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In a routing framework, it may not be viable to visit every single customer separately due to resource
limitations or efficiency concerns. In such cases, utilizing the notion of coverage; i.e., satisfying the de-
mand of multiple customers by visiting a single customer location, may be advantageous. With this
motivation, we study the time constrained maximal covering salesman problem (TCMCSP) in which the
aim is to find a tour visiting a subset of customers so that the amount of demand covered within a limited
time is maximized. We provide flow and cut formulations and derive valid inequalities. Since the con-
nectivity constraints and the proposed valid inequalities are exponential in the size of the problem, we
devise different branch-and-cut schemes. Computational experiments performed on a set of problem
instances demonstrate the effectiveness of the proposed valid inequalities in terms of strengthening the
linear relaxation bounds as well as speeding up the solution procedure. Moreover, the results indicate the
superiority of using a branch-and-cut methodology over a flow-based formulation. Finally, we discuss
the relation between the problem parameters and the structure of optimal solutions based on the results
of our experiments.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The traveling salesman problem (TSP), one of the most in-
tensively studied combinatorial optimization problems, aims to
identify a least cost Hamiltonian tour on a given network. All
nodes of the network must be visited exactly once in the TSP. But,
this may not be viable in many real life applications due to re-
source limitations. Hence, identifying a tour over a subset of the
nodes so that the others are within a reasonable distance of some
tour stop can be more desirable. For instance, consider the postal
delivery services. In a region with many demand points (custo-
mers), it may be very costly and inconvenient to visit every single
demand point separately. Instead, positioning postboxes at a
subset of customer locations and collecting mails through these
boxes is more efficient. In such a system, each postbox is used for
covering the demand of multiple customers; i.e., the customers
without a postbox at their location can drop off mails to their
closest box. A relevant objective in this context would be the
minimization of tour length (cost). However, there may also be
cases where cost is not the primary concern. Consider the routing
of mobile health facilities as an example. The main issue here is to
an).
ensure, with the available resources, that the number of patients
who receive health care is maximized.

In this study, we consider the time constrained maximal cov-
ering salesman problem (TCMCSP), in which the aim is to find a
tour visiting a subset of the demand points, so as to maximize the
demand covered subject to a time constraint. We assume that the
demands of the vertices that are on the tour are fully covered
while only a certain percentage α of the demand of a vertex is
covered if it is not visited but is within a specified distance r of
some tour stop. This is a realistic assumption because not every
demand point may be willing to travel a distance of r units to reach
a tour stop. As an example, a passenger may not want to take the
bus to his destination if he does not want to walk to the closest bus
stop because he is closer to a metro stop. Thus, we can presume
that α% of the demands is covered regarding the points not on the
tour. Due to the upper bound on the tour duration, some vertices
may be left isolated (uncovered); i.e., they are not served at all.

Potential real-life applications of TCMCSP include the routing of
mobile health facilities, collection of blood, distribution of food,
drinking water and medical supplies in the aftermath of a disaster,
routing of security patrol cars in rural regions for crime preven-
tion, routing of unmanned aerial vehicles (UAVs) for information
gathering against intruders, deciding on the order and the location
of the meetings for a political campaign and so on. In all of these

www.sciencedirect.com/science/journal/03050548
www.elsevier.com/locate/caor
http://dx.doi.org/10.1016/j.cor.2016.06.019
http://dx.doi.org/10.1016/j.cor.2016.06.019
http://dx.doi.org/10.1016/j.cor.2016.06.019
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2016.06.019&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2016.06.019&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2016.06.019&domain=pdf
mailto:karasan@bilkent.edu.tr
http://dx.doi.org/10.1016/j.cor.2016.06.019
http://dx.doi.org/10.1016/j.cor.2016.06.019


G. Ozbaygin et al. / Computers & Operations Research 76 (2016) 226–237 227
applications, there is a restriction on the tour length, and the
primary objective is to maximize coverage.

To the best of our knowledge, only a single study exists on the
TCMCSP (due to [1]). The problem structure in this study is dif-
ferent from ours since the authors in [1] distinguish the set of
customers and the set of facilities, and they identify a tour over a
subset of the facilities. In addition, they consider the allocation of
customers to facilities. The problem we study is a special case of
the one in [1] where the set of facilities and the set of customers
are the same and the allocation is disregarded. For this special
case, we are able to propose stronger and smaller formulations
and efficient solution methods.

Our contributions can be summarized as follows. We study the
TCMCSP with weighted demands and partial coverage. We pro-
pose two mathematical formulations and valid inequalities for the
problem, and develop branch-and-cut solution methodologies. We
are able to solve instances of realistic sizes to optimality within a
time limit of one hour.

The rest of this paper is organized as follows. The literature on
several problems that are related to TCMCSP are reviewed in the
next section. Mathematical formulations and valid inequalities for
TCMCSP are given in Section 3. Section 4 presents four branch-
and-cut schemes to solve the problem. The results of our com-
putational study along with a discussion of the sensitivity of op-
timal solutions to changes in problem parameters are reported in
Section 5. Finally, Section 6 concludes the paper with a summary
of our findings.
2. Related literature

The first problem incorporating the coverage concept into a
routing scheme is the covering salesman problem (CSP). CSP is the
problem of identifying a minimum length Hamiltonian tour over a
subset of vertices in a way that every vertex not on the tour lies
within a certain distance of some visited vertex. The CSP is formally
introduced in [2] where a heuristic algorithm is proposed to solve
the problem. Later, the geometric version of the CSP is studied in [3]
and polynomial time approximation algorithms are presented with
a bounded error ratio regarding the optimal tour length.

Two multi-objective variants of the CSP are considered in [4].
These are the median tour problem (MTP) and the maximal cov-
ering tour problem (MCTP) where the tour should visit a pre-
determined number of vertices and the objectives are: (1) mini-
mization of the tour length and (2) maximization of the accessibility
to the tour for the vertices that are not visited. A heuristic approach
is suggested to approximate the frontier of the efficient solutions.

A generalization of the CSP is studied in [5] and [6] where an
additional cost is incurred for every node visited by the tour and
each node is associated with a weighted demand representing the
minimum number of times it has to be covered. Another gen-
eralization of the CSP, called the generalized covering traveling
salesman problem (GCTSP), is presented in [7]. In the GCTSP, one
aims to find a minimum length tour passing through a subset of
facilities while covering at least a predetermined number of cus-
tomers. Node-based and flow-based formulations are presented
and two metaheuristic approaches are developed for the problem.
The TCMCSP is introduced in [1], where the goal is to maximize
the number of covered customers with an upper bound on the
total traveling time. In a sense, it is complementary to the GCTSP.
As pointed out earlier, the problem we study in this paper is a
special case of that considered in [1].

A very popular generalization of the CSP is the covering tour
problem (CTP) introduced in [8]. Given an undirected graph

= ( ∪ )G V W E, , the CTP is the problem of identifying a minimum
length Hamiltonian tour in which the vertices in ⊂T V must be on
the tour while the remaining vertices in V may or may not be vis-
ited, and the vertices in W should be covered without being visited.

The problem of planning mobile healthcare facilities in Suhum
District of Ghana is modeled as the CTP in [9] and solved with the
algorithm developed in [8]. In [10], a GRASP is devised for solving a
generalization of the CTP in which the vertices in W can also be
visited. A two-commodity flow formulation and three scatter
search methods for the CTP are presented in [11]. Several other
heuristics are proposed in [12].

