
Information Processing and Management 42 (2006) 875–898

www.elsevier.com/locate/infoproman
Performance of query processing implementations
in ranking-based text retrieval systems using inverted indices

B. Barla Cambazoglu, Cevdet Aykanat *

Computer Engineering Department, Bilkent University, TR 06800 Bilkent, Ankara, Turkey

Received 22 May 2005; accepted 16 June 2005
Available online 10 August 2005
Abstract

Similarity calculations and document ranking form the computationally expensive parts of query processing in rank-
ing-based text retrieval. In this work, for these calculations, 11 alternative implementation techniques are presented
under four different categories, and their asymptotic time and space complexities are investigated. To our knowledge,
six of these techniques are not discussed in any other publication before. Furthermore, analytical experiments are car-
ried out on a 30 GB document collection to evaluate the practical performance of different implementations in terms of
query processing time and space consumption. Advantages and disadvantages of each technique are illustrated under
different querying scenarios, and several experiments that investigate the scalability of the implementations are
presented.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In the last decade, a shift has been observed from the Boolean model of query processing to the more
effective ranking-based model. In text retrieval systems employing the ranking-based model, similarity cal-
culations are performed between a user query and the documents in a collection. As a result of these cal-
culations, the user is presented a set of relevant documents, ranked in decreasing order of relevance to the
query. The similarity calculations and document ranking, which form the major source of overhead in
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query processing, can be implemented in many ways, using different data structures and algorithms. The
main focus of this work is on advantages and disadvantages of these data structures and algorithms.

Although other strategies may also be employed (Croft & Savino, 1988), a document collection is usually
represented by an inverted index (Tomasic, Garcia-Molina, & Shoens, 1994; Zobel, Moffat, & Sacks-Davis,
1992). An inverted index is composed of two parts: a set of inverted lists and an index into these lists. The
set of inverted lists L ¼ fI 1; I 2; . . . ; I Tg of size T, where T is the number of distinct terms in the collection,
contains a list I i for each term ti in the collection. The index part contains a pointer to each term�s inverted
list. Each inverted list I i keeps entries, called postings, about the documents in which term ti appears. A
posting p 2 I i includes a document id field p.d = j and a weight field p.w = w(ti,dj) for a document dj con-
taining term ti, where w(ti,dj) is a weight (Harman, 1986) which indicates the degree of relevance between ti
and dj.

In construction of the inverted index, usually, the tf-idf (term frequency-inverse document frequency)
weighting scheme (Salton & McGill, 1983) is used to compute w(ti,dj). In this work, we use the following
tf-idf variant
wðti; djÞ ¼
f ðti; djÞffiffiffiffiffiffiffi

jdjj
p � ln

D
f ðtiÞ

; ð1Þ
where f(ti,dj) is the number of times term ti appears in document dj, jdjj is the total number of terms in dj,
f(ti) is the number of documents containing ti, and D is the number of documents.

In processing a query, only the inverted lists associated with the query terms are used. Specifically, if we
have a query Q ¼ ftq1 ; tq2 ; . . . ; tqQg of Q distinct query terms, we work on a partial inverted index LQ � L
of Q inverted lists, in which each list I qi 2 LQ is associated with query term tqi 2 Q. The similarity
simðQ; djÞ of query Q to a document dj can be calculated using the cosine rule (Salton & McGill, 1983).
Since, in Eq. (1), we already approximated cosine normalization by the

ffiffiffiffiffiffiffi
jdjj

p
factor (Lee, Chuang, & Sea-

mons, 1997), the cosine similarity metric can be simplified as
simðQ; djÞ ¼
X

tqi2Q
wðtqi ; djÞ ð2Þ
assuming that all query terms have equal importance. That is, to calculate the similarity between query Q
and document dj, we need to accumulate the weights wðtqi ; djÞ for each query term tqi 2 Q in a memory loca-
tion dedicated to document dj. These memory locations are called accumulators. An accumulator a typi-
cally keeps an integer document id field a.d and a floating point score field a.s, which contains the
accumulated similarity value for document a.d. After all accumulator updates are completed, sorting them
in decreasing order of finalized a.s values gives a ranking of documents.

Both time and space are critical in ranking-based text retrieval. Especially, in cases where the inverted
index is completely stored in volatile memory (a common practice for Web search engines) and disk acces-
ses are avoided, similarity calculations and document ranking directly determine the query processing
times. Considering the existence of search engines which indexed more than four billion pages, it is easily
seen that space consumption is also a critical issue. In this work, we present 11 alternative implementations
under four different categories for query processing in ranking-based text retrieval, taking time and space
needs into consideration. To our knowledge, six of these implementations are not discussed in any publi-
cation before.

The rest of the paper is organized as follows. In Section 2, we give pointers to the related work on effi-
cient query processing. In Section 3, we describe the implementation techniques and present an analysis of
their asymptotic time and space complexities. In Section 4, we evaluate the practical performance of each
technique on a large (30 GB) document collection. In Section 5, we present a discussion on advantages and
disadvantages of the techniques and conclude.
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2. Related work

In the literature, ranking-based text retrieval is well-studied in terms of both effectiveness (Can, Alting-
ovde, & Demir, 2004; Clarke, Cormack, & Tudhope, 2000; Wilkinson, Zobel, & Sacks-Davis, 1995) and
efficiency (Can et al., 2004; Long & Suel, 2003). Some of the basic query processing techniques are described
in classical information retrieval books (Baeza-Yates & Ribeiro-Neto, 1999; Frakes & Baeza-Yates, 1992;
Salton & McGill, 1983; Witten, Moffat, & Bell, 1999). Many optimizations are proposed for decreasing
query processing times and efficiently using the memory (Buckley & Lewit, 1985; Harper, 1980; Lucarella,
1988; Moffat, Zobel, & Sacks-Davis, 1994; Persin, 1994; Smeaton & van Rijsbergen, 1981; Turtle & Flood,
1995; Wong & Lee, 1993). These optimizations are based on limiting the number of processed query terms
and postings (short-circuit evaluation) or limiting the memory allocated to accumulators. They mainly dif-
fer in their choice for the processing order of postings and when to stop processing them.

Buckley and Lewit (1985) proposed an algorithm which traverses query terms in decreasing order of fre-
quencies and limits the number of processed query terms by not evaluating the inverted lists for high-fre-
quency terms whose postings cannot affect the final ranking. Harman and Candela (1990) used an insertion
threshold on query terms, and the terms whose score contribution are below this threshold are not allowed
to allocate new accumulators. Moffat et al. (1994) proposed two heuristics which place a hard limit on the
memory allocated to accumulators. Turtle and Flood (1995) presented simulation results for the perfor-
mance analysis of two optimization techniques, which employ term-ordered and document-ordered in-
verted list traversal. Wong and Lee (1993) proposed two optimization heuristics which traverse postings
in decreasing magnitude of weights. For a similar strategy, Persin (1994) used thresholds for allocation
and update of accumulators.

These optimizations can be classified as safe or approximate (Turtle & Flood, 1995). Safe optimizations
guarantee that best-matching documents are ranked correctly. Approximate optimizations may trade effec-
tiveness for efficiency producing a partial ranking, which does not necessarily contain the best-matching
documents, or may present them in an incorrect order. Our focus in this work is not on partial query eval-
uation or approximate optimizations. We investigate the complexities of implementations and data struc-
tures in total document ranking as well as their performance in practice.

