
Vol.:(0123456789)

Journal of Economics (2023) 140:169–179
https://doi.org/10.1007/s00712-023-00829-8

1 3

Large Tullock contests

Serhat Doğan1 · Emin Karagözoğlu1,2 · Kerim Keskin3 · Çağrı Sağlam1

Received: 10 April 2023 / Accepted: 5 May 2023 / Published online: 25 May 2023 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023

Abstract
We characterize the equilibrium effort function of a large Tullock contest game with 
heterogeneous agents under mild conditions on the contest success function and 
effort cost function. Later, writing the equilibrium total effort explicitly under a uni-
form type distribution, we identify the effort-maximizing large Tullock contest. It is 
shown that the contest designer needs to increase the curvature of the effective effort 
function, thereby encouraging high-type agents to exert even higher efforts, as the 
curvature of the effort cost function increases or the support of the type distribution 
gets narrower.

Keywords Large game · Tullock contests · Asymmetric contest · Contest design · 
Effort-maximizing contests

JEL Classification C72 · D47 · D74

1 Introduction

There are a large number of contestants in various competitive settings such as 
college admissions, online innovation contests, intra-firm opinion challenges, and 
e-sports competitions. To study such strategic environments, there has been an 
increased interest in the formal analysis of games with a large number of players 
in recent years (see a recent review by Gradwohl and Kalai (2021) and references 
therein). This paper contributes to that strand of literature by studying a large Tull-
ock contest game with heterogeneous agents.

A contest game is used to award or allocate a valuable prize to some agents who 
exert costly and irreversible efforts to increase their winning probabilities or prize 
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shares. The applications include election, job search, litigation, lobbying, R&D, 
sports competition, and warfare. It is said that a contest success function  (CSF) 
determines each agent’s winning probability or prize share as a function of all 
agents’ efforts. Defined as the ratio of an agent’s effective effort to the aggregate 
effective effort, a Tullock CSF is the most commonly used function in the literature 
(see Tullock 1980).1 The interested reader is referred to Corchón (2007) and Konrad 
(2009) for an extensive overview of the literature.

In our paper, there is a continuum of different types of agents who (i) compete 
in a one-shot contest game and (ii) are differentiated by their utilities received from 
the prize they earn. An agent’s type is his private information, whereas the type 
distribution is common knowledge. The overall prize is distributed according to 
a Tullock CSF. First, we implicitly characterize the equilibrium for a general type 
distribution and without specifying the effective effort and effort cost functions. 
Second, under specific assumptions on those functions, we provide an explicit char-
acterization of equilibrium efforts for a general type distribution. Observing in the 
explicit characterization that the equilibrium efforts do not respond monotonically to 
changes in the curvatures of the assumed functions inspires us to conduct an effort-
maximizing contest design analysis. Along these lines, third, we identify the opti-
mal contest that maximizes the equilibrium total effort within the family of Tullock 
CSFs under uniform distribution.

Our analyses show that the optimal contest (i) depends on the curvature of the 
effort cost function and (ii) does not depend on the absolute values of the lower 
and upper bounds of the type distribution, but depends on the ratio of those bounds. 
More precisely, we report that the contest designer needs to increase the curvature of 
the effective effort function with an aim to encourage high-type agents to exert even 
higher efforts when the curvature of the effort cost function increases (which makes 
high efforts more costly) or when the lowest-type to highest-type ratio increases 
(which decreases the level of heterogeneity among contestants). These insights will 
be particularly useful for future research focusing on the design of optimal contests 
with a large number of contestants.

