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ABSTRACT

INVESTIGATION OF BIAS-ASSISTED

PHOTOENHANCED ELECTROCHEMICAL ETCHING

FOR FABRICATION OF SELF-ALIGNED GALLIUM

NITRIDE BASED BIPOLAR TRANSISTORS

Emre Alptekin

M.S. in Electrical and Electronics Engineering

Supervisor: Assist. Prof. Dr. Özgür Aktaş

August 2006

GaN-based bipolar transistors are good candidates for applications in RF power

amplifiers. In contrast to more common AlGaN/GaN high electron mobility tran-

sistors (HEMTs), GaN based bipolar transistors have not drawn much attention

because of the difficulties in good p-type material and ohmic contact. Most of

the problems associated with p-type quality and contact come from growth and

etch damage during fabrication.

In this work, a low damage etching technique with an undercut profile was

developed to solve the problems associated with p-type ohmic contact quality

and to realize the self-aligned GaN bipolar transistor fabrication. The etching

process consists of bias-assisted photoenhanced electrochemical oxidation of GaN

in deionized water (BPECO/DI) and its subsequent etching in diluted acid so-

lution. By this technique, we demonstrated good Schottky contacts on samples

etched more than 100 nm and p/n doping selective etching was shown. Further-

more the most critical point for self-aligned fabrication is undercut profile and
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it was also obtained by BPECO/DI etching. Hence this technique is ideal for

fabrication of self-aligned bipolar transistors.

There are some problems during fabrication of self-aligned bipolar transis-

tor. First, due to the impossibility of activation annealing after emitter etch,

activation annealing had to be done at the beginning where emitter layer is on

the base and this was a problem for Mg activation. More importantly, there

were still uncertainties with BPECO/DI etching like roughening up the etched

surface, low etch rate for npn structures and disturbing the material uniformity

near the surface.

In this work, it was shown that BPECO/DI etching is a very efficient tool

that provided low damage etching of GaN and enabled the self aligned RF bipolar

transistor structures. It was found that self aligned base-emitter junctions were

successfully formed and the BPECO/DI etching was almost stopped at top of the

base layer. Self-aligned bipolar transistors were fabricated and their base-emitter

and base-collector junctions were measured. The results obtained in this work

demonstrated that BPECO/DI etching can bring solutions to the lack of low

damage etching and the impossibility of self-aligned base contact in fabrication

of today’s GaN based bipolar transistors.

Keywords: Gallium nitride, bipolar transistor, photo-enhanced electrochemical

etching, low damage etching, self-aligned process
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ÖZET

KENDİNDEN YERLEŞMELİ GALYUM NİTRİT TABANLI İKİ

KUTUPLU TRANSİSTÖRLERİN FABRİKASYONU İÇİN

POTANSİYEL YARDIMLI FOTON KATKILI

ELEKTROKİMYASAL AŞINDIRMA

Emre Alptekin

Elektrik ve Elektronik Mühendisliḡi Bölümü Yüksek Lisans

Tez Yöneticisi: Assist. Prof. Dr. Özgür Aktaş

Ağustos 2006

GaN tabanlı iki kutuplu transistörler RF güç yükselteci uygulamaları için iyi

adaylardır. İyi p-tipi materyal büyütmedeki ve p-tipi üzerine iyi kontak yap-

madaki güçlüklerden dolayı, GaN tabanlı iki kutuplu transistörler, AlGaN/GaN

yüksek elektron hareketlilikli transistörler kadar ilgi toplamamıştırlar. P-tipi

kalitesi ve kontak yapmadaki problemlerin çoğu büyütmeden ve fabrikasyon

aşamasındaki aşındırma hasarından kaynaklanmaktadır.

Bu çalışmada, p-tipi kontak kalitesiyle ilgili sorunları çözmek için az hasarlı

bir aşındırma tekniği geliştirilmiştir. Aşındırma işlemi potansiyel destekli fo-

toelektrokimyasal oksitleme ve ardından gelen seyreltilmiş asit içinde bu ok-

sitin kaldırılmasından oluşur. Bu teknikle, 100 nm’den daha fazla aşındırılmış

yüzeyler üzerine iyi Schottky kontaklar yapılmıştır ve bu aşındırmanın p/n

katkılı katmanlardaki seçiciliği gösterilmiştir. Bununla beraber, kendinden

yerleşmeli fabrikasyon için en kritik nokta olan negatif eğimli aşındırmanın,

BPECO/DI aşındırma methoduyla olabileceği gösterilmiştir. Bu nedenlerden

dolayı bu teknik, kendinden yerleşmeli kutuplu transistörlerin fabrikasyonu için



idealdir. Sonuç olarak, bu teknikle transistör karakteristikleri önemli ölçüde iy-

ileştirilebilinir.

