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Abstract—Multi-antenna radars exhibit positively correlated
detection performance with the number of elements utilized.
The feasibility of refining antenna arrays to reduce cost of
operation with only marginal loss of performance has attracted
significant attention as utilizing a large number of elements may
be prohibitively costly in terms of computation and power. Under
cognitive radar paradigm, the goal is to choose an optimal or near
optimal subset of elements from an antenna array of pre-specified
geometry while meeting certain performance and cost criteria. In
this work, we present optimization based selection methods for
certain array geometries to select the best X' —element sub-array
in terms of Cramér-Rao lower bound (CRB) on direction-of-
arrival (DoA) estimations. Our results indicate that it is possible
to reduce K up to a certain point without significant reduction in
DoA estimation performance. The maximum possible reduction
in K depends on the operating signal-to-noise ratio (SNR) and
how much performance loss is tolerated. Thus, once the operating
SNR is known, it is possible to utilize fewer array elements with
slight decrease in performance.

Index Terms—Antenna selection, cognitive radar, direction-of-
arrival estimations

I. INTRODUCTION

Cognitive radar was proposed to enable radar systems to
adapt the transmitter and the receiver to various target and
environment scenarios based on information extracted from
signal returns [1]. In this paper, we investigate methods for
selecting a subset of antenna array that is optimal in terms
minimizing the Cramér-Rao lower bound on DoA estimation.

MIMO systems utilize a large number of array elements to
enhance bit error rates, detection performance or DoA esti-
mation, depending on application scenarios. However, using a
large number of elements incurs high operation cost in terms
of computation and power consumption. Therefore, it is of
interest to design methods that reduce the operation cost while
retaining relevant performance metrics as much as possible.
Cognitive radar [2] employs target returns to choose a subset
of the antenna array to reduce the number of elements that are
operational at any given time, thereby reducing operation cost
without significantly degrading the system performance.

Recent approaches to this problem focused on such tech-
niques as enumerating sub-arrays to determine one for which
a lower bound on DoA estimation is minimum [3] and greedily
searching sub-arrays that maximize the mutual information
between measurements and the antenna pattern [4]. Another
work formulates the selection problem as an optimization
problem with respect to spatial correlation coefficient [5]. A

more recent machine-learning based approach is proposed in
[6] where the antenna selection problem is formulated as a
classification problem and neural networks are used to perform
antenna selection.

In this work, we investigate an optimization based method
that selects the optimal K-element subset of the array with
respect to Cramér-Rao lower bound on DoA estimation. The
general formulation is specialized to various regular array
geometries, including uniform linear arrays (ULA), uniform
circular arrays (UCA), and uniform rectangular arrays (URA)
as optimization problems. The optimization problems do not
have closed form solutions except for certain special array
geometries such as ULA. For UCA and URA, we propose
numerical methods partitioning the space of possible DoA’s so
that the partition divides the space into subsets corresponding
to the same array elements. Simulations are carried out to
compare the DoA estimation performance of the selected op-
timal sub-array to the full array and an ensemble of randomly
chosen sub-arrays of the same size. The effect of the number
of sub-array elements, K, on the DoA estimation performance
is also investigated at various SNR levels.

The layout of the remainder of the paper is as follows. The
next section describes the modelling of the system. In Section
3, we formulate the CRB and Fisher information for the ULA,
UCA, and URA geometries and the corresponding optimiza-
tion problems related to the fixed-size sub-array selection. In
Section 4 we compare the mean-squared error (MSE) of the
selected optimal sub-arrays with the entire arrays and average
performance of randomly picked sub-arrays of the same size
through simulations over a range of SNR values. The results
indicate that optimal sub-array performance is close to the
full array’s performance and outperforms average and best
performance of randomly chosen sub-arrays. Our simulations
also verify that a relatively small sub-array can achieve DoA
estimation performance close to the full array especially at
high SNR levels.