Throughout the paper, we take an information retrieval point of view in analyzing various implementa-
tion techniques. However, there exists a significant amount of related work in the database literature. The
interested reader may refer to prior works by Lehman and Carey (1986), Goldman, Shivakumar, Venkat-
asubramanian, and Garcia-Molina (1998), Bohannon, Mcllroy, and Rastogi (2001), Hristidis, Gravano,
and Papakonstantinou (2003), Elmasri and Navathe (2003) and Ilyas et al. (2004).
3. Query processing implementations

The analyses presented in this work are based on processing of a single query Q ¼ ftq1 ; tq2 ; . . . ; tqQg with
Q distinct terms over a document collection with D documents. u denotes the total number of postings in
the processed Q inverted lists I qi 2 LQ, all of which are stored in the volatile memory. The number of dis-
tinct document ids in these postings is denoted by e. The text retrieval system returns the most relevant
(highly ranked) s documents to the user as the result of the query. Table 1 displays the notation used in
the paper.

Although other orderings are possible, the postings in our inverted lists are ordered by increasing doc-
ument id since this ordering is strictly required by some of the algorithms we implemented. Moreover, this
ordering is necessary in case inverted index is compressed (Bell, Moffat, Nevill-Manning, Witten, & Zobel,
1993; Zobel & Moffat, 1995). In postings, we store normalized tf scores ðf ðti; djÞ=

ffiffiffiffiffiffiffi
jdjj

p
Þ, thus eliminating

the need to lookup the document lengths (jdjj) and allocate a large array to store them. This way, the main



Table 1
The notation used in the paper

Symbol Description

T The number of distinct terms in the collection
D The number of documents in the collection
ti A term in the collection
di A document in the collection
jdij The total number of terms in di
L The set of inverted lists
I i The inverted list associated with ti
p.d, p.w Document id and weight fields of a posting p

f(ti,dj) The number of times ti appears in dj
f(ti) The number of documents containing ti
Q A user query
Q The number of distinct terms in Q
LQ The partial set of inverted lists processed in answering Q
a.d, a.s Document id and score fields of an accumulator a
u The total number of postings in all I i 2 LQ
e The number of postings with distinct document ids in all I i 2 LQ
s The number of documents to be returned to the user
B The number of buckets in the hashing implementation
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space demand is for the accumulators and the postings in the inverted lists. The idf component (ln(D/f(ti)))
is not pre-computed in postings but computed during query processing, allowing easy updates over the in-
verted index.

In a query processing implementation, depending on the operations on accumulators, we distinguish five
phases which affect the processing time of a query: creation, update, extraction, selection, and sorting.
Descriptions of these phases are given below.

� Creation: Each document di is associated with an accumulator ai, initialized as ai.d = i and ai.s = 0.
Depending on the implementation, either previously allocated locations are used as accumulators or
space is dynamically allocated for accumulators as needed. In this phase, some auxiliary data structures
may also be allocated and initialized.

� Update: Once an accumulator ai is created for a document di, the weight p.w of each posting p where
p.d = i is simply added to the score of accumulator ai, i.e., ai.s = ai.s + p.w. It is necessary and sufficient
to perform u updates since each posting incurs a single update.

� Extraction: The accumulators with nonzero scores (i.e., ai.s > 0) whose updates are completed can be
extracted. Such accumulators are located and passed to the selection phase as input. Since an accumu-
lator is extracted exactly once, there are always e extraction operations.

� Selection: This phase compares each extracted accumulator score with the previously extracted ones and
selects the accumulators having the top s scores. This way, the set Stop of best-matching documents is
constructed.

� Sorting: The accumulators in Stop are sorted in decreasing order of their scores, and their document ids
are returned to the user in this sorted order.

The asymptotic run-time costs for the creation, update, extraction, selection and sorting phases are rep-
resented by TimeC, TimeU, TimeE, TimeS, and TimeR, respectively. We represent the total run-time cost of
an implementation by TimeT and the storage cost by S. In all analyses, we strictly have e 6 D, e 6 u, s 6 e,
and u 6 QD. Moreover, we assume s � D, Q � T, and u = O(D).



Fig. 1. A classification for query processing implementations.
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Depending on the processing order of postings, we make a broad classification of query processing
implementations as term-ordered (TO) and document-ordered (DO).We further classify TO processing
as static (TO-s) and dynamic (TO-d), according to the strategy used in allocation of accumulators. Simi-
larly, we classify DO processing as multiple (DO-m) and single (DO-s), according to the number of accu-
mulators allocated. For TO-s, TO-d, DO-m, and DO-s approaches, we present 4, 3, 2, and 2
implementations, respectively (Fig. 1). To the best of our knowledge, the implementations TO-s4, TO-
d1, TO-d2, TO-d3, DO-m1, and DO-m2 are not discussed in any other publication.

3.1. Implementations for term-ordered (TO) processing

In TO processing, inverted lists are sequentially processed. The postings of a term are completely ex-
hausted before the postings of the next term are processed. Extraction and selection phases are performed
in an interleaved manner. In TO-s, D accumulators are allocated statically. In TO-d, at most e accumula-
tors are allocated on demand, thus saving space if D is very high.

3.1.1. Implementations with static accumulator allocation (TO-s)

In TO-s implementations, an array A of D accumulators is statically allocated. Each array element
ai ¼ A½i� is used as an accumulator. Before processing a query, accumulator fields are initialized as ai.d = i

and ai.s = 0. Similarity updates for document di are performed over ai.s. Creation and update phases are the
same for all TO-s implementations. These implementations mainly differ in extraction, selection, and sort-
ing phases. The algorithm for TO-s implementations is given in Fig. 2. In this section, we describe four dif-
ferent TO-s implementations.

3.1.1.1. TO-s1: accumulator array, accumulators with nonzero scores sorted. The most naive implementation
is to sort all accumulators in A in decreasing order of their scores and return the document ids in the first s
Fig. 2. The algorithm for TO-s implementations.
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accumulators. If e � D, most accumulators are never updated and their score fields remain zero. In this
case, it is better to first pick the nonzero accumulators and then sort those (Witten et al., 1999). Costs
for this approach are as follows:

� Creation: Array A of D accumulators is allocated, and its accumulators are initialized. This type of allo-
cation is a one-time O(D)-cost operation independent of the number of incoming queries. However,
reinitialization of the accumulators between consecutive queries require O(e) operations. Hence,
TimeC = O(e).

� Update: Each term qj is considered in turn, and for each posting p 2 I qj with p.d = i, an update is per-
formed over the corresponding accumulator field ai.s, i.e., ai.s = ai.s + p.w. This phase involves reading
and writing a total of u values between two locations. Hence, TimeU = O(u).

� Extraction: Since it is not known which accumulators have nonzero score fields, the whole A array must
be traversed to locate them. During this traversal, nonzero accumulators are picked and stored at the
first e elements of array A. Traversing the whole array and checking the score fields require O(D) com-
parisons. Hence, TimeE = O(D).

� Selection: This phase involves no work since the top s scores to be selected already reside within the first e
array elements. TimeS = O(1).

� Sorting: Sorting the first e array elements in decreasing order of the scores gives a ranking. The document
ids in the first s array elements are returned as the set Stop of best-matching documents. Sorting has a cost
of TimeR = O(e lge).

The running time of this implementation is TimeT = O(e + u + D + 1 + e lge) = O(D + e lge). The stor-
age overhead is S = O(D).

3.1.1.2. TO-s2: accumulator array, max-priority queue for nonzero accumulators. An improvement over
TO-s1 is to use a max-priority queue implemented as a binary heap Hmax to select the top s accumulator
scores (Moffat et al., 1994). The max-heap Hmax contains e accumulators, keyed by their scores. This
approach avoids the cost of sorting the whole set of nonzero accumulators if s < e.

