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Abstract

We define (non-Einsteinian) universal metrics as the metrics that solve
the source-free covariant field equations of generic gravity theories. Here,
extending the rather scarce family of universal metrics known in the
literature, we show that the Kerr-Schild—Kundt class of metrics are universal.
Besides being interesting on their own, these metrics can provide consistent
backgrounds for quantum field theory at extremely high energies.

Keywords: universal metrics, Kerr-Schild—Kundt class, AdS waves,
generic gravity theories

1. Introduction

The field equations of Einstein’s gravity, even in vacuum R,,, = 0, are highly nonlinear, but
still there is an impressive collection of exact solutions: some describing spacetimes outside
compact sources, some describing nonlinear waves in curved or flat backgrounds, and some
providing idealized cosmological spacetimes etc. According to the lore in effective field theo-
ries, the Einstein—Hilbert action will be modified, or one might say, quantum-corrected after
heavy degrees of freedom in the microscopic theory are integrated out, with higher powers
curvature and its derivatives at small distances/high energies. The ensuing theory at a given
high energy scale could be a very complicated one with an action of the form

I:dex\/—_gf(g,R, VR,..), (1)

where f is a smooth function of its arguments, which are the metric g, the Riemann ten-
sor denoted simply as R, the covariant derivative of Riemann tensor as V R, and the higher
covariant derivatives of the Riemann tensor. Of course, it is quite possible that there are addi-
tionally nonminimally coupled fields such as scalar fields taking part in gravitation. But, in
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what follows we shall assume that this is not the case and gravity is simply described by the
metric. This UV-corrected theory is much more complicated than Einstein’s gravity, and so
one might have a priori very little hope of finding exact solutions. Of course, what is even
worse is that beyond the first few terms in perturbation theory, we do not really know the form
of this modified theory at a given high energy scale. Hence, apparently, in the absence of the
field equations, one may refrain from searching for solutions, but it turns out that the situa-
tion is not hopeless: there is an interesting line of research that started some time ago with the
works [1-7] and culminated into a highly fertile research avenue. The idea is to find metrics,
so called universal metrics [8], that solve all the metric-based field equations of quantum-cor-
rected gravity, with slight modifications in the parameters that reflect the underlying theory.
The notion of universal metrics, with refinements such as strongly and weakly universal were
made in [8], we shall not go into that distinction here and we shall also not go into the distinc-
tion of critical versus non-critical metrics, where the former extremize an action while the lat-
ter solve a covariantly conserved field equation not necessarily coming from an action. These
universal metrics, in addition to being valuable on their own, provide potentially consistent
backgrounds for quantum field theory at extremely high energies where the backreaction or
gravity of the quantum fields cannot be neglected. Universal Einsteinian (Ricci-flat or Einstein
space) metrics were studied in the works [9, 10]. Non-Einsteinian universal metrics, such as
the ones considered here, with or without cosmological constant are very rare.

From the above discussion, it should be clear that finding such universal metrics is a highly
nontrivial task; hence, in the literature, there does not exist many examples save the ones we
quoted above. But, recently, we have provided new examples of universal metrics: we have
shown that the AdS-plane wave [13—15] (see also [16]) and the AdS-spherical wave [15, 17]
metrics built on the (anti)-de Sitter [(A)dS] backgrounds solve generic gravity theories with
an action of the form (1) or in general covariant field equations that satisfy a Bianchi identity
[15, 18-20]. These previously found examples are in the form of the Kerr-Schild metrics*
splitting as

g/w = g_,u,l/ + 2V)‘,u>\y,

2
where g, represents the (A)dS spacetime and the A vector satisfies the following four relations
M, =0, Vid = § ), EN' =0, MO,V = 0. 3)

Observe that a second vector £ appears whose definition is given by the second relation, with
the symmetrization convention defined as 2§, A,y = { A\, + A.€,. Note also that the A vector
is not a recurrent vector in general and hence the spacetime does not have the special holo-
nomy group Sim(D — 2) as was considered to be the case in [8]. With the second and third
relations, the null A\ vector becomes nonexpanding, shear-free, and nontwisting; making (2)
a Kundt spacetime; therefore, we shall call this class of metrics as the Kerr-Schild—Kundt
(KSK) class®.

In this work, we prove that for any metric of the form (2) satisfying the conditions (3), the
covariant field equations coming from the variation of (1) without any matter fields reduce to
an equation linear in the traceless-Ricci tensor. This is the main purpose of this work. Once this
reduction is achieved, one can have a further reduction in the field equations into a form that
transparently shows that the solutions of Einstein’s gravity and the quadratic curvature gravity
in the KSK class are also solutions of generic gravity theories. The Einsteinian solutions are

4 Higher dimensional Kerr-Schild spacetimes are extensively studied in [11, 12].
3 The last condition in (3) is essential in showing the universality of the metrics although that property is not included
in the definition of KSK metrics.
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the members of the Type N universal spacetimes studied in [9]. In addition to these Einsteinian
universal metrics, the solutions of the quadratic curvature gravity in the KSK class also solve
the metric-based source-free field equations of any generic gravity theory, that is these met-
rics are non-Einsteinian universal metrics. As we stated above, the AdS-plane wave and the
AdS-spherical wave metrics belong to the non-Einsteinian KSK family of metrics as being
solutions of the quadratic curvature gravity theories. In addition, rather recently, we proposed
a solution generation technique [20] to construct non-Einsteinian universal metrics and we
found a new member of this class which is the dS-hyperbolic wave metric [21].

For metrics the form (2) satisfying the conditions (3), the vacuum field equations of the
generic gravity theory with the action (1) can be written as

N

E,=eg, + Z a,1" S, =0, 4)

n=0

as an immediate consequence of theorem 1 to be proven in section 3. Here, S, is the traceless-
Ricci tensor, and Uis the d” Alembert operator with respect to the metric g, The derivative order
of the generic theory is 2N + 2 such that N =0 is Einstein’s gravity (or the Einstein—-Gauss-
Bonnet theory) and N = 1 is the quadratic curvature gravity (or f(g, R) where R represents the
Riemann tensor). The field equations split into a single trace part and a higher derivative nonlin-
ear wave equation for the traceless part. Taking the trace of this equation yields a scalar equation

e=0, )

which determines the effective cosmological constant in terms of the parameters of the theory,
such as the bare cosmological constant and the dimensionful parameters that appear in front of
the curvature invariants. On the other hand, the traceless part is a nontrivial nonlinear equation

N
> a, 08, =0. (6)
n=0

This reduction is highly impressive, but in this form, the above equation cannot be solved save

for some trivial cases. Hence, a further reduction is needed. It was shown in [19] that this is

possible as

2 n
O"S. = (1)">\u)\,,((9 + ﬁ) ov. 7
Here, the operator O is defined as
. 1., 2Db-2) - 1., 2D —2)
O: D+2§”3N+§§’ fﬂ - T :IZH’Z&.'LL@;F”E&/ fﬂ - Ta (8)

where [J is the d’Alembert operator with respect to the background metrics g, and
Sw = —AuAOV. This result given in (7) is valid for the KSK class with any ¢, satisfying (3),
and using this, (6) reduces to a linear equation

N n
2
For N > 1, this equation can be factorized as
N
[[©+byov=0, (10)
n=0
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where b, is related to a,s and so to the parameters of the theory; albeit, in general, in a com-
plicated implicit way. If all b,s are distinct and none is zero, the most general solution of (10)
is in the form

V=Ve+Vi+ WVt + W, (1)
where Vg is the Einsteinian solution satisfying

O =0, (12)
and V,, is the solution of the quadratic curvature gravity satisfying

(O+b) V=0, (13)

foralln =1,2,---,N. For example, when N = 1, V= Vg + V] represents the quadratic cur-
vature gravity solutions which also solve the generic theory. On the other hand, if some b,s
coincide or vanish, then genuinely fourth or higher power operators, such as (O + b,)?, arise
with Log-type solutions having asymptotically non-AdS behavior which exist in the so-called
critical theories. Since O given in (8) is an operator which solely depends on the background
metrics (flat, AdS, or dS), the solutions of (12) and (13) for Vg and V,, can easily be obtained
by using some known techniques such as the method of separation of variables or the method
of Green’s function. As we have studied such issues in other works such as [13, 15, 17], here
we shall not consider particular cases but give a detailed proof of how KSK metrics are uni-
versal provided that the equations (12) and (13) are solved for the functions Vg and V,,. In the
rest of the paper, we call the KSK metrics where the metric function V solves (12)—(13) as
universal.

The layout of the paper is as follows: In section 2, we give the curvature properties of
the KSK metrics as well as the relations satisfied by the two special vectors A and & that are
important in description of these spacetimes. Section 3 constitutes the bulk of the paper where
we show that the KSK metrics are universal. In the appendix, we give an alternative proof
by mathematical induction. As our claim is strong, we were compelled to give two proofs
which can be read independently. The one in the bulk of the paper is shorter but the one in the
Appendix comes with various examples that will help the reader appreciate the construction.

