[T———

INT. J. PROD. RES., 1990, voL. 28, No. 7, 1305-1316

Development of cost model for the single-model
stochastic assembly line balancing problem

SUBHASH C. SARINt and ERDAL EREL}

In this paper we develop a cost model for the single-model stochastic assembly line
balancing problem for the objective of minimizing the total labour cost (dicated by
the number of stations on the line) and the expected incompletion cost arising from
tasks not completed within the prescribed cycle time. Its use is demonstrated in a
dynamic programming procedure which is implemented using a bounding strategy
to curtail storage and computational requirements. The solutions obtained are
compared with those obtained using the procedure of Kottas and Lau (1973, 1981).

1. Intreduction

The single-model, stochastic assembly line balancing problem can be stated as
follows: given a finite set of tasks, each having a performance time distributed according
to a probability distribution, and a set of precedence relations which specify the
permissible orderings of the tasks, the problem is to assign the tasks to an ordered
sequence of stations such that the precedence relations are satisfied and some measure
of performance is optimized. The problem addressed in this paper has the objective of
minimizing the total system cost consisting of the total labour cost and total expected
incompletion cost. Total labour cost term is a linear function of the number of stations
on the line. Since task performance times are random variables, some tasks cannot be
completed within the prespecified cycle time, and these incompletions compose the
total expected incompletion cost term. The optimal objective function value is obtained
by varying the number of stations and the allocations of tasks to these stations, such
that: (1) all tasks are allocated to stations, (2) no task is allocated more than once, (3) if
task x precedes task y on the precedence diagram, then y is not allocated to a station
that precedes the one to which x is assigned.

Although extensive research has been done on the deterministic version of the
problem, relatively less work has been done to develop efficient, optimum-seeking
solution procedures for the stochastic version. The problem has a finite but extremely
large number of feasible solutions and the problem’s inherent integer restrictions result
in enormous computational and storage difficulties. The stochasticity of the task
performance times are recognized and stated by several authors (Arcus 1966, Freeman
and Jucker 1967, Wild 1972). Although some researchers (Kottas and Lau 1973, 1976,
1981, Vrat and Virani 1976, Shtub 1984, Reeve and Thomas 1973, Sculli 1984) have
developed procedures (that are basically heuristic) to solve this problem, no one has yet
reported an exact development of the cost model. In this paper, we develop such a cost
function and demonstrate its implementation in a dynamic programming based
scheme.

Revision received March 1989.

T Department of Industrial Engineering and Operations Research, Virginia Polytechnic
Institute and State University, Blacksburg, VA 24061, USA.

1 Department of Management, Hacettepe University and Bilkent University, Ankara,
Turkey.

0020-7543/90 $3-00 © 1990 Taylor & Francis Ltd.




1306 S. C. Sarin and E. Erel

In the sequel, we first present the notation and assumptions in Section 2. The
development of the cost model is then given in Section 3. Its implementation in a
dynamic programming scheme and results of an experimentation are given in Section 4,
and finally some concluding remarks are made in Section 5.

2. Notation and assumptions
The following notation will be used throughout the paper.

C cycle time
N number of tasks in the problem

IC; incompletion cost of task i, for i=1,...,N
K number of stations on the line
L labour rate
t; performance time of task i, fori=1,...,N
W set of all the tasks in the problem

The formulation of the problem is developed based on the following assumptions:

(1) Task performance times are random variables. They are independent of each
other and the parameters of the distributions are known.

(2) No splitting of the tasks among stations is permitted.

(3) Each station is manned by one worker with uniform wage.

(4) Demand rate is deterministic.

(5) No buffer inventory between the stations is allowed.

(6) The tasks assigned to a station are performed in a given order.

(7) Whenever a task is not finished, the unit moves down the line with as many of
the remaining tasks being completed as possible.

(8) Incomplete tasks are completed off the line at a cost which is not dependent on
the fraction of the task completed on the line.

(9) No blocking due to incomplete tasks.