The multi-vehicle variant of the CTP (m-CTP) is introduced in
[13]. For each tour, there is an upper bound on its length and an
upper bound on the number of vertices visited. The m-CTP is
formulated as an integer linear program using vehicle flow vari-
ables and heuristic algorithms are developed. A covering tour
perspective is adopted in [14] to tackle the problem of locating
satellite distribution centers to supply humanitarian aid over a
disaster area. The problem of planning routes for routine patrol
cars is also modeled as the m-CTP in [15].

The CTP is investigated in a multi-objective setting as well. In
[16], the bi-objective CTP (BOCTP) is introduced, and a multi-ob-
jective evolutionary algorithm is proposed. A post-natural-disaster
related problem is addressed in [17] in which part of the infra-
structure in the region affected by the disaster is destroyed. The
problem of supplying food, medicine and shelter over the affected
region is considered as a multi-objective CTP and heuristics are
presented to solve the problem. A variant of the BOCTP with sto-
chastic demands is introduced in [18] and modeled as a two-stage
stochastic program with recourse, which is solved using an epsi-
lon-constraint approach involving branch-and-cut.

The TCMCSP is also related to traveling salesman problems
with profits, which are classified into three categories in [19] based
on their objectives. They are (1) maximizing profit under a dis-
tance constraint, (2) minimizing distance under a profit constraint
and (3) a combination of distance minimization and profit max-
imization. The TCMCSP is closest to the problems in class (1),
which also contains the orienteering problem (OP) introduced in
[20]. In the OP, also known as the selective traveling salesman
problem [21] or the maximum collection problem [22], every
vertex is associated with a profit and the objective is to find a tour
with maximum profit subject to a time restriction. The OP is a
special case of the TCMCSP with r¼0; that is, the demand of a
vertex is covered only if it is visited. We refer the interested reader
to [23] for a recent survey regarding OP.
3. Formulation and valid inequalities

In this section, we formally define TCMCSP and propose two
mathematical models. Afterwards, we present several classes of
valid inequalities for the problem.

Let = ( )G V E, be an undirected complete graph with the set
of vertices = { … }V n0, 1, , and the set of edges =E
{{ } ∈ < }i j i j V i j, : , , . Suppose that vertex 0 represents a central
depot and the remaining vertices correspond to demand points.
We assume that the tour contains at least three vertices and that
| | ≥V 4. Every edge ∈e E is associated with a nonnegative length ce
and every vertex ∈ ⧹{ }i V 0 has a positive demand denoted by di.
We assume that the edge lengths satisfy the triangle inequality.
Define Ni to be the set of vertices within the coverage distance ri of
vertex i other than the vertex i itself, i.e., = { ∈ ≤ ≠ }{ }N j V c r j i: ,i i j i, .
The time constrained maximal covering salesman problem is the
problem of determining a route over a subset of vertices in V that
maximizes the total demand covered. The route must start and
end at the depot and its length should not exceed a prespecified
threshold value L. A vertex i can be either visited or covered by
some vertex ∈j Ni, or left isolated. We consider the demand of the
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vertex i as fully covered if it is on the tour while only a percentage
α > 0 of its demand can be covered if i is not visited and the tour
contains at least one vertex from the set Ni.

3.1. Mathematical formulations

Our first model is a cut based model. We use the following
variables in this model:

=
∈

= ∈

= ∈

⎧⎨⎩
⎧⎨⎩
⎧⎨⎩

x
e E

y
i V

z
i V N

1 if edge is on the tour,
0 otherwise,

1 if vertex is on the tour,
0 otherwise,

1 if vertex is not visited but covered by some vertex in ,
0 otherwise.

e

i

i
i

For ⊂S V , we let δ ( ) = { ∈ | ∩ | = }S e E e S: 1 and ( ) =E S
{ ∈ | ∩ | = }e E e S: 2 . If = { }S i we simply use δ ( )i instead of δ ({ })i .
Finally, we write ( ′) = ∑ ∈ ′x E xe E e for ′ ⊆E E and ( ) = ∑ ∈y S yi S i for

⊆S V . Our first mathematical model for the TCMCSP is given be-
low:

∑
{ }

α( + )
( )∈ ⧹

d y zmax ,
1i V

i i i
0

∑ ≤
( )∈

c x Ls. t. ,
2e E

e e

+ ≤ ∈ ⧹{ } ( )y z i V1 0 , 3i i

δ( ( )) = ∈ ( )x i y i V2 , 4i

≤ ( ) ∈ ⧹{ } ( )z y N i V 0 , 5i i

δ( ( )) ≥ ⊂ ⧹{ } ≤ | | ≤ − ∈ ( )x S y S V S n i S2 0 , 3 2, , 6i

= ( )y 1, 70

∈ { } ∈ ( )x e E0, 1 , 8e

∈ { } ∈ ⧹{ } ( )y i V0, 1 0 , 9i

∈ { } ∈ ⧹{ } ( )z i V0, 1 0 . 10i

The objective (1) is to maximize the total demand covered. Con-
straint (2) ensures that the total tour length does not exceed L. Due
to (3), a vertex can be isolated, on the tour or covered by the tour
stops within its coverage distance. Degree requirement for each
vertex is imposed by (4), i.e., a visited vertex has degree two
whereas a vertex that is not visited cannot have any edge adjacent
to it. Constraints (5) guarantee that a vertex i cannot be covered if
none of the vertices in Ni is visited. Connectivity cuts in (6) prevent
subtours and are exponential in the size of the problem. Constraint
(7) enforces the depot to be on the tour. Finally, domain restric-
tions on the variables are given in (8)–(10).

Next, we modify the formulation presented in [1] to model our
problem. This model is a flow based directed model. For this
reason, we define the set of arcs = {( ) ( ) { } ∈ }A i j j i i j E, , , : , and we
let the length of arcs ^ = ^ = { }c c cij ji i j, for each { } ∈i j E, . In addition to
the y and z variables defined above, we use the following decision
variables: x̂a is 1 if arc ∈a A is part of the tour and it is 0 otherwise.
Also, fij is the total traveled time (distance) from the depot to
vertex j, when traversing arc ( ) ∈i j A, . For ′ ⊆A A, we let
^ ( ′) = ∑ ^

∈ ′x A xa A a and ( ′) = ∑ ∈ ′f A fa A a. Then, the TCMCSP can be
modeled as:

∑ α( + )
( )∈ ⧹ { }

d y zmax ,
11i V

i i i
0

∑

( ) ( ) ( ) ( ) ( )

^ ^ ≤
( )∈

c x L

s. t. 3 , 5 , 7 , 9 , 10

,
12a A

a a

δ δ^( ( )) = ^( ( )) = ∈ ( )
+ −

x i x i y i V , 13i

∑δ δ( ( )) − ( ( )) = ^ ^ ∈ ⧹{ }
( )δ

+ −

∈ ( )+
f i f i c x i V 0 ,

14a i

a a

= ^ ^ ∈ ⧹{ } ( )f c x i V 0 , 15i i i0 0 0

≤ ( − ^ )^ ( ) ∈ ≠ ( )f L c x i j A j, , 0, 16ij j ij0

≤ ^ ∈ ⧹{ } ( )f Lx i V 0 , 17i i0 0

≥ (^ + ^ )^ ( ) ∈ ≠ ( )f c c x i j A i, , 0, 18ij i ij ij0

^ ∈ { } ≥ ∈ ( )x f a A0, 1 , 0 . 19a a

Here constraints (13) are degree constraints. Constraints (14)–(18)
relate the variables f's and x̂ 's and eliminate subtours. Note that
this formulation is valid only for instances with positive arc
lengths. Otherwise, it is possible to obtain solutions that contain
zero length subtours and the nodes on these subtours are counted
as visited.