2. Curvature tensors and properties of Kerr-Schild—Kundt class

In what follows, D will denote the number of dimensions of the spacetime. The properties of
the KSK type metrics were previously discussed in [17, 19]. Here, we shall briefly recapitulate
some of these which will be crucial in the proof and we shall also give some additional con-
structions in this section. The scalar curvature of KSK metrics is constant and normalized® as

R = —D(D — 1)/¢? and the traceless-Ricci tensor, Sw=Ry — %gm,, can be shown to satisfy
S/w = p>\,u,)\u, (14)

where course ), is the vector appearing in metric (2) and the new object p is given in terms of
an operator acting on the profile function V as

1 2D -2
;ﬁ:—OV:—{D+%W@+58Qf~47§—gV. (15)

% Here, the relation between the effective cosmological constant A and the AdS radius £ is given as

1 2A

2 D-DD-2)
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This expression is not difficult to obtain, but a more involved computation gives the Weyl
tensor as’

Cuavs = 4N g Ay, (16)
where the symmetric two-tensor 2, is given as
1 1 2(D —2)
Qop = — | Va0s+E€,03+=¢, a((’)+7) v, 17
B [aﬂf( 3) 25@; TR 7 (17)
Its contraction with the A vector and its trace read
1 2 4
A Qs = = A3, = £90, V—— + =V,
8 B ) 5 P £2

which make it clear that the Weyl tensor satisfies A'C,,,3 = 0. Observe that just like the met-
ric function V, due to the Bianchi identity and the constancy of the scalar curvature, one has
V1S, = 0 yielding

N¥,p =0, (18)

which also follows from an explicit calculation using the definition (15) and A*V,,V = 0.
Let us now calculate the Riemann tensor: using the decomposition

2 2R

Rﬂ(}'l/ﬁ = C/tauﬁ + D— z(gM[VSma ga[zzsﬁ]/t) + D(D 1)gu[ugﬁ]a’ (19)

one arrives at a compact form for the KSK metrics
2R
Riovs = 4M1On13 M) + — 81,8310
o s A1+ T BuvBsla (20)
where O, is defined in terms p and {23 as
1 2
Oup = Qg + D7 8= (vaaﬁ+§(aaﬁ)+§§a§[3 - pgaﬂ)v- 21

We shall make use of this form of the Riemann tensor in the next section. The trace and A
contraction of the two-tensor O, are

4v 1
0 = p+E20.V+ 7 SCONES 5)\5(@3 —p) (22)

All of these expressions are exact even though the metric function V appears linearly, which
shows the remarkable property of the Kerr-Schild metrics in addition to the properties we have
listed, defining the KSK class.

Finally, for the KSK metrics, we need the following identities: once-contracted Bianchi
identity

V”RW,,/; = vuRaﬂ - vaRuﬁ’ (23)
for constant R yields
VYRuavp = ViSap — VaSus, (24)

which then leads to the double-divergence of the Riemann tensor

7 The anti-symmetrization with the square brackets is weighted with 1/2.

5
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R
VEVYR o = | ———— |Sas- 25
juaw ( D1 ) g (25)
In obtaining this identity, we made use of V*V,S,, = LSW which follows from
V#VUS;W [v,u’ V ] S# RaaSa + Rzm/Sg9 (26)
. . o _ R ’3 _ R
after using the contractions RS, = BSJ,, and Ry,q,38"" = PO-D 1)S,,u.

The ¢ vector that does not appear in the metric but appears in the definition of the KSK
class will play an important role in the proof below; therefore, let us work out some of the
identities that it satisfies:

1

Ayvﬂfy = _E)\Mg‘/g}/’ (27)

and its divergence is
2D -3
Vit = ——&, + ——R
i€ f & DO 1) (28)

We also have

NTE, = —Aof ~ene, - ——R|, 29)

“ 4" DD-1

The first equality is simply due to \"¢, = 0. To obtain the second® and the third identities, let
us note that we have [V#, Vl,] A= “A p whose right-hand side reduces to
R
R /’)\ -
w5 DD — 1)

Wﬁ
(8% — Mass): (30)

after using (19) and the fact that the KSK spacetime is type-N Weyl (16) and type-N traceless-
Ricci (14) [22, 23]. On the other hand, the left-hand side, [V, V] A, takes the form

1
[v,u,’ v1/] >\;3 - )\[VV;L]% - )\ﬁv[yfm - EgﬁA[VEM’ (31)
after using V,, A, = A\, recursively. Overall, one has
2R
2A0 Vs — 2A8Mu€,y — EpAéy = m(gm/\u — Nu&)s (32)

which can be used to find V,£# and MV,£, after performing the g"% and M contractions
yielding

NIVLE, = — (vgu Leng - zlf) (33)

8 A variation of (28) appeared in the appendix B of [17] such that it involves the covariant derivative with respect
to the Christoffel connection of AdS, that is VN. Thus, another way to obtain (28) is to show the equivalence

Vi€ = V. This result immediately follows from the fact that the Christoffel connection of the AdS spacetime is
related to the Christoffel connection of the full metric as (see, for example, appendix B of [17])

Q,‘aﬂ = Fl ani - VQ(V/\M/\S) + VQ(V)\H)\Q) - V“(V)\a/\ﬁ),

and using the fact that Quuﬂ = 0, one has FZ[, = FZ&'
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1 2R
MANNLE s + ANV, = —)\3/\1,(55"5# — m) (34)
respectively, with the use of (27). Then, using (33) in (34) yields the equation (28) and making
use of that equation in (33) yields (29).

The identities (27) and (29) play a crucial role in the proof below, because they represent
the fact that all possible contractions of V£, with a A vector yields a free-index A vector and
a reduction in the order of the derivative on the £ vector by one.

The vector g,V also satisfies similar properties like &,: for both of these vectors, contraction
with M is zero and contractions of V,,0,V with a A vector satisfy

N,V = NV, = %Aygﬂauv, (35)

where again a free-index A vector appears and the order of the derivative on d,V reduces by
one. With this background information, we are now ready to state and give the proof of the
theorem in the next session.

3. Universality Of KSK metrics

Here, we are going to prove the following theorem:
Theorem 1.  For the Kerr-Schild metrics

g[u,l/ = g;w + 2V)\ﬂ)\V’

with the properties
)\'u)‘p, =0, V;l,)\u = £(u)\u), 5#)\# =0, )\“aﬂv =0,

where g, is the metric of a space of constant curvature (AdS or dS), any second rank symmet-
ric tensor constructed from the Riemann tensor and its covariant derivatives can be written
as a linear combination of g,,, S, and higher derivatives of Sy, in the form 1" S, where UJ
represents the d’Alembertian with respect to g, that is

N
E;w = €8 + Z anDn SN’/'
n=0

Proof. The proof of this theorem relies on the observation that any contraction of the A
vector with any tensor composed of V and its covariant derivatives, ¢ and its covariant de-
rivatives always yields a free-index A vector in each term in the resulting expression. Thus,
in constructing two-tensors out of the contractions of any number of Riemann tensor and its
derivatives, one must keep track of the number of \ vectors.

Let us consider a generic two-tensor which is constructed by any number of Riemann ten-
sors and its covariant derivatives. We represent this two-tensor symbolically as

E,, = [R"™(V"R)(V™R) ... (V""R)],m , (36)

where R represents the Riemann tensor, the superscripts represent the number of terms in-
volved such as ng represents the number of Riemann tensors without covariant derivatives,
and n; < mp < --- < ny, 1s assumed without loss of generality. In the notation of this section, the



Class. Quantum Grav. 34 (2017) 075003 M Gurses et al

Riemann tensor given in (20) can be simply given as R = A\?O© + g2. In the above expression,
we omitted the metric tensors among the terms, and in principle, any contraction pattern is
possible. The presence of these metric tensors does not alter any of our discussions below. It
is obvious that to have a two-tensor, the sum ;" , n; should be even. Considering the metric
compatibility condition and using the form of the Riemann tensor in (20), E,,, reduces to (say
anew tensor &,,)

Eu =[N0 (VM [NO] )V [NO]) ... (V'™ [N*O])] (37)

where we omitted the metrics coming out of the Riemann tensors R", since considering them
just yields a sum of two-tensor forms updated with \**©"" instead of \>"*@™ where n, < ng
always, so these terms are genuinely covered in &,,,.

Now, let us consider the tensorial structures appearing in &,,. First, note that © defined in
(21) is composed of V and its first and second order derivatives in addition to the & vector.
Secondly, let us consider the highest order derivative term (V" [A20]) which is a (0, n,, + 4)
rank tensor. Note that with each application of the covariant derivative on ), one can use
Vi = & u)"’); and therefore, (V" [A\>@] ) represents a sum of (0, n,, + 4) rank tensors that are
built with V and its up to (#,, + 2)th-order derivatives in addition to the £ vector and its n,,th-

order derivatives. Therefore, the (0, s = 4ng + 4m + >/ n;) rank tensor,

Epporopy = [NP0O(VH [NO]N(V™[NO]) ... (V™ [NO])], (38)

represents a sum of (0, s) rank tensors which are built with 2(ny + m) number of \ vectors and
the remaining (0, s — 2ny — 2m) rank tensorial parts are built with V and its up to (n,, + 2)th-
order derivatives in addition to the £ vector and its n,,th-order derivatives.

After discussing the tensorial structure of £, . > NOW let us analyze the nature of the
(s/2 — 1) number of contractions with the inverse metric yielding &,,. First, note that the con-
tractions of the M vector with A, £, and 9,V yield zero. Secondly, the contractions of the \*
vector with the first order derivatives of fﬂ and g,V yield (27) and (29), and (35), respectively.
In these contractions, the important points to observe are:

e the number of the ) vectors is preserved since a free-index \ always appears in the results,
e contraction with the A vector removes the first order derivatives acting on §, and 9, V.