Olszewski and Siegel (2016, 2020) are closely related to our paper. These authors 
studied large all-pay contests with heterogeneous agents. Olszewski and Siegel (2016) 
showed that the equilibrium outcomes of such large contests can be approximated by 
the outcomes of mechanisms that implement the assortative allocation in a framework 
with a single agent who has a continuum of possible types. Later, building on their 
earlier work, Olszewski and Siegel (2020) characterized the prize structures that maxi-
mize agents’ aggregate performance in equilibrium in large all-pay contests. Their main 
result is that the optimal contest awards many different prizes, with gradually decreas-
ing values, in the case when agents have concave prize valuations and convex effort 
costs. It is worth noting that although our analysis of effort-maximizing contests aims 
to answer a similar question, our results are not comparable to those of Olszewski and 
Siegel (2016). This is because they analyzed the optimal prize distribution for a spe-
cific CSF (e.g., all-pay auction), whereas here we analyze the optimal  CSF (within 

1 See Skaperdas (1996) for an axiomatic foundation of Tullock contests.
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the Tullock-family) for a given overall prize, while what portion of that prize will be 
awarded to which ranking is determined in the equilibrium as a function of exerted 
efforts.

In two recent working papers, Lahkar and Mukherjee (2022) and Lahkar and Sul-
tana (2022) utilized a similar idea of analyzing equilibrium behavior in a large contest 
game with a Tullock CSF. Differently from our analysis, the authors assumed a finite 
number of agent types who differ in effort cost parameters and also considered type-
specific bias parameters in their CSF. Lahkar and Mukherjee (2022) further analyzed 
the optimal bias parameters that need to be implemented to maximize the equilibrium 
total effort, whereas our focus is on the optimization of the curvature of the effective 
effort function.

The rest of the paper is organized as follows. Section 2 presents the model. Section 3 
analyzes the equilibrium and provides the characterization results. Section 4 includes 
the effort-maximizing contest design analysis. Section 5 concludes.

2  The model

Consider a continuum of agents competing in a large contest game. Each agent is of 
measure zero. Each agent is characterized by his privately-known type t. Let T be 
the random variable for the type distribution with a cumulative distribution function 
F ∶ Ω → [0, 1] where Ω ⊂ ℝ+ denotes the type space. We assume that Ω is bounded. 
Each agent chooses an effort level x ∈ ℝ+ in the contest, such that the collection of 
these efforts yields the effort profile for all types of agents, denoted by X ∶ Ω → ℝ+ . It 
is assumed that X is Lebesgue measurable and integrable.

Let g ∶ ℝ+ → ℝ+ denote the effective effort function, such that when an agent 
exerts an effort of x, his success in the large contest is proportional to g(x). It is assumed 
that g is a twice-differentiable and strictly increasing function with g(0) = 0 . For any 
given effort profile X, let

be defined as the aggregate effective effort. Considering an overall prize of V > 0 , 
an agent who exerts an effort of x is awarded a prize of

Note that g(x)
A(X)

 is of the Tullock CSF form (see Tullock 1980), since it is the ratio of 
the effective effort to the aggregate effective effort.

The utility of an agent of type t from choosing an effort of x given the effort profile X 
can be written as

A(X) = �
[
g(X(T))

]
= ∫

Ω

g(X(t))dF(t)

g(x)

A(X)
V .

U(t, x,X) = t
g(x)

A(X)
V − c(x)
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where c ∶ ℝ+ → ℝ+ is a twice-differentiable, strictly increasing, and convex effort 
cost function. This utility function is similar to the quasi-linear form used by Olsze-
wski and Siegel (2016, 2020), with the only difference being the CSF employed.

We denote this large Tullock contest game by Γ.
Assuming that H(x) ≡ c�(x)

g�(x)
 is well-defined for any x ∈ ℝ+ , the following assump-

tion regulates the strategic framework in our model.

Assumption 1 For any x ∈ ℝ+ , if g��(x) ≥ 0 , then

This assumption implies that if effective effort function is convex, it should be 
‘less convex’ than effort cost function at any effort level.2 It is worth noting that 
(Acemoglu and Jensen 2013) argued that a similar assumption implies the uni-
form local solvability condition in a rent-seeking contest, which provides mono-
tone comparative static results in aggregative games. As the authors further noted, 
similar curvature conditions also appeared in the industrial organization literature, 
e.g., in the analysis of price discrimination (see Schmalensee 1981). In our context, 
Assumption  1 is equivalent to assuming that marginal cost of marginal effective 
effort is a strictly increasing function, which we later utilize to verify the existence 
and uniqueness of a best response for some agent types.

