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Abstract
We demonstrate that a circular dielectric cylinder can be nearly invisible at multiple frequencies
when being coated with a ring shell, which is made of an isotropic material simultaneously
showing large positive or large negative values of permittivity and permeability. The suggested
cloaking mechanism is based on the use of radial resonances, which are similar to those in
conventional Fabry–Perot resonators. It can be used for cylindrical objects for a wide range of
variation of the diameter-to-wavelength ratio, which includes the values corresponding to
subwavelength to resonant-sized objects. The presence of frequency dispersion of the shell
material positively affects the possibility of multifrequency operation.

Keywords: cloaking, masking, Fabry–Perot resonator, Drude–Lorentz materials

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The possibility of the cloaking of dielectric and metallic
objects has been the focus of interest throughout the past
three years. Two main classes of cloaking approaches can
be distinguished, depending on whether it is obtained in a
region that is external or internal to the cloaking body [1].
The former is connected to the resonant interaction based on
the anomalous localized resonances, allowing for the properly
located dipole-type sources to be made invisible in an external
region [2, 3]. The latter can be realized by using several
approaches, according to which the impinging field is re-routed
around the covered object in such a manner that it is not
seen (ideal cloaking) or seen poorer (non-ideal cloaking) by
a far-field observer and even by a near-field observer, see,
e.g., [4–10].

The coordinate transformation approach has been sug-
gested by Pendry et al for obtaining a metamaterial shell,

which would exclude electromagnetic fields from the covered
object without affecting the exterior fields [4]. The required
radial dependence of anisotropic relative permittivity and
permeability, ερ = μρ , εφ = μφ and εz = μz , and
the possible applicability to a wide class of problems under
a rather arbitrary wavelength condition belong to the basic
features of this approach. For example, it has successfully been
applied to the design of a microwave cloak for a PEC circular
cylinder [5].

At optical frequencies, magnetism has been demonstrated
in metamaterials by several research groups [11–16], but
the designed structures still show relatively high losses. If
the magnetic field is polarized along the axial direction, an
optical cloak can be created without any magnetism, so that
ερ only depends on the radial coordinate [9]. Various cloak
performances have been suggested, which include in particular
those using wires made of a polaritonic material, concentric
silicon photonic crystal layers, metamaterials based on metallic
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split-ring resonators or cut wires, and multilayer plasmonic
metamaterials, see, e.g., [10, 17–20].

The non-resonant approach based on the use of single- and
double-layer shells made of isotropic homogeneous plasmonic
materials or metamaterials has been suggested in [6, 7, 21, 22].
In particular, it has been shown that the cloaking can
be realized at least for two frequencies simultaneously,
provided that the shell consists of two concentric plasmonic
layers [21, 22]. Until now, this mechanism has been
demonstrated for subwavelength and moderately sized objects.

In the present paper, we study theoretically the potential
of an alternative approach in order to achieve multifrequency
cloaking, which is based on the use of shells made of artificial
materials with simultaneously large positive or large negative
permittivity and permeability. In contrast to most of the recent
studies, we will consider a wide range of frequency variation,
which is extended at least from D/λ = 1/6 to 1, where
D is the diameter of the coated cylinder. It will be shown
that several frequencies at least can exist simultaneously for
which the scattering cross section is dramatically reduced.
Consideration will be restricted to circular cylinders which are
made of moderate-permittivity dielectrics. While the main
attention in the field of metamaterials has been paid to the
operational regimes with a relatively small negative index
of refraction, simultaneously large positive or large negative
values of permittivity and permeability can be obtained for the
same performance.

The exploited physical mechanism is related to the
radial resonances within the coating shells, which can be
roughly interpreted by using the analogy with conventional
Fabry–Perot resonators. The main goal of the present
paper is to demonstrate the principal possibility of achieving
a multifrequency reduction of the scattering cross section
owing to multiple radial resonances. Near- and far-
field characteristics will firstly be studied for hypothetical
dispersion-free matched and mismatched materials, and then
the main effects will be validated for materials showing Drude–
Lorentz dispersion.