Now, let us analyze the A\* contraction of the terms involving higher order covariant deriva-
tives acting on §, and d,V. Note that to arrive at the stated proof, instead of explicit formulae,
the tensorial structure of the expressions after the A\* contractions is important. Since the \*
contractions of both fu and g,V yield the same structure, we worked with fu for definiteness;
however, the conclusions we obtained are also valid in the 9,V case. Thus, let us consider the
(0, r 4+ 1) rank tensor in the form

VIMVNZ e V:“'rgﬂm' (39)

The M contraction can be through one of the covariant derivatives as

NAVAVANNE I AR I (40)

or through the £ vector as
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NV Vi, - V& 41)

For these two contraction patterns, the tensorial structure of the final results are sums of the
(0, r) rank tensors satisfying the properties;

e each term involves a free-index \ vector,
o for all the terms, the highest order of derivative acting on & will be r — 1 or less.

To show these properties, we need to use the basic identities (27) and (29), and to make such a
use, first, one needs to change the orders of the derivatives in (40) such that one has

NV Vs Vi Vi (42)

by using the Ricci identity’ producing Riemann tensors for each change of order. After mak-
ing all the change of orders and applying simply the product rule for the covariant derivatives,
one arrives at

NN Ny oo Vo Vi &, = NN - N VG, + 2D N(VPR)(VTP2), (43)
p

where in the last sum, the A*(V”R,,) term represents p number of covariant derivatives acting
on the Riemann tensor and one index of the Riemann tensor should be contracted with \*.
Here, p can have various values depending on the position of the contracted covariant deriva-
tive in (40) and it can be as small as 0 and as large as (r — 2). Once we consider the Riemann
tensor R symbolically as \?O, then

N(VPR,) = M(VP[A2O],,), (44)

represents a sum of terms involving two free-index A vectors and the remaining (0, p + 1)-rank
tensor structure is built with the &, OV vectors, and their covariant derivatives. In each term in
this summation, one higher order covariant derivative term involving & or @V must have a A\*
contraction. The derivative order of this A contracted term is at most (» — 1) for the OV vector
and (r — 2) for the £ vector. This is because © involves the first derivative of the @V vector and
just the & vector itself, and p can take the maximum value of (» — 2). To summarize, for the last
sum in (43), the properties of the tensorial structure of each term is:

e there are three A vectors one of which is in the contracted form and the others are free,
e the total number of derivatives in these terms is at most (r — 1) for 9V and (r — 2) for &,
so the order of the derivative is reduced by 1.

So, for these terms, we achieved to show the aimed two properties.
Now, let us focus on the first term in (43) and (41). For these terms, we need to change the
order of the covariant derivatives and the \* vector such that in the end we obtain

ViV -+ Vi, (M'VE ), (45)

% Here, with Ricci identity, we mean

[Vy,, V,,] Top.n = RWQATW.._W + -t R#,,y)\Ta[f...)\-
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ViV -+ Vi, (MY, €, (46)

respectively, and we can apply the identities (29) and (27) in these terms. To show how we
carry out this simple change of orders, we consider the first term in (43) and the same steps
apply for (41). In commuting the \* vector and the covariant derivatives, we simply have

A#vﬂlvﬂz vﬂrqvﬂgu, = vﬂl()\#vﬂz vll’rflvug/l,) - (vllfl/\u)vﬂz vﬂr—lvﬂ'fu,’ (47)

where in the second term on the right-hand side, one can apply the defining property of the &
vector V,\, = 5( H/\,,) which reduces the derivative order and introduces a free-index A vector.
Then, one has

)‘Hvlllvﬂz Vp‘r—lvugﬂ, = VHI(AILVM Vﬂrqvﬂgur)
1
= 26N Vi N,

1
~ S My o Vi Vi, (48)

where for the last term, we achieved our aim that

e a free-index A vector is introduced,
e the derivative order on ¢, is reduced by one.

On the other hand, the second term in (48) still involves a A\* contraction; but this time, the
order of the derivative acting on §, is (r — 1). For this term, one needs to repeat this ongoing
process for the generic rth-derivative term. For the next step of the change of orders, we con-
sider the first term on the right-hand side (48) and change the order of M and V,, as

NV Ny i, = YV (MV - Y Vi)
— (Y VM) (Vi - Y, ViE,)
— (YN - Y, Vi,

1
- Eful)‘uvﬂz V#rflvﬂf,u,

1
- EAM@LVMZ oo Vi Vi, - (49)

Here, again using VA, = {,\) in the second and third terms yield either \* contracted terms
having less number of derivatives than r acting on £ or terms involving a free-index A vector.
Again for the terms involving the M contraction this ongoing procedure can be repeated. Thus,
one can continue changing the order of the A" vector and the covariant derivatives in the first
term until one arrives at

ViV - Vi (VVLE,), (50)

10
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which reduces to

1 1
VeV, -V, [—)\uy(zgﬂgﬂ - mR)] (51)
after making use of (29). This term after the use of V,\, = fw)\y) yields a sum of terms
involving a free-index \ vector, and for each term, the derivative order on the & vectors
are always less then r. With these considerations, the expression in (40) turns into a sum
in which each term either involves a free-index \ vector or a A\* contraction. But, for these
terms, the order of covariant derivatives acting on the & vector is always less than r. For the
latter kind of terms, one can repeat this ongoing procedure until to the point of only hav-
ing terms involving a free-index A vector, and so no A\ contractions. The procedure that
we discussed for (40) can be applicable to the (41) contraction pattern for which the only
change will be the application of (27) instead of (29). Similarly, the analysis of a generic
term involving the rth order covariant derivatives acting on 9,V instead of €, 1s exactly the
same, as was noted before.
As aresult, the \* contraction of a generic term involving the rth-order covariant derivative
of either the £ vector or the OV vector turns into a sum involving terms satisfying:

e cach term involves a free-index A vector,
e in each term, the derivative order acting on £ or OV vectors is always less than 7.

These were the aimed properties.
With this result, let us discuss the contractions in E,,, or more explicitly,

E;w = [(gil)‘vilgpl.”ps] s (52)

w

where g~ ! represents the inverse metric. It is clear that any nonzero contraction of 2(nq + m)

number of A vectors in (38) with the other tensorial parts involving derivatives of £ and 0V
vectors always produces a free-index A vector and reduces the derivative order. Thus, after
every nonzero \ contraction, the number of free-index \ vectors is preserved as 2(ng + m).
Obviously, one cannot avoid having a nonzero contraction once one reduces the (0, s)-rank
tensor &, to a(0,2ng + 2m)-rank tensor, whose free indices are only on the X vectors, and
E,, takes the form

E, = [(g )y Nty (53)

which is zero for ny + m > 1. After this observation, the only remaining possibility of having
a nonzero two-tensor out of £, . 1, 18 to have only two A one-forms from the outset, so either
ng =1 or m = 1, implying the presence of only one Riemann tensor in &, .. ,. Thus, the ge-
neric forms of a nonzero two-tensor are

[Ruw » (V'R (54)

where 7 is even and [R],,, just represents the Ricci tensor while the second term represents a
two-tensor contraction of

ViV - Vi Ror (55)

1
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In analyzing two-tensor contractions of (55), the important observation is that in the process
of obtaining a nonzero two-tensor, one can freely change the order of the covariant derivatives
by using the Ricci identity since all the additional terms involving a second Riemann tensor
just yield a zero at the two-tensor level as we just proved'’. In obtaining a nonzero two-tensor
out of (55), one can have two contraction possibilities either

V#l “es VVI e V”3 e VﬂnRV]V2V3V4’ (56)

or
ViV - Vi R (57)
For both of them, the following contractions of the covariant derivatives are among them-
selves. Because V,,|V,,, ... V,, R is zero as the Ricci scalar R is constant and
Vi o VLN Ry, (58)
yields a zero since one can change the orders of covariant derivatives until one obtains

V-V, Vi,R. In (56), one can change the order of derivatives by the Ricci identity to
obtain

1% 14 R
Vlll e VHHV ‘V 3RV1,,2y3V4 = VHI vﬂn(lj_——l)svw‘” (59)
where we used (25). Note also that (57) becomes
ViV - Vi Rowy = ViV, -+ Vi, Suw,e (60)

The remaining free-indices in the covariant derivatives of (59) and (60) can be rearranged such
that one has

n—2 R
O (m_ﬁ)syw 61)

and (0"/2S,,,,,, respectively. Note that for a change of order involving the first two derivatives, it
may seem that there is a possibility of having additional nonzero terms due to the metric part
in (19). But, one never needs such a change since for a term in the form

AZZAVANINR VAR VA SO (62)

one may only move V,, to obtain
OV, - Vi, Suw, (63)
As a result, the generic two-tensor £, constructed from any number of Riemann tensors and

its covariant derivatives can be written as a sum of the metric, §,,, and higher derivatives of
S, in the form (1" §,,,,. This proves the theorem. O

In the appendix, we give another, mathematical induction based, proof of the theorem.