Assumption 1 is a direct consequence of the fact that most of the tasks are manually
performed and variances in the performance times of these tasks are inevitable. Normal
distribution is the most frequently assumed distribution for the performance times in
the literature (Chakravarty and Shtub 1986, Kottas and Lau 1973, 1976, 1981, Vrat and
Virani 1976). If the assumed probability distribution can take negative values, then it
should be truncated at zero. On the other hand, the truncation at zero can be made if
the probability that the random variable can take negative values is small enough.
Suppose that the performance times are independent, normally distributed random
variables, and let 4, and o7 be the mean and variance of the performance time of task i. If
we let E represent the area to the left of zero under a normal distribution, ¢ a small
quantity greater than zero, ®(-) be the cumulative standard normal distribution
function and o, = a x y; for all i, where a is a constant, then the area to the left of zero can
be ignored if

fori=1,...,N.

E=(D<—ﬂi)<s or as —

1
: (o)
As is shown by Erel (1987), for small ¢, the upper bound values of a are of realistic
magnitudes from a practical point of view. In addition, it is also shown that when the
performance times are assumed to be normally distributed, the effect of truncation at

zero is negligible for tasks of realistic assembly lines (Erel 1987, Wilhelm 1987).




PR

Stochastic assembly line balancing problem 1307

Assumptions (2)-(5) are similar to those made in the majority of the line balancing
literature. However, the formulation presented in this paper could be easily extended to
relax assumption (3); more than one worker could be assigned to a station, nonidentical
wage rates could be applied for different tasks, and other constraints, such as zoning or
positional constraints, could be imposed on making station assignments. Assumptions
(6) and (7) represent only one of the ways the incompletion situations are handled; the
formulation could be modified to handle other incompletion situations, such as the
incompleted units are scrapped, or additional workers are hired that can help the
workers at stations encountering incompletions.

Incompletion cost is the cost of completing the task off the line and is calculated as if
the incomplete task is handled by a group of workers supporting the line. Incompletion
cost of task i, 1C, is assumed to be larger than L x g, for i=1,..., N. A task becomes
incomplete due to two reasons: (a) the task is not completed within the cycle time, or (b)
the task is a follower of another incomplete task on the precedence diagram. When a
task is incomplete, a set of tasks may not get started to be processed. This set of tasks
depends on the precedence diagram and the allocations of tasks to stations.

The demand rate for the product is assumed to be known with certainty. A fixed
demand rate imposes a fixed cycle time. The model will be developed to give a solution
for the cycle time imposed by the demand rate.

3. Development of the cost model
The objective function of the single-model, stochastic assembly line balancing
problem stated in Section 1 is as follows:

Min Z = Total labour cost + total expected incompletion cost.

In this section, a general expression will be developed that captures the cost terms of the
above objective function for a given number of stations and allocations of tasks to these
stations. As alluded to earlier, the optimal solution can then be obtained by varying the
number of stations and the allocations of tasks to these stations. To that end, we first
introduce some additional notation.

Let the set of tasks following task i on the precedence diagram and in the station
which contains task i be denoted by 4} and H,, respectively. Note that when task i is not
completed within C, then the tasks in H; cannot be started. Moreover, the tasks in

\) 4

JjeH;

also cannot be started. Let

a=auny (| 4)
jeH;
Hence, incompletion of task i incurs a cost equal to the incompletion cost of task i and
that of the tasks in A;; that is

Y IC;+1C;

Jedi
Let P; and B; be the set of tasks preceding task i on the precedence diagram and in the
station which contains task i, respectively. Task i can be started only if the tasks in P;
and the tasks in B,, that can be started are completed. Let jeB; and j¢ P, and if j is
started to be processed, then it should be completed within C for task i to get started,