� Creation, Update: Similar to TO-s1. TimeC = O(e), TimeU = O(u). Note that array A can be used in
order to store the accumulators in Hmax. Hence, no extra storage is necessary for implementing the
max-priority queue.

� Extraction: Similar to TO-s1. TimeE = O(D).
� Selection: Extracted accumulators in the first e elements of array A are treated as elements of heap
Hmax, using their score fields as the key and document id fields as the data. Since there are e extracted
accumulators, the heap can be built with O(e) operations. After building, the root of Hmax keeps the
accumulator with the highest score. The top s accumulators are obtained by repeatedly performing s

extract-max operation on Hmax. TimeS = O(e + s lge).
� Sorting: This phase involves no work since accumulators are extracted from Hmax in sorted order during
the selection phase. TimeR = O(1).
TimeT ¼ Oðeþ uþ Dþ eþ s lg eÞ þ 1 ¼ OðDþ s lg eÞ. S ¼ OðDÞ.
3.1.1.3. TO-s3: accumulator array, min-priority queue for top s accumulators. A variation over TO-s2 is to
employ, instead of a max-priority queue, a min-priority queue implemented as a min-heap Hmin (Witten
et al., 1999). At any time, the min-heap Hmin contains at most s accumulators, keyed by their scores.
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� Creation, Update: Similar to TO-s1. TimeC = O(e), TimeU = O(u).
� Extraction: The A array is traversed, and nonzero accumulators are passed to the selection phase.
TimeE = O(D).

� Selection: As long as the number of accumulators in Hmin is less than s, extracted accumulators are sim-
ply added to Hmin. Once it contains s accumulators, Hmin is built. After this point, the root of Hmin

keeps asmin, the accumulator with the minimum score observed so far. The score a.s of each extracted
accumulator a is compared with asmin.s. If the incoming score a.s is less than the current minimum
asmin.s, the accumulator a is simply ignored. Otherwise, accumulator asmin is removed from Hmin, and
the extracted accumulator a is inserted into Hmin. Building the min-heap from the first s extracted accu-
mulators has a cost of O(s). In the worst case, all remaining accumulators must be inserted into Hmin.
This has a cost of O((e � s)lg s). Hence, TimeS = O(s + (e � s)lg s).

� Sorting: Accumulators in Hmin are sorted in decreasing order of scores. TimeR = O(s lg s).
TimeT ¼ Oðeþ uþ Dþ ðsþ ðe� sÞ lg sÞ þ s lg sÞ ¼ OðDþ e lg sÞ. S ¼ OðDÞ.
3.1.1.4. TO-s4: accumulator array, sth largest score selection. This method relies on the observation that the
accumulator with the smallest score to be entered into the set Stop of top s accumulators can be located in
linear time.

� Creation, Update: Similar to TO-s1. TimeC = O(e), TimeU = O(u).
� Extraction: This phase involves no work. TimeE = O(1).
� Selection: The accumulator with the sth largest score can be selected in worst-case linear time by the
median-of-medians selection algorithm (Cormen, Leiserson, Rivest, & Stein, 2001) over the accumula-
tors in A. Instead of this algorithm, the randomized selection algorithm (Cormen et al., 2001), which
has expected linear-time complexity, could be used for run-time efficiency in practice. This algorithm
returns asth, the accumulator having the sth largest score and places the remaining s � 1 accumulators
that should appear in Stop in the array elements following asth. Hence, Stop is formed with O(D) opera-
tions. TimeS = O(D).

� Sorting: Accumulators in Stop are sorted in decreasing order of scores. TimeR = O(s lg s).
TimeT ¼ Oðeþ uþ 1þ Dþ s lg sÞ ¼ OðDþ s lg sÞ. S ¼ OðDÞ.
3.1.2. Implementations with dynamic accumulator allocation (TO-d)

If e � D, arrayA contains too many unused accumulators and hence wastes lots of space. In such a case
or the case where array A is too large to fit into the volatile memory, it may be a good idea to use a dy-
namic data structure D and allow on-demand space allocation for accumulators. In this approach, accumu-
lators are stored in nodes of D and are located using their document ids as keys. In this section, AVL tree
(Knuth, 1998), hashing (Horowitz & Sahni, 1978), and skip list (Pugh, 1990) alternatives are investigated
for this purpose. In what follows, we discuss these three alternatives, starting with the AVL tree. Our time
analyses for the hashing and skip list alternatives are expected-time analyses. The algorithm for TO-d
implementations is given in Fig. 3.

3.1.2.1. TO-d1: AVL tree of accumulators, min-priority queue for top s accumulators. In this implementation,
an AVL treeT containing at most e nodes is used to store the accumulators. Each node ofT keeps an accu-
mulator, pointers to its left and right children, and a balance factor. AnAVL tree implementation is preferred
over a binary search tree implementation since the postings are stored in each inverted list in increasing order
of document ids. In the case of a binary search tree implementation, with such a posting storage scheme, new



Fig. 3. The algorithm for TO-d implementations.
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accumulator insertions may quickly turn the tree into a linked list. Hence, we prefer the AVL tree data struc-
ture, which dynamically balances the height of the tree, making accumulator search less costly.

� Creation: If an accumulator needs to be updated in T and it is not already there, a tree node is dynam-
ically allocated to store the accumulator. The cost of node allocation is constant, i.e., O(1). Hence,
TimeC = O(e).

� Update: For each posting p, nodes of T are searched to locate the accumulator to be updated, where
a.d = p.d. If the accumulator is found, its score field a.s is updated as a.s + p.w. Otherwise, a new node
is allocated and inserted into T, initializing the accumulator in the node as a.d = p.d and a.s = p.w. The
update cost for an accumulator is proportional with the height of the AVL tree. Hence,
TimeU = O(u lge).

� Extraction: When all updates are completed, accumulators can be extracted from nodes of T in any
order. Each extracted accumulator is passed to the selection phase. Traversing the AVL tree has a cost
of TimeE = O(e).

� Selection: The min-priority queue mechanism of TO-s3 is used. TimeS = O(s + (e � s)lg s).
� Sorting: Similar to TO-s3. TimeR = O(s lg s).

TimeT = O(e + u lge + e + (s + (e � s)lg s) + s lg s) = O(u lge). The storage overheads are O(e) for the
AVL tree and O(s) for the min-priority queue. S = O(e).

3.1.2.2. TO-d2: hashing of accumulators, min-priority queue for top s accumulators. Another implementation
alternative which offers dynamic allocation is hashing. Since e is not known until all postings are completely
processed, hashing techniques that require static allocation (such as open addressing) cannot be used. Here,
we use hashing with chaining (Horowitz & Sahni, 1978). In this implementation, accumulators are placed
into B buckets, where each bucket keeps a linked list of accumulators. The bucket b for an accumulator a is
determined by applying a hash function on the document id field (e.g., b = a.dmodB).
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� Creation: Selecting the appropriate number B of buckets is the most important step in this implementa-
tion. Allocating too many buckets may increase space consumption. On the contrary, if too few buckets
are allocated, the number of accumulators per bucket increases. Since accumulators are sequentially
searched in each bucket, this increases the query processing time. In this implementation, B pointers
are needed to keep the list heads. Each list node stores an accumulator and has a pointer to the next
node in the linked list. It is necessary to dynamically allocate a total of e list nodes. Hence,
TimeC = O(B + e).