10 Note that for an order change involving the first two derivatives, there is a possibility of having an additional
nonzero term in the form [V”’ZR]W due to the metric part in the Riemann tensor (19).
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4. Conclusions

We have shown that the Kerr-Schild—Kundt class of metrics, defined by the relations (2) and
(3), are universal in the sense that they solve the most general quantum-corrected source-free
gravity equations based on the metric tensor, the Riemann tensor and its arbitrary number of
covariant derivatives and their powers. Our proof here boils down to showing that the generic
two-tensor built out of the contractions of the Riemann tensor and its covariant derivatives
can be written as a symmetric, covariantly-conserved, two-tensor E,, for the KSK-class in
the form

N
EMV = eg/u/ + Z anDn SNV’ (64)
n=0
where e and a, are parameters, constants, of the theory. One further reduction gives the prod-
uct of scalar wave type equations (10), generically one of them is massless and the rest are
massive. The massless one corresponds to the Einstein’s theory, and the massive ones cor-
respond to quadratic gravity. Of course, one must still solve these equations to actually find
explicit solutions: namely, one must determine the metric function V. We have not done this in
the current work because, earlier, we already gave examples of these metrics such as the AdS-
plane and AdS-spherical waves as solutions to quadratic and generic gravity theories [13, 15,
17]. In [20, 21], we give a systematic way of constructing solutions, such universal metrics,
from curves living in one less dimension and extend the discussion to the de Sitter case.
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Appendix A. Alternative proof by induction

In this appendix, for a second proof of theorem 1, alternative to the one given in the bulk of
the paper, we give necessary recursion relations satisfied by the tensors in KSK spacetimes. A
generic two-tensor constructed out of the Riemann tensor and its covariant derivatives can be
represented as

E,, =[R"™(V"R)V™R) ... V"R)w , (A.1)
where the Riemann tensor R for KSK metrics is

Ruavs = 4 Oayis A + ﬁ&[ﬂma- (A.2)
Here, O3 is defined as

On = (W0t €Dt 368~ 58 V- (3

Assuming n,, is to be the largest integer, the (O, s=4ny+ 4m + Zi,,.::ml n,-) rank tensor,

13
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Eppe, = [R(VIR)(V™R) ... (V"R)] (A4)

represents a sum of rank (0, s) tensors which can be decomposed into 2(n¢ + m) number of A
vectors and rank (0, s — 2ng — 2m) tensor structures which are built of the contractions of the
following building blocks

r r+2
Sy Eup (H Vu,.) & [H Vu,.) V., r=12..n (A.5)
i=1 i=1

We need to understand the contractions of A\ with these building blocks. For this purpose, we
need the following definitions:

Definition 1 (A\-reducible tensor). A tensor E of rank (0,m) is called A-reducible if it
can be written as

F®
Ml#z “H T Z Aﬂs Fobopy oot 2

where (ry,r,...,h,—1) 1S an increasing sequence constructed with the elements of
{1,2,...,m} \ {s} (where the notation denotes the set-theoretic difference, that is s is omitted
from the set), and F® tensors are rank (0, m — 1) tensors containing no free \ vectors.

Definition 2 (\-weight of a tensor). A tensor E of rank (0, m) has the \-weight n if it
can be written as a linear combination of (0, m) rank tensors which can be decomposed into n
number of A vectors and rank (0, m — n) tensors F® which are not \-reducible, that is

()
Mﬂz o Z )‘ﬂ s)‘ll I l F'“"]'u'rz.”’“"mfn’ (A6)
where N is the number of the n-element subsets of {1,2,...,m}, that is N = (’ZZ), s is the

label for each of these n-element subsets such that for each s, {k7, k5, ...,k } is one of these n-
element subsets, and (ry, 72, ..., Iy—y) 1S an increasing sequence constructed with the elements
of (1,2, c.om) \ KL KD, .., KE).

Remark. All the F tensors in the following discussions are assumed to be not A-reducible.
Example 1. The Weyl tensor C,.,3 has the A-weight 2 since it reads for the KSK class as
C,uozl/ﬁ = )\,u>\l/ Qaﬁ + )\a>\ﬁ Q,uu - )\,u>\ﬂ Qau - >\a)\u Q,uﬁ P (A7)

or

F®
ﬂlﬂzﬂ%l‘z& Z )\# )\Nkz /‘fr Hry (AS)

where for the subsets {1,2} and {3,4}, F(” =0, while for the others, F$’, =, .In
Blaley iy

addition, (7}, ) is an increasing sequence constructed with the elements of { 1,2, 3,4} \ {k], k3}.
As another example, the traceless-Ricci tensor S, = pA, A, has the A\-weight 2.

14
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Definition 3 (\-conserving tensor). Let E be a A-weight n tensor of rank (0, m). The E
tensor is A-conserving if its A-weight increases by one after each nonzero contraction with \.

Example 2. V¢, is a A\-weight conserving tensor since under a contraction with one A
vector, its A-weight becomes 1 as

NaV, & 5 i€ __ R A9

H1S gy ﬂz 1y D(D _ 1) 4 ( . )

and a further A-contraction yields zero. Also, V,, V,,.§,, is A-weight conserving since under a

contraction with one A vector, its \-weight becomes 1 as can be seen from all the nonvanish-
ing contractions

1 1 R
)\’ulvﬂlv/“gﬂe - 7E>\“2 |:€N3(Z§M£N1 D(D 1)) gﬂlvﬂlgﬂz]

R
A.10
1)5‘”]’ (A0

1
A —=EMVLE, + ———
“( 3¢ Vi, D(D —

1 1 R 1
N2V, MEM —=Ay |:£#3(Zfﬂzgﬂzm)+€ mfu}] E/\”3£#2vl"1£lbz’ (A.11)
1 1
R G Eéﬂzgﬂsfu})Al,zsﬂsvﬂ,,sm, (A12)

and again a further A-contraction with any of the above contraction patterns of V, V&, yields
Zero.

Lemma 1. For a A-conserving tensor of rank (0, m) and \-weight n, the maximum number
of nonzero \ contractions is (im — n)/2 for even (m — n) and (m — n — 1)/2 for odd (m — n).

Proof. Under p number of A contractions, a A\-conserving E tensor of A\-weight n and rank
(0, m) yields a \-weight (n + p) tensor of rank (0, m — p) in the form

N
i\ 1 — ()
NN NGE oy = )‘Mk:l)\llksz )‘ﬂksturlurz...u,. ; (A.13)
S:l n

m—n—2p

where { j;, jp, .-, J, }is a subset of {1,2, ..., m}, N is the number of the (n + p)-element subsets

of {1,2,...,m}\{j,,p, ...,jp }, that is N = - p)’ s is the label for these (n + p)-element

m
( n+p
subsets such that for each s, {k], k5, ...k} | p} is one of these subsets, and (ri, 72, ..., Tm—n—2p)
is an increasing sequence constructed from {1,2,...,m}\ ({]l s ...,]p} U {k1, k3, .. k;ﬂ,})
Here, we assumed m — n > 2p as must be the case in (A.13).
This result implies that the maximum number of A\ contractions is (m — n)/2 for even
(m — n) and (m — n — 1)/2 for odd (m — n). Then, one gets the following results, respectively,

for even and odd (m — n);
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m—n m+n

2 2
Hj -
H NINE 1o,y = H A, |Fs
s=1

s=1

and

m—n—1 m+n—1

2
1), —
H N AE -, = Z Fus)‘url)‘mz“- )‘u,(,mfl),z’
s=1

s=1

where {71, 72, ..., Fontn—ny2} = {12, ...om}\{ji, ), ...,j(mfnfl),z,s}. Here, note that for a \-
conserving tensor E, )\“sFus should be zero. This proves the lemma. |

Lemma2. Fora \-conserving tensor of rank (0, m) and \-weight n, the contractions among
its indices do not change the A-weight of the tensor.

Proof. A A-weight n tensor E of rank (0, m) has the form

N
_ (s)
By = Z] )‘uk.§>‘uk5 )‘uk,;F#,]u.-zmurm,n’

-

where (r,r,...,h—p) 1S an increasing sequence constructed with the elements of

{1,2,...,m}\{ki, k5, ..., k}}. The \-weight zero tensors FS,-)I#T-%M,

E is \-conserving. Then, contractions among the indices of E can be either A\-\ contraction,
or \-F contraction, or a contraction among the indices of the F' tensor. The A- contraction is
zero. A contraction among the indices of the F tensor surely does not change the \-weight.
Finally, the result of each A-F contraction increases the A\-weight by one, so the total A-weight
still remains as n. O

are A-conserving since

Theorem 2. The rank (0, n) tensor V"~ '€ is A\-conserving.
To prove this theorem, we need the following two lemmas below. Let us introduce the
indices of V"~ 1¢ as

n—1
(H \% ,-)5,% =Vi,Vi, - Vi, & (A.14)
i=1

To show that V"~ 1¢ is A-conserving, first let us prove that )\"f(l_[f:_f Vui)fun, where j takes a
value from {1, 2, ..., n}, is A-reducible by using mathematical induction.

Lemma 3. N‘/‘(H;’;ll Vu,-)g;t,; where j takes a value from {1, 2, ...,n}, is A\-reducible.

Proof. As the basis set of identities, we know that V, A, = 5( H)\y) and ¢ satisfies the identities

1 R
pAVA :_)\L iy o 10} R e .
#1£/t2 .12(45 5u] D(D _ 1)) (A 15)
and
1
)\ﬂzvulgﬂz — _5 )\leuzgw (A.16)
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For mathematical induction, as the first step, the n = 2 case given above is sufficient. But, we
will include the n = 3 case, to obtain some insight which will be useful in further calculations.
Then, moving to the mathematical induction proof:

1. Forn =3, A“’(Hiz:] Vu,)fﬂs
/\ltlvﬂlvltzfﬂga Altzvlllvﬂzgﬂg’ /\“3VN]VN2§M3- (A17)

involves the contraction patterns

The first contraction pattern reduces to the second one by interchanging the order of the
derivatives as

)‘M'Vlhvﬂzgug = )\ [Vul’ Vﬂz] gus + N“Vuzvmﬁ

H3

’ (A.18)
=N ]Rﬂlﬂzﬂzlugm + /\H]vﬂzvﬂlgm’
and from (B27) of [17], one has
R 1
NN NVLE L, = m&agfﬂz + NV Vi (A.19)

Thus, if the second contraction pattern is A-reducible, then so is the first one. Moving to
the second contraction pattern which becomes

)\uzvﬂlvﬂzg = V#I()\NZV#ZQLS) - (Vlh)\#z)vﬂzé.

