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1. Introduction 

Electric-field and magnetic-field integral equations are widely used for the numerical 
solution of the electromagnetic scattering problems by the method of moments (MOM) 
[ I ]  and the fast multipole method (FMM) [2]. The electric-field integral equation (EFIE) 
is known to give accurate results with the usage of Rao-Wilton-Glisson (RWG) basis 
functions for the conducting surfaces with arbitmy planar triangulations [3]. The same 
fmctiom are also used with the magnetic-field integral equation (MFIE) for the solution 
of scattering problems involving closed geometries [4]. However, it can be observed that 
the current distribution and the radar cross section (RCS) obtained by the MFlE does not 
perfectly match their counterpans obtained by the EFIE, especially when the geometly of 
the problem includes sharp edges or tips IS]. This paper focuses on the inaccuracies of the 
solutions obtained by the MFlE as applied to the scattering problems of conducting 
closed "faces with planar Uiangnlatim. ARer a thorough investigation, we rule out 
some of the possible causes of the inaccuracy considered in the literature and we point to 
the SCMI reasons behind the inaccuracy of the MFIE. 

2. Inaccuracy of the MFIE 

For closed conducting surfaces, the MFIE can be witten as 

where the observation point approaches to the surface from the outside. Application of 
the MOM on this formula requires the calculation of the impedance matrix elements with 
the expression as 

z,, = - j& i, (q . ri x J&' b;, (?I) x v '~ (F ,  1'1, (2) 
S" S" - 

where i-and b-represent the testing and basis functions, respectively. In order to 
observe the inaccuracy of the MFIE, Figure !(a) shows a scattering problem that involves 
a conducting cube with U2 edges. Thhe incident field with a y-polarized electric field 
propagates in the --x direction and the RCS is calculated on the x-y plane by using bath 
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the EFlE and the MFIE formulations. Tnree different triangulations are used with the 
approximate dangle sizes of 2110, 2120, and 2140. RWG basis functions are used to 
expand the current while the lesting functions are chosen to be the same type in 
accordance with the Galerkjn method. 

Figure 1. (a) Conducting cube with U2 edge, @) RCS for N I 0  triangulation, (c) RCS for U20 
triangulation, (d) RCS for hi40 triangulation. 

Figures I(b), I(c), and l(d) show that the change in the RCS values is very limited far the 
EFlE solution when the mesh size gets smaller. This stipulates that the EFlE converges to 
a solution even far U10 discretization. However, the RCS obtained by the MFIE 
converge to correct level up lo A 140, where it matches bener the RCS obtained by the 
EFIE. For the solutions with NI0 triangulation, the difference between the RCS e w e s  of 
two integral equations is significant. The convergence analysis shows that the MFlE is 
more inaccurate and does not give reliable results with NI0  triangulation 

3. Investigating the Causes of the Inaccuracy 

We investigated two possible reasons that may lead to inaccuracy of the MFIE 

a) Logarithmic Singularity in the Field Integration: Different from the EFlE, the 
integration of the field on the testing triangles may involve a loga t i th ie  singularity in 
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the MFIE formulation. This singularity is observed for the interactioor between the 
neighboring triangles and does not cause problems if the testing and basis Viangles are on 
the same plane. However, if the neighboring mangles are on different planes as shown in 
Figure 2,  the singular field is to be included in the interaction and this leads to numerical 
problems if the field is desired to be tested on the edge of the basis lriangle. 
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Since the singulariry is logarithmic towards the edge of the basis trkngle, it i s  possible to 
integrate the field by taking the sample points strictly inside the testing triangle (not on 
the edges) and using a sufficient number of points lo perfam the numerical integration. 
Experiments show that the application of Gaussian quadrature rule with 32 paints is 
sufficient to calculale the neighbaing interactions with less than 1% error. Alternatively, 
the integral over the basis integral can he transformed to a line integral around the 
fnangle and the singularity can be avoided by changing the order of the integrations over 
the basis and resting triangles 161. Finally, another method, which applies a singularity 
extraction for the testing integral, can also be used to calculate the neighboring 
interactions without any problem of the singularity. On the other hand, improvements in 
the calculation of the MFlE iotcractians do not solve the accuracy problem of the MFIE. 

b) Solid Angle Expression in the MFIE: The limit value of the integral in the MFlE 
depends on the cxtcmal solid angle of the surface at the observation point. Equation ( I )  
can be rewritten as 

where Q is the extemal solid angle at the observation point and PV denotes the Cauchy 
principle value integration. If the observation points are chosen inside the testing triangle, 
Equation (3) i s  used with zb = 2n, since the surface is planar. Therefore, in an MFlE 
implementation with testing points inside the triangles, the value of no is always 2n as if 
the gcometty is completely planar. This may lead to the question of whether %should be 
chosen IO reflect the CUW~NR of the geometry at the testing point. Such a heuristic 
approach is proposed in [5] as B possible remedy to the inaccuracy of the MFIE. 
However, nor only that the proposed heuristic approach [5 ]  does not guarantee an 
improvement for all cases, but also it can be rigorously proven that such a guesswork on 
%is  not necessary at all. This is because a careful investigation of the formulas shows 
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that the solid angle is already included in the calculations by means of the interactions 
between the neighboring triangles. Ifthe formula in [6] is corrected as 

lim p, = 2yl- K, 
e - 0  

it can be shown that 

when the observation point approaches the basis triangle as sham in Figure 3. Tnis 
integral is a pan of the scattered field due the basis function and includes the angular 
dependence in Equation (3). Thus, there is no need to choose or guess the value of $& 
explicitly. 

4. Conclusion 

MFIE can be shown lo  give more inaccurate results as compared to the EFIE for the 
solution of eleclromagnetic scattering problems with RWG functions. This inaccuracy is 
more evident when the problem involves geometries with sharp edges and tips. The 
investigation reponed in this paper eliminates some of the possibilities that can be 
considered as the causes of the MFIE inaccuracy. There are other possible causes to 
consider, such as the quality of the current modeling based on the choice of the basis 
functions. Indeed, it can be shown that the accuracy of the MFlE is more dependent on 
the choice of the basis function than the EFIE, and that the inaccuracy of the MFIE can 
be controlled with the choice ofbasis funetions [8] 
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