2. Background

The geometry of the problem is shown in figure 1. The
dielectric cylinder, which is covered by the ring shell that is
made of a metamaterial, is illuminated by a TE or TM polarized
electromagnetic wave. The axial field ( fz = Hz for TE
polarization and fz = Ez for TM polarization) is given by

fz =
∞∑

n=−∞
(−i)n[Jn(kρ) + cn H (2)

n (kρ)] exp(inφ) (1)

at ρ > R,

fz =
∞∑

n=−∞
(−i)n[b(1)

n Jn(ksρ) + b(2)
n Yn(ksρ)] exp(inφ) (2)

at R > ρ > r and

fz =
∞∑

n=−∞
(−i)nan Jn(kcρ) exp(inφ) (3)

Figure 1. Geometry of the studied problem.

at ρ < r , where ks = k
√

εs
√

μs, kc = k
√

εc
√

μc and k = ω/c.
Analytical expressions for an, b(1)

n , b(2)
n and cn were derived

using the conservation of the tangential field components at
ρ = r, R and used in near- and far-field analysis. The
normalized scattering cross section is calculated as follows:

σ = (k R)−1
∞∑

n=−∞
c2

n. (4)

The suggested approach to reduce σ is based on the use of
Fabry–Perot-type radial resonances. Its basic idea can be
understood by using the analogy with conventional Fabry–
Perot resonators. The total transmission occurs in such a
resonator, meaning in fact that a far-zone observer located
in the transmission half-space does not see it at multiple
equidistant frequencies. Because of the shell curvature,
this analogy might inappropriately describe the dominant
physics of the expected reduction of the scattering cross
section. However, if the cylinder radius is much larger than
the in-material wavelength, it could be qualitatively correct.
Therefore, this approach requires the use of materials with
a high index of refraction and, hence, with strong frequency
dispersion. The cloaking is considered to be ideal if σ ≡ 0 and
non-ideal if σ ≈ 0. To measure the extent to which it is non-
ideal, a comparison of the σ values that are obtained for the
same object with and without a shell is often used. According
to [23], a strong reduction of σ is called masking.

At microwave frequencies, there are various possibilities
for obtaining simultaneously large positive or large negative
values of Re ε and Re μ. In particular, strong magnetism
can be obtained using split-ring resonators, some nanocom-
posites [24, 25] and photonic crystals containing ferroelectric
constituents [26], which might solely show the very large
values of Re ε. Values of Re μ from 10 to several hundreds
have been reported. Simultaneously large Re ε and Re μ (up
to 10) can be obtained in isotropic artificial materials that are
composed of resonant spheres [27]. Large values of the index
of refraction (e.g. N = 5.51) have recently been demonstrated
for the metamaterials constructed by using metallic gratings
with periodic subwavelength slits [28].

In addition to the works [11–16], which are dedicated
to metamaterials, one should mention methods of obtaining
magnetism at optical frequencies such as those based on the
use of plasmonic crystals composed of nanorods with a large
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Figure 2. Scattering cross section versus k R at εs = μs = 5.8 (solid line), εs = μs = 35.4 (dashed–dotted line), and εs = 35.4 and μs = 1
(dotted line) for TE polarization—plot (a); εs = μs = 5.8 (solid line), εs = μs = 21 (dashed line) and εs = μs = 35.4 (dotted line) for TM
polarization—plot (b); εs = μs = −5.8 (solid line) and εs = μs = −35.4 (dashed line) for TM polarization—plot (c); εc = μc = 1 and
R/r = 1.4.

diameter-to-lattice-constant ratio [29], metal nanoclusters [30]
and dielectrics with strong anisotropy [31]. Although the
achieving of strong magnetism with low losses at optical
frequencies is still a challenging task, the state-of-the-art and
existing trends in the field of metamaterials look promising for
the realization of the suggested approach. The parameters for
simulations will be chosen by taking them into account.

3. Results and discussion

3.1. Empty impedance-matched shells

Figure 2 shows the conditions at which σ ≈ 0 can be obtained
for an empty shell at several frequencies simultaneously. In
figure 2(a), the results are presented for TE polarization and a
shell made of a double-positive material with Zs = Z0 = Zc,
where Z0, Zs and Zc mean the impedances of free space and
the materials of the shell and core, respectively. This case
is similar in some sense to Pendry’s cloak, since εs = μs.
However, in our case εs and μs show no radial variation. It is
seen that σ ≈ 0 can be obtained at several frequencies if εs and
μs are simultaneously large positive. The increase of εs = μs

from 5.8 to 35.4 results in that at least eight such frequencies
occur instead of a sole frequency within the considered range.
In turn, a high-permittivity non-magnetic shell with εs = 35.4
and μs = 1 (now Zs �= Z0) also allows obtaining σ ≈ 0 at a
sole frequency only.