M3 H3

1 1
= vﬂl()\uzvﬂzg/lg) - Egu]Aﬂzvﬂzgm - E)‘#1§u2vﬂz£ﬂ3’ (A.20)

and using the identity for A2V}, £, . one obtains

R

DD — 1)

1 1
)\MZVuIV#Zé-/L} = _5)\#1 |:§H3(Z£'u2§“2 -

1
) + 5“2V#2§m:| - E)\M{”ZVMSM
(A.21)

which is A-reducible. With this result, the first contraction is also A-reducible and takes
the form

1 1 R
)\MV/"IVHZEM - 75>\“2 [ﬁm(zf*‘lfm - m) + gﬂlvﬂlfﬂa]

R § A22
DD — 1)) (A22)

1
R AT
Lastly, the third contraction pattern can be written as

)‘HBVNIVNZQ@ = V#]()\MVMSM) - (Vﬂl/\m)vﬂzg;@

1 1
= GV V) = 6NVl Nk, (A23)

and using the identity for A2V}, {, , one obtains

1

AIL3VHIVN2£#3 = —5

1
Aul(guzv'uzgi% - 55“251%5#3) N )\stl%vﬂlgﬂs’ (A24)
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11t may seem that we label E

which is also A-reducible. In summary, )\“f(l_[,-zzl Vm)fm is A-reducible as

2 3
M{H V,-]ém = kzl )\,LkEEfj’”, m € (1,2,3}\ {Jj, k}, (A25)
i=1 =

(k=)

where Eg‘ 34) are built from one-form contractions of the building blocks;
my
S Vb (A26)

. Assume that AF‘/(H” ’y )5 is A-reducible for all jin {1,2,...,n — 1} as

Hn—1

n—2
; (k nflj)
/\“’(H Vm]f Z Ay i (A.27)
i=1
' (=)
where (my, my, ...,m,_3) is an increasing sequence constructed with the elements of

{1,2,...,n—1}\{j,k}. The Eff ”Jl ) .,  lensors are built from the rank (0, n — 3) con-
iy

tractions of the building blocks;

r—1
8y € (H \Y/ f]fu,’ r=23...,n—2. (A.28)

i=1

. Then, we must show that (A.27) holds also for n — n + 1, that is )\“:f(]'[;:ll VM)SM 1s
A-reducible for all jin {1,2,...,n} as

n—1

4 (k n.Jj)

A '(H V,) M Z MuEpnin o, (A.29)
(kij)

where (my,my, ...,m,_5) is an increasing sequence constructed with the elements of

{1,2,...,n}\ {j, k}. The E(k "’) tensors'! are built from the rank (0, n — 2) contrac-

S b
tions of the building blocks, ’
r—1
By Eup (H \% i]§u,’ r=23,..,n—1L (A.30)
i=1
To show this, first note that the contraction pattern for j = 1, that is
n—1
)\MVM( H \V/ i]gw, (A.31)
i=2

can be reduced to the j = 2 term added with some terms involving the (n — 2) order term
V"~3¢ after changing the order of the first two covariant derivatives as

(k.n.j)

A with the dummy index p;, but in fact the j label represents the position

n—=2

of the covariant derivative whose index is contracted with the index of the A vector. In this way, the k label repre-

sents the position of the index of A 1y between the indices on the left-hand side.
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n—1 n—1
)\Hlvﬂlvﬂz(n v#i)g = A [Vﬂl’ VM? (H ] + N vﬂzvﬂl[H \Y )

i=3 i=3

H v’“"z] Hen

h=s+1

3
=M Z R, /12/1 (H ] H 1
n
+NR o, i (H ] 1

+ XY, Y, (1‘[ ) £, (A.32)

1 Hy = — i
where using MRy, 10, = )‘lt4g;bzu3)’ one arrives at

R
DD — 1) ()‘ngﬂzm

n—1
)\Mvﬂlvﬂz[ H v.“’i)gp«

i=3

R
:D(T[ {Tof £ (H ) :
n—1
R AM“(H vl'i]fum

H vlhz] /L]
h=s+1

11—
7D(D _ 1)gﬂzﬂn

D(D -1 Zguzu)””*{l_[ \% ,J mH[ H Vf"/z] Sh

h=s+1
+ M V,LZVM(H \Y/ ] £, (A33)

The first line is A-reducible and involves the n — 2 order term V" 3¢, the second and the
third lines involve all one-\ contraction patterns of V" ~3¢, that is

n—3
A”{H Vm]fm’ (A.34)

i=1

with all possible j’s from 1 to n — 2, and the last line is the j = 2 contraction pattern of
V"~ 1€, Assuming X’f(Hf’:_f v,,,.)gl,nfz
of V"~ 1¢is A-reducible if and only if the j = 2 contraction pattern of V"~ !¢ is A-reducible.
Let us move on to the analysis of the 1 < j < n contraction patterns of V"~ !¢ and let us write

n—1 n—1 n—1
)\vaul( H Y i]glln = Vﬂl I:)\'uj[ H vﬂ[]gltn] - (Vul)\ﬂ,')[ H Y i]é-,ltn
i=2 i=2 i=2

n—1
oo
i=2
n—1

1 n! 1
_ 55#1)\#{1_[ vﬂf]gu/, — E)\ngﬂi(n V/Li)gun, (A.35)
i=2 =2

is also A-reducible, then the j = 1 contraction pattern
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where the last term is already A-reducible while the first and the second terms involve the
order n — 1 term V"~ 2¢ which, from the assumption (A.27), has the form'2

n—1 n
| - (k—1,n—1,j—1)
N TT e, = 32 A G b bimh, (A.36)
i = 1Fmy n-3
(k=))

where (my, my, ..., m,_3) is an increasing sequence constructed from {2,3,...,n}\ {j, k}.
Using this form, one finds

n—1 n n—1
A %‘1(1_[2 v/"f)éun = %)‘m kZZ €Hk ;fm_lﬁimr:_l’jm_? §/L[l_[ Vﬂ) Hy
i =
(k=)
n
+ kZZ AﬂkvﬂlEf,’“j"Z 1;{;2, (A.37)
(k=)
so the 1 <j<n contraction patterns of V"~ !¢ are A-reducible. In addition, the -
reducibility of the j = 2 pattern implies the A\-reducibility of the j = 1 pattern. O

Lemma 4. The E&™)

g, tensors can be recursively obtained from the E tensors of the

-2
lower orders.

Proof. For the 1 <j < n contraction patterns of V"~ !¢, we just need to compare (A.37) with
n—1 n
; _ (k.1.j)
Au}( l—[l vlti)gﬂn - ];1 A“kEur Hrz r 2’ (A38)
a (k=)

where (ry, 72, ...,7,—2) i an increasing sequence constructed from {1,2,...,n}\{j,k}, one
finds

n n—1
(L) _1 k-tn-1j-1 _ Lo
B, o= 5 2 S Bt~ 56" 1;[2 Vi S (A.39)
(k=)
(k,n.j) _ (k—1,n—1,j—1)
k22 = Eurlur T MEumlumz---umH’ (A.40)

where (my, my, ..., m,_3) is an increasing sequence constructed from {2, 3, ...,n} \ {j, k}.
For the j = 1 contraction pattern of V"~ !¢, we need to make the \-reducibility assumption
for the (n — 2)th order term V”‘3§ more explicit and assume the form

12Note that in this form, we only updated the superscript of E®"~1) to E®~1n=1=D during the change in the range
of i (and so in k), because the first and the third labels of E®"~1) correspond to the position of the contracted index
and the position of the index of A Iy between the indices on the left-hand side. With this update, the labeling still cor-
responds to the correct terms in the lower order term. This enabled us to relate E&s to Ekn—177.
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n-3
| k,n—2.
/\“{H Vm]ﬁun ) Z ME 0 (A41)

- my e Hon, )
(k¢1)

where (my, my, ...,m,_4) is an increasing sequence constructed from {1,2,...,n — 2} \ {j, k}.