1308 S. C. Sarin and E. Erel

although j¢ P,. Note that if there are n tasks in B, that do not belong to P,, then there can
be at most 2" starting events for task i. Let T be the set of tasks in B, that do not belong
to P;. Then, T;=B;n(W—P)). Let T{ be the jth starting event of task i in which the
tasks in TS/ and task i can be started and the tasks in TN cannot be started. Note that
Ti does not imply that job i will necessarily be started. Of course, job i can be started
only if jobs in TS{ are completed. We address these possibilities below. Moreover, note
that

{B.nP}<TS{ and B,=TS{UTN{ forj=1,...,2"

In order to compute the cost terms of the objective function, several variables
should be determined. These variables include the probability that a task can get
started to be processed, the probability that a task is not completed within C after it has
been started, and the cost incurred due to the incompletion of a task. As some tasks are
common followers of other tasks that are in parallel on the precedence diagram, their
contributions in the total cost expression need to be appropriately handled to avoid
overcounting. Next, we derive the probability that a task is not completed within C
after it has been started to be processed.

Let y{ denote the probability that T/ occurs, and B/ denote the probability that T
occurs and task i is not completed within C while the tasks in TS/ are completed within
C. Then, B can be expressed as follows:

Bi=vix[Pr(task i incomplete and tasks in TS/ complete, given T4)]. o))

To compute Pr(task i incomplete and tasks in TS/ complete), let X and Y be the events
representing that the task i is not completed within C and tasks in TS/ are completed
within C, respectively. (Accordingly, Y represents the event that the tasks in TS/ are not
completed within C.) Then, Pr{X and Y} =Pr{X/Y}-Pr{Y}. Note that

Pr{X}—Pr{X/Y}Pr{Y}

Pr{Y}
Note also that Pr{X/Y}=1, because this represents the probability that task i is
incomplete given that the tasks in TS} are incomplete (and the tasks in TS precede task

i in the station). Hence, Pr{X and Y} =Pr{X}—Pr{Y}. Then, expression (1) can be
rewritten as follows:

Pr{X/Y}=

I=vix [Pr(task i incomplete)— Pr(tasks in TS} incomplete)]
=y{x{Pr[z'tk+ti>C]—Pr|:Z,t,pC]}:y{xF{ ()
keTs! keTS!
where,
F{:Pr[ Z_tk+ti>C]—Pr|: Z,tk>c]. 3)
keTS{ keTS?

If we assume that task performance times are normally distributed random
variables with known means and variances, and since they are independent of each
other and of the ordering in stations, then (3) becomes

C—|: ZJIIH‘#{I C_[ Zjﬂk]
Fj= ]—(I) keTSi 1_(1) keTS5 ) (4)

i T 172 iz
2
Y ot+at Y o
keTS{ keTS{




Stochastic assembly line balancing problem 1309

Let §; denote the probability that task i is not completed within C after it has been
started to be processed. If there are n tasks in T';, then, as discussed before, there can be
at most 2" different starting events of task i, and f; can be expressed as follows:

2n 2n

Bi= Y. Bi= 3 yixTi s

=1 i=1
Consider tasks x and y such that x e TS/ and y e TN, For T to occur, at least one task
in P, should not be completed within C. If P,< P,, then T7 is an infeasible starting
event, since all the tasks in P, should be completed within C. Hence, let fs;(<2"
denote the number of feasible starting events for task i. In reality, fs; is much smaller
than 2". Consequently,
Isi

fi=3. Bl ©)