At εs = μs = 35.4, the minima of σ are nearly equidistant
and located for 0.5 < k R < 3 at k R = 0.63, 0.95, 1.27,
1.59, 1.90, 2.22, 2.53 and 2.85. The equidistance is typical for
the cavity volume modes. Furthermore, the observed minima
approximately satisfy the condition

R − r = mλs/2 (5)

where m = 2, 3, 4, . . . , λs = λ/|√εs
√

μs| and λ is the free-
space wavelength, so that any two neighboring minima differ
by λs/2. The same features are observed for TM polarization,
see figure 2(b). Owing to the reciprocity, σ TE = σ TM at εs =
μs and εc = μc = 1. Therefore, the results for εs = μs = 35.4
in figures 2(a) and (b) coincide. The same remains true for the
results for εs = μs = 5.8. At εs = μs = 21, the minima of σ

appear at k R = 0.54, 1.08, 1.625, 2.165 and 2.705. This is in
agreement with equation (5).

Figure 2(c) presents σ versus k R at εs = μs < 0. As
can be expected, the smaller the εs, the more the extrema of σ

are located within a fixed k R range. Hence, εs and μs can be
either simultaneously large positive or large negative in order
to obtain σ ≈ 0 at several frequencies. At εs = μs = −35.4,
σ ≈ 0 for k R = 0.61, 0.915, 1.22, 1.525, 1.83, 2.135, 2.44
and 2.745. The minima are nearly equidistant but shifted with
respect to those in figures 2(a) and (b) at εs = μs = 35.4.

The observed behavior of the transmission shows the
analogy with that in conventional Fabry–Perot resonators.

3
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Figure 3. Axial magnetic field for TE polarization at εs = μs = 35.4, εc = μc = 1, R/r = 1.4, and k R = 1.9 (a) and k R = 2.044 (b).
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Figure 4. Scattering cross section versus k R at μc = 1 and R/r = 1.4 for TE polarization: εc = 1 (solid line), εc = 2.8 (dashed lines) and
εc = 5.8 (dotted lines); εs = μs = 35.4—lines with multiple strong extrema and εs = μs = 1—lines without multiple extrema—plot (a);
εc = 2.8, Im εs/ Re εs = 0.001 (solid line), Im εs/ Re εs = 0.01 (dashed line) and Im εs/ Re εs = 0.04 (dotted line); Re εs = Re μs = 35.4,
Im μs/ Re μs = Im εs/ Re εs—lines with multiple extrema, εs = μs = 1—line without multiple extrema—plot (b).

Indeed, equation (5) coincides with the condition of total
transmission in the resonators with the distance between the
mirrors bFP = R − r , which are filled with a material that
possesses the index of refraction NFP = √

εs
√

μs. Consider
now the near-field patterns at the extrema. Figure 3 shows
a typical example of a magnetic field in the TE case for a
minimum and a maximum of σ from figure 2. Figure 3(a)
corresponds to a minimum. One can see that |Hz| varies
slightly beyond the shell. At the same time, |Hz| shows
several variations in the radial direction in the shell, being in
agreement with the theory of Fabry–Perot resonators. Here,
σmin ≈ 3.5 × 10−3 and R − r ≈ 3λs. In contrast, the field
patterns at the maxima of σ are associated with the whispering-
gallery modes, see figure 3(b). They correspond to the waves,
which are slow in the azimuthal direction (k R/ l < 1, l is
azimuthal mode index, l = 3). The reciprocity in the near-field
patterns manifests itself in that TE ↔ TM and H ↔ E, so that
figures 3(a) and (b) also correspond to the Ez component for
TM polarization.