3.2. Lifting connectivity constraints

Our initial computational experiments (presented in Section 4)
show that we are able to solve larger instances using the first
model based on connectivity cuts. In the sequel, we present valid
inequalities for the feasible set of this model that we denote by Y.

For ^ ⊆V V , we define ( ^) = {( ) ∈ = ∈ ^}Y V x y z Y z j V, , : 0,j
0 . ( )Y V

0

is the feasible set of an orienteering problem. In other words, the
polytope of the orienteering problem is a face of the polytope of
TCMCSP where all zj variables are fixed to zero. The family of valid
inequalities that we present is obtained by lifting the connectivity
cuts with variables zi's. These inequalities are strong when the
connectivity cut that is lifted is strong for the polytope associated
with the orienteering problem and some mild conditions are
satisfied.
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Theorem 3.1. Let ⊂ ⧹{ }S V 0 with ≤ | | ≤ −S n3 2 and ∈i S such that
∅≠Ni⊂S. The lifted connectivity inequality (LCI)

δ( ( )) ≥ + ( )x S y z2 2 20i i

is valid for Y.

Proof. If zi¼0, then (20) reduces to constraint (6). If zi¼1, then
yi¼0 and ( ) ≥y N 1i . Since ⊂N Si and ( ) ≥y N 1i , there exists ∈j S
with yj¼1. Constraint (6) for set S and node j implies δ( ( )) ≥x S 2.
Hence, inequality (20) is satisfied in both cases. □

Let ′ = { ∈ ⧹{ } ≠ ∅}V j V N0 : j . If ∉ ′j V , then we know that zj¼0

in all feasible solutions. Hence ( ) = ( ′)Y V Y V
0 0 .

Theorem 3.2. Suppose that the connectivity constraint (6) for set
⊂ ⧹{ }S V 0 with ≤ | | ≤ −S n3 2 and node ∈ ∩ ′i S V is facet defining

for ( ( ))Y Vconv 0
, ⊂N Si and the cycle on nodes { }k l0, , satisfies

constraint (2) for any two distinct nodes k and l in ⧹{ }V 0 . Then in-
equality (20) is facet defining for ( )Yconv .

Proof. We lift the connectivity constraint (6) first with zi and

then with zj for ∈ ′⧹{ }j V i . We first would like to find si such that

the inequality δ σ( ( )) ≥ +x S y z2 i i i is satisfied by all solutions in

( ′⧹{ })Y V i
0 . The inequality is clearly satisfied for all si when zi¼0.

If zi¼1, then yi¼0 and ( ) ≥y N 1i . In this case, we need

σ δ≤ ( ( ))x Si for all ( )x y z, , in ( ′⧹{ })Y V i
0 with zi¼1. Equivalently,

we want σ δ≤ ( ( ))( )∈ ( ′⧹ { }) = x Smini x y z Y V i z, , : 1i
0 . We know that

δ( ( )) ≥( )∈ ( ′⧹ { }) = x Smin 2
x y z Y V i z, , : 1i

0 since ⊂N Si and ( ) ≥y N 1i . Con-

sider the solution where zi¼1, yi¼0, = =y y 1k l , = =z z 0k l for

some ∈k Ni and some ∈ ⧹{ }l V i k0, , and for all other nodes j, we

have = =y z 0j j . We let = = ={ } { } { }x x x 1k k l l0, , ,0 and other edge

variables be zero. This solution is in ( ′⧹{ })Y V i
0 with zi¼1 and

δ( ( )) =x S 2. Hence δ( ( )) =( )∈ ( ′⧹ { }) = x Smin 2
x y z Y V i z, , : 1i

0 . Consequently,

the inequality δ σ( ( )) ≥ +x S y z2 i i i is valid for all σ ≤ 2i and

the inequality δ( ( )) ≥ +x S y z2 2i i is facet defining for

( ( ′⧹{ }))Y V iconv 0 .

Now let π be a permutation on ′⧹{ }V i . Next we lift inequality

δ( ( )) ≥ +x S y z2 2i i with variables zl for ∈ ′⧹{ }l V i in the order π. To
lift inequality δ( ( )) ≥ +x S y z2 2i i with π ( )z 1 , we would like to

compute δ( ( ( )) − − )π( )∈ ( ′⧹ { ( )}) =π ( )
x S y zmin 2 2

x y z Y V i z i i, , , 1 : 10
1

. We know

that δ( ( )) − − ≥x S y z2 2 0i i for all π( ) ∈ ( ′⧹{ ( )})x y z Y V i, , , 10 . If

∈ π ( )i N 1 , then let k be any node in π⧹{ ( )}V i0, , 1 . If ∉ π ( )i N 1 , then let

k be a node in π ( )N 1 . We set =π ( )z 11 , =π ( )y 01 , = =y y 1k i , = =z z 0k i

and for other nodes j, we have = =y z 0j j . We use edges { }k0, ,

{ }k i, , and { }i, 0 . This solution is in π( ′⧹{ ( )})Y V i, 10 with =π ( )z 11

and δ( ( )) − − =x S y z2 2 0i i . Hence the optimal lifting coefficient

for π ( )z 1 is zero and the inequality δ( ( )) ≥ +x S y z2 2i i is facet de-

fining for π( ( ′⧹{ ( )}))Y V iconv , 10 . Now suppose that the inequality

is facet defining for π π( ( ′⧹{ ( ) … ( − )}))Y V i uconv , 1 , 10 for

≤ ≤ | ′|u V2 and that we are lifting it with π ( )z u . We can show using
the same arguments that the optimal coefficient for π ( )z u is also

zero. Hence inequality (20) is facet defining for ( )Yconv . □

If = ∪ { }S N ii , then we call the resulting inequality (20) a
simple lifted connectivity inequality (SLCI). Note that these in-
equalities are polynomial in number.
3.3. Optimality cuts and simple cover inequalities

We also derive some optimality cuts and simple valid in-
equalities for TCMCSP based on the idea of knapsack covers.

Theorem 3.3. For ∈ ′i V such that ∈ N0 i, in an optimal solution the
following equality holds

+ = ( )y z 1. 21i i

Proof. Since both di and α are positive, the result follows. □

Hence, we use (21) instead of constraint (3) for such vertices.

Theorem 3.4. Let i and j be distinct vertices in ⧹{ }V 0 . If
+ + >{ } { } { }c c c Li i j j0, , ,0 , then every feasible solution satisfies =x 0ij . In

addition, the inequality + ≤y y 1i j holds.