In the computation of f,, the determination of I'} is straightforward once the
assignment of tasks to a station is known. However, the determination of y/ is not as
straightforward because of the complexity of its occurrence. Here, we discuss a
procedure to compute y{ that uses a special enumeration tree in which all possible ways
of realizing the starting event T are represented, and the occurrence probabilities of
these cases are computed. Consequently, the occurrence probability of the starting
event T4, y{is derived. Let w{, denote the probability of occurrence of the kth case in the
enumeration tree constructed to compute y4, and let IW/, and CW/, denote the sets of
tasks that are incomplete and and complete in the kth case of the tree, respectively. Let I,
denote the station to which task i is assigned and g,, denote the number of tasks
assigned to station b;. The tree has I;—1 levels and each level has g,, sublevels for
b;=1,...,1;— 1. The levels and sublevels represent the stations and the tasks assigned to
the stations, respectively. To illustrate this procedure consider the precedence diagram
of an 11-task probiem and an allocation of its tasks to stations as depicted in Fig. 1. The
tree constructed to compute y, where TS{ = {5,6} and TN} = {7}, is depicted in Fig. 2.
Note that for starting event T% to occur, one or more tasks in P, should not
be completed, and all the tasks in P, P4 and Pg should be completed. Note also that
Ps={1}, Po={1,2}, P,={1,3,4,5} and Py={1,2,6}.

The numbers outside the nodes are the node numbers and the ones inside the nodes
represent the tasks in the nodes. Nodes with tasks i and 7 represent whether task i is
completed or not completed within C, respectively. Level 1 corresponds to station 1
and the first sublevel of level 1 represents task 1. Task 1 is either completed or not
completed within C, and these events are represented by nodes 1 and 2. If task 1 is
completed, then task 3 can be started, and task 3 is either completed or not completed

Station 1 Station 2 Station 3 Station 4 Station 5
L] [z ] [sers] [eo] [0 ]

Figure 1. Precedence diagram of the example problem and an allocation of its tasks to stations.




1310 S. C. Sarin and E. Erel

Level 1

Level 2

Figure 2. Probability enumeration tree to compute y} of the example.

within C, and is represented by nodes 3 and 4. Note that for starting event T4 to occur,
task 1 has to be completed, since 1e Ps, Pg, Pg; thus, node 2 is pruned. Level 2
represents the second station. Task 2 can be started whether task 3 is completed or not,
since 3¢ P,. Task 2 is either completed or not completed within C, as represented by
nodes 5-8. If task 2 is completed, then task 4 can be started. On the other hand, task 2
has to be completed for starting event T4 to occur, since 2 € P, Pg. Thus, nodes 6 and 8
are pruned and not branched into descendent nodes. Nodes 5 and 7 are branched into
nodes representing task 4 being completed or not completed within C. Note that for
starting event T} to occur, one or more tasks in P, has to be incomplete; thus, node 9
represents an infeasible case, since none of the tasks in P, are incomplete in the case
represented by node 9. The cases represented by nodes 10, 11 and 12 are the all possible
cases for T} to occur. The tasks that are complete and incomplete in these three cases
are given below:

CW} ,={1,2,3} and IW} ,={4} corresponding to node 10
CWj ,={1,2,4} and IWj} ,={3} corresponding to node 11
CWj ,={1,2} and IW} ,={3,4} corresponding to node 12

In the enumeration tree discussed above, a node at sublevel v with task j is branched
into descendent nodes at sublevel v+ 1 with task i assigned to them if all the tasks in P;
are completed in the case represented by the parent node at sublevel v. Otherwise, if the
parent node represents a case in which one or more tasks in P; are incomplete, then the
node is not branched into nodes at sublevel v+ 1; sublevel v+ 1 is skipped. Within a
level, if the parent node represents a task being not completed, and if the node can be
branched into nodes of the next sublevel, then the parent node is branched into a
descendent node representing the task being incomplete. A node is pruned if the task
represented by the node is incomplete, and that task is required to be completed for the
associated starting event to occur.