3.2. Dielectric object inside a matched shell

Now, we will show that the multiple frequencies with σ ≈ 0
can remain for similar structures as in section 3.1, if the shell
interior is filled with a moderate-ε dielectric. Now, Zs = Z0

and Zc �= Zs, i.e. the shell is matched with free space but
mismatched with the interior. An example of the scattering
cross section is presented in figure 4(a) for TE polarization.
Here, the case corresponding to the dashed-dotted line in
figure 2(a) is shown together with two other cases, in which the
core has εc > 1. Besides, σ is presented for the corresponding
non-coated cylinders. The possibility of a substantial reduction
of the scattering cross section is clearly seen. Due to the
dielectric filling, the extrema are shifted towards smaller k R.
For example, the minima appear at k R = 1.58 for εc = 1,
k R = 1.54 for εc = 2.8, k R = 1.465 for εc = 5.8
and at k R = 1.9 for εc = 1, k R = 1.844 for εc = 2.8
and k R = 1.788 for εc = 5.8. This behavior qualitatively
coincides with that predicted by the perturbation theory of the
cavity resonators, since bringing a dielectric body into a cavity
results in a decrease of the resonance frequency. Generally,
an increase of εc leads to the number of frequencies, at which
σ ≈ 0, decreasing and the corresponding k R range narrowing.
It is worth noting that σmin/σ

nc ≈ 1/45 for k R = 1.844 and
σmin/σ

nc ≈ 1/10 in the vicinity of k R = 2.14 at εc = 2.8,
where σ nc is the scattering cross section of the non-coated
cylinder. For TM polarization, similar far-field effects are
observed. As has been shown above, σ(ω) is not changed
with the change of polarization at εc = 1. While the effect
of the core with εc > 1 appears in a perturbation-like way, the

4
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Figure 5. Axial magnetic field for TE polarization at k R = 1.844 (a), k R = 1.788 (b) and k R = 1.706 (c), and axial electric field for TM
polarization at k R = 1.83 (d); R/r = 1.4, εs = μs = 35.4, μc = 1, and εc = 2.8 ((a), (c), (d)) and εc = 5.8 (b).

difference between the dependences of σ on k R for TE and TM
polarizations can be relatively weak. The main difference is
related to the extent to which the minima are shifted comparing
to the case with εc = 1.

Until now, it has been assumed that the shell material
is lossless. Figure 4(b) shows σ versus k R for three shells,
which differ from that in figure 4(a) in that now Im εs �= 0
and Im μs �= 0. Note that the solid line in figure 4(b)
nearly coincides with a dashed line in figure 4(a) for which
Im εs = 0. The effect of the losses is weak at k R < 1.25,
i.e. where either no reduction or a weak reduction of σ

does appear. At larger k R, the minima become weaker once
Im εs is increased, and can even disappear. Nevertheless, a
substantial decrease of σ takes place due to the covering at
least if k R > 1.5 and Im εs/ Re εs � 0.01. Although the
minima locations are insensitive to the variation of Im εs and
Im μs, the corresponding σ values can differ significantly.

Next, we will consider the near-field patterns, which
correspond to some extrema of σ . Figure 5 presents the typical
examples for a minimum (plots (a), (b)) and maximum (plot
(c)) of σ in the TE case and for a minimum of σ in the
TM case (plot (d)) from figure 4(a). The extent to which σ

deviates from zero correlates well with the observed near-field
features. Despite that the k R values in figures 3(a) and 5(a)
differ slightly, while σ is equal to 3.5 × 10−3 and 8 × 10−3,
respectively, the field pattern within the core is quite different.
Now it looks like that of a ‘locked’ resonance, whose field is
mainly determined by the space harmonic with n = 0. Hence,
the case of σ ≈ 0 is not necessarily connected with a certain
type of field pattern (i.e. resonance or non-resonance) within

the interior. Keeping in mind these facts, one can conclude that
all the observed near- and far-field features cannot be directly
interpreted in terms of the conventional perturbation theory.

Considering the shell as an isolator should provide one
with the guidelines for an appropriate interpretation. This
would be reasonable since the differences between figures 2(a)
and 4(a) appear within the core region only. On the other hand,
the above-discussed analogy with Fabry–Perot resonators
remains valid, although the media at ρ < r and ρ > R are
different now. The larger the εc, the stronger the Hz inside the
core should be. However, this effect can be accompanied by
such a strong increase of σ at the minimum that it cannot be
more associated with the masking regime. For example, this
situation occurs in figure 4(a) in the vicinity of the minimum
of σ at k R = 1.9 and εc = 1. At εc = 5.8, it is shifted to
k R = 1.788, where σ ≈ 0.44. In the latter case, the field still
has a maximum inside the core, but the region of maximal |Hz|
is strongly flattened due to the compression along the abscissa
axis, see figure 5(b).