3  The equilibrium analysis

In this section, we first implicitly characterize the equilibrium of our large Tullock 
contest game with heterogeneous agents for a general type distribution and without 
specifying the effective effort and effort cost functions (see Proposition 1). Second, 
under specific assumptions on those functions, we provide an explicit characteriza-
tion of equilibrium efforts for a general type distribution (see Proposition 2).

Proposition 1 Under Assumption 1, there exits a unique equilibrium effort profile in 
Γ . The equilibrium effort profile can be written as

where A(X∗) is implicitly characterized by

H(x) <
c��(x)

g��(x)
.

X∗(t) =

{
H−1

(
tV

A(X∗)

)
if t ≥ H(0)A(X∗)

V

0 if otherwise

A(X∗) = ∫
Ω

g(X∗(t))dF(t).

2 Note that if effective effort function is strictly concave, the same implication trivally follows.
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Proof An agent of type t maximizes U(t, x, X) by choosing his own effort level x as a 
response to a given effort profile X. The respective first-order condition can be writ-
ten as

which is

A necessary condition for an interior best response of a type t agent is to solve this 
equation. Under Assumption 1, we find that H(x) is a strictly increasing function, 
since

Given that each agent is of measure zero, the choice of x does not influence the 
aggregate effective effort, so that tV

A(X)
 is independent of x. As such, it follows that 

there can exist at most one solution to equation (1) for any given effort profile X. 
Denoting that solution by x∗ , we verify that it is indeed a best response, maximizing 
the agent’s utility, since the left-hand-side of equation (1) is positive for any x < x∗ 
(i.e., increasing utility) and negative for any x > x∗ (i.e., decreasing utility). Then, 
we obtain x∗ = H−1

(
tV

A(X)

)
 , also noting that H−1 is well-defined, since H is a strictly 

increasing function.
It must be noted, however, that if tV

A(X)
 is not in H’s image, there may not exist a 

solution to the first-order condition above. This may occur for low-type agents when 
the given effort profile X leads to a sufficienty high aggregate effective effort such 
that tV

A(X)
< H(0) . This implies that �

�x
U(t, x,X) is always negative for such agents, 

further implying that their best response is to exert zero effort. It may also occur for 
high-type agents when the aggregate effective effort is sufficiently low such that 
tV

A(X)
≥ limx→∞ H(x) . This implies that �

�x
U(t, x,X) is always positive for such agents, 

further implying that they always prefer exerting a higher effort level, so that their 
best response does not exist. Accordingly, the best response of a type t agent to any 
given effort profile X can be written as 0 if t < H(0)A(X)

V
 , as ∅ if t ≥ A(X) limx→∞ H(x)

V
 , and 

as H−1
(

tV

A(X)

)
 if otherwise.

It is known that if X∗ is the equilibrium effort profile, it must be that X∗(t) is equal 
to the best response of a type t agent to X∗ . Thus, given our best response characteri-
zation above, we can write

�

�x
U(t, x,X) = t

g�(x)

A(X)
V − c�(x) = 0,

(1)
tV

A(X)
−

c�(x)

g�(x)
= 0

𝜕H(x)

𝜕x
=

𝜕

𝜕x

c�(x)

g�(x)
=

c��(x)g�(x) − c�(x)g��(x)

(g�(x))2
> 0.

(2)A(X∗) = ∫
Ω

g(X∗(t))dF(t) = ∫
Ω+

g

(
H−1

(
tV

A(X∗)

))
dF(t)
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where Ω+ is the set of all agent types with t ≥ H(0)A(X∗)

V
 . Note that the right-hand-side 

of equation (2) is well-defined and finite because (i) Ω is bounded and (ii) the case 
of no best response cannot be a part of X∗ , since t < A(X∗) limx→∞ H(x)