The rank (0, n — 4) tensors Eff’”/fz’{ ) . are built from the rank (0, n — 4) contractions of the
mFmy m, 4

building blocks;

8y Sy (H vm]gu,’ r=23,.,n-3. (A.42)

Then, the terms

n—1
NL"*{H Vi ] #H{ H Vu,z]f = )‘”(H vm]gw (A43)

=3 h=s+1

(where we used ‘=" with the meaning ‘can be considered as’ because it is not possible to put
the right-hand-side term back into (A.33); however, considering it makes sense as we just
want to use (A.41),) and

n—1
WI(H v, ] 6, = )\/‘{H v,]gﬂs, (A44)
i=3

appearing in the j = 1 contraction pattern of V"~ !¢, that is (A.33), can be written as

n—1
(k 2,n—2,5—2)
All{ 1_[3 vﬂf)gu E Aﬂk N (A45)

(kix)

where (1, t, ..., t,—4) 1S an increasing sequence constructed from {3,4, ...,n} \ {s, k}. In addi-
tion, using the result for the j = 2 contraction pattern of V"~ £, that is

n—1 n—1
_ (k 1,n—1,1)
)‘MVNIVNZ( H vﬂ:‘)gua - “1 lz E#k Fom Fomy -+ Fom =& /Jz( H vll'i]gﬂnjl
i=3

m
: 2
i=3

P g o b

+ Z )\l“‘kv E(k ln 1 1) , (A.46)
k=3

where (my, my, ..., m,_3) is an increasing sequence constructed from {3,4, ..., n} \ {k}, the last
term in (A.33) can be written as

n—1 n—1
)\NIVMZV#](H V,»)fﬂ,n - Mlz & B i - 6“1%1[1_[ V,-)éun]
: i=3

i=3

o™= P b

+Z>\MV plk=ln=LD (A.47)
k=3
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where (m, my, ..., m,_3) is an increasing sequence constructed from {3, 4, ...,n} \ {k}. Using
(A.45) and (A.47) in (A.33), one obtains

n—1 s—1
AMVMV;,Q(E V,L,,]g,% m (H vu)g,ﬁZAﬂ Hv,i A H Vi, [

i=3 =3 = h=s+1

n
R
- (k—2,n—2,n—2) (k 2n— 25 2)
DD - 1) 8, ](;3 /\“kE“n“rz---“f,,,4 + Z g,% ; A E bt
(k=s)

-1 n
1 . (k—1,n—1,1) g
2 —1ln—1, _en (k—1,n—1,1)
+ 2 >\/12 Z ngum]y, ot 5 lvﬂl H v/”i gﬂ/x + Z A/‘kV/JZENm Py Fom
k=3 " i=3 k=3 "

m
2

(A.48)

-3

Here, we can change the order of summations in the second term of the second line as

n—1 n

(k—2.n—2.5-2) _ plk—2n-25-2)
Zguzm D, /\ﬂkEmufz i, Z)‘#k Z 8 E R (A.49)
s=3

4

(k=s) (sik)

then with this result, one has

n—1
M ]Vluv/lz( H V/J ] = /12 [Z g/lk gc AIL,: 1#131 - 5"'%1( H v"] Hy :|
- i=3

i=3

#2( H V’

(k 1n—1,1)
gﬂn + V“Z Fom Fom- ﬂmn;|

it

k=3 DD —-1) =3 ih=k+1
Ry plk-2n-2n-2) Eh-2n-2.5-2)
DD —1) = 1| 8o, R + Z guzu Byt
(ﬁik)
+A {L [(”H‘ ] Z Fon 2,n2,52):| v g la-L } (A50)
Hp DD — 1) ; e gﬂzllv Pyt 2= o fom P [ .

The third line of this result can be written as

n—1
(k—2,n—2,n—2) (k 2,n—2,5— 2) (k 2,n— 25 2)
BuEnpiriy, T 2 GunE Hiyeeets, Z SB[ (A.51)
n s=3 n
(s=k) U¢b

and then reordering the terms and rewriting the ¢ indices as m indices, the final form
becomes
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n—1 n n—1
1 k—1n—1,1 4
AV, Vﬂ,(H \/ ,-)fun = E/\Mz ) 5ukEEtmlu nmu,,()H -¢ IVH]( 11 vﬂt]gun
=3 k=3 ’

m
2 .
i=3

* - DD—1) & ZA“‘ (H V'] “2( I v“‘z] g E Bl i,

bh=k+1 4
(sxk)

12 bty ot

n—1
+ Z AV Elk=1n=1.1)
k=3

R ! Fn—2n-2,5-2) po—La—11)
A, ml(zl_[ )/tz Zgﬂz” Pty =-Fm, _y + Vi Fon Py = Fom, 5 (2 (A.52)

where (my,my,...,m,_3) and (my,my,...,m,_4) are increasing sequences constructed
from{3,4, ...,n}\ {k} and {3, 4, ...,n} \ {s, k}, respectively'>. Then, by comparing this result
with

n—1
A’“[H Vui)éu EAW " e (A.53)

i=1 -2

where (7,72, ...,#,—2) 1S an increasing sequence constructed from {2,3,...,n}\ {k}, one
arrives at

n—1
2,n,1 k—1n—1,1
ELr,Z,O) lzﬁm Lmlum"z.“um)w 5"‘%,(1_[ V,] #} (A.54)
i=3
2<k<n = E _R Hv H v
/trlﬂf u'n—Z D(D— 1) Nzl l"Z et H‘Z un
R (k—2.n—2,5—2)
DD —-1) ;3 gﬂz#s Fom Py -+ o
(s=k)
+ VuaE(k—l,n—l,l) (A.55)

2 iy B,

R n—1 n—1 ]
(n,n,1) _ (n—2,n—2,5—2)
E#rlurz"')u‘r”72 - DD — 1) I:( U V/‘:)gﬂz - ;gﬂzﬂsE#mll"mz"'Nm,,A
+ v, En-Ln=LD (A.56)

L
Ho2™ /1 s Ho _3

where (my, my, ...,m,_3) and (my,my, ...,m,_4) are increasing sequences constructed from
{3,4,...,n}\{k}and {3,4, ..., n} \ {s, k}, respectively. O

13 Note that in the last line k = n.
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Example 3. To apply the recursive relations (A.39) and (A.40), let us use the n = 3 result.
For j = 2, one has

2 3
{9, = 2 vt
i= ’ k=1 n
! (k=2)
N2V, Y, € = N, BSR4\ EG32) (A.57)

M3 i gy 37y

and from (A.39) and (A.40), one has

12 1 2
(1,3,2) __ E(k—l,Z,l)_ ol \v/
Eﬂ3 - ) ];:2: gﬂk 2 61 2[ H Ui)§ﬂ3

(k=2) =2
1 1
_ Egﬂ}E(z,z,l) _ 55”2%2%3’ (A.58)
and
EG3D v, g2, (A.59)

Here, E?2D should be obtained from PEAVRS 15 and

2
— k2,1) 2,2,1
A#]Vl"lgﬂz - ]; A/tkE( )= )‘llsz( )’ (A60)
(k=1)

and we know that 'V, § = satisfies

1 R
15 = — £ -
MNLEL /\M( 4€ &, DD 1)), (A.61)

from which E&2D can be obtained as

Ee2D _ _(%gulgm _ ﬁ)_ (A.62)
Using this result, Eﬂf’z) and Eiz’m) become

B0 = 1o (1eve, - 5| - g, (A6
and

EG3 _% VL, (A.64)

With these results, A2V, V., becomes

1 R

1
N2V Vi, = Ay [Egm(zguzgm _ m

1 1
) _ 55”2%2%] — Ekusf“zvmguz’ (A.65)
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which is the same as (A.21). Let us also apply the recursive relations (A.39) and (A.40) in the
case of the j = 3 contraction pattern of VV¢ for which one has

2 3
0 _ (k,3,3) __ (1,3,3) (2,3,3)
M B(H A\V/ i)fﬂz = kzl A”kEN,-l = )\N]Euz + ANZEM , (A66)
i=1 =
(k=3)

and from the recursive relations, one has

13 1 2
1,3,3) _ —1,2,
EyY = 2 ,; § 00 55#{1_[ v‘”)g”’
(k=3) i=2 (A.67)

1 1
= Eéqu(l!Z.Z) - Egu’%vuzgm’

and

233) 2.
EG*Y =V, E122, (A.68)
Here, E-*? should be obtained from X2V}, £ ., and

2
_ k,2,2) __ 1,2,2
NVLE,, = kE_]ﬁ A E6PD = N, EG22), (A.69)
(k=2)

and we know that A2V, £ satisfies

1
)‘#zvﬂlgﬂq = _E)‘Mlguzg/tz’ (A.70)

from which E®-%2 can be obtained as
1 ”
E122) — fig zﬁuz' (A.71)
Using this result, EE}’3’3) and Ef’3’3) become
2 1
1,3,3 1 1
EE‘z '= _Zgﬂzguzglﬂ N E§M3V#2£ﬂ3’ (A.72)

and

(2.3.3
E#1 ) — _5#3VM1§/L3‘ (A.73)
With these results, A3V}, V,.€, becomes

1 1
Alu}vﬂlvﬂzgm = )\#1(_25#25#35#3 - EéﬂSV}lzg;@) - )\#2£N3V#1§/L3’ (A74)

which is the same as (A.24).
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Example 4. Now, let us calculate AV}, V,,,V,,.£ ., explicitly and also compute it with the
recursion relations (A.54)—(A.56). This calculation demonstrates the usefulness of these re-
cursion relations at the first nontrivial order. Thus, M1V, V.V, .£ 1, Can be calculated in terms
of )‘MIVMVIHVM g as

R

“= D01

R
— —D(D _ 1) (g/t2/t3)\u5vﬂf5£u4 + gﬂzla)\ﬂsvﬁﬁlis)

+ )‘Mvﬂzvﬂlvﬂsgu{ (A75)

)\NIVNIVH’ZVMZE (AMVNZfM + )\”4V‘L3§/‘2)

Then, calculating MV, V,, V., yields

Ha
1 1 1
)‘ulvﬁzvﬂlvﬁsgm == 5)\#2 [gulvﬂlvﬂsgm + E€;L3€ulvll1€u4 + Egmgulvﬂzgul:l
1 1 3R
— ), Semg 2
4 # 25#35#4( 4_5 5:“‘] D(D _ 1))

L CAAAIRACAD AN

1 1., R [
=5 [(V#zfm)(zf‘ S~ m) + 288 Vuzful]

1 2R
_ EAM [fﬂlvmvﬂ}ém + (Vi€ )V, — m%z&m] : (A.76)