Next, we discuss the computation of the occurrence probabilities of the nodes in the
enumeration tree. Let O, and O, represent the occurrence probabilities of a pair of
descendent nodes with task u assigned. Note that this pair of nodes are branched from a
common parent node and let o; denote the occurrence probability of the parent node.
Then, 0, =0, + 0,. The occurrence probabilities of the nodes are computed in a similar
manner as the computation of I'J. If the performance times are normal random



Stochastic assembly line balancing problem 1311

variables, then the occurrence probabilities of the nodes in the enumeration tree
(depicted in Fig. 2) are computed as follows:

Cm
0,=(D( ‘ul) and o,=1-0,

8}

C—(py +p3)
03=¢(—(;‘{‘+—;§)“; and 04 =0y —03

C -
0s=0>x% @(—;ﬁli) and 0g=03-05
2

C—
07=04 X ®<~—&> and Og=0,—04
0,

C—(uy+us)
=0, x| ——5—-5-] and o¢,q=05—0
09 3 ( (0‘%+0’i)1/2 10 5 9
C—(p2+4)
=0, XO| —5—"5-15-] and o,,=0,—0
011 4 ((0’%4—0’%)1/2 12 7 11

Now we can express the occurrence probability of starting event T4, y} as the
summation of the occurrence probabilities of nodes 10, 11 and 12. That is,

j — 1w J i
78=010+ 01110, =W§ 1 +WE ,+Wg 3

In general, if there are fw! cases in the tree for the starting event T/ to occur, then the
occurrence probability of the starting event T4, yJ can be expressed as follows:

swi

j — J
v{—kZI Wik-

With the determination of the probability of occurrences of desired events, the
contribution of task i to the total expected incompletion cost can now be determined as
follows. First, we illustrate this for an example. Consider again task 4 in station 2 of the
example above. There is only one starting event for task 4 with TS} = {2} and TN} =0.
In the probability enumeration tree constructed for this starting event, there are two
cases corresponding to task 3 being completed or not. Let the probability of the case in
which task 3 is not completed be denoted by w; ,. When this case occurs, an expected
incompletion cost of w} | (IC3+1C,+1Co +1C,,}is incurred. Note that A, ={7,9, 11}.
The probability that this case of starting event T} occurs and task 4 is not completed
within Cis w} ; x ['j. The incompletion cost of the tasksin 4, ={7,9, 11} are multiplied
with this probability and added to the total expected incompletion cost term. Note that
the incompletion cost of tasks 7, 9 and 11 is overcounted with probability (w} ; x I'3),
and should be subtracted from the total system cost expression. In general, the set of
tasks whose incompletion costs are overcounted corresponding to the kth case of the
starting event T4 is

CF{.’,‘=AI-I'\< U Am>.
meIW{,k




1312 S. C. Sarin and E. Erel

Note that the incompletion costs of the tasks in CF{ , are overcounted with probability
(w! . x T¥). If SB{ denotes the overcounted incompletion costs corresponding to T, then

vl
SB{= ) F{xw{,,‘x[ Y IC,,,]. (8)
k=1 meCF.j,k
Now, the expression for the contribution of task i to the total expected incompletion
cost term can be defined. When task i is started and not completed within C, then this

event incurs a cost of

[IC,-+ Y IC j]

JjeA;

and the expected incompletion cost of task i can be expressed as

ﬁix(ICi+ Y ICj>.

JeAi

The computation of the total labour cost term of the objective function for a given
number of stations (K) is straightforward. The total labour cost term is linearly
proportional to the number of stations on the line; the proportionality constant is CL.
On the other hand, the total expected incompletion cost term is a monotonically
nonincreasing function of K. As K increases, the total expected incompletion cost term
decreases to an asymptote. Note that even with the maximum number of stations
(K'=N), there may remain a positive total expected incompletion cost; this quantity
constitutes the asymptote.

The cost factors of the objectives function stated above can now be generalized to
represent the total system cost function of a given allocation of tasks to a given number
of stations as follows:

N Isi
Z=CxKxL+}, {ﬁi[ICﬁ ) Ick]~ 5 SB{} ©)
i=1 ked; j=1

The objective is to minimize Z by varying K and the allocations of tasks to these
stations.

4. Implementation in a dynamic programming scheme

In the dynamic programming formulation of the problem, the stages are the
stations on the line. The state variable at stage n, s, represents the set of tasks available
for assignment at that stage. The decision variable at stage n, x,, € X, represents the set
of tasks to be assigned to station n, where X, is the set of all possible sequences of tasks
that can be assigned at stage n given s, ;. The return function at stage n, r,(x,, 5,+ 1) I8
the total expected cost corresponding to decision variable x,, and state variable s, , . In
determining the decision variables, the precedence constraints are the only restrictions
considered.