V
 for any t ∈ Ω as 

A(X∗) → ∞.3
The fact that H is an increasing function implies that H−1 and g◦H−1 are also 

increasing functions. Then, given that tV

A(X∗)
 decreases in A(X∗) , we find that the 

right-hand-side of Eq. (2) is decreasing in A(X∗) as well. Since it is trivial that the 
left-hand-side of the same equation is strictly increasing in A(X∗) , with values 
between 0 and ∞ , there is a unique A(X∗) satisfying that equation. For that aggregate 
effective effort value, we find that there exists a unique effort profile X∗ such that 
X∗(t) = 0 for low-type agents with t ∉ Ω+ and X∗(t) = H−1

(
tV

A(X∗)

)
 for the remaining 

agents with t ∈ Ω+ . This completes the proof.   ◻

The equilibrium effort profile X∗ suggests that low-type agents can be fully dis-
couraged (i.e., exerting zero effort) in an equilibrium if the aggregate effective effort 
A(X∗) turns out to be too high due to the efforts exerted by high-type agents.

Thus far, we implicitly characterized the equilibrium effort profile for any type 
distribution and any form of g and c functions under the aforementioned assump-
tions. It can be seen that the equilibrium effort profile X∗ is an increasing function 
of type t and the overall prize V, since H and H−1 are known to be increasing func-
tions. Now, to have a clearer understanding of equilibrium efforts, we turn to the 
analysis of equilibrium under specific functions while preserving the generality of 
the type distribution.

The next proposition explicitly characterizes the equilibrium efforts for a model 
in which g(x) = x� and c(x) = x� where (i) � ≥ 1 and (ii) 0 < 𝛾 < 𝜃 . The assump-
tion (i) implies that the effort cost function is convex, whereas the assumption (ii) 
implies our Assumption 1.

Proposition 2 Given g(x) = x� and c(x) = x� where � ≥ 1 and 0 < 𝛾 < 𝜃 , the unique 
equilibrium effort profile in Γ can be written as

which yields the aggregate effective effort

Proof Given the power-form functions, we have

X∗(t) = t
1

�−�

(
�V

��[T
�

�−� ]

) 1

�

,

A(X∗) =

(
�V

�

) �

�

�[T
�

�−� ]

�−�

�
.

3 If lim
x→∞ H(x) → ∞ , any agent of type t has a finite best response to any effort profile X. However, as 

shown in the current proof, such an assumption is not needed for the existence of an equilibrium effort 
profile.
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so that

Note that since H(0) = 0 , the case of zero best response does not emerge under 
the assumed functions. That is, any agent of type t > 0 exerts a positive effort in 
equilibrium.

Then, A(X∗) can be implicitly written as

From here we find

Now, we can write X∗(t) explicitly as

This completes the proof.   ◻

The explicit characterization of equilibrium efforts above reveals how the 
effective effort and effort cost functions influence the equilibrium behavior. Yet, 
it is seen that the equilibrium efforts do not respond monotonically to changes in 
the curvature of those functions, regulated by � and � , respectively. This observa-
tion raises the question of which large Tullock contest maximizes the equilibrium 
efforts. The next section is interested in this question.

H(x) =
�

�
x�−�

H−1(x) =
(x�
�

) 1

�−�

.

A(X∗) = ∫
Ω

g

(
H−1

(
tV

A(X∗)

))
dF(t) = ∫

Ω

g

((
�

�

tV

A(X∗)

) 1

�−�

)
dF(t)

= ∫
Ω

(
�

�

tV

A(X∗)

) �

�−�

dF(t)

=

(
�

�

V

A(X∗)

) �

�−�

�[T
�

�−� ].

A(X∗) =

(
�V

�

) �

�

�[T
�

�−� ]

�−�

�
.

X∗(t) = H−1

(
tV

A(X∗)

)
=

(
�

�

tV

A(X∗)

) 1

�−�

= t
1

�−�

(
�V

�

) 1

�−�
(
�V

�

)−
�

�(�−�)

�[T
�

�−� ]
−

1

�

= t
1

�−�

(
�V

��[T
�

�−� ]

) 1

�

.
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4  Effort‑maximizing Tullock contests

This section is devoted to the analysis of the optimal large Tullock contest game. 
The optimal contest is defined as the one that maximizes the equilibrium total effort 
(see Nti 2004; Szymanski 2003; Franke et  al. 2013; Olszewski and Siegel 2016; 
Çağlayan et al. 2022 among others).