� Update: For a posting p, the bucket to be searched is determined by hashing p.d to a bucket. The accu-
mulators in a bucket are searched by following the links between list nodes. If an accumulator with
a.d = p.d is found, its score is updated. If the end of the list is reached or an accumulator with a greater
document id is found, the search ends. In this case, a new node which contains an accumulator is allo-
cated, initialized using p, and then inserted into the list. List nodes are maintained in increasing order of
document ids. Each bucket stores e/B list nodes on the average. Hence, these many comparisons are nec-
essary to locate an accumulator. TimeU = O(ue/B).

� Extraction: Accumulators are extracted from the buckets and passed to the selection phase. Since exactly
e nodes must be extracted, TimeE = O(e).

� Selection, Sorting: Similar to TO-s3. TimeS = O(s + (e � s)lg s), TimeR = O(s lg s).

TimeT = O((B + e) + ue/B + e + (s + (e � s)lg s) + s lg s) = O(ue/B + e lg s). The storage overheads are
O(B + e) for the hash table and O(s) for the min-priority queue. S = O(B + e).

3.1.2.3. TO-d3: skip list of accumulators, min-priority queue for top s accumulators. Yet another alternative is
to use a skip list S to store and search the accumulators. Skip lists balance themselves probabilisti-
cally rather than explicitly (e.g., rotations in AVL trees). Although they have bad worst-case time
complexities, they have good expected-time complexities for insert and find operations and perform well
in practice.

� Creation: A list node is dynamically allocated in S to store an accumulator and a set of forward pointers
to the following list nodes. The number of forward pointers in each node is determined randomly, but it
is limited from above. Since e list nodes must be allocated, TimeC = O(e).

� Update: For each posting p, the nodes in S are searched to locate the accumulator to be updated, where
a.d = p.d. For this purpose, forward pointers are used and the skip list is traversed in a manner similar to
binary search. If the accumulator is located in S, its score field is updated as a.s = a.s + p.w.
Otherwise, a new node is allocated and inserted into S after initializing its accumulator as a.d = p.d
and a.s = p.w. The expected update cost for an accumulator is O(lge). Hence, TimeU = O(u lge).

� Extraction: Nodes of S are visited sequentially, and accumulators are passed to the selection phase.
TimeE = O(e).

� Selection, Sorting: Similar to TO-s3. TimeS = O(s + (e � s)lg s), TimeR = O(s lg s).

TimeT = O(e + u lge + e + (s + (e � s)lg s) + s lg s) = O(u lge). The storage overheads are O(e) for the
skip list and O(s) for the min-priority queue. S = O(e).
3.2. Implementations for document-ordered (DO) processing

Two important features in the inverted index structure let us devise another query processing strategy.
First, the postings of a term are stored in increasing order of document ids. That is, while traversing an
inverted list, once a document id is seen in a posting, there cannot be a smaller document id in one of



Fig. 4. The algorithm for DO-m implementations.
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the succeeding postings in that list. Second, the number of query terms is limited. We have Q terms to be
processed. These observations allow us to process the inverted lists in parallel instead of processing them
consecutively. This way, it is possible to compute a complete score for a document before all postings in
the lists are completely processed. In DO processing, update, extraction, and selection phases are performed
in an interleaved manner. The implementations differ in their choice for the number of accumulators
allocated, the data structures employed to store the accumulators, and the processing order of the list
heads.
3.2.1. Implementations with multiple accumulator allocation (DO-m)

Implementations in the DO-m category use a structure M, which contains at most Q accumulators at
any time. Also, an array h of Q elements is used to locate the first unprocessed posting in each inverted list,
i.e., each element h[i] points at the posting I h½i�

qi
2 I qi that will be processed next in list I qi . Each accumulator

a 2 M is associated with a single inverted list. Accumulators contain a list id field, which is initialized as
a.‘ = i if accumulator a is associated with inverted list I qi . Although any posting with a document id of
a.d from any inverted list may update the score field a.s, only the postings from list I qa.‘ may initialize
a.d. The document id a.d of each accumulator a is equal to a document id in one of the postings in
I qa.‘ . No two accumulators in M can have the same document id and list id. The structure M can be imple-
mented by a sorted array or a dynamic data structure. These alternatives are described below. The algo-
rithm for DO-m implementations is given in Fig. 4.
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3.2.1.1. DO-m1: sorted array of accumulators, array of posting pointers, min-priority queue for top s

accumulators. In this approach, Q accumulators are kept in an array sorted in decreasing order of document
ids.

� Creation: An accumulator array A and an array h for marking current list heads, each of size Q, are
allocated. The cost of allocating both arrays is O(Q). After the allocation, each h[i] is initialized to point
at the first posting I 1

qi
2 I qi , i.e., h[i] = 1. In processing a query, there are e initializations over the accu-

mulators in A. Hence, TimeC = O(e + Q).
� Update, Extraction: The following procedure is repeated until all postings are processed. If there are less
than Q occupied accumulators in A, updates are performed over the accumulators using the postings at
the current list heads (pointed by h) which are not currently associated with an accumulator in A. In
processing of a posting p ¼ I h½i�

qi
, array A is searched for an accumulator with a.d = p.d. If it is found,

a is updated using p. Otherwise, a new accumulator is created in A and is initialized as a.d = p.d,
a.s = p.w, and a.‘ = i. If all Q accumulators in A are occupied, i.e., associated with a list, the accumu-
lator admin with the minimum document id is located, extracted, and passed to the selection phase.
Then, h[admin.‘] is incremented by 1, and hence it points to the posting p ¼ I h½admin.‘�

qadmin.‘
to be processed next.

Since the A array is maintained in decreasing order of document ids, an accumulator can be located in
O(lgQ) time using binary search. Although update of an accumulator is an O(1)-time operation once it is
located, insertion of a new accumulator after a failed search requires shifting O(Q) accumulators in the
array. Considering the fact that there are u � e accumulator updates and e insertions, TimeU = O(u lg -
Q + eQ). Extraction is simple since the accumulator with the smallest document id is always the last ele-
ment of the array. TimeE = O(e).

� Selection, Sorting: Similar to TO-s3. TimeS = O(s + (e � s)lg s), TimeR = O(s lg s).

TimeT = O((e + Q) + (u lgQ + eQ) + e + (s + (e � s)lg s) + s lg s) = O(u lgQ + eQ + e lg s). The storage
overheads are O(Q) for the sorted array, O(Q) for the array of posting pointers, and O(s) for the min-pri-
ority queue. S = O(Q + s).

3.2.1.2. DO-m2: AVL tree of accumulators, array of posting pointers, min-priority queue for top s
accumulators. Instead of a sorted array, an AVL tree T can be used as a dynamic structure to store the
accumulators.

� Creation: Array h is allocated and initialized similar to DO-m1. Nodes of AVL tree T are dynamically
allocated. For each accumulator with a distinct document id, a tree node must be allocated although T
contains no more than Q nodes at any time. Hence, TimeC = O(e + Q).

� Update, Extraction: Update and extraction phases are similar to DO-m1. However, in processing a post-
ing, both update of an existing accumulator and insertion of a new one require O(lgQ) operations in the
worst case. Hence, TimeU = O(u lgQ). The accumulator with the smallest document id is contained
within the left-most leaf node in T. This leaf node can be reached by following the left links iteratively
starting from the root ofT until a node with no children is reached. With this approach, extraction is an
O(lgQ)-time operation. However, it is possible to improve this by an implementation trick. If each node
keeps a link to its parent node, and the node with the smallest document id in T is remembered by a
pointer, it turns out that extraction is an O(1)-time operation. Hence, TimeE = O(e).

� Selection, Sorting: Similar to TO-s3. TimeS = O(s + (e � s)lg s), TimeR = O(s lg s).