Proof. For two distinct vertices i and j satisfying the above con-
dition, we have =x 0ij because we assume that c satisfies the
triangle inequality. Moreover, at most one of the vertices i and j
can be visited in any feasible solution since even the length of a
shortest cycle on {0, i, j} exceeds the bound L. Hence, the in-
equality + ≤y y 1i j is valid. □

Theorem 3.5. Let ⊂ ⧹{ }S V 0 and ∈i j S, be two distinct vertices such
that + + >{ } { } { }c c c Li i j j0, , ,0 . Then, the following cover inequality

δ( ( )) ≥ + ( )x S y y2 2 22i j

is valid and dominates constraint (6) for both i and j.

Proof. We know that at most one of i and j can be included in a
feasible solution by the previous theorem. If yi¼1, then yj¼0 and
(22) reduces to the connectivity constraint (6) for S and i. The case
for yj¼1 is similar. Hence, the result follows. □
4. Branch-and-cut algorithms

We devise branch-and-cut algorithms to solve the TCMCSP
since our cut formulation involves exponentially many constraints.
We propose four branch-and-cut schemes. The most basic version
starts by solving the relaxation (1)–(5), (7)–(10) and the violated
connectivity constraints (6) are introduced only for integer solu-
tions of the branch-and-cut tree. In the second scheme, we sepa-
rate the connectivity constraints also for fractional solutions at the
root node of the tree. The last two schemes are similar to the
second one in terms of where in the solution tree the separation
procedures are executed. However, in the third scheme, we add
the SLCIs for ∈ ⧹{ }i V 0 with ∉ N0 i to the initial relaxation.
Moreover, before checking whether a connectivity constraint

δ( ( )) ≥x S y2 i is violated, we investigate the corresponding LCI gi-
ven by δ( ( )) ≥ ( + )x S y z2 i i if ∉ N0 i and ⊂N Si . It may be the case
that the condition ∉ N0 i holds, yet there exists ∈ ⧹j N Si . In that
case, we extend the set S by adding the vertices in ⧹N Si to it and
explore whether the inequality δ( ( ∪ )) ≥ ( + )x S N y z2i i i is satisfied.
If either of these LCIs is violated, we introduce it instead of the
connectivity constraint. The last branch-and-cut scheme is similar
to the third one. Besides adding SLCIs to the initial relaxation (1)–
(5), (7)–(10), we add the inequalities + ≤y y 1i j and set =x 0ij for
every vertex pair ∈ ⧹{ }i j V, 0 such that <i j and { }c i0,

+ + >{ } { }c c Li j j, ,0 . During the separation of connectivity constraints,
we search for violated cover inequalities in addition to LCIs. For a
set ⊂ ⧹{ }S V 0 and a vertex ∈i S, if we detect ∈j S with ≠j i for
which the corresponding cover inequality is not satisfied or if we
identify a violated LCI, we do not check the violation of the con-
nectivity constraint induced by i and S. Our separation procedures
are described in detail in the next subsections.
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4.1. Separation of connectivity constraints

In separating the connectivity constraints, we use the ideas
proposed in [24]. Suppose that ¯ = ( ¯ ¯)G V E, is the support graph
induced by a given solution vector ( ¯ ¯ ¯)x y z, , ; i.e., ¯ = { ∈ ¯ > }V i V y: 0i

and ¯ = { ∈ ¯ > }E e E x: 0e . Let Sj, = …j t0, 1, , be the connected
components of Ḡ where ∈ S0 0. There are two possibilities re-
garding the solution vector ( ¯ ¯ ¯)x y z, , : either it is integral or it has at
least one fractional component. In the former case, the solution is
feasible for the TCMCSP if and only if t¼0; that is, the corre-
sponding support graph Ḡ is connected. When ≥t 1, there is a
connectivity cut violated by Sj and each ∈i Sj for every j¼1,…,t.

Hence, the solution vector induces ∑ | |= Sj
t

j1 violated constraints
and introducing any one of them to the model cuts off the current
solution. Nevertheless, instead of adding a single cut at a time, we
add the cut (6) for every Sj, j¼1,…,t and for every ∈i Sj in order to
speed up the solution procedure.

Now consider the case where the solution is fractional. If ≥t 1
for the corresponding support graph Ḡ, a violated connectivity
constraint is induced by every Sj and ∈i Sj for j¼1,…,t as in the
previous case. However, if Ḡ is connected, exact separation of
violated connectivity cuts can be performed by solving a series of
minimum cut problems on the graph Ḡ. Checking violation of the
inequality δ( ( )) ≥ ¯x S y2 k for a vertex ∈ ¯⧹{ }k V 0 and for every

⊂ ⧹{ }S V 0 such that ∈k S is equivalent to checking whether the
capacity of a minimum cut separating the vertices k and 0 is
greater than or equal to ȳ2 k when the capacity of each edge ∈ ¯e E is
set to x̄e. If the capacity of a minimum cut separating vertex k and
vertex 0 is at least ȳ2 k, then every ⊂ ⧹{ }S V 0 containing k satisfies
(6). Otherwise, we obtain a violated connectivity cut correspond-
ing to k and the vertex partition *( )S k , where [ *( ) ⧹ *( )]S k V S k,
defines a minimum cut with respect to source k and sink 0. In
particular, *( )S k is the vertex partition containing k.

In some cases, there may be a more efficient way to identify
violated connectivity cuts than solving | ¯ | −V 1 minimum cut pro-
blems. Let cap(S) denote the capacity of the cut defined by the set S
of vertices. Suppose that * ⊂ ¯⧹{ }S V 0 is the set of vertices inducing
a global minimum cut of the graph Ḡ. Then, we have

( *( )) = ( *)cap S k cap S and thus, *( ) = *S k S for every ∈ *k S . This
means that Sn is a minimum cut separating any ∈ *k S from the
vertex 0, and we do not have to solve a separate minimum cut
problem for each vertex in Sn. Besides, we know that

( ) ≥ ( *)cap S cap S for any cut S of the graph Ḡ. This implies that the
corresponding connectivity constraints are satisfied for the ver-
tices ∈ ( ¯⧹{ })⧹ *i V S0 such that ( *) ≥cap S y2 i. Therefore, we can
eliminate these vertices from consideration as well. For each of the
remaining vertices, we solve a minimum cut problem to determine
if there are any violated connectivity constraints.

4.2. Separation of lifted connectivity and cover inequalities

We investigate violated lifted connectivity and cover inequal-
ities during the execution of connectivity constraint separation
procedure. More specifically, for a particular vertex i and a set

⊂ ⧹{ }S V 0 with ∈i S, we separate LCIs and cover inequalities prior
to the corresponding connectivity constraint. In the following, we
describe our separation subroutines for LCIs and cover inequalities.

First, consider the case with an integer solution containing
subtours denoted by …S S S, , , t0 1 where ∈ S0 0. Take any Sk for k¼1,
…,t. Let ∈i Sk and j be a vertex such that + + >{ } { } { }c c c Li i j j0, , ,0 .
Then yj¼0 must hold. Clearly, we have δ( ( ∪ { })) =x S j 0k because
both δ( ( ))x Sk and δ( ( ))x j are equal to zero. Now observe that the
set ∪ { }S jk and the vertices i j, induce a violated cover inequality.
Hence, while examining a certain vertex ∈i Sk for a particular

= …k t1, , , we introduce a cover inequality for i and each j such
that + + >{ } { } { }c c c Li i j j0, , ,0 . After exploring these inequalities, we
evaluate whether the LCI induced by the vertex i and the set
∪N Si k is satisfied, provided that ∉ N0 i. If ⊂N Si k, then we have a

violated LCI since δ( ( )) =x S 0k . Else, we should verify that
δ( ( ⧹ )) =x N S 0i k to be able to add the corresponding LCI, as other-

wise δ( ( ∪ ))x N Si k is at least two and the inequality is satisfied. We
add the connectivity constraint induced by i and Sk if no cover
inequality involving the vertex i is identified so far and either one
of the following conditions holds:

� ∉ N0 i but no LCI violation is detected,
� ∈ N0 i.