Given the power-form g and c functions specified earlier, the equilibrium total 
effort can be explicitly written as

Our aim is to identify an optimal �∗ ∈ (0, �) for any given � ≥ 1 such that this equi-
librium total effort value is maximized.4 However, an explicit solution cannot be pro-
vided here unless the type distribution is known. As such, from this point onward, it 
is assumed that agent types are distributed uniformly, T ∼ U[a, b] , where b > a ≥ 0.

Given that F ∶ [a, b] → [0, 1] is such that F(t) = t−a

b−a
 and dF(t) = 1

b−a
dt , we have

Thus, under the uniform distribution, the equilibrium total effort can be written as

Let a0 =
a

b
 . Then, the equilibrium total effort becomes

Notice that �∗ that maximizes the equation above is independent of the lower and 
upper bounds of the type distribution, i.e., a and b. This means that for any two 
different uniform distributions over [a, b] and [ka, kb] for some k > 0 , the optimal 
contest is characterized by the same �∗.

Now, assume that a0 = 0 . The equilibrium total effort reduces to

∫
Ω

X∗(t)dF(t) = �[T
1

�−� ]

(
�V

��[T
�

�−� ]

) 1

�

.

�[T�] = ∫
b

a

t�
1

b − a
dt =

b�+1 − a�+1

(b − a)(� + 1)
.

�[T
1

�−� ]

�
�V

��[T
�

�−� ]

� 1

�

=
b

�−�+1

�−� − a
�−�+1

�−�

�−�+1

�−�
(b − a)

⎛⎜⎜⎝
b

�

�−� − a
�

�−�

�

�−�
(b − a)

⎞⎟⎟⎠

−
1

� �
�V

�

� 1

�

.

1 − a

�−�+1

�−�

0

�−�+1

�−�

�
1 − a0

�
⎛
⎜⎜⎜⎝

1 − a

�

�−�

0

�

�−�

�
1 − a0

�
⎞
⎟⎟⎟⎠

−
1

� �
�Vb

�

� 1

�

.

4 The optimal selection of a contest success function has been studied earlier in contest games with a 
finite number of players. For examples, see Dasgupta and Nti (1998) and Skaperdas (1996).
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Its derivative with respect to � is

after some algebraic operations. Therefore, the equilibrium total effort is maximized 
when �∗ = �+1

2
 . When � = 1 , it turns out that an optimal 𝛾∗ < 𝜃 does not exist. This 

is because when the effort cost function is linear, the equilibrium total effort always 
increases as � increases within the (0,1) interval. For a strictly convex effort cost 
function, however, the optimal �∗ is found to be the middle point between 1 and � . 
These results hold for any uniform distribution over [0, b] with b > 0.

If a0 > 0 , then after taking the derivative of the logarithm of the equilibrium total 
effort with respect to � and setting it equal to 0, we obtain the following first-order 
condition:

The optimal �∗ can be implicitly written as the solution to this equation. However, 
since such an optimal �∗ cannot be found explicitly, we now proceed to a numerical 
analysis. To that end, we consider (a) a selection of values for � ∈ {2, 3, 4, 5, 6} and 
analyze the optimal �∗ for any value of a0 ∈ [0, 1) , and (b) a selection of values for 
a0 ∈ {0, 0.2, 0.4, 0.6, 0.8} and analyze the optimal �∗ for any value of � ∈ (1, 6] . The 
respective graphs are illustrated in Fig. 1.5 A few observations are in order: (i) for 
any a0 ∈ [0, 1) and � ∈ (1, 6] , we have �∗ ∈

[
�+1

2
, �
)
 ; (ii) the optimal �∗ increases as 

a0 increases; (iii) as a0 → 1 , we have �∗ → � ; (iv) a unit change in a0 leads to a big-
ger change in �∗ for larger values of � ; (v)  the optimal �∗ increases as � increases; 
and (vi) a unit change in � leads to a bigger change in �∗ for larger values of a0.6

Based on these observations, it is known that a Tullock CSF with a higher  � 
should be implemented to maximize total equilibrium effort when the curvature 
of the effort cost function increases. This occurs when there is an increase in � , 
after which sufficiently low efforts become less costly and sufficiently high efforts 
become more costly. As such, since the equilibrium effort profile is an increasing 
function of t, high-type agents are discouraged but sufficiently low-type agents are 
encouraged in equilibrium by an increase in � . As the equilibrium effort profile 

� − �

� − � + 1

(
�Vb

� − �

) 1

�

.