TimeT = O((e + Q) + u lgQ + e + (s + (e � s)lg s) + s lg s) = O(u lgQ + e lg s). The storage overheads are
O(Q) for the AVL tree, O(Q) for the array of posting pointers, and O(s) for the min-priority queue.
S = O(Q + s).



Fig. 5. The algorithm for DO-s implementations.
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3.2.2. Implementations with single accumulator allocation (DO-s)

Implementations in the DO-s category require the use of only a single accumulator admin at any time. All
updates are performed on this single accumulator. Here, we describe two different implementations that
belong to this category. The algorithm for DO-s implementations is given in Fig. 5.

3.2.2.1. DO-s1: single accumulator, array of posting pointers, min-priority queue for top s accumulators. In
this very simple approach, two passes are made over the list heads. In the first pass, the smallest document
id among the currently unprocessed postings is determined. In the second pass, the postings with this small-
est document id are picked and used to update admin.

� Creation: The single accumulator admin, which stores the information about the currently minimum doc-
ument id, is allocated. The h array is allocated and initialized as in DO-m1. The cost of reinitializing
admin is O(e). Hence, TimeC = O(e + Q).

� Update, Extraction: A pass is made over the postings pointed by the h array. Within these postings, a
posting pdmin with the minimum document id pdmin.d is found. Accumulator admin is initialized as
admin.d = pdmin.d and admin.s = 0. With a second pass over these postings, the postings that have this
minimum document id are found. The score field admin.s of accumulator admin is updated using the
weights in each such posting. h[i] for each inverted list I qi that contains such a posting is incremented
to point at the next posting in the list. Once all updates over admin is completed, admin is passed to
the selection phase. This procedure is repeated until all postings are consumed. Since two passes are
made over h for each distinct document id, TimeU = O(eQ). Extracting admin is an O(1)-time operation.
Hence, TimeE = O(e).

� Selection, Sorting: Similar to TO-s3. TimeS = O(s + (e � s)lg s), TimeR = O(s lg s).

TimeT = O((e + Q) + eQ + e + (s + (e � s)lg s) + s lg s) = O(eQ + e lg s). The storage costs are O(1) for
the accumulator, O(Q) for the array of posting pointers, and O(s) for the min-priority queue. S = O(Q + s).

3.2.2.2. DO-s2: single accumulator, min-priority queue for posting pointers, min-priority queue for top s

accumulators. In this implementation, instead of the h array in the DO-s1 implementation, a min-priority
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queue is used so that there is no need for the first pass, which searches for the minimum document id. Here,
we describe an improved version of the implementation described by Kaszkiel, Zobel, and Sacks-Davis
(1999).

� Creation: Similar to DO-s1. However, h is a min-priority queue implemented as a min-heap of postings
pointers, keyed by the document ids in the postings they point at. TimeC = O(e + Q).

� Update, Extraction: The min-priority queue h is built using the postings at the list heads. The following
procedure is repeated until all postings are processed. The root of h stores posting pdmin, i.e., the posting
with the minimum document id among the current list heads. admin is initialized as admin.d = pdmin.d and
admin.s = 0. h is traversed in reverse order (starting from the Qth element down to the first element), and
the postings with p.d = pdmin.d are located. Each such posting p is used to update admin as admin.d = p.d
and admin.s = admin.s + p.s. Then, posting p is replaced by the next posting in the inverted list that p
belongs to, and h is heapified at the node containing p. This approach avoids building the heap (Kaszkiel
et al., 1999) at each pass. After the posting pdmin at the root performs its update, admin is extracted and
passed to the selection phase. In this approach, the heap is heapified exactly once for each posting, and
hence TimeU = O(u lgQ). Extraction has a cost of TimeE = O(e).

� Selection, Sorting: Similar to TO-s3. TimeS = O(s + (e � s)lg s), TimeR = O(s lg s).

TimeT = O((e + Q) + u lgQ + e + (s + (e � s)lg s) + s lg s) = O(u lgQ + e lg s). The storage overheads are
O(1) for the accumulator, O(Q) for the min-priority queue of posting pointers, and O(s) for the min-priority
queue of top s accumulators. S = O(Q + s).
4. Experimental results

4.1. Experimental platform

In the experiments, a Pentium IV 2.54 GHz PC, which has 2 GB of main memory, 512 KB of L2 cache,
and 8 KB of L1 cache, is used. As the operating system, Mandrake Linux, version 13 is installed. All algo-
rithms are implemented in C and are compiled in gcc with O2 optimization option. Due to the randomized
nature of some of the implementations, experiments are repeated 10 times, and the average values are re-
ported. All experiments are conducted after booting the system into the single user mode.

As the document collection, results of a large crawl performed over the �.edu� domain, i.e., the educa-
tional US Web sites, is used. The entire collection is around 30 GB and contains 1,883,037 Web pages (doc-
uments). After cleansing and stop-word elimination, there remains 3,325,075 distinct index terms. The size
of the inverted index constructed using this collection is around 2.7 GB.

In query processing, four different query sets ðQshort; Qmedium; Qlong; and QhugeÞ are tried. Each query set
contains 100 queries, expect for Qhuge, which contains a single query. The query terms are selected from the
sentences within the documents of the collection. Queries in Qshort, which simulate Web queries, are made
up of between 1 and 5 query terms. Queries in Qmedium contain between 6 and 25 query terms. This type of
queries is observed in relevance feedback. Queries in Qlarge contain between 26 and 250 query terms and
simulate queries observed in text classification. Qhuge is included for experimental purposes and the results,
although mentioned in the text, are partially reported. Properties of the query sets are given in Table 2. This
table also presents the minimum, maximum, and average e and u values observed during the experiments.

For each query set, three answer sets ðSsmall; Slarge; and SfullÞ, each with a different top document count
s, are tried. Ssmall and Slarge expect the query processing system to return the first 10 and 1000 best-matching
documents, respectively. Sfull expects all documents with a nonzero score to be returned to the user. Prop-



Table 2
The minimum, maximum, and average values of the number of query terms (Q), number of extracted accumulators (e), and number of
updated accumulators (u) for different query sets

Qshort Qmedium Qlong Qhuge

j Q j 100 100 100 1
Qmin 1 6 26 2500
Qmax 5 25 250 2500
Qavr 3.0 14.6 142.1 2500

emin 4 331,524 1,218,640 1,866,703
emax 1,363,584 1,637,894 1,839,661 1,866,703
eavr 375,166 1,109,691 1,723,229 1,866,703

umin 4 367,068 2,625,452 111,028,126
umax 1,964,216 6,861,180 38,760,201 111,028,126
uavr 451,931 2,310,010 16,468,300 111,028,126

Table 3
The minimum, maximum, and average values of the number of top documents (s) for answer sets produced after processing query set
Qshort

Ssmall Slarge Sfull

j S j 10 1000 e

smin 4 4 4
smax 10 1000 1,363,584
savr 9.94 994 375,166
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erties of these answer sets, and the minimum, maximum, and average number of top documents actually
returned as answer to queries in Qshort are displayed in Table 3.

4.2. Experiments on execution time

Fig. 6 presents the running times of implementations for different types of query and answer sets. Among
the static-accumulator implementations in the TO-s category, for Ssmall and Slarge, the min-priority queue
implementation TO-s3 performs the best if queries contain a few terms, i.e., when Qshort is used. For the
same answer sets, the linear-time selection scheme TO-s4 performs slightly better than TO-s3 if
Qmedium or Qlong is used. For the answer set Sfull, the best results are achieved by the max-priority queue
implementation TO-s2. The TO-s1 implementation, which requires sorting the nonzero accumulators, is
outperformed in all experiments, but the gap between TO-s1 and the others closes as the queries get longer.
For Qhuge and Sfull combination, TO-s1 is almost as good as TO-s2 and TO-s3.