It is noteworthy that often the variation of εc from 2.8 to
5.8 does not lead to a substantial change in the field topology
within the core, despite the difference occurring in the σ value.
For example, this occurs for the minima in the vicinity of
k R = 1.5 in figure 4(a), where σ ≈ 0.03 at εc = 2.8 and
σ ≈ 0.14 at εc = 5.8. At some minima of σ , e.g. at k R = 2.15
for εc = 2.8 and TE polarization, the field pattern inside
the core behaves in an intermediate fashion between those in
figures 5(a) and (b). The near-field patterns at the maxima of σ

are associated with the whispering-gallery modes. An example
is shown in figure 5(c) where l = 3. The only difference in

5
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Figure 6. Scattering cross section versus kr at εs = μs = 35.4,
εc = 2.8 and μc = 1 for TE polarization at R/r = 1.4—solid line,
R/r = 1.6—dashed line and R/r = 2—dotted line.

the comparison with figure 3(b) is that now the field is stronger
within the core subregions, which are adjacent to the shell. In
all the examples presented, Eρ is very weak within the shells,
leading to isolation.

For TM polarization, values of |Ez | at the minima of σ

in the shell, core and surrounding space differ weaker than
those of |Hz| for TE polarization, while the core subregion
with the largest |Ez| is now shifted towards larger positive x .
Figure 5(d) presents an example corresponding to a minimum
of σ (σmin ≈ 0.04). At the maxima of σ , we obtain the field
patterns, which can again be associated with the whispering-
gallery modes.

For the parameters from figures 2 and 4, the upper
boundary of the frequency range, in which σ ≈ 0 at multiple
frequencies, can be roughly estimated as kr = 2.2. It can be
extended owing to the optimized choice of the value of R/r .
Figure 6 demonstrates that more than a twofold widening of
this range can be achieved, provided that R/r = 1.6 instead of
R/r = 1.4, so that the resonant-sized dielectric cylinders with
2r/λ � 1 can now be masked at least at εc = 2.8 (for example,
σmin < 0.06 at kr = 3.1 and 3.25). The extent to which σ can
be reduced depends on the ratio r/(R − r) non-monotonically
and is sensitive to the variations of εc and polarization. At
εc = 5.8 and for the same remaining parameters as in figure 6,
the smallest values of σmin at kr > 2.5 correspond to R/r = 2.
However, in this case σmin > 0.2 for both polarizations, so that
the extension of the range of masking up to 2r/λ > 1 cannot
be achieved at least for the values of R/r used.

All the features observed at large positive εs and μs remain
at large negative εs and μs. Figure 7 demonstrates the effect
exerted by changing the sign of εs. It is seen that neither the
number of the extrema within a wide fixed k R range nor the
values of σmin are strongly affected by this change. At k R < 1,
the effect of the sign on the extrema location is vanishingly
small, but the difference is increased with k R. At k R < 4.5,
the minima locations at εs > 0 approximately correspond to
the maxima locations at εs < 0 and vice versa. This example
leads one to the analogy allowing the prediction of the possible
changes in the transmission spectrum, which can originate
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Figure 7. Scattering cross section versus k R at
εs = μs = 35.4—solid line, εs = μs = −35.4—dashed line,
εc = 2.8, μc = 1 and R/r = 1.4 for TE polarization.
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Figure 8. Scattering cross section versus k R at εc = 2.8 for TE
polarization—solid line, εc = 2.8 for TM polarization—dashed line
and εc = 1—dotted line; εs = μs = −5.8, μc = 1 and R/r = 1.4.

from the changing sign of the index of refraction of the filling
medium in Fabry–Perot resonators.

It is shown in figure 2 that σ can be near zero for the
empty shells even at relatively small εs = μs. This remains
true at εc > 1 for both negative-index and positive-index
materials of the shell. An example is shown in figure 8 for
εs = μs = −5.8. Here, the largest among the two k R
values with σ ≈ 0 corresponds to 2r/λ ≈ 0.95. The minima
locations are in agreement with (5). The reciprocity manifests
itself in that a simultaneous change of the sign of εs = μs

and polarization, and the replacement of the dielectric cylinder
having εc = A > 1 and μc = 1 with the magnetic one having
εc = 1 and μc = A, do not lead to a change of σ . Moreover,
figure 8 shows that an anomalous (positive-valued) shift of the
minima of σ occurs if