Using this result, AV, V,,,V,,.§,, becomes

1 1 1
)‘ulvﬂlvﬂzvﬂzf;u == 5)‘#2 [éulvﬂlvuzg;q + Eguﬁmvlhgm + Eguﬁulvﬂ,@g#l]
1 1 3R
- Z)‘uzfmfm(zf“‘ﬁm - m)
1)\ ISAVARVA V, MY R 1
S &V Vi, + ( S ) €, — mguzuﬁ Su
1 1., 3R 1
— 5)\’“3 |:(V;L2£/14)(Z€‘ 15/11 — m) + E€/L4€MV”2€/"I:|
R 1 R
T O ) R A
1 L
-3 [5; ViV + (vﬂzgul)vmgm] . (A7)
Now, let us find this result from the recursion relations. The Eﬁfﬁl) 4 terms that we need
" "n—2

to calculate are

26



Class. Quantum Grav. 34 (2017) 075003 M Gurses et al

3 4
. _ (k.4,1)
N I(H \/ i)€u4 - Z /\#kEurlurz
i=1 k=2
_ (2,4,1) (3,4,1) (4,4,1)
)\‘“VM]VMVH@M - )‘#zEuzm + )‘HsEuzm + /\HAEuzus ' (A.78)
Using the recursion relations (A.54)—(A.56), one has

4 3
o4 1 (k—1,3,1)
Eugw - E LZ% gukEﬂml - 5“‘Vu1(H vﬂi)gm}

i=3

1
- E [§ E(2'3’1) + £#4E(3‘3’]) B gulvmvmgm] ’ (A79)

M3y H3

R 2 -
E@A»UZ—(H \VR\ARIR/A S
P DD — 1) iy | Vi bt Fiy |Spy

n=3
4
RS g B0 4 B
D(D_ 1) = Hootty H2 ™y
(s=3)
R
=— _ (1,2.2) 2.3,1)
= DD~ 1)(szfu4 gusz ) + Vqum . (A.80)

R 3 3
“4,4,1) _ - (2,2,5-2) (3.3.1)
Eﬂzﬂz - DD - 1) l(H V/"i)gﬂz S:z%gﬂzﬂxE ’ ]+ V/‘ZEM

i=3
R

2, (3,3,1)
= 50 =1 b~ B EH) + G, (A8D

We have already calculated E(22 and E@2D. The term E®*V is the coefficient of A, in
y iy M2
NV, Vi€, which is

1 1 R
(2,3,1) _ L 1
R e R "
The term E(:;‘*3 "D is the coefficient of A iy 10, again, M1V, V,,§ - which is
1 R
(B30 _ '
E#z - _Egl lv“3§ll1 + méﬂi (A.83)

. s a2.4,1) ~(3.4.1) 44,1y -
Putting these results in E#_w4 ’Eum , and Eum yields
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1 1 3R
(2,4,1) __
EN3N4 - _25#35#4(25#{#1 o D(D _ 1))

1 1 1
_E(éulvﬂlvf”glm + Eguﬁmvﬂzgm + Eguﬁmvﬂlfm)’ (A.84)
1 1 3R 1
3,4,1) __ 1 _ _ 1
Hatty  — E |:(v”’2€lt4)(zgﬂ gﬂl DD — 1)) + 25#45# v/‘2£l11:|
! ARV LY/ R m A.85
) §MV, Vi, + ( Vi€ ) s — mguzu4§ e (A.85)

R 1 R
(4,4,1) __ 1 - -
E#z#s - DD — 1) [Vﬂzfﬂs + V#,%gﬂz + gﬂzﬂs(zgu 5#1 DD — 1) ):|
1
LA TR AR AE (A-50)

which are the same as the ones that can be obtained from (A.77). After these lemmas and
examples, we now have the proper arsenal to prove the theorem.

Proof of theorem 2. As a result of the previous lemmas, we showed that )\“J‘(H?;l V;t,)ﬁ

n

is A-reducible as

n—1
R (k n])
T o= £ M,
i=1
l G

where the (0, n — 2) rank tensors E(k "f) _u,_are related to the lower orders with the recur-
)

sion relations (A.54)—(A.56) for the j J = 1 contraction pattern and with the recursion relations
(A.39) and (A.40) for the contraction patterns of 1 < j < n. From these recursion relations, one

can see that the Eg‘ j’/ ) ,  tensors are built from the structures
"n—2

n—2
(k,n—1,)) (k,n—1.j)
5#1{’ E#ml#m2-~-#mn4’ H Vi 5#.171’ vﬂlEﬂmlllmz---#»»11173’ (A‘87)
i=1

n—3
kon—2.j)
Sune Bl i, (H V,»]@,,z» (A.88)
" i=1
1di (k,n—1,7) (k,n—2.j)
where the building blocks of £, e and £~ are
gy gy Hn
By € (H Y i]fﬂ,, r=23,...,n-2, (A.89)
i=1

and
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r—1

gﬂlﬂz’ 5)”’1’ (H vﬂi)gﬂr’ r= 2’ 3’ T C 3’ (A90)
i=1

respectively. Therefore, the building blocks of the EE{‘Z’ )... , tensors are
N 2

r—1

8y € (H V,.]ﬁﬂr, r=23,..,n—1. (A91)
i=1

Note that contracting the (0, n) rank tensor V"~ !¢ with A reduces the derivative order such that
the highest derivative order term now becomes V" ~2¢.

Now, let us discuss the contractions of V"~ lf with more than one \. In this regard, the im-
portant thing that should be noticed in the one-\ contraction result is that the building blocks
of the tensor structures produced by the one-\ contraction of V"~ !¢, which are the metric, &,
and the lower order derivatives of &, are all A-reducible under one-\ contraction. For a further
A contraction, when the A vector is contracted with the derivatives of &, again the lower order
derivatives of £ will appear together with the metric and ¢ as building blocks. Due to continu-
ous appearance of the same \-reducible building blocks, V"~ !¢ should be \-conserving.

To be more explicit, let us first consider the contraction of the (0, n) rank tensor V"~ 1§ with
two A vectors; that is

n—1
A#/l)\“fz( 1V l_)fun, (A.92)
i=1
where { ji,/, } is a subset of {1, 2, ... n}. Using the one- contraction result (A.29), one has
n—1 n
AN e = A, A, Ekeri) ,
! (Hl V/,,»]fu,, k; e T (A.93)
(ki=jv.j2)
where we know that the Eifl";;j‘)m u tensors are the rank (0, n — 2) contractions of the build-
R
ing blocks
r—1
8y £ (H Y/ ,.]5/1,, r=2,3,...,n—1. (A.94)
i=1
Since the one-\ contraction of these building blocks are A-reducible, the £ g“”:f 1)...u tensors
N
should also be A-reducible as
A, i) = Z Ay, Ekenii)
Fom Py o, = Py ™ Ho oy e by 2 (A.95)
(ko=kijy j2)

where (71, 1o, ..., I,—4) 1s an increasing sequence constructed from {1,2,...,n}\ { j;, ki, j,, ko}.
We know that contracting V"~ !¢ with one ) reduces the highest derivative order to V"~2¢.

Then, the highest derivative order for the building blocks of EEZ“ZL‘Z"’M?) should be one order
"

"n—4

less than the highest derivative order for the building blocks of ng"';j')m p givenin (A.94).
mymy "Mn-2
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Thus, the Eif":f’.”j_j;;’é) tensors are the rank (0, n — 4) contractions of the building blocks
1 "n—4

r—1
8y € (H Vm]im, r=23,...,n—2. (A.96)

i=1

The final form of the two-\ contraction of V"~ !¢,

i=1

n—1
A )\”iz( 11 Vu,-)ﬁu,,’ (A.97)

becomes

n
A E(k]skZ’nxj] J2)
| Hiy Hftry b,y

n—1 n
)\M/‘l)\#/{ H V/J'i)gltn = Z )\Nkl
i=1 k=1 k

(ki=j1) (ka=kiofi o)
n n

= 32 A Bl (A.98)

= &2 Ho ot~
(ki=jyo2) (ko= ki )

Here, notice the pattern that the two-\ contraction of V"~ !¢ becomes a sum of (0, n — 2) ten-
sors which are decomposed into two A vectors and rank (0, n — 4) tensors Eﬁf‘fz’”’j};jz) while
T g

the one-\ contraction of V"~!¢ becomes a sum of (0,7 — 1) tensors which are decoinposed
Elani)

By oty

Further A contractions of V"~ !¢ also have the same pattern: contracting the rank (0, n) ten-
sor V"~ ¢ with p number of ) tensors yields a sum of (0,n — p) rank tensors which can be
decomposed into p number of  tensors and rank (0, n — 2p) tensors

into one A vector and rank (0, n — 2) tensors

(kika, . kpanajy o)

Epur : (A.99)

"n—2p

for which the building blocks are

i=1

r—1
e S (HV"]% r=23,..n-p. (A.100)

More explicitly, the contraction of V"~ !¢ with p number of \ vectors can be represented as

n—1
(ﬁ Mfr](l_[ Vi]fpn, (A.101)
r=1

i=1

where { |, /5, - jp} is a subset of {1,2,...,n}, and following the pattern we developed, this
term becomes'*

14 Assuming n is sufficiently larger than p.
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P n—1 p n kika, ... kpjisjas e,
( N)[ 1 Vu.-)ﬁﬂn ST [l (A.102)
s=1 i=1 s=1