Among the dynamic-accumulator implementations in the TO-d category, for Qshort and Qmedium, the
hashing implementation TO-d2 performs the best. For this implementation, we used an adaptive bucket
size B = u/Q due to the time-space trade-off mentioned in Section 3.1.2.2. For query sets Qlong, the best re-
sults are achieved by TO-d2 and the AVL tree implementation TO-d1, which perform almost equally well.
Increasing the number of terms in queries seems to favor TO-d1, which is the fastest implementation for
Qhuge.

In the DO-m category, although the run-time complexity for the AVL tree implementation DO-m2 is
better than that of the sorted array implementation DO-m1, in practice, DO-m1 is faster than DO-m2
for Qshort and Qmedium. This shows that the cost of rotations in the AVL tree implementation is higher than



Fig. 6. Query processing times of the implementations for different query and answer set sizes.
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the cost of accumulator shifts in the sorted array implementation. However, if queries get longer, DO-m2
starts to perform better than DO-m1. Interestingly, for Qhuge, DO-m2 runs 11 times faster than DO-m1 on
the average.

In the DO-s category, for short queries, the two-pass DO-s1 implementation is faster than the one-pass
DO-s2 implementation. As the number of query terms increase, DO-s2 starts to perform better. This can be
explained by the fact that visiting the list heads in the first pass of DO-s1 brings an additional overhead,
which dominates when queries are long. It is observed that, for Qhuge, DO-s2 runs 35 times faster than
DO-s1.

Among all implementations, if all documents with a nonzero score are returned, TO-s2 performs the best
with TO-s3 displaying close performance. Otherwise, if answers are partially returned, performance de-
pends on the number of query terms. For example, if queries are short DO-s1 is the best choice, whereas
TO-s4 is the fastest implementation for medium and long query sizes.

It should also be noted that, for aggregate querying scenarios, the winners may change. For example, in
the case the user is interested in the top 10 documents and 40% or more of the queries come from Qshort

while the remaining 60% or less are of type Qmedium requiring all top documents, then TO-s3 is preferable
Fig. 7. Normalized query processing times of the implementations for different query and answer set sizes.



Fig. 8. Percent dissection of execution times of query processing implementations according to the five different phases.
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to both DO-s1 and TO-s2 in that it provides the best average query processing time. Taking this fact into
consideration, we also present normalized running times in Fig. 7. In order to generate this figure, the exe-
cution times are first normalized with the smallest execution time. Then, the normalized time values are
averaged and displayed across each query and answer set category.

According to Fig. 7, DO-s1 and DO-m1 perform better than the rest for query set Qshort. For Qmedium and
Qlong, TO-s3 is better than the others. For Ssmall and Slarge, TO-s3 is again the best. For Sfull, TO-s2 very
slightly outperforms TO-s3. On the overall, the local winners of the four categories are TO-s3, TO-d2,
DO-m1, and DO-s2, where TO-s3 is also the global winner.

Fig. 8 displays the percent dissection of execution times for different query processing phases, i.e., cre-
ation, update, extraction, selection, and sorting. According to this figure, for TO-s1, the bottleneck is at the
sorting phase. However, for most implementations, the sorting overhead is relatively less important, except
for the case of short queries with all results retrieved. Overhead of the selection phase is more apparent for
short queries. Especially, in the small answer set case, a considerable percentage of execution times for TO-
s2, TO-s3, TO-s4, DO-s1, and DO-s2 implementations is occupied by the overhead of this phase. The
extraction phase seems to be relatively important for DO-m1 and DO-s1 implementations. The respective
reasons of this high overhead for DO-m1 and DO-s1 are the high amount of accumulator shift operations
and inverted list head traversals. In general, except for the case of short queries with all answers returned,
the update phase incurs the highest overhead. This overhead is especially high for TO-d implementations.
The creation overhead is usually negligible.

4.3. Experiments on scalability

In this section, we provide some experimental results that evaluate scalability of the implementations
with increasing number of query terms, increasing number of extracted postings, increasing answer set sizes,
and increasing number of documents. In the plots, instead of displaying the actual data curves which con-
tain many data points, we give curves fitted by regression and limit the number of data points to 11 in order
to simplify drawings and ease understanding. For the same purpose, we provide a single representative
curve in cases where more than one curves have a very similar behavior and hence overlap.



I
I

I
I I I I I I I I

0 10 20 30 40 50 60 70 80 90 100
Number of query terms

0

4

8

12

Q
u

er
y 

p
ro

ce
ss

in
g

 t
im

e 
(s

)

TO-s1I I

TO-s2,3,4

TO-d1
TO-d2
TO-d3
DO-m1
DO-m2
DO-s1
DO-s2

Fig. 9. Query processing times for varying number of query terms (Q).
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4.3.1. Effect of number of query terms (Q)

Fig. 9 shows the query processing performance for varying number of query terms. This plot is obtained
by submitting 100 queries, where ith query contains i query terms, and retrieving highly ranked 10 docu-
ments at each query. As expected, DO-s1 is the implementation most affected from increasing query sizes.
Other DO implementations as well as TO-d implementations are also affected since increasing number of
query terms results in more posting updates, i.e., increases the overhead of the update phase. The impact on
TO-s implementations is relatively limited since update operations are not costly and extraction and selec-
tion operations have a considerable overhead for this type of implementations.

4.3.2. Effect of number of extracted accumulators (e)

In order to investigate the effect of the number of extracted postings on the query processing perfor-
mance, we used a query set consisting of 100 queries, where each query has a single term. The queries
are such that the ith query incurs 1000 · i extraction operations. As a result, the top 10 documents are re-
trieved. Fig. 10 shows the performance variation for increasing number of extracted accumulators. Except
for TO-s1, the TO-s implementations are not affected much by the increasing number of extractions since
they anyway traverse the whole accumulator array and check every score field. The different behavior of
TO-s1 is basically due to the overhead of sorting. Among the TO-d implementations, TO-d2 seems to scale
best with increasing e. DO implementations perform quite well since there is only a single term in the
queries.
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4.3.3. Effect of number of retrieved documents (s)
Fig. 11 shows how the performance is affected by increasing size of answer sets. To obtain this plot, we

used a single query containing a very frequent term (�university�) so that the number of documents returned
is high in case all documents with a nonzero score are requested. We had 100 experiments, where, for the ith
experiment, the size of the answer set equals i% of the documents with a nonzero score, i.e., si = i · e/100.
According to Fig. 11, as expected, the number of returned documents has no effect on TO-s1 since all non-
zero documents are anyway sorted. For TO-s2, the curve is almost linear since the complexity of the selec-
tion phase is s lge and e is fixed. The linear behavior of TO-s4 is also due to the linear-time selection
heuristic employed. All other implementations have a similar behavior which complies with their O(e lg s)
complexity. The performance gap between the curves is due to the overheads of other phases. An interesting
observation obtained from Fig. 11 is that a trade-off can be made between TO-s2, TO-s3, and TO-s4 imple-
mentations depending on the percentage of retrieved documents.

4.3.4. Effect of dataset size (D)

In this section, we investigate the scalability of the implementations with respect to the document collec-
tion size. In the experiments, we use document collections of three different sizes ðDsmall;
Dmedium; and DlargeÞ. Dsmall and Dmedium are subsets of the original collection Dlarge, which was used in
the rest of the experiments. Table 4 gives the number of documents and number of distinct terms in these
collections. In all experiments, we use the medium-length query set Qmedium with Ssmall and Sfull as the an-
swer sets.