√
εs

√
μs < 0 and εc is increased. For

the comparison, two minima appear at εs = μs = 5.8 and
εc = 2.8 within the same k R range as in figure 8. However, in
this case σmin ≈ 3 × 10−3 for the first minimum at k R = 1.8,
while σmin ≈ 0.18 for the second minimum at k R = 3.52.
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Figure 9. Scattering cross section versus k R at R/r = 1.4: lines
with multiple strong extrema— εs = 35.4 and μs = 5.8; εc = 1, TM
polarization (solid line); εc = 2.8, TM polarization (dashed line);
εc = 1, TE polarization (dotted line); and εc = 2.8, TE polarization
(dashed–dotted line); lines without multiple extrema— εs = μs = 1,
εc = 2.8, TE polarization (dashed line) and TM polarization (dotted
line); μc = 1.

Therefore, only the first of them can be assigned to the masking
regime. Similar to figure 4(a), the negative-valued shift of the
minima occurs while increasing εc.

3.3. Dielectric object inside mismatched shell

To obtain multiple frequencies, at which σ ≈ 0, it is no longer
necessary that Zs = Z0. Figure 9 shows σ versus k R for the
shell, which differs from that in figure 4(a) in smaller μs, while
εs is kept and Zs �= Z0. Several minima of σ do appear. It
is interesting that, in some cases, σmin at εc = 2.8 can be
even closer to zero than that at εc = 1. The locations of the
minima approximately satisfy (5). However, not all of them
can be associated with the masking regime, because of σmin

and/or σmin/σ
nc being relatively large. For example, for TE

polarization in figure 9, σmin > σ nc at k R = 0.74, while
σmin/σ

nc < 1/30 and σmin < 0.04 at k R = 2.24 and 3.71.
In the latter case, 2r/λ ≈ 0.84. As expected, an increase of
εc at

√
εs

√
μs > 0 results in a shift of the minima towards

smaller k R.

Figure 10 shows the typical near-field patterns at the
minima of σ . They correspond to σ ≈ 0.06 in plot (a) and
σ ≈ 0.02 in plot (b). The main difference between the cases
of Zs �= Z0 and Zs = Z0 is a larger |Hz| within the shell in the
former case. It is noteworthy that in figure 10(a) the slightly
flattened field pattern in the core is shifted towards the smaller
abscissa values. In contrast, in figure 10(b), the flattened
pattern in the core is mainly localized near its center, while
the field distribution in the shell is typical for a whispering-
gallery mode. Strong topological differences between the
fields in the core, shell and surrounding space demonstrate
that the interpretation in terms of isolation can be used in the
mismatched case, too. Note that σmin/σ

nc ≈ 1/36 for the k R
value in figure 10(b).

The typical field patterns at the maxima of σ in most cases
also differ from those in the matched case. In particular, rather
large values of |Hz| can occur in the core. For example, at
k R = 1.81, εs = 35.4, μs = 5.8, εc = 2.8, μc = 1 and
TE polarization, more than a fourfold enhancement of |Hz|
as compared to the incident wave is achieved within the core
near the core–shell boundary at φ = 0 (large positive values
of abscissa and zero ordinate), while the field in the adjacent
subregion of the shell is also enhanced. At k R = 2.62 and the
other parameters the same, the field pattern looks like that of an
asymmetric whispering-gallery mode, showing a rather strong
penetration into the core within three subregions in the vicinity
of φ = 0 and φ ≈ ±0.37π . It follows from the obtained
results that the localization of the field within the shell and/or
the core subregion(s) being adjacent to the shell is a signature
of the appearance of a strong scattering.

3.4. Shell made of Drude–Lorentz material

Let us now show how the effects studied in the previous
sections for the hypothetical dispersion-free materials of the
shell can manifest themselves for dispersive materials. Here,
we restrict our consideration to the case when the material
parameters of the shell depend on ω according to the Drude–
Lorentz model [12], i.e.

εs(ω) = 1 − Cω2
pe/(ω

2 − ω2
0e − i	eω) (6)

and
μs(ω) = 1 − Dω2

pm/(ω2 − ω2
0m − i	mω). (7)

Figure 10. Axial magnetic field for TE polarization at εs = 35.4, μs = 5.8, εc = 2.8, μc = 1, R/r = 1.4, and k R = 1.53 (a) and
k R = 2.24 (b).
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Figure 11. Scattering cross section versus k R for TE polarization at R/r = 1.4 and μc = 1: solid line— εc = 1, dashed lines— εc = 2.8 and
dotted lines— εc = 5.8; lines with multiple extrema— 	e/ωpe = 10−4 and C = D = 1; ω0e R/c = 2, ωpe R/c = 3.38, ω0m = ω0e, ωpm = ωpe

and 	m = 	e—plot (a); ω0e R/c = 1.8, ωpe R/c = 3.21, ω0m R/c = 2, ωpm R/c = 3.38 and 	m/ωpm = 10−4—plot (b); lines without multiple
extrema— εs = μs = 1.