II. PRELIMINARIES AND DATA MODEL

We consider a radar system with M elements in which
each element illuminates a single target with a waveform s(t).
Assume that the received and matched filtered, demodulated
signals are narrow-band and planar. Let a(¢, ) denote the
array steering vector

a(¢7 9) = [a1(¢7 9)7 a2(¢7 0)) SRR aJVI(¢7 9)]T (1)
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where ¢ is the azimuth angle and 6 is the elevation angle of
the source. The radar collects M signals in each N snapshots.
The received signal for the ¢! snapshot is [6]

yt:a(¢,9)st+nt t€{172,...,N} (2)
where s; ~ CN(0,02) and n; ~ CN(0,02 I;) are mutually
uncorrelated. In matrix form, the received signal can be written
as

Y =a(¢,0)sT +N 3)

where Y = [y1,y2,...,¥n]T. s = [s1,82,...,sn]T and
N = [n,ny,...,ny]T. Observing Y, the receiver estimates
the direction of arrival (¢, #) using (approximate) maximum
likelihood methods.

Our aim is to select K < M elements of the radar
with minimum performance reduction. Since the maximum
likelihood estimators are asymptotically efficient, we choose
the K —element sub-array which minimizes the Cramér-Rao
lower bound. Thus, we minimize the asymptotic variance of
the ML estimator of direction-of-arrival. The CRB of the
angular estimates is given in [7]:

dafl 9a
)
CRB(0) = x ¢ 09 s @
(%) (38)- (%)
o6 9¢ o0 20 6 00
da'l da
CRB(¢) = X . ;s O
(%) (#8)- (%)
o6 9¢ o0 90 6 00
14 Mo2/s? . . .
where x = + Moo is a function of array signal-

2N (1+ Mo?/s2)?
to-noise ratio and number of snapshots.

For joint estimation of (6, ¢), one needs to find a scalar
measure to optimize. There are many measures in literature
such as average-variance, largest eigenvalue, and determinant
criterion [8]. We prefer to use average variance criterion (A-
optimality) for its simplicity, i.e, we select the sub-array which
minimizes the sum of CRBs.

III. CRB MINIMIZATION FOR DIFFERENT GEOMETRIES

A. Uniform Linear Array

There are M elements located on the z-axis with uniform
spacing equal to the half wavelength. Assume that the centroid
. . 1 M-1
of the array is the phase reference, i.e. 2. = ;> ., o Zi-
Then the manifold vector is

. T
a(e) — ejQT” (ZO—ZC)COSF)7 o 76J2T" (zm—1—2c) cos b (6)

where z; = b+ z% and b is arbitrary.

M-1
Elevation

angle

Azimuth'
X angle

Fig. 1. Uniform Linear Array [9]
Our aim is to select K elements which minimizes the CRB

of 6. A similar problem was analyzed in [10] and the CRB as
a function of the selection vector was given as

K csc(0)? 1
1) wI'Dw

CRB(w, ) = )

where w € {0,1}M denotes the selection vector, [D]; ; =
(i — 5)? with row and column indices i, j and « is a positive
function depending only on array signal-to-noise ratio and
number of snapshots. Hence, the optimization problem can
be written as

W = argmax w.Dw (8)
st. 1Tw=K 9)

w]; € {0,1} Vie{l,2,...,M} (10)
The optimization problem in (8) is non-convex due to (10)
and definition of D!. Nonetheless, closed form solution exists.
By definition of D, w"Dw =}, .[D]; j[w]; [w]; subject to
|wll, = K is maximized when w has ones in its first 5 and
last % indices, i.e., we select K elements from the boundary
of the array.

B. Uniform Circular Array

There are M elements located on a circle in the zy—plane.
The radius of the circle is chosen such that the arc length
between adjacent elements is equal to the half wavelength,
ie. R = %. We number the array elements starting from

¢ = 0, i.e. the azimuth angle of element k is % where k£ €
{0,1,..., M — 1}. For these conventions, the array manifold
vector is
a(d) 9) _ [ej% sin 6 cos(¢) ej% sin 6 cos(¢772w(%71)) T
) - LA

€3V

D is an indefinite matrix
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Fig. 2. Uniform Circular Array [11]

1) I-Dimensional Case: In this scenario, the target is
placed in the xy—plane, i.e. # = 90° and we are interested
in choosing K array elements minimizing the CRB of ¢ or
equivalently, maximizing the Fisher Information of ¢ as a
function of the selection vector. We can calculate the Fisher
Information using the equations in [7]:

M-1

Faotw,0) =5 3 s (9= 57 ) (12)
M-1 .
= KTB - g > cos (2 <¢ 2M7”>> [wl]; (13)
=0

where K is the number of selected array elements, and /3 is a
positive function depending only on array signal-to-noise ratio
and number of snapshots. Hence, the optimization problem is

W = argminx’ w (14)
st. 1Tw=K (15)
wli € {0,1} Vie{1,2,....M}  (16)

where [x]; = cos(2(¢f% i € {1,2,...,M}

There is no closed form solution since the optimal selection
vector depends on the azimuth angle ¢, i.e., given ¢, the
optimal decision rule chooses K smallest indices of x.