Fig. 12 shows the average query processing times for collections of different sizes. To better illustrate the
scalability of the implementations with increasing dataset size, we also provide Table 5. This table provides
the speedups, which is calculated as QPTðDÞ=QPTðD0Þ, where QPT is the average query processing time,
for two document collections D and D0 such that jDj > jD0j. According to Table 5, for Qmedium and Ssmall

combination, there is almost no scalability problem for most of the implementations as we increase the size
of the document collection from small to medium, i.e., the query processing times double as the collection
size doubles. However, scalability begins to become an issue when we further increase the size of the
Table 4
The number of documents (D) and distinct terms (T) in collections of varying size

Dsmall Dmedium Dlarge

D 472,533 943,672 1,883,037
T 1,467,932 2,201,992 3,325,075



Fig. 12. Average query processing times for collections with varying number of documents (D).

Table 5
Scalability of implementations with different collection sizes

Imp. Qmedium and Ssmall Qmedium and Sfull

QPTðDmediumÞ
QPTðDsmallÞ

QPTðDlargeÞ
QPTðDmediumÞ

QPTðDmediumÞ
QPTðDsmallÞ

QPTðDlargeÞ
QPTðDmediumÞ

TO-s1 2.2 2.2 2.2 2.2
TO-s2 2.0 2.1 2.5 2.4
TO-s3 2.0 2.1 2.5 2.4
TO-s4 2.0 2.1 2.2 2.2

TO-d1 2.2 2.2 2.3 2.3
TO-d2 2.0 2.1 2.2 2.3
TO-d3 2.2 2.6 2.3 2.6

DO-m1 2.0 2.1 2.4 2.4
DO-m2 2.0 2.2 2.3 2.4

DO-s1 2.0 2.0 2.3 2.4
DO-s2 2.0 2.1 2.4 2.4

894 B.B. Cambazoglu, C. Aykanat / Information Processing and Management 42 (2006) 875–898



B.B. Cambazoglu, C. Aykanat / Information Processing and Management 42 (2006) 875–898 895
document collection. The best scalability is observed for DO-s1, whereas the least scalable implementation
is TO-d3. In general, the implementations are less scalable in case all answers are returned. This is basically
due to the increasing overhead of the sorting phase, which does not scale well.

4.4. Experiments on space consumption

Fig. 13 displays the peak space consumption of each implementation. This value is equal to the maxi-
mum amount of space allocation for inverted lists, accumulators, and some auxiliary data structures, ob-
served at any time while running the query processor for a query and answer set pair. It excludes the space
for the general data structures which are utilized for each query. In all implementations, a data structure is
immediately de-allocated at the moment it is no longer needed.

In TO implementations, the peak space consumption is reached when space for accumulators plus an
inverted list is allocated. In TO-s implementations, the peak consumption is reached when the space for
Fig. 13. Peak space consumption (in MB) observed for different implementations.
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the inverted list with the highest number of postings is allocated. In DO implementations, it is reached when
the space for all inverted lists is allocated and the number of accumulators is at the maximum.

According to Fig. 13, for short queries, DO implementations are the most space-efficient. However, there
is a rapid increase in the space needs of this type of implementations as the queries get longer. This is basi-
cally because the storage amount of postings dominates that of accumulators since more inverted lists must
be in the memory at the same time. For Qmedium; Qlong; and Qhuge, TO-s implementations require the least
amount of space. Among TO-d implementations, TO-d2 is the most space-efficient implementation.
5. Concluding discussion

Time complexities for different phases of the algorithms are summarized in Table 6. According to this
table, in general, TO-s implementations differ in their selection phase whereas the update phase is discrim-
inating for TO-d and DO implementations. Table 7 gives the total time and space complexities. The pro-
vided space complexities in Table 6 do not encapsulate the space cost of inverted lists, which is O(e) for the
TO implementations and O(u) for the DO implementations.

It should be noted that different variants, which perform well under certain circumstances, can be created
by slight modifications over the algorithms presented in this work. For example, TO-s4 can be modified so
that in the extraction phase nonzero accumulators are placed in the first e elements, and the median-of-
medians selection algorithm can be run only on these accumulators. In our experiments on this variant
(although not reported here), we observed that this implementation is the fastest in processing short
queries.

Similarly, DO-s2 can be modified using a pruning strategy such that only the postings having the min-
imum document id and their left and right children in the heap are checked. This approach performs well
on long queries, but the bookkeeping overhead dominates at short queries. Similar optimizations are pos-
sible for space consumption. For example, TO-s2 and TO-s3 can be modified such that the accumulator
array keeps only the scores. This decreases the space consumption to half of its original as long as
s 6 D/2. Although our results indicate that TO-d implementations perform poorly, for querying scenarios
where D and Q are high but e is low, implementations in TO-d category can be both time- and space-
efficient.
Table 6
The run-time analyses of different phases in each implementation technique

Impl. TimeC TimeU TimeE TimeS TimeR

TO-s1 O(e) O(u) O(D) O(1) O(e lge)
TO-s2 O(e) O(u) O(D) O(e + s lge) O(1)
TO-s3 O(e) O(u) O(D) O(s + (e � s)lg s) O(s lg s)
TO-s4 O(e) O(u) O(1) O(D) O(s lg s)

TO-d1 O(e) O(u lge) O(e) O(s + (e � s)lg s) O(s lg s)
TO-d2 O(B + e) O(ue/B)a O(e) O(s + (e � s)lg s) O(s lg s)
TO-d3 O(e) O(u lge)a O(e) O(s + (e � s)lg s) O(s lg s)

DO-m1 O(e + Q) O(u lgQ + eQ) O(e) O(s + (e � s)lg s) O(s lg s)
DO-m2 O(e + Q) O(u lgQ) O(e) O(s + (e � s)lg s) O(s lg s)

DO-s1 O(e + Q) O(eQ) O(e) O(s + (e � s)lg s) O(s lg s)
DO-s2 O(e + Q) O(u lgQ) O(e) O(s + (e � s)lg s) O(s lg s)

a Expected time complexities are given.



Table 7
The total time and space complexities for different implementations

Impl. Time Space

TO-s1 O(D + e lge) O(D)
TO-s2 O(D + s lge) O(D)
TO-s3 O(D + e lg s) O(D)
TO-s4 O(D + s lg s) O(D)

TO-d1 O(u lge) O(e)
TO-d2 O(ue/B + e lg s)a O(B + e)
TO-d3 O(u lge)a O(e)

DO-m1 O(u lgQ + eQ + e lg s) O(Q + s)
DO-m2 O(u lgQ + e lg s) O(Q + s)

DO-s1 O(eQ + e lg s) O(Q + s)
DO-s2 O(u lgQ + e lg s) O(Q + s)

a Expected time complexities are given.
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To summarize, the results show that there is no single, superior implementation. Depending on the prop-
erties of the computing system, document collection, user queries, and answer sets, each implementation
has its own advantages. Currently, we are working on a hybrid system which will, depending on the param-
eters, intelligently select and execute the most appropriate implementation taking both time and space effi-
ciency into consideration. Clearly, for a better analysis, the experiments need to be repeated on a larger
document collection where D and T are much higher. For this purpose, we have started a large crawl of
the Web and plan to repeat the experiments on this larger collection.
References

Baeza-Yates, R., & Ribeiro-Neto, B. (1999). Modern information retrieval. New York: Addison-Wesley.
Bell, T. C., Moffat, A., Nevill-Manning, C. G., Witten, I. H., & Zobel, J. (1993). Data compression in full-text retrieval systems.