=1 n—2p

(ks nfyokre o s 1)

where {r(,72,...,7,_2} 1S an increasing sequence constructed from {1,2,...,n}\
{ Jirkit 1<k< p}. This result shows that the maximum number of A contractions with V"~ !¢
before getting a zero is n/2 for even n and (n — 1)/2 for odd n, and one gets the following
results, respectively;

n

Aﬂ E(kl’kZ »»»» kn/Z»”vjl’jzwwjnlz), (A103)

ks

o
Il NI
—
==
Il SIS
—

ky=1
(k.r¢j1 ~~~~~ Ji n,z,lq,...,k&,l)

n—1
A (H \Y i)gltn =
i=1

where the building blocks for E®k2ku2mjizs- ) are

r—1
n
& (H VH,.]@,, r:2,3,...,5, (A.104)
i=1
and
n—1 | n—1
2 (s 2 " kiuka, . k=122 - o
. (H Vw)fuf & N[BT )
s=1 i=1 s=1 5=

(G VAN T |

where mye{1,2,...n}\{j,ki: 1<i<(m—1)2} and the building blocks for

E%Cl,kz »»»»» k(n—l)/zy",j] ,j2,4..,j(,,,1)/2) are
my

r—1
+1
€. (H V,t,,]f,h, r=23,.., %~ (A.106)
i=1

To conclude, the (0, 7) rank tensor V"~ !¢ is A-conserving since with each ) contraction, the
A-weight of the resulting tensor structure increases by one. This proves the theorem. O

Example 5. For odd n, let us consider n = 3 case, that is VV¢, for which one A contrac-
tions that we found in (A.21), (A.22) and (A.24) are the last nonzero terms. It can be verified
immediately that a further A contraction with any of the one-A contraction patterns of VV¢
given in (A.21), (A.22) and (A.24) yields a zero. For the even 7 case, let us consider V3¢ for
which two A contraction is the last nonzero order. As an example, let us study a further A
contraction of the j; = 1 contraction pattern of V3¢ given in (A.77), so after a long calculation
NINEV, V,, V€, reduces to
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1
Al )‘Mvﬂlvﬂzvmgm = 5 )‘Hs)‘lmgmfuzvﬂlfuz

R
DD — 1)

R

3
Amm(zﬁ ", = DO- 1)

), (A.107)

which is, as expected, the last nonzero order constructed from the building blocks & " and V&,
Theorem 3. The rank (0, n) tensor V"V is A-conserving.

Proof. The proof follows the same lines as the proof of theorem 2. For the first step of the
induction part of the proof, now one has he equations A\*9,V = 0 and

N'Y,0,V = N'V,0,V = —%Aygftaﬂv. (A.108)

In addition, the tensorial structures now involve the covariant derivatives of V in addition to
€, and its covariant derivatives. Since the proof involves the same cumbersome steps without
new ideas, we do not display it here. O

Now, we can give the proof of the main theorem in the text (theorem 1) based on above
results:

Proof of theorem 1. Remember that £, ..., represents the sum of rank (0, s) tensors which
can be decomposed into 2(ng + m) number of A\ vectors and rank (0, s — 2ny — 2m) tensor
structures which are obtained from the contractions of the following building blocks

r r+2
Sy Sy (Hv,ti)ém, [H V,,,,,)v, r=12,....1, (A.109)
i=1

i=1

which are all A-conserving as we have shown. Then, to have a nonzero E,, two-tensor out of
Ey,...u, ONEe must have at most two A vectors in £, ... If there is more than two A vectors in
£ 1., then they eventually yield a zero contraction since any nonzero contraction for £ Loy

conserves the number of the A vectors. Thus, one should start with R 5,501V, V., ... V, R0
to have nonzero E,,, two-tensors. The remaining part of the proof on the structure of the nonze-
ro E,,, tensors follows as given in section 3. [l

References

[1] Gibbons G W 1975 Quantized fields propagating in plane wave space-times Commun. Math. Phys.
45 191

[2] Deser S 1975 Plane waves do not polarize the vacuum J. Phys. A: Math. Gen. 8 1972

[3] Gueven R 1987 Plane waves in effective field theories of superstrings Phys. Lett. B 191 275

[4] Amati D and Klimcik C 1989 Nonperturbative computation of the Weyl anomaly for a class of
nontrivial backgrounds Phys. Lett. B 219 443

[5] Horowitz G T and Steif A R 1990 Space-time singularities in string theory Phys. Rev. Lett. 64 260

[6] Horowitz G T and Tseytlin A A 1995 A new class of exact solutions in string theory Phys. Rev. D
512896

[7] Coley A A 2002 A class of exact classical solutions to string theory Phys. Rev. Lett. 89 281601

[8] Coley A A, Gibbons G W, Hervik S and Pope C N 2008 Metrics with vanishing quantum corrections
Class. Quantum Grav. 25 145017

32


https://doi.org/10.1007/BF01629249
https://doi.org/10.1007/BF01629249
https://doi.org/10.1088/0305-4470/8/12/012
https://doi.org/10.1088/0305-4470/8/12/012
https://doi.org/10.1016/0370-2693(87)90254-1
https://doi.org/10.1016/0370-2693(87)90254-1
https://doi.org/10.1016/0370-2693(89)91092-7
https://doi.org/10.1016/0370-2693(89)91092-7
https://doi.org/10.1103/PhysRevLett.64.260
https://doi.org/10.1103/PhysRevLett.64.260
https://doi.org/10.1103/PhysRevD.51.2896
https://doi.org/10.1103/PhysRevD.51.2896
https://doi.org/10.1103/PhysRevLett.89.281601
https://doi.org/10.1103/PhysRevLett.89.281601
https://doi.org/10.1088/0264-9381/25/14/145017
https://doi.org/10.1088/0264-9381/25/14/145017

Class. Quantum Grav. 34 (2017) 075003 M Gurses et al

[9] Hervik S, Pravda V and Pravdova A 2014 Type III and N universal spacetimes Class. Quantum

Grav. 31 215005

[10] Hervik S, Malek T, Pravda V and Pravdov A 2015 Type II universal spacetimes Class. Quantum
Grav. 32245012

[11] Ortaggio M, Pravda V and Pravdova A 2009 Higher dimensional Kerr-Schild spacetimes
Class. Quantum Grav. 26 025008

[12] Malek T and Pravda V 2011 Kerr-Schild spacetimes with an (A)dS background Class. Quantum
Grav. 28 125011

[13] Gullu I, Gurses M, Sisman T C and Tekin B 2011 AdS waves as exact solutions to quadratic gravity
Phys. Rev. D 83 084015

[14] Gurses M, Sisman T C and Tekin B 2012 Some exact solutions of all f(R,,) theories in three
dimensions Phys. Rev. D 86 024001

[15] Gurses M, Sisman T C and Tekin B 2015 Gravity waves in three dimensions Phys. Rev. D 92 084016

[16] Alishahiha M and Fareghbal R 2011 D-dimensional log gravity Phys. Rev. D 83 084052

[17] Gurses M, Sisman T C and Tekin B 2012 New exact solutions of quadratic curvature gravity
Phys. Rev. D 86 024009

[18] Gurses M, Hervik S, Sisman T C and Tekin B 2013 Anti-de Sitter-wave solutions of higher
derivative theories Phys. Rev. Lett. 111 101101

[19] Gurses M, Sisman T C and Tekin B 2014 AdS-plane wave and pp-wave solutions of generic gravity
theories Phys. Rev. D 90 124005

[20] Gurses M, Sisman T C and Tekin B 2016 From smooth curves to universal metrics Phys. Rev. D
94 044042

[21] Gurses M, Senturk C, Sisman T C and Tekin B Hyperbolic-dS plane waves of generic gravity
theories (in progress)

[22] Coley A, Milson R, Pravda V and Pravdova A 2004 Classification of the Weyl tensor in higher
dimensions Class. Quantum Grav. 21 L35

[23] Ortaggio M, Pravda V and Pravdova A 2013 Algebraic classification of higher dimensional
spacetimes based on null alignment Class. Quantum Grav. 30 013001

33


https://doi.org/10.1088/0264-9381/31/21/215005
https://doi.org/10.1088/0264-9381/31/21/215005
https://doi.org/10.1088/0264-9381/32/24/245012
https://doi.org/10.1088/0264-9381/32/24/245012
https://doi.org/10.1088/0264-9381/26/2/025008
https://doi.org/10.1088/0264-9381/26/2/025008
https://doi.org/10.1088/0264-9381/28/12/125011
https://doi.org/10.1088/0264-9381/28/12/125011
https://doi.org/10.1103/PhysRevD.83.084015
https://doi.org/10.1103/PhysRevD.83.084015
https://doi.org/10.1103/PhysRevD.86.024001
https://doi.org/10.1103/PhysRevD.86.024001
https://doi.org/10.1103/PhysRevD.92.084016
https://doi.org/10.1103/PhysRevD.92.084016
https://doi.org/10.1103/PhysRevD.83.084052
https://doi.org/10.1103/PhysRevD.83.084052
https://doi.org/10.1103/PhysRevD.86.024009
https://doi.org/10.1103/PhysRevD.86.024009
https://doi.org/10.1103/PhysRevLett.111.101101
https://doi.org/10.1103/PhysRevLett.111.101101
https://doi.org/10.1103/PhysRevD.90.124005
https://doi.org/10.1103/PhysRevD.90.124005
https://doi.org/10.1103/PhysRevD.94.044042
https://doi.org/10.1103/PhysRevD.94.044042
https://doi.org/10.1088/0264-9381/21/7/L01
https://doi.org/10.1088/0264-9381/21/7/L01
https://doi.org/10.1088/0264-9381/30/1/013001
https://doi.org/10.1088/0264-9381/30/1/013001