Instead of directly estimating ¢, our aim is to partition the
interval [0, 27) into sub-intervals Py, Pa, ..., Py, such that the
optimal selection vector is the same V¢ € P;. So, we need to
perform at most L detections to choose the optimal sub-array.

One can find the optimal partitions and corresponding sub-
arrays numerically for any M by sorting x in ascending order
for finely quantized ¢ € [0,27). Our simulations suggest
that for even and odd M, we can partition [0,27) into
2M and 4M equal length sub-intervals respectively. As an
example, let M = 5. The sub-intervals are calculated as

P, — {ﬂ(ilam’%) fori € {1,2,...,20}.

2) 2-Dimensional Case: In this case, the target is not in the
xy—plane, and our aim is to choose K elements minimizing

the trace of the CRB matrix as a function of the selection
vector. Using (4) and (5), we obtain

CRB(w, ¢) + CRB(w, ) =
v Yonso (FE+ £2) wn

(S5 ) (S22 ) — (S o fown)
a7

where f1(¢,0,n) = cosf cos (3F — ¢)
f2(¢,6,n) = sin@ sin (22F — ¢) and 7 is a positive
function depending only on array signal-to-noise ratio and
number of snapshots.
Using trigonometric identities, the optimization problem for

minimizing (17) can be written in a more compact form

2K +aTw

W = arg“rlnin K2 - wiAw (18)
st. 1Tw=K (19)
w]; € {0,1} Vie{1,2,....,M}  (20)
where
[a]; = cos (4(21\41)71' —2(o+ 9)>
} cos <4(1Ml)” _ 92— 9)> Vie{1,2,..., M}
(21)

Al oo (507 20 s (10507 3)

cos(W) Vi,je{1,2,...,M}

(22)
Due to the objective function and {0, 1} constraints, (18) is not
convex. Although the previous problems (8) and (14) are also
non-convex, given ¢ and 6, we do not have to check all (%)
combinations to find the optimal sub-array. On the contrary,
in (18), it is necessary to check all (%) sub-arrays to find the
optimal one. For large M, this task is tedious and impractical.
One solution to this problem is relaxation of the [w]; € {0,1}
constraint into [w]; € [0, 1]:

N . 2K +aTw
W= argvgmn K2+ wiAw (23)
st. 1Tw=K (24)
wli €[0,1] Vie{l,2,...,M} 25)

One can solve (23) using a constrained nonlinear optimiza-
tion algorithm such as Interior-Point [12] [13]. After solving
the optimization, we can select the K largest elements of w to
construct the selection vector. However, we can possibly make
some improvement by a local optimization method described
in [14]: we can order w and check for possible swapping of
K selected elements (sorted in ascending order) and M — K
unselected elements (sorted in descending order).

For any M and K, we can solve the relaxed problem and
perform local optimization for sufficiently many ¢ € ® and
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0 € O to obtain the partitions of ¢, ©. Thus, we can find the
optimal selection vector by performing detections in azimuth
and elevation cells as in the 1-dimensional case.

C. Uniform Rectangular Array

There are M = M, M, elements, laid out as a uniform rect-
angular grid in the xy—plane, where M, and M, denote the
number of elements along the z and y axis, respectively. The
spacing between adjacent array elements in either direction is
chosen to be equal to the half wavelength, \/2.

‘Azimuth
X  angle

Fig. 3. Uniform Rectangular Array [15]

For the URA, the array element (mg,m,) is located at
((mg — D)dg, (my — 1)dy,0) Vmg € {1,2,..., M.} and
Vm, € {1,2,..., M,}, which leads to the following expres-
sion for the array steering vector [15]

a(Ve, ¥y) = ay(Yy) @ az(Ys)

where ® represents the Kronecker product and the vectors
a; (1) and a, (1) given by

[am(wm)]mL = (ijwz(mzil) me S {1, 2, e
[ay (wy)]my

represent the phase lag that can be attributed to deviation along
the = and y axis, respectively and 1), and 1, are defined in
terms of the wavenumber xk = 27/ and array dimension d,
and d, by

(26)

, M}
— ejwm(m;u_l) me € {172, - 7]\4};}

27
(28)