Journal of the American Society for Information Science, 44(9), 508–531.
Bohannon, P., Mcllroy, P., & Rastogi, R. (2001). Main-memory index structures with fixed-size partial keys. ACM SIGMOD Record,

30(2), 163–174.
Buckley, C., & Lewit, A. (1985). Optimizations of inverted vector searches. In Proceedings of the 8th international ACM SIGIR

conference on research and development in information retrieval (pp. 97–110). Montreal, Canada.
Can, F., Altingovde, I. S., & Demir, E. (2004). Efficiency and effectiveness of query processing in cluster-based retrieval. Information

Systems, 29(8), 697–717.
Clarke, C. L. A., Cormack, G. V., & Tudhope, E. A. (2000). Relevance ranking for one to three term queries. Information Processing

and Management, 36(2), 291–311.
Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2001). Introduction to algorithms (2nd ed.). Cambridge, MA: MIT Press.
Croft, W. B., & Savino, P. (1988). Implementing ranking strategies using text signatures. ACM Transactions on Office Information

Systems, 6(1), 42–62.
Elmasri, R., & Navathe, S. (2003). Fundamentals of database systems (4th ed.). Reading, MA: Addison-Wesley.
Frakes, W. B., & Baeza-Yates, R. (1992). Information retrieval: Data structures and algorithms. Englewood Cliffs, NJ: Prentice Hall.
Goldman, R., Shivakumar, N., Venkatasubramanian, S., & Garcia-Molina, H. (1998). Proximity search in databases. In Proceedings

of the 24th international conference on very large data bases (pp. 26–37). New York, USA.
Harman, D. W. (1986). An experimental study of factors important in document ranking. In Proceedings of the 9th international ACM

SIGIR conference on research and development in information retrieval (pp. 186–193). Pisa, Italy.
Harman, D., & Candela, G. (1990). Retrieving records from a gigabyte of text on a multicomputer using statistical ranking. Journal of

the American Society for Information Science, 41(8), 581–589.
Harper, D. J. (1980). Relevance feedback in document retrieval systems: An evaluation of probabilistic strategies. Ph.D. Thesis. The

University of Cambridge.



898 B.B. Cambazoglu, C. Aykanat / Information Processing and Management 42 (2006) 875–898
Horowitz, E., & Sahni, S. (1978). Fundamentals of computer algorithms. Potomac, MD: Computer Science Press.
Hristidis, V., Gravano, L., & Papakonstantinou, Y. (2003). Efficient IR-style keyword search over relational databases. In Proceedings

of the 29th international conference on very large data bases (pp. 850–861). Berlin, Germany.
Ilyas, F., Aref, G., & Elmagarmid, K. (2004). Supporting top-k join queries in relational databases. The VLDB Journal—The

International Journal on Very Large Data Bases, 13(3), 207–221.
Kaszkiel, M., Zobel, J., & Sacks-Davis, R. (1999). Efficient passage ranking for document databases. ACM Transactions on

Information Systems, 17(4), 406–439.
Knuth, D. (1998) (2nd ed.). The art of computer programming: Sorting and searching (Vol. 3). Reading, MA: Addison-Wesley.
Lee, D. L., Chuang, H., & Seamons, K. (1997). Document ranking and the vector-space model. IEEE Software, 14(2), 67–75.
Lehman, T. J., & Carey, M. J. (1986). A study of index structures for main memory database management systems. In Proceedings of

the 12th international conference on very large data bases (pp. 294–303). Kyoto, Japan.
Long, X., & Suel, T. (2003). Optimized query execution in large search engines. In Proceedings of the 29th international conference on

very large databases. Berlin, Germany.
Lucarella, D. (1988). A document retrieval system based upon nearest neighbor searching. Journal of Information Science, 14(1), 25–33.
Moffat, A., Zobel, J., & Sacks-Davis, R. (1994). Memory efficient ranking. Information Processing and Management, 30(6), 733–744.
Persin, M. (1994). Document filtering for fast ranking. In Proceedings of the 17th international ACM SIGIR conference on research and

development in information retrieval (pp. 339–348). Dublin, Ireland.
Pugh, W. (1990). Skip lists: a probabilistic alternative to balanced trees. Communications of the ACM, 33(6), 668–676.
Salton, G., & McGill, M. J. (1983). Introduction to modern information retrieval. New York: McGraw-Hill.
Smeaton, A. F., & van Rijsbergen, C. J. (1981). The nearest neighbor problem in information retrieval: an algorithm using

upperbounds. In Proceedings of the 4th international ACM SIGIR conference on research and development in information retrieval

(pp. 83–87). Oakland, California.
Tomasic, A., Garcia-Molina, H., & Shoens, K. (1994). Incremental updates of inverted lists for text document retrieval. In Proceedings

of the 1994 ACM SIGMOD international conference on management of data (pp. 289–300). Minneapolis, Minnesota.
Turtle, H., & Flood, J. (1995). Query evaluation: strategies and optimizations. Information Processing and Management, 31(6),

831–850.
Wilkinson, R., Zobel, J., & Sacks-Davis, R. (1995). Similarity measures for short queries. In Fourth text retrieval conference (TREC-4)

(pp. 277–285). Gaithersburg, Maryland.
Witten, I. H., Moffat, A., & Bell, T. C. (1999). Managing gigabytes: Compressing and indexing documents and images (2nd ed.). San

Francisco, CA: Morgan Kaufmann.
Wong, W. Y. P., & Lee, D. K. (1993). Implementations of partial document ranking using inverted files. Information Processing and

Management, 29(5), 647–669.
Zobel, J., & Moffat, A. (1995). Adding compression to a full-text retrieval system. Software Practice and Experience, 25(8), 891–903.
Zobel, J., Moffat, A., & Sacks-Davis, R. (1992). An efficient indexing technique for full-text database systems. In Proceedings of the

18th international conference on very large databases (pp. 352–362). Vancouver, Canada.


	Performance of query processing implementations in ranking-based text retrieval systems using inverted indices
	Introduction
	Related work
	Query processing implementations
	Implementations for term-ordered (TO) processing
	Implementations with static accumulator allocation (TO-s)
	TO-s1: accumulator array, accumulators with nonzero scores sorted
	TO-s2: accumulator array, max-priority queue for nonzero accumulators
	TO-s3: accumulator array, min-priority queue for top s accumulators
	TO-s4: accumulator array, sth largest score selection

	Implementations with dynamic accumulator allocation (TO-d)
	TO-d1: AVL tree of accumulators, min-priority queue for top s accumulators
	TO-d2: hashing of accumulators, min-priority queue for top s accumulators
	TO-d3: skip list of accumulators, min-priority queue for top s accumulators


	Implementations for document-ordered (DO) processing
	Implementations with multiple accumulator allocation (DO-m)
	DO-m1: sorted array of accumulators, array of posting pointers, min-priority queue for top s accumulators
	DO-m2: AVL tree of accumulators, array of posting pointers, min-priority queue for top s accumulators

	Implementations with single accumulator allocation (DO-s)
	DO-s1: single accumulator, array of posting pointers, min-priority queue for top s accumulators
	DO-s2: single accumulator, min-priority queue for posting pointers, min-priority queue for top s accumulators



	Experimental results
	Experimental platform
	Experiments on execution time
	Experiments on scalability
	Effect of number of query terms (Q)
	Effect of number of extracted accumulators (e)
	Effect of number of retrieved documents (s)
	Effect of dataset size (D)

	Experiments on space consumption

	Concluding discussion
	References