The return function, r,(x,, s, + ;) is similar to the objective function developed above
and is as follows:

T Sns )=CxL+ Y {ﬂ,- |:IC,-+ Y IC,‘]— fz SB{}. (10)
i keA; ji=1

E€Xn




Stochastic assembly line balancing problem 1313

If f3(s5+ 1) represents the cost of assigning the tasks in the set {s, —s,, ,} to stages 1
to n, then the recursive relationship can be represented as:

SHsn 1) = 00 {1, (0500 )HS 3 )8} for m=1,.. N (1)
An€Ap
where s,=5,,,;+Xx, and f§(-)=0 and sy, ,=0.

One of the state variables is the null state at each stage except for the first one; the
null state indicates the assignment of all the tasks. The associated f* function value to
the null state, f¥(s, ., =0) gives the optimal solution of the problem with n stations.

This dynamic programming formulation of the problem would only obtain the
solutions of problems of limited size, because of the excessive number of state and
decision variables generated at each stage. Thus, we implement it in a heuristic manner
by pruning decision variables that are not expected to lead to the optimal solution. A
sufficient number of decision variables at each stage should be pruned, so that the
problem could be solved on the computer in a reasonable amount of time. On the other
hand, the pruning of the decision variables should not result in a design with an
operating cost much higher than the optimal design cost.

We will call the strategy that prunes some of the decision variables at each stage as
the ‘bounding strategy’. The bounding strategy imposes an upper bound on the
incompletion probability of the decision variables. In other words, decision variables
that have incompletion probabilities larger than bound provided by the user are
pruned. If « denotes this bound, then the decision variable, x, is pruned if:

C—_Zﬂi
- —=2— | >a. (12)

(Z)

Theoretically, the range of « is between zero and one. The value of one corresponds to
the generation of all possible decision variables at each stage. Since it can be assumed
that ®(x)=0-0 for x< —3-0, a decision variable is assumed to be incomplete with
certainty if the following condition is met:

=< =30 (13)

As a is decreased, the decision variables that have incompletion probabilities
greater than a are discarded; this process decreases the computational and storage
requirements of the dynamic programming formulation. However, the probability of
missing the optimal design increases as a is decreased.

The performance of the procedure was compared with the performance of the
technique of Kottas and Lau (1973, 1981) on some randomly generated problems. The
technique of Kottas and Lau (1973) is a single-pass technique; in other words, once a
decision is made to assign a task to a station, the task is never considered again,
although further improvement could be made by reconsidering the task for assigning to
a different station. The technique could be summarized as follows: an available list is
formed by identifying the tasks with no unassigned predecessors. The list is updated




1314 S. C. Sarin and E. Erel

each time a task is assigned. Then, a desirabile list is formed by identifying the available
list tasks which are marginally desirable for assignment. A task is considered
marginally desirable when its anticipated labour savings in the specific position under
consideration is larger than its expected incompletion cost. The tasks with virtual
certainty of completion are assigned first in descending order of their incompletion
costs. These tasks compose the sure list. If the sure list is empty, then the desirable list
tasks are assigned in the ascending order of their incompletion costs. When the
desirable list gets empty, a new station is established. The tasks which are never
marginally desirable are assigned as the first tasks in stations as soon as they are placed
in the available list. The procedure continues until the available list gets empty. The
procedure is computationally very attractive; up to 50-task problems have been
reported to be solved in under 0-1 seconds CPU time on an IBM 360/75. Kottas and
Lau (1981) refined their technique to generate several promising line designs. This
approach is conceptually related to the techniques of Arcus (1966) and Tonge (1965).
Several line designs are generated by utilizing various selection rules for the desirable
list tasks. Dominated designs are eliminated and the remaining ones are evaluated; the
design with the lowest cost constitutes the solution.