Suppose now that we have a fractional solution. If the solution
contains subtours …S S S, , , t0 1 with ∈ S0 0, we separate LCIs and
connectivity constraints in the same manner as we do in the in-
teger solution case. However, our cover inequality separation
procedure is slightly different. For a subtour Sk for k¼1,…,t and a
vertex ∈i Sk, we add the cover inequalities for all ∈j Sk such that

<i j and + + >{ } { } { }c c c Li i j j0, , ,0 .
If the support graph associated with a given fractional solution is

connected, we embed our search for LCI and cover inequalities into
our connectivity constraint separation algorithm as well. Once a
global minimum cut Sn of the support graph Ḡ is determined, we
check violation of the LCIs and cover inequalities for each ∈ *i S
before exploring the corresponding connectivity constraint. The
capacity of the cut * ∪S Ni is compared with the value ( + )y z2 i i to
investigate whether the LCI associated with i and * ∪S Ni is satisfied
(if ∉ N0 i). If it is violated, then we add it to the model. Afterwards,
for every ∈ *j S such that <i j and + + >{ } { } { }c c c Li i j j0, , ,0 , we in-
troduce the cover inequality induced by i j, and Sn if the capacity of
Sn is less than ( + )y y2 i j . Upon completing the search for LCIs and
cover inequalities for all ∈ *i S , we evaluate violation of the con-
nectivity constraint regarding each vertex in Sn for which no vio-
lated LCI or cover inequality is identified.

Among the vertices in ¯⧹( * ∪ { })V S 0 , we eliminate those with
δ( + ) ≤ ¯ ( ( *))y z x S2 k k because the capacity of any cut of Ḡ is at least

as large as that of Sn. Hence, our algorithm will not detect any
violated LCI or connectivity constraint for such vertices. For each
remaining vertex i, we find the minimum cut *( )S i as in our
connectivity constraint separation procedure, and check whether
the LCI induced by i and *( ) ∪S i Ni is satisfied (again if ∉ N0 i).
Then, we inspect every ∈ *( )j S i such that ≠j i and

+ + >{ } { } { }c c c Li i j j0, , ,0 in case a violated cover inequality exists. If
the LCI and cover inequalities associated with the vertex i are all
found to be satisfied, we investigate the corresponding con-
nectivity constraint.

4.3. Other implementation details

We invoke StoerWagnerMinimumCut and MinSourceSinkCut
procedures from the Java graph theory (jgrapht) library to find a
global minimum cut of a given undirected graph (it implements
the algorithm in [25]) and a minimum cut between a specified pair
of source and sink nodes in a directed graph (it implements the
algorithm in [26]), respectively. Note that since MinSourceSinkCut
works on a directed graph, we transform Ḡ into a directed graph
by replacing each edge { } ∈ ¯i j E, with the arcs (i,j) and (j,i), and by
assigning a capacity of x̄ij units to both arcs after solving the global
minimum cut problem.

In our branch-and-cut schemes that involve separation for
fractional solutions, all cuts (LCIs, cover inequalities, connectivity
constraints) are separated only at the root node of the branch-and-
cut tree. Obviously, the separation for integer solutions is con-
ducted everywhere. For a fractional solution, we consider an in-
equality to be violated if its violation exceeds 5% based on the
results of our preliminary experiments. The violation of an



Table 2
Results with branch-and-cut scheme 1.

Solution times (s)

Instance r¼10

Name n α L1 L2

p01 51 0.50 4.77 1.43
0.75 7.16 9.32

p02 76 0.50 92.24 28.29
0.75 1236.86 19.27

p03 101 0.50 (3.29) 76.31
0.75 (11.31) 75.81

p04 151 0.50 (14.76) 82.71
0.75 (19.06) 47.65

p05 200 0.50 (8.95) 915.06
0.75 (16.78) 2400.86

p11 121 0.50 (117.76) (28.17)
0.75 (114.68) (22.81)

p12 101 0.50 (34.41) 1140.06
0.75 (60.27) (2.21)

Root gaps (%)

p01 51 0.50 17.46 3.07
0.75 23.92 2.71

p02 76 0.50 16.01 3.07
0.75 22.89 1.47

p03 101 0.50 17.44 1.80
0.75 19.47 1.04

p04 151 0.50 18.79 2.84
0.75 21.23 0.30

p05 200 0.50 12.87 1.65
0.75 18.43 1.04

p11 121 0.50 134.40 44.31
0.75 126.07 28.52

p12 101 0.50 89.72 30.20
0.75 93.87 18.25

Table 1
Results with the flow formulation.

Solution times (s)

Instance r¼10 r¼20

Name n α L1 L2 L3 L1 L2 L3

p01 51 0.50 99.57 23.83 21.28 39.65 7.57 3.23
0.75 266.89 47.21 30.07 102.28 19.63 3.69

p02 76 0.50 (5.72) 91.20 92.06 1229.98 13.86 57.81
0.75 (12.79) 175.50 123.81 (4.49) 66.35 70.93

p03 101 0.50 (13.76) 1842.29 291.56 (5.56) 267.11 213.54
0.75 (24.64) 2328.21 750.29 (6.65) 416.44 248.80

p12 101 0.50 (70.54) (29.76) (8.97) (36.84) (22.17) (8.85)
0.75 (70.89) (14.51) (4.06) (26.91) (12.95) (5.02)

Root gaps (%)

p01 51 0.50 21.57 3.65 1.23 8.02 1.89 0.26
0.75 25.65 4.02 0.65 5.42 1.07 0.21

p02 76 0.50 21.99 3.34 1.77 8.39 0.47 0.82
0.75 26.33 2.97 0.71 6.56 0.47 0.34

p03 101 0.50 21.73 3.20 0.84 10.84 1.68 0.49
0.75 21.66 1.58 0.49 6.58 0.88 0.32

p12 101 0.50 87.56 33.06 14.82 48.58 30.45 14.92
0.75 76.50 19.03 6.94 42.09 15.17 6.94
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inequality ≥LHS RHS, where LHS and RHS represent the left-hand
side and the right-hand side values of the inequality respectively,
is determined by the ratio ( − )RHS LHS RHS/ . We apply parallel
processing with 12 threads of implementation and use default
branching rules provided by CPLEX.
5. Computational study

We performed a computational study on a set of test problems
based on seven VRP instances (available at http://neumann.hec.ca/
chairedistributique/data/), namely, p01, p02, p03, p04, p05, p11
and p12 in which the number of vertices range between 51 and
200. Note that there are actually 14 instances on this website;
however, only seven of them are different with respect to node
coordinates and demand values. The remaining seven instances
differ from the ones above with respect to the number of vehicles
involved and service times, which are not relevant parameters for
our problem. The reason for choosing these instances for our tests
instead of TSP instances is that we consider the TCMCSP with ar-
bitrary demands rather than unit demands. We experimented
with varying values of the parameters r, L and α in our tests.