� − 2� + 1

�(� − � + 1)2

(
�Vb

� − �

) 1

�

log a0

� − �

⎛⎜⎜⎜⎝
1

1 − a

�−�+1

�−�

0

−
1

1 − a

�

�−�

0

⎞⎟⎟⎟⎠
=

� − 2� + 1

�(� − � + 1)
.

5 In fact, we conducted our numerical analysis for a larger set of parameter values and observed that the 
results we report here are robust in that larger set. We choose to not report all for space limitations and 
reader friendliness.
6 The reader can also observe in Fig. 1 the aforementioned result that for a

0
= 0 and 𝜃 > 1 , the optimal 

�∗ is at the middle point between 1 and �.
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suggests that high-type agents tend to increase their equilibrium efforts when high 
efforts become more effective, the optimal contest is realized for a relatively higher � 
value, which aims to re-motivate high-type agents to exert higher efforts.

In a similar manner, the contest designer chooses to implement a Tullock CSF 
with a higher � as the support of the type distribution becomes narrower. Note that a 
narrower support can be captured by an increase in a0 , indicating a smaller distance 
between the lower bound a and the upper bound b (i.e., less heterogeneous types). 
This can be interpreted as follows: For example, for a given value of b, if there is 
an increase in a, then there would be a more intensive competition, which in turn 
discourages all contestants, thereby reducing the equilibrium effort for any agent of 
type t ∈ [a, b] . Once again, it is the designer’s aim to re-motivate high-type agents 
by choosing a higher � value.

The effect of the support size on �∗ can be analyzed from a different perspec-
tive. When agent types are distributed over [0, b] for some b > 0 , it is known that 
�∗ =

�+1

2
 , so that the same �∗ is optimal when b → 0 . However, when agent types 

are distributed over [1, b] for some b > 1 , our numerical analysis shows that �∗ → � 
when b → 1 . That is, although the support of the type distribution seemingly gets 
narrower in both cases, �∗ converges to the other extreme in the latter case. This 
can be explained as follows: As noted earlier, the optimal �∗ is independent of the 
lower and upper bounds of the type distribution, hence of the distance between those 
bounds, but it depends on their ratio a0 . In the former case, a0 = 0 , which means that 
there is always an extremely big difference between the lowest- and highest-type 
agents for any b > 0 , whereas in the latter case, a0 → 1 as b → 1 , which means that 
the same difference gets smaller and smaller as b decreases.

5  Conclusion

We showed that a unique equilibrium of a large Tullock contest game with heter-
ogeneous agents exists under mild conditions on the contest success function and 
effort cost function. This result does not depend on agents’ type distribution. Later, 

Fig. 1  The Optimal �∗ for Different Values of a
0
 and �
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we turned our attention to the effort-maximizing contest design, which required an 
explicit form for the equilibrium total effort function. Accordingly, assuming a uni-
form type distribution, we characterized the optimal CSF within the Tullock-family 
and showed that the optimal contest depends on the curvature of the cost function 
and the boundaries of the type distribution. We conducted a numerical comparative 
static analysis to gain further insights into this dependence. We then reported that 
the contest designer needs to increase the curvature of the effective effort function 
with an aim to encourage high-type agents to exert even higher efforts when the cur-
vature of the effort cost function increases (which makes high efforts more costly) 
or when the lowest-type to highest-type ratio increases (which decreases the level of 
heterogeneity among contestants).

Acknowledgements We would like to thank an anonymous reviewer for helpful comments and 
suggestions.
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