If ω0e = ω0m, ωpe = ωpm, 	e = 	m and C = D, one obtains
Zs = Z0 at all frequencies. Otherwise, the matching can occur
simultaneously for two frequencies, at which εs(ω) = μs(ω).
However, this is not necessary, as follows from the results of
section 3.3 obtained for μs �= εs. According to equations (6)
and (7), εs and μs might take the values from a wide range of
variation, while k R varies slightly. Among them, several pairs
of values of εs and μs and, hence, several values of ω can be
present, for which σ ≈ 0.

Figure 11(a) presents the results for the shell, which is
made of a low-loss dispersive material and matched with the
surrounding free space. The multiple extrema appear so that
the smaller the |ω − ω0e| the denser they are. This feature is
in agreement with the results of sections 3.2 and 3.3, which
are related to the effect of εs and μs on the minima density.
In this example, σ ≈ 0 at several frequencies for εc = 1
and 2.8, while there is such a frequency for εc = 5.8. Due
to the dispersion model used, all the minima with σ ≈ 0
are now located in the vicinity of ω = ω0e and/or ω = ω0m.
The general trend is that an increase of the number of minima
is accompanied by their becoming more dense, which is
connected with the increase of Re εs and Re μs. The extent
to which the minima might become denser, depending on the
model parameters in (6) and (7), is a subject of future studies.

Figure 11(b) shows σ versus k R for the shell made of a
mismatched (with the exception of two frequencies, at which
εs(ω) = μs(ω)), low-loss, dispersive material. The same
features are observed here as in figure 11(a). A difference is
that now the range of ultra-high losses, for which σ is not
shown, is wider. In figure 11(b), σ < 0.05 for εc = 2.8 at
least at k R = 1.4, 1.63, 1.705 and 1.74. In comparison, in
figure 11(a), σ < 0.04 for εc = 2.8 at least at k R = 1.476,
1.732, 1.867, 1.894 and 1.942.

The realization of a multifrequency masking can be
problematic if the losses are relatively high. In figure 12, the
results are presented for the shell, which differs from that in
figure 11(a) in stronger losses. In particular, the number of
frequency values with σ ≈ 0 is affected by the losses. Here,
σ < 0.05 at a sole k R value for both εc = 2.8 (k R = 1.475)
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Figure 12. Same as figure 11(a) but for 	e/ωpe = 10−2.

and εc = 5.8 (k R = 1.365). Note that these minima remain
nearly at the same locations as in figure 11(a). Comparing
figure 11 with figure 12, one can see how large the losses might
be for obtaining σ ≈ 0 at multiple frequencies. At the same
time, the obtained results show that a single-frequency masking
can be obtained even at relatively high losses.

4. Conclusions

The potential of single-layer shells, which are made of
isotropic metamaterials with simultaneously large positive or
large negative permittivity and permeability, in multifrequency
reduction of the scattering cross section of dielectric cylinders
has been studied. The most interesting observed regimes can
be assigned to non-ideal cloaking or weak-scattering masking.
They can be obtained for a wide range of parameter variation,
including that corresponding to the resonant-sized cylinders.
The exploited physical mechanism is related to the half-
wavelength Fabry–Perot-type radial resonances, which appear
within the shell. The number and density of the resonance
frequencies determine those of the minima and maxima of the
scattering cross section. The larger/smaller positive/negative
index of refraction of the shell material and the shell thickness,
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the larger the number of minima with near-zero scattering
cross section that could exist. At the minima, the field
inside the core usually shows rather large values and a rather
strong dependence on the coordinates. The effects studied for
the hypothetical dispersion-free materials have been validated
for the shells, which are made of materials with Drude–
Lorentz dispersion. In this case, both double-positive and
double-negative regimes can be simultaneously involved in
the multifrequency cloaking. Similar effects are expected to
appear for other types of dispersion.
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