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1, Introduction

Electric-field and magnetic-field integral equations are widely used for the numerical
solution of the electromagnetic scattering problems by the method of moments (MOM)
[1] and the fast multipole method (FMM) [2]. The electric-field integral cquation (EFIE)
is known to give accurate results with the usage of Rao-Wilton-Glisson (RWG) basis
functions for the conducting surfaces with arbitrary planar triangulations {2]. The same
functions are also uged with the magnetic-field integral equation (MFIE) for the solution
of scattering problems involving closed geometries [4]. However, it can be observed that
the current distribution and the radar cross section (RCS) obtained by the MFIE daes not
perfectly match their counterparts obtained by the EFIE, espectally when the geometry of
the problem includes sharp edges or tips [5]. This paper focuses on the inaccuracies of the
solutions obtained by the MFIE as applied to the scattering problems of conducting
closed surfaces with planar triangulations, Afier a thorough investigation, we rule out
some of the possible causes of the inaccuracy considered in the literature and we point to
the actual reasons behind the inaccuracy of the MFIE,

2. Inaccuracy of the MFIE

For ciosed conducting surfaces, the MFIE can be written as

TF)~hx [ JF)x Vg, F) = hx H™(F), )
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where the pbservation point approaches to the surface from the outside. Application of
the MOM on this formula requires the calculation of the impedance matrix elements with
the expression as
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where r'm and Enrcpresent the testing and basis functions, respectively. In order to

observe the inaccuracy of the MFIE, Figure 1(a) shows a scattering problem that involves
a conducting cube with /2 edges. The incident field with a y-polarized electric field
propagates in the ~x direction and the RCS is calculated on the x-y plane by using both
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the EFIE and the MFIE formulations. Three different triangulations are used with the
approximate wiangle sizes of 3/10, 420, and )/40. RWG basis functions are used to
expand the current while the testing functions are chosen to be the same type in
accordance with the Galerkin method.
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Figure 1. (a) Conducting cube with 32 edge, (b) RCS for 110 triangulation, (c) RCS for /20
triangulation, (d) RCS for A/40 triangulation.

Figures 1(b), 1(c}), and 1(d) show that the change in the RCS values is very limited for the
EFIE solution when the mesh size gets smaller. This stipulates that the EFIE converges to
a solution even for A10 discretization. However, the RCS obtained by the MFIE
converge to correct level up to A /40, where it maiches better the RCS obtained by the
EFIE. For the solutions with /10 triangulation, the difference between the RCS curves of
two integral equations is significant. The convergence analysis shows that the MFIE is
more inaccurate and does not give reliable results with A/10 triangulation.

3. Investigating the Causes of the Inaccuracy
We investipated two possible reasons that may lead te inaccuracy of the MFIE:

a) Logarithmic Singularity in the Field {mtegration: Different from the EFIE, the
integration of the field on the testing triangles may involve a logarithmic singularity in
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the MFIE formulation. This singularity is observed for the interactions between the
neighboring triangles and does not cause problems if the testing and basis triangles are on
the same plane. However, if the neighboring triangies are on different planes as shown in
Figure 2, the singular field is to be included in the interaction and this leads to numerical
problems if the field is desired to be tested on the edge of the basis triangle.
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Figure 2. Logarithmic singularity. Figure 3. Limit case.

Since the singularity is logarithmic towards the edge of the basis triangle, it is possible to
integrate the field by taking the sample points strictly inside the testing triangle (not on
the edges) and using a sufficient number of points ta perform the numerical integration.
Experiments show that the application of Gaussian quadrature rule with 32 points is
sufficient to calculate the neighboring interactions with less than 1% error. Alternatively,
the integral over the basis integral can be transformed to a line integral around the
triangle and the singularity can be avoided by changing the order of the integrations over
the basis and testing triangles [6]. Finally, another method, which applies a singutarity
extraction for the testing integral, can also be uwsed o calculate the neighboring
interactions without any problem of the singularity. On the other hand, improvements in
the calculation of the MFIE interactions do not solve the accuracy problem of the MFIE.

b) Solid Angle Expression in the MFIE: The limit value of the integral in the MFIE
depends on the external solid angle of the surface at the observation point. Equation (1)
can be rewritten as

&j(F)kﬁx [aF' JFyxV'g(F 7y = Ax H™(F), 3)
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where {); is the external solid angle at the observation point and PV denotes the Cauchy
principle value integration. If the observation points are chosen inside the testing triangle,
Equation (3} is used with £ = 2, since the surface is planar. Therefore, in an MFIE
implementation with testing points inside the triangles, the value of £4 is always 2n as if
the goometry is completely planar. This may lead to the question of whether (yshould be
chosen to reflect the curvature of the geometry at the testing point. Such a heuristic
approach is proposed in [5] as a possible remedy to the inaccuracy of the MFIE.
However, not only that the proposed heuristic approach [5] does not guarantee an
improvement for all cases, but aiso it can be rigorously proven that such a guesswork on
{2, is not necessary at all. This is because a careful investigation of the formulas shows
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that the solid angle is already included in the calculations by means of the interactions
between the neighboring triangles. If the formula in [6] is corrected as

lim g, =29 -7, @
it can be shown that
z
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when the observation point approaches the basis triangle as shown in Figure 3. This
integral is a part of the scattered field due the basis function and includes the angular
dependence in Equation (3). Thus, there is no need to choose or guess the value of €2
explicitly,

4. Conclusion

MFIE can be shown to give more inaccurate results as compared to the EFIE for the
solution of electromagnetic scattering problems with RWG functions. This inaccuracy is
more evident when the problem involves geometries with sharp edges and tips. The
investigation reported in this paper eliminates some of the possibilities that can be
considered as the causes of the MFIE inaccuracy. There are other possible causes to
considet, such as the quality of the current modeling based on the choice of the basis
functions, Indeed, it can be shown that the accuracy of the MFIE is more dependent on
the choice of the basis function than the EFIE, and that the inaccuracy of the MFIE can
be controlled with the choice of basis functions [8].
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