Wy = kdy sin(6) cos(9)
hy = kdy sin(0) sin(¢)

Taking inter-element spacing in either direction to be half the
wavelength, the relations (29) and (30) can be reformulated as

1, = mwsin(f) cos(¢) 31
hy = msin(0) sin(¢) (32)

1) 1-Dimensional Case: Similar to the UCA, we first
consider the case where the source is collocated with the
antenna array on the same plane. That is, § = 90°. The
Fisher Information for estimating the azimuth angle ¢ can be
calculated by taking inner products of the derivatives of the
steering vector to yield [7]:

(29)
(30)

* (—(m — 1) sin(é)+

me=1m,

e

Fyo(w,0) =1

(my — 1) c08())*[Wm,.m, (33)

where 7 is a positive function depending only on array
signal-to-noise ratio and number of snapshots. The resulting
optimization problem is

W = argmaxx’w (34)
st. 1Tw=K (35)

w]; € {0,1} Vie{l,2,...,

1)sin(¢) + (m

M} (36)

where, [X]m, 40z, (m, 1) (—(mg —
1) cos())2.

As in the case of UCA, there is no closed form solu-
tion to (34) and the same partitioning strategy is employed.
We find partitions of the interval [0,27) into sub-intervals
P1,Pa,...,Pr such that the optimal selection vector is the
same V¢ € P;. The optimal partitions are found numerically
as in UCA. The array geometry does not permit partitions as
uniformly as UCA. Nonetheless, they are also intervals, with
boundaries determined by array size and inter-element spacing.

2) 2-Dimensional Case: The trace of the CRB matrix can
be formulated as

C(X+Y)
CRB(w, ¢) + CRB(w, 0) = Xy _22 (37)
where
M, M,
X = Z Z lewTTla:my
mg=1my=1
M, My
Y = > F3 Wiy m,
mp=1my=1
M, M,
Z = f1 f2 Wiy m,
mg=1m,=1 (38)
J1(¢,0,my, my) = —(my — 1) sin(0) sin(¢)
+ (my, — 1) sin(0) cos(¢)
f2(é,0,my, my) = (my — 1) cos(0) cos(¢)
+ (my — 1) cos(0) sin(¢) (39)

and ( is a positive function depending only on array signal-
to-noise ratio and number of snapshots.
This leads to the optimization problem

& X+Y
= arg min m (40)
s.t. 1Tw =K 4D
wli € {0,1} Wie{l,2,...,M} (42

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on January 31,2022 at 06:39:20 UTC from IEEE Xplore. Restrictions apply.



IV. SIMULATION RESULTS

In this section, we provide the estimation performance of
our proposed method. We used Beamscan spatial sprectrum es-
timator which utilizes a narrowband conventional beamformer
and compared the performance of full-array, random K —sub-
array, and CRB minimizer K —sub-array. As a performance
metric, we chose mean square estimation error (MSE) in
degrees. In all simulations, we used N = 100 snapshots.

A. Uniform Linear Array

For this part, we analyzed a ULA with M = 12 elements.
We consider K = 6 and K = 8 element sub-arrays. Since M
is small, we ran the simulations with all possible sub-arrays.

MSE vs SNR for M =12, K =6
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Fig. 4. Azimuth Estimation Performance for ULA

We observed that CRB minimizer sub-array has the lowest
mean square error amongst all possible sub-arrays, and it
achieves a performance similar to the full array.

For K = 6, an MSE of 1072 is achieved at 2 dB, 3.2 dB
and 11 dB respectively for the full array, CRB minimizer sub-
array, and random sub-array. For K = 8, the same MSE is
achieved at 2.8 dB and 6.8 dB for the CRB minimizer and
random sub-array. The bottom figure indicates that MSE vs
K curve exhibits a knee point for each SNR, i.e., once the
operating SNR is known, it is possible to use fewer number
of elements with negligible performance loss.

B. Uniform Circular Array

1) I-dimensional Case: We consider a UCA with M =
30 elements. Our aim is to choose K = 18 elements and

compare the estimation performance of different sub-arrays.
For this case, the target is in the xy-plane and its azimuth
direction-of-arrival is 30°. 2> We would like to compare the
MSE of the azimuth estimation. Since checking all (32) sub-
arrays is not practical, we randomly choose 150 sub-arrays
twice and average their MSE to estimate the random sub-array
performance. In Fig. 5, we plot the MSE vs SNR of the full-
array, CRB minimizer sub-array, averages of the two groups
of random sub-arrays, and the random best sub-array. * At the
bottom, we also plot the MSE vs K.