Example No. of

no. tasks F-ratio Ct RAN,; RAN,
1 1 0-000 584 0052 0083
2 11 0-000 72:2 0043 0076
3 11 0-000 999 0046 0062
4 11 0-491 238 0057 0056
5 11 0491 376 0048 0099
6 11 0491 514 0059 0092
7 11 0418 653 0-051 0-085
8 11 0418 791 0042 0079
9 11 0418 930 0053 0072
10 11 0-800 579 0052 0068
11 11 0-800 924 0053 0058
12 11 0-800 50-8 0045 0090
13 15 0-000 99-2 0057 0073
14 15 0-000 576 0050  0-055
15 15 0-000 160 0042 0088
16 15 0-257 64-4 0054 0070
17 15 0-257 22-8 0046 0053
18 15 0-257 712 0058 0085
19 15 0781 29-6 0050 0-068
20 15 0-781 780 0042 0050
21 15 0-781 15-6 0050 0099
22 16 0-575 84-8 0046 0065
23 16 0575 432 0-058 0098
24 16 0-575 91-6 0-051 0-080
25 17 0-382 50-0 0-043 0063
26 17 0-382 98-4 0-055 0-095
27 17 0-382 56'8 0047 0078
28 18 0-379 152 0059 0060
29 18 0379 63-6 0-051 0-093
30 18 0379 220 0043 0075

t Cycle times are in minutes.

Table 1. Parameters of the example problems solved.



Stochastic assembly line balancing problem 1315

DP procedure requirements

%, difference

DpP between the  Number of Number of

Example Kottas and Lau procedure procedures decision state CPU
no. solution solution (KL —-DP) variables  variables timet
1 34420 34-420 0-0 30 27 0-44
2 25-372 25-372 00 50 33 0-48
3 35-842 35-342 14 61 37 0-49
4 9-880 8-833 10-6 271 166 1-63
5 11-810 9930 159 314 244 241
6 15-576 15-487 06 284 237 213
7 41-202 37-938 79 153 138 0-94
8 50425 44-041 127 123 111 074
9 42-873 42-873 0-0 94 133 073
10 25346 22-446 114 397 688 9-84
11 33264 32-595 2:0 447 734 11-05
12 19-946 19-937 00 391 747 11-53
13 62-104 61-753 06 91 57 0-70
14 28-828 28-806 01 94 61 071
15 10-064 10-063 0-0 74 51 0-67
16 25799 25766 01 359 192 2:01
17 11-434 11-430 00 167 166 1-02
18 36375 32107 117 252 170 1-40
19 15-462 15-880 —27 598 1751 47-07
20 37-575 33811 100 1504 2076 112-20
21 8-831 8-644 21 524 1544 38-30
22 33-007 29-038 120 2788 1269 103-69
23 22-537 19-348 142 1246 991 26-88
24 52219 52219 00 1513 1151 36:23
25 31-654 29-114 80 770 553 973
26 75012 71-919 41 862 550 10:74
27 28734 25-928 9-8 810 584 1099
28 8:580 8:563 02 901 741 1163
29 30-085 27-246 94 1175 737 13-15
30 14-851 13-688 78 568 568 566

1t CPU times are in seconds on an IBM 3090.

Table2. Solutions of the example problems and the DP procedure (with « = 0-5) storage and computational
requirements.

The problems generated have 18 or fewer tasks and the following parameters:
#;~U[0,C] with 6;=RAN, (y,), IC;=RAN, (y) and L=$3-00/hour. RAN, and
RAN, are the multipliers used to obtain the variance and the incompletion costs of the
tasks, respectively. Number of tasks, F-ratio, C, RAN,, and RAN, values of the
problems are depicted in Table 1. Note that F-ratio (flexibility ratio) is a measure of the
number of feasible sequences that can be generated; it ranges from zero for precedence
diagrams ordered serially to one for diagrams having no precedence relationships.