The experiments were conducted on a 64-bit machine with Intel
Xeon E5-2630 v2 processor at 2.60 GHz and 96 GB of RAM. All
models and algorithms were implemented in Java by invoking CPLEX
12.6 with Concert Technology. The time limit is set to one hour.
r¼20

L3 L1 L2 L3

0.71 1.58 0.78 0.37
0.58 3.33 1.10 0.44

13.06 26.79 0.82 2.43
3.10 121.28 2.86 4.65

3.28 360.18 21.64 7.48
5.07 2278.70 20.15 7.85

29.67 1275.24 49.62 22.84
26.08 1965.48 45.01 46.20

(0.09) (1.57) 360.07 3046.80
(0.05) (2.26) 455.59 2238.77

43.68 (70.41) (20.10) 176.11
246.03 (106.07) (9.60) 190.07

120.74 (4.43) 584.69 65.27
232.87 (9.27) 2322 131.35

0.35 6.08 0.69 0.25
0.38 4.57 0.71 0.20

0.41 8.23 0.69 0.27
0.15 6.04 0.08 0.13

0.18 9.42 0.25 0.22
0.09 5.74 0.11 0.11

0.12 5.27 2.23 0.96
0.47 2.36 1.01 0.47

1.56 4.55 3.43 1.30
0.76 3.05 1.57 0.63

10.85 101.86 32.24 10.71
5.14 116.82 14.64 5.08

11.17 53.41 30.30 14.03
5.20 42.84 14.62 6.94

http://neumann.hec.ca/chairedistributique/data/
http://neumann.hec.ca/chairedistributique/data/


Table 3
Results with branch-and-cut scheme 2.

Solution times (s)

Instance r¼10 r¼20

Name n α L1 L2 L3 L1 L2 L3

p01 51 0.50 4.65 2.76 0.63 2.52 0.74 0.86
0.75 6.06 3.77 0.96 3.63 0.81 0.69

p02 76 0.50 38.63 7.45 6.68 34.22 1.26 3.76
0.75 1030.43 8.26 2.46 416.02 1.73 3.14

p03 101 0.50 405.66 49.01 2.33 60.21 14.83 3.01
0.75 (10.70) 23.63 7.69 548.01 27.62 2.49

p04 151 0.50 (11.95) 33.54 14.84 351.40 34.15 20.19
0.75 (17.83) 31.80 68.87 718.63 21.26 31.76

p05 200 0.50 (5.66) 682.59 (0.02) 973.62 118.26 1039.73
0.75 (14.44) 1253.14 1771.94 1499.60 113.69 323.85

p11 121 0.50 (16.05) (7.07) 40.25 (19.57) (0.63) 82.88
0.75 (55.53) (4.40) 109.03 (69.85) (0.93) 101.50

p12 101 0.50 (4.79) 98.19 14.59 132.85 72.91 19.80
0.75 (5.29) (1.91) 58.05 1186.50 688.58 39.93

Root gaps (%)

p01 51 0.50 19.22 2.24 0.27 5.89 0.73 0.22
0.75 25.56 2.45 0.27 4.74 0.38 0.11

p02 76 0.50 15.75 1.24 0.27 6.09 0.10 0.21
0.75 23.44 1.13 0.01 5.54 0.05 0.10

p03 101 0.50 15.50 0.21 0.07 6.20 0.03 0.06
0.75 19.43 0.16 0.04 4.44 0.01 0.02

p04 151 0.50 15.18 0.06 0.04 3.02 0.09 0.06
0.75 20.31 0.07 0.06 1.49 0.04 0.03

p05 200 0.50 7.90 0.33 0.32 2.01 0.18 0.16
0.75 15.74 0.36 0.16 1.11 0.08 0.08

p11 121 0.50 77.38 20.06 0.49 80.17 15.05 0.41
0.75 101.55 9.73 0.23 102.69 6.10 0.19

p12 101 0.50 72.02 14.53 4.53 38.72 12.96 4.65
0.75 72.68 11.34 2.09 37.79 7.40 2.18
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In our computations, we assume that =r ri for every ∈i V , and
we used 10 and 20 for the coverage distance r. These values are
about 25% and 50% of the average edge cost, which is approximately
37 when computed over all instances. To choose the time/distance
constraint parameter L, we first solved the TSP for each instance. Let

*( )z TSPi denote the cost of an optimal TSP solution for instance i.
Then, three different values of L, namely L1, L2 and L3, were obtained
by rounding 25%, 50% and 75% of the number *( )z TSPi for instance i.
Finally, the partial coverage parameter α was set to 50% and 75%.
Therefore, we performed our computational study with 12 different
parameter configurations for each of the seven test problems, which
means that we attempted to solve 84 instances in total.

5.1. Comparison of the proposed algorithms

The results of our computational study are provided in Tables 1–5.
Each table demonstrates the solution times (in seconds) and root gap
values (percentage gap between the final root relaxation bound and
the optimal value) for all instances obtained through a different so-
lution scheme. If an instance cannot be solved to optimality within
the time limit, we report the final gap (percentage gap between the
objective function value of the best integer solution and the best
upper bound) in parenthesis.

We tested the flow-based formulation on a total of 48 instances
containing up to 100 customers, namely with p01, p02, p03 and
p12. The results are provided in Table 1.
Next, we tested our initial branch-and-cut method, where only
the connectivity constraints are separated at integer points of the
solution tree. The results in Table 2 show that 61 of the 84 in-
stances can be solved optimally within one hour and the average
solution time for these instances is 372.13 s. Regarding the re-
maining 23 instances, the final gap is 29.49% on average. Ad-
ditionally, the root gap values indicate that the upper bounds gi-
ven by the relaxation (1)–(5), (7)–(10) are quite weak. In particular,
the average and worst gaps are 15.75% and 134.40%, respectively,
for the initial branch-and-cut scheme.

When we compare the results in Tables 1 and 2, we observe the
following: with the flow formulation, 19 out of 42 instances cannot
be solved to optimality within one hour while 12 of these 19 in-
stances can be solved optimally by our first branch-and-cut
scheme. Regarding the remaining 7 instances, the final gaps of our
first branch-and-cut algorithm are 51.5% less (on average) than
that of the flow formulation. Finally, the instances for which an
optimal solution can be found by the flow formulation require 98%
less solution time on average when solved by our first branch-and-
cut algorithm. Hence, we can conclude that the first branch-and-
cut algorithm outperforms the flow formulation.

Next, the test instances are solved with our branch-and-cut
scheme in which connectivity constraints are separated not only at
the integer points, but also at the fractional points of the solution
tree. Based on some preliminary experiments, separation for
fractional solutions is performed only at the root node of the



Table 4
Results with branch-and-cut scheme 3.

