp.335-359, Kluwer Academic Pub.

Copeland, B.J. (1997). The Broad Conception of
Computation. American Behavioral Scientist, Vol.40,
No.6, pp.690-716, Sage Pub.

Davenport, D. (1992). Intelligent Systems: the weakest link?
In Kaynak, O., G.Honderd, E. Grant (1993) Intelligent
Systems: Safety, Reliability and Maintainability Issues,
Berlin: Springer-Verlag.

Davenport, D. (1993). Inscriptors: Knowledge
Representation for Cognition. Proceedings of Eighth Int.
Symposium on Computers and Information Science,
Istanbul.

Davenport, D. (1997). Towards a Computational Account of
the Notion of Truth. Proceedings of the 6th Turkish
Artificial Intelligence and Neural Network Symposium.

Davenport, D. (1999). The Reality of Logic. A talk to the
Cognitive Science Group, Middle East Tech. University.
(see http://www.cs.bilkent.edu.tr/~david/david.html)

Fodor, J. & Pylyshyn, Z., (1989). Connectionism and
Cognitive Architectures: A Critical Analysis. In Pinker, S.
& Mehler, J., (Eds.) (1990). Connections and Symbols (A
Special Issue of the Journal Cognition), Bradford Books,
MIT Press.

Harnad, S. (1993). Grounding Symbols in the Analog World
with Neural Nets. Think (Special Issue on Machine
Learning.)

Kentridge, R.W. (1995). Symbols, Neurons, Soap-Bubbles
and the Neural Computation Underlying Cognition.
Minds and Machines 4, pp439-449, Kluwer.

Kosko, B. (1993). Fuzzy Thinking: The New Science of
Fuzzy Logic. New York: Hyperion.

McCulloch, W.S. & Pitts, W. (1943). A Logical Calculus of
the Ideas Immanent in Nervous Activity. Bulletin of
Mathematical Biophysics, 5, pp.115-133.

Putnam, H. (1988). Representation and Reality. Cambridge,
MA: MIT Press.

Searle, J. (1980). Minds, Brains and Programs. Behavioural
and Brain Sciences 3, pp.417-424. Reprinted in Boden,
M. (Ed.), (1990) The Philosophy of Artificial
Intelligence, Oxford Univ. Press.

Searle, J. (1992). The Rediscovery of the Mind. Cambridge,
MA: MIT Press.

Turing, A.M. (1936). On Computatble Numbers, with an
Application to the Entscheidungsproblem. Proc. Of the
London Mathematical Society, Series 2, 42, pp.230-265.

van Gelder, T. (1995). What Might Cognition be, If Not
Computation. The Journal Of Philosophy, Vol.XCI, No.7