Table 2 depicts the solution values of the example problems obtained with the
technique of Kottas and Lau and the DP procedure with o =0-5. Note that 0-5 is a lower
bound on «, since u; ~ U[0, C] for all i. The performance of the DP procedure depends
on the value of «, the larger the value of «, the better is the performance. Table 2 also
depicts the storage and computational requirements of the DP procedure. The
performance of the technique of Kottas and Lau is affected due to the fact that tasks are
never reconsidered after being assigned to stations. Another reason is that the marginal




1316 Stochastic assembly line balancing problem

desirability of a task is determined only by examining the expected performance time,
incompletion cost, and the position of the task in the station. The probability that a
task under consideration is started should also be a factor in determining the marginal
desirability of the task. Only in one of the 30 problems (namely, Problem 19), the DP
procedure with a=0-5 performed worse than the technique of Kottas and Lau. On
average, the DP procedure results in solutions with values 5-0%;, lower than those of the
Kottas and Lau technique; 90% confidence interval on this value are 3-3%; and 6-7%,
respectively.

5. Concluding remarks

In this paper we have developed a cost model for the single-model, stochastic
assembly line balancing problem. Even though this problem for the objective relating
to the minimization of labour cost and incompletion cost has been addressed by others
in the literature, yet no closed form cost function has been reported. This cost function
is implemented in a dynamic programming scheme. A heuristic implementation of this
procedure is shown to generate solutions that are about 5%, better than those generated
by the technique of Kottas and Lau.

For problems with larger number of tasks, we have developed an approximation
procedure which divides the problem into subproblems. For each subproblem, an
approximate solution is obtained using the DP procedure and the cost model presented
in this paper. These approximate solutions are further improved by a branch-and-
bound type of procedure. The improved solutions of the subproblems are then
appended to each other to produce the solution of the original problem. The details of
this study will be reported in a forthcoming paper.

References

Arcus, A. L., 1966, COMSOAL: A computer method of sequencing operations for assembly
lines. International Journal of Production Research, 4, 259-277.

CHAKRAVARTY, A. K., and SHTUB, A. 1986, A cost minimization procedure for mixed model
production lines with normally distributed task times. European Journal of Operational
Research, 23, 25-36.

EReL, E., 1987, A methodology to solve single-model, stochastic assembly line balancing problem
and its extensions. Unpublished doctoral dissertation.

FReeMAN, D. R., and JUCKER, J. V., 1967, The line balancing problem. The Journal of Industrial
Engineering, 18, 361-364.

Korttas, J. F.,and LAy, H. S, 1973, A cost oriented approach to stochastic line balancing, AIIE
Transactions, 5, 164—171.

Kotras, J. F., and LAu, H. S., 1976, A total operating cost model for paced lines with stochastic
task times. AIIE Transactions, 8, 234-240.

Kotras, J. F.,and Lau, H. S., 1981, A stochastic line balancing procedure. International Journal
of Production Research, 19, 177-193.

ScuLLl, D., 1984, Short term adjustments to production lines. Computers and Industrial
Engineering, 8, 53-63.

SHTUB, A., 1984, The effect of incompletion cost on the line balancing with multiple manning of
work stations. International Journal of Production Research, 22, 235-245.

REeevE, N. R., and THoMmas, W. H., 1973, Balancing stochastic assembly lines. AIIE Transactions,
5, 223-229.

ToNGE, F. M., 1965, Assembly line balancing with probabilistic combinations of heuristics.
Management Science, 11, 727-735.

VRAT, P., and VRANL A., 1976, A cost model for optimal mix of balanced stochastic assembly line
and the modular assembly system for a customer oriented production system.
International Journal of Production Research, 14, 445-463.

WILD, R., 1972, Mass-production Management (New York: John Wiley).

WiLHELM, W. E., 1987, On the normality of operation times in small-dot assembly systems: a
technical note. International Journal of Production Research, 25, 145-149.