MSEs vs SNR for M =30, K =18
10° T T

T
Full Array

CRB Minimizer
Random Best N
Average 1
Average 2

MSE
1)
T

0 5 10 15 20
SNR (dB)
MSE vs K for various SNR Values

100 F

MSE

0 5 10 15 20 25 30
K (Number of Selected Elements)

Fig. 5. Azimuth Estimation Performance for UCA

MSE of 10~2 is achieved at -4 dB, -2.5 dB, -1 dB,2
dB respectively for the full array, CRB minimizer sub-array,
random best sub-array, and random sub-array. Similar to ULA,
the CRB minimizer sub-array has the lowest mean square error
amongst randomly chosen 300 sub-arrays, and it achieves a
performance similar to the full array. As in the ULA case, MSE
vs K curve exhibits a knee point for each SNR. Therefore,
once the operating SNR is known it is possible to use a subset
of elements with negligible performance loss.

2) 2-dimensional Case: We consider UCA with the same
parameters, but now the target has a direction-of-arrival
(¢,0) = (30°,75°) and we estimate both azimuth and eleva-
tion. We would like to compare the sum of mean square errors
of ¢ and 6 for the full-array and different K —sub-arrays. As
in the 1-dimensional case, we randomly select 15 sub-arrays
twice and average their performance to estimate the random
sub-array performance’.

In Fig. 6, we plot the sum of mean square estimation
errors of the full-array, CRB minimizer sub-array, random sub-
array, and the best sub-array amongst 30 random sub-arrays.

2Qur simulations suggest that the performance curves of different target
azimuth angles are similar.

3Radar system has the perfect knowledge of 6 = 90°

4amongst 300 random sub-arrays

Sdue to computational constraints, we could not select more
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Similar to the 1-dimensional case, the CRB minimizer sub-
array outperforms the best of randomly chosen sub-arrays.
However, in this scenario, the performance gap between the
full-array and CRB minimizer is significantly larger than that
of Fig. 5: sum of MSE of 10! is achieved at -0.5 dB, 1.75
dB, 2.5 dB, and 4 dB respectively for the full-array, CRB
minimizer sub-array, random best sub—array6, and random sub-
array.

Sum of MSEs vs SNR for M = 30, K =18
T T

Full Array
CRB Minimizer
Random Best

Average 1
Average 2

brsE + Orse
5
T

SNR (dB)

Fig. 6. Azimuth and Elevation Joint Estimation Performance for UCA

C. Uniform Rectangular Array

We consider a URA with M = 25 elements in a square
grid with M, = 5 and M, = 5. The target is in the xy-
plane and its azimuth angle is 30° as in UCA simulation. We
choose a sub-array of K = 16 elements and compare the
resulting DoA estimation MSE with those of the full array
and average of random sub-arrays. We randomly choose 50
sub-arrays twice and average their MSE to estimate random
sub-array performance. In Fig. 7 we plot the MSE of the
full-array, CRB minimizing sub-array, random best sub-array,
and averages of two sets of random sub-arrays and the MSE
corresponding to different sub-array sizes at various SNRs.

. MSE vs SNR for M, = 5, M, = 5, K = 16
10 ‘ , ‘

MSE
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Fig. 7. Azimuth Estimation Performance for UCA

MSE of 1072 is achieved at 6.5 dB, 7.5 dB, 8.2 dB, and
11.7 respectively for the full array, CRB minimizer sub-array,

Samongst 30 random sub-arrays

the random best sub-array and averages of random sub-arrays.
The performance is virtually unchanged beyond the knee point.

V. SUMMARY

K —element antenna selection problem can be written as
optimization of a desired performance metric. In general, it
is a difficult combinatorial problem since the optimal solu-

tion requires checking the desired metric for all (%) sub-

arrays. In this work, we present a computationally simpler
sub-array selection method for three commonly used array
geometries.We choose the CRB minimizer sub-array. Hence,
we select the sub-array which minimizes the asymptotic vari-
ance of the maximum-likelihood direction-of-arrival estima-
tors. Simulations show that the proposed method has a decent
performance: MSE of CRB minimizer sub-array is close to that
of full-array and is significantly better than random selection.
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