Solution times (s)

Instance r¼10 r¼20

Name n α L1 L2 L3 L1 L2 L3

p01 51 0.50 1.33 0.54 0.56 0.37 0.53 0.74
0.75 1.03 0.60 0.70 0.17 0.10 0.94

p02 76 0.50 2.01 3.17 3.75 0.48 1.47 2.93
0.75 4.65 1.51 0.63 2.57 1.40 3.23

p03 101 0.50 5.78 5.74 3.22 6.23 2.55 1.88
0.75 8.76 6.74 5.48 5.98 3.08 2.09

p04 151 0.50 30.93 15.96 16.30 13.88 29.92 26.70
0.75 24.19 3.76 30.18 19.11 23.72 39.55

p05 200 0.50 93.32 160.44 341.83 70.62 99.51 662.62
0.75 139.33 236.39 211.76 41.50 144.36 270.73

p11 121 0.50 38.73 50.56 8.51 165.79 118.82 11.13
0.75 260.89 84.13 9.13 1043.97 24 12.49

p12 101 0.50 9.12 4.85 9.89 5.11 6.54 16.23
0.75 11.07 22.09 12.63 13.33 10.15 8.33

Root gaps (%)

p01 51 0.50 0.59 0.17 0.22 0.97 0.05 0.22
0.75 0.67 0.01 0.23 0.05 0 0.11

p02 76 0.50 1.30 0.22 0.11 0 0.06 0.21
0.75 1.42 0.01 0.01 0.69 0.02 0.10

p03 101 0.50 0.07 0.14 0.07 0.08 0 0.06
0.75 0.97 0.02 0.04 0.43 0 0.03

p04 151 0.50 0.52 0.05 0.02 0 0.07 0.05
0.75 0.02 0 0.06 0 0.03 0.02

p05 200 0.50 0.04 0.11 0.26 0.07 0.11 0.16
0.75 0.19 0.10 0.13 0 0.05 0.08

p11 121 0.50 10.89 3.52 0.06 13 1.48 0.15
0.75 20.33 0.24 0.03 29.90 0.03 0.07

p12 101 0.50 0.98 0.34 0.20 0.99 0.44 0.32
0.75 0.71 1.35 0.11 2.14 0 0.15

Table 5
Results with branch-and-cut scheme 4.

Solution times (s)

Instance r¼10 r¼20

Name n α L1 L2 L3 L1 L2 L3

p01 51 0.50 1.66 0.52 0.54 0.67 0.45 0.67
0.75 0.98 0.61 0.76 0.26 0.09 0.78

p02 76 0.50 2.78 3.08 3.75 0.52 1.39 2.80
0.75 4.63 1.61 0.61 2.08 1.45 3.06

p03 101 0.50 6.87 5.92 3.02 8.15 2.49 1.78
0.75 9.72 6.55 5.58 6.69 3.07 2.04

p04 151 0.50 45.22 15.56 15.58 12.24 30.25 26.27
0.75 43.74 3.85 30.78 18.37 23.68 40.51

p05 200 0.50 93.24 162.44 343.41 70.75 99.10 657.46
0.75 139.98 233.22 214.95 40.75 144.74 263.60

p11 121 0.50 3.12 42.25 8.08 4.64 101.34 10.82
0.75 8.22 53.28 9.13 9.55 43.34 12.01

p12 101 0.50 7.72 4.82 9.47 9.57 6.22 15.75
0.75 12.87 22.13 12.34 10.16 10.23 8.09

Root gaps (%)

p01 51 0.50 0.42 0.17 0.22 0.72 0.05 0.22
0.75 0.82 0.01 0.23 0.16 0 0.11

p02 76 0.50 1.29 0.22 0.11 0 0.06 0.21
0.75 1.50 0.01 0.01 0.69 0.02 0.10

p03 101 0.50 0.16 0.14 0.07 0.08 0 0.06
0.75 0.86 0.02 0.04 0.45 0 0.03

p04 151 0.50 0.52 0.05 0.02 0.03 0.07 0.05
0.75 0.01 0 0.06 0.01 0.03 0.02

p05 200 0.50 0.04 0.11 0.26 0.07 0.11 0.16
0.75 0.19 0.10 0.13 0 0.05 0.08

p11 121 0.50 0.18 3.52 0.06 0.03 1.47 0.15
0.75 0.31 0.08 0.03 5.06 0.04 0.07

p12 101 0.50 0.98 0.34 0.20 0.86 0.44 0.32
0.75 0.56 1.35 0.11 2.22 0 0.15

G. Ozbaygin et al. / Computers & Operations Research 76 (2016) 226–237 233
branch-and-cut tree as mentioned in the previous section. Note
that this is also the case for the remaining two schemes. Table 3
reports the results obtained with our second branch-and-cut al-
gorithm. The number of instances for which an optimal solution is
found within one hour is 67 with an average solution time of 216 s,
and the average final gap is 14.5% for the remaining 17 instances.
Moreover, we can observe that introducing some violated con-
nectivity constraints at the root node of the solution tree
strengthens the linear relaxation bounds of (1)–(5), (7)–(10) and
reduces the average and maximum root gap values to 11.02% and
102.69%, respectively. Compared to the initial scheme, the solution
times (or the optimality gaps for the instances that cannot be
solved optimally within the time limit) and the root gaps improve
in almost all of the instances.

In our third scheme, we add SLCIs to the initial relaxation (1)–
(5), (7)–(10) for i with ∉ N0 i and separate LCIs in addition to
connectivity constraints. Based on the results in Table 4, all in-
stances can be solved to optimality within at most 1043.97 s. The
average solution time is 57.11 s, indicating a 74% decrease com-
pared to the previous scheme. There is also a significant im-
provement regarding the root gaps. In particular, the average root
gap decreases to 1.18%, which implies a 90% reduction with respect
to our second scheme. Overall, introducing SLCIs and violated LCIs
during the solution procedure leads to a remarkable improvement
both in terms of the solution times and the root relaxation bounds.

Finally, we test the effect of using cover inequalities. In addition
to LCIs and connectivity constraints, we also separate cover in-
equalities in our last branch-and-cut scheme. Furthermore, for
every pair of vertices ∈ ⧹{ }i j V, 0 with + + >{ } { } { }c c c Li i j j0, , ,0 , we
include the inequalities + ≤y y 1i j and set =x 0ij in the initial
relaxation besides adding SLCIs. Although the average solution
time decreases to 39.31 s and the average root gap is as low as
0.35% in the final scheme, these reductions are mostly caused by
the instance p11. In other words, there is no considerable change
in terms of the solution times and the root gaps compared to the
previous scheme except for a few instances based on p11. No
violated inequalities of this family are detected for most of the
instances. However, we observe that it may be possible to obtain
significant improvements in some cases. As an example, the in-
stance p11, α = 0.75, r¼20 and = * ( )L z TSP0.25 p11 can be solved
within 9.55 s with the help of cover inequalities, while the solu-
tion time for the same instance was 1043.97 s in our previous
scheme.

As indicated above, remarkable improvements can be achieved
regarding solution times and linear relaxation bounds with the
introduction of LCIs and cover inequalities. Based on the results of
our worst and best branch-and-cut algorithms, decrease in the
average solution time is about 90% and the average root gap re-
duces by 98%. In our best algorithm (the last scheme), the max-
imum solution time is 657.46 s while there are 23 instances that
cannot be solved optimally within the time limit of one hour by
our initial algorithm. This shows the effectiveness of LCIs and
cover inequalities in terms of speeding up the solution procedure.
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Moreover, the largest root gap with our initial algorithm is
134.40%, whereas it is only 5.06% in the last one, which is another
evidence of the power of these inequalities in strengthening the
linear relaxation bounds of our formulation.

5.2. Impacts of parameter changes on the optimal solutions

In a network optimization problem, topology of the underlying
graph and the adopted parameter setting are among the key de-
terminants of the optimal solution structure. In order to under-
stand the effects of these factors, we investigate the structure of
the optimal TCMCSP solutions by evaluating the percentage of
demand covered, the number of tour stops and partially covered
vertices as well as tour and coverage diameters. The diameter of a
tour is defined as the largest distance between two vertices on the
tour. Similarly, the coverage diameter is the largest distance be-
tween any pair of vertices that are fully or partially covered. Note
that the vertices are scattered throughout the graph for p01, p02,
p03, p04, p05, while they are located in several clusters for p11 and
p12. In all the figures below, the filled circles represent tour stops
and partially covered vertices while the empty ones correspond to
isolated vertices.

As expected, the percentage of total demand covered increases
with larger values of the partial coverage parameter α. The tour
diameter tends to increase as well for the instances where the
underlying graph is scattered. This is mostly achieved by visiting
fewer vertices in an attempt to cover more vertices partially. The
increase in the tour diameter and in the total demand covered
Fig. 1. The optimal solutions of p03 with =L L1,

Fig. 2. The optimal solutions of p11 with =L L1,
obtained as a result of using a greater α value is most notable
when the value of L; i.e., the maximum tour length parameter, is
small, because the coverage diameter is usually large enough to
accommodate almost all vertices of the graph sufficiently close to
the tour when L is large. Fig. 1 shows an example for α = 0.50 and
α = 0.75 when L and the coverage distance r are fixed. For the
instances where the underlying graph is clustered, changing the
value of α does not usually affect the tour diameter, because the
coverage cannot be enhanced unless the tour is expanded to reach
an unvisited cluster, which is not possible without increasing L
sufficiently. An example is depicted in Fig. 2.

Regarding the impact of tour length restriction on the optimal
solution structure, we observed that a higher percentage of the
total demand can be covered and the coverage diameter expands
as L gets larger. In scattered graphs, more vertices are visited while
fewer vertices are partially covered when L is increased. Moreover,
changes in the percentage of demand that is covered on-tour and
off-tour have a similar impact when compared to changes in the
number of tour stops and partially covered vertices, respectively.
An illustration of the impact of maximum tour length is given in
Fig. 3 for a scattered graph.

On the other hand, in clustered graphs, the total demand cov-
ered is improved first by attempting to reach as many clusters as
possible, while respecting the tour length constraint imposed by L,
and then by visiting the maximum possible number of vertices in
these clusters. Therefore, even though the number of tour stops
does not necessarily get larger as L increases, the percentage of
demand that is fully covered becomes higher according to our
r¼10 for α = 0.5 and α = 0.75, respectively.

r¼10 for α = 0.5 and α = 0.75, respectively.
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observations. Furthermore, if the increase in L is enough to reach
some previously unvisited clusters; i.e., if the growth in the tour
diameter is significant, then the percentage of partially covered
demand becomes larger. When L increases further (but not enough
to visit another cluster), more vertices in the visited clusters are
included in the tour, resulting in a decrease in the percentage of
partially covered demand. An example of this situation is illu-
strated in Fig. 4.

Finally, we explored how the optimal solutions are affected by
the changes in coverage distance. Raising the value of the coverage
distance parameter increases the percentage of total demand
covered and the coverage diameter in general. Note that this in-
crease is more significant in scattered graphs, whereas the optimal
solution may only slightly change or even remain unchanged in
clustered graphs unless the increase in r is sufficient to cover some
vertices without visiting the clusters they belong to. Based on our
results, we observed that increasing r usually gives rise to a de-
crease in the tour diameter. This enables visiting more vertices
while maintaining the same coverage level especially when the
underlying graph is scattered and dense. Fig. 5 exhibits how the
optimal solution changes depending on the coverage distance for
fixed α and L. However, regarding the clustered instances where r
is increased enough to allow some vertices in a different cluster to
be covered by the tour stop(s), we noticed that the tour diameter
increases and fewer vertices are visited. Such an example is de-
picted in Fig. 6.

Overall, we can conclude that the maximum tour length L is the
most critical parameter that determines the optimal solutions
based on the test instances used in our experiments. The impact of
changing L can be remarkable especially when the underlying
problem graph is clustered. Even though the parameters α and r
Fig. 4. The optimal solutions of p11 with α = 0.5, r

Fig. 3. The optimal solutions of p03 with α = 0.5, r
affect the optimal solution in terms of which vertices should be
designated as tour stops and which ones should be partially cov-
ered in order to ensure maximum coverage, the improvement
achieved by increasing the values of these parameters cannot go
beyond a certain limit (assuming that α < 1) under the same tour
length restriction. This is actually an intuitive result since with
sufficiently large L values, all vertices would become tour stops.
However, in general we can remark that as α gets larger, the op-
timal solution tends to contain more partially covered vertices and
fewer tour stops scattered through a slightly wider area (the tour
diameter is larger). Conversely, increasing r often leads to a re-
duction in the tour diameter, which facilitates visiting more ver-
tices, except for some clustered graphs. Finally, it is clear that the
impact of changing the value of a parameter on the optimal so-
lutions also depends on the underlying problem graph.
6. Conclusion

We have considered the time constrained maximal covering
salesman problem (TCMCSP) in which the goal is to find a tour
visiting a subset of the vertices that maximizes the amount of de-
mand covered subject to an upper bound on the tour length. This
problem is practically relevant in cases where it is not efficient to
visit every demand point separately. Integrating the notion of cov-
erage into a routing scheme; i.e., satisfying the demand of multiple
customers through each customer on the route, may provide means
to increase system efficiency by utilizing the available resources
more effectively. This paper presents an efficient solution approach
to a problem that unifies coverage and routing.

In the TCMCSP, we assumed that the demand of a vertex is fully
¼10 for =L L1, =L L2 and =L L3, respectively.

¼10 for =L L1, =L L2 and =L L3, respectively.



Fig. 5. The optimal solutions of p04 with α = 0.5, =L L1 for r¼10 and r¼20, respectively.

Fig. 6. The optimal solutions of p12 with α = 0.75, =L L2 for r¼10 and r¼20, respectively.
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covered if it is visited, partially covered if it is not visited but suf-
ficiently close to some vertex on the tour, and not covered other-
wise. We modeled the problem on an undirected network and since
our formulation involves exponentially many connectivity con-
straints, we proposed branch-and-cut algorithms to solve the
TCMCSP. We presented simple optimality cuts and two families of
valid inequalities, namely the lifted connectivity inequalities (LCIs)
and cover inequalities. Four branch-and-cut schemes were devised
to evaluate the impact of LCIs and cover inequalities on solution
times and LP relaxation bounds of our formulation.

We also adapted the flow formulation presented in [1] to model
the problem. Computational experiments demonstrated the su-
periority of using a branch-and-cut solution approach over the
flow formulation. Moreover, the results indicated the effectiveness
of LCIs and cover inequalities, both of which were shown to be
quite powerful in increasing the quality of linear relaxation bounds
of our formulation and accelerating the solution procedure.

Finally, we investigated the effects of the partial coverage
multiplier (α), maximum tour length (L) and coverage distance (r)
parameters on the optimal solution structure. We conclude that L
has the largest impact on the optimal solutions. Additionally, there
is a tendency towards visiting fewer vertices as α increases, while
extending r usually results in the reverse behavior.
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