Kendinden yerleşmeli transistör fabrikasyonunda bazı sorunlar vardır. İlk

olarak aktivasyon tavlamasının yayıcı aşındırmasından sonra yapılmasının

mümkün olmamasından dolayı aktivasyon aşındırması taban üzerinde yayıcı kat-

manı varken yapılmak zorundadır ve bu Mg aktivasyonu için bir problemdir.

Daha önemlisi yüzey pürüzlülüğü, npn katmanların düşük aşındırılma hızı ve

materyal yüzeyinin düzgünlüğünün bozulması gibi BPECO/DI aşındırmada

halen belirsizlikler mevcuttur.

Bu çalışmada BPECO/DI aşındırmanın, GaN için az hasarlı bir aşındırma

yöntemi olduğu ve kendinden yerleşmeli RF iki kutuplu transistör fabrikasyonunu

mümkün kıldığı gösterilmiştir. Taban-yayıcı bağlantısı başarıyla kurulmuştur ve

BPECO/DI aşındırmanın taban katmanında durduğuda gösterilmiştir. Kendin-

den yerleşmeli iki kutuplu transistörler başarılı bir şekilde fabrike edilmiş

ve taban-yayıcı ve taban-toplayıcı bağlantıları akım voltaj karakteristikleri

ölçülmüştür. Bu çalışmadaki sonuçların BPECO/DI aşındırmanın bugünkü

GaN tabanlı iki kutuplu transistör fabrikasyonu için az hasarlı aşındma yöntemi

yokluğuna ve kendinden yerleşmeli taban kontağı kurmaya çözüm getirdiği

gösterilmiştir.

Anahtar Kelimeler: Galyum nitrat, iki kutuplu transistör, ışık katkılı elek-

trokimyasal aşındırma, az hasarlı aşındırma, kendinden yerleşmeli işlem
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Chapter 1

Introduction

1.1 Motivation for GaN based bipolar transis-

tors

The material system GaN has pioneered wide application area in optoelectron-

ics. Its direct and wide band gap have made GaN based optoelectronic devices

at green to ultraviolet spectrum possible [1]. In addition to superior GaN op-

toelectronic devices, the electronics applications based on GaN have shown very

promising performance. Especially in the area of amplifiers for communications

and military purposes, GaN high electron mobility transistors, HEMTs, have

demonstrated high speed and high power performance [2, 3, 4]. Also in appli-

cation of low loss and high power switches, GaN based devices are widely used.

GaN has a relatively large band gap of 3.47 eV, a very high breakdown field

3.3 MV/cm and a high saturation velocity of 1.9x107cms−1 [5, 6]. All these

properties make GaN a good candidate for high power and high speed applica-

tions.
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Together with its good characteristics, alloys of GaN are also utilized in device

engineering. InGaN and AlGaN materials offer a wide range of band gap 0.8 eV

to 6.2 eV. This enables to design and fabricate novel devices.

The most interesting feature of GaN and its alloys is their highly piezoelec-

tric structure offering devices not possible with other III-V material systems

like GaAs or InP. A two dimensional electron gas (2DEG) region forms when

AlGaN/GaN heterostructures are grown. This highly concentrated and high

mobility region lead to the fabrication of today’s superior HEMT devices.

Comparison of semiconductor materials figures of merit is an efficient way

to find out their device characteristics. Power handling, power loss and RF

performance of a semiconductor material can be estimated from its figures of

merit. The Johnson’s figure of merit, JFOM=(vsatEB/2π)2 is a merit for RF

performances like cutoff frequency (fc) and maximum power handling capacity.

Since it relates saturation velocity and breakdown voltage, it demonstrates the

high power and high frequency capability of material. In Table 1.1, normalized

JFOMs for different materials are given and normalization is done by setting

JFOM of Si to 1. It is seen that in high power and high frequency applications

GaN based devices capability is much better than Si and GaAs, and better than

4H-SiC.

Material µ
(cm2/V s)

EB

(MV/cm)
Vsat

(x107cm/s)
Eg(eV ) NormalizedJFOM

Si 1500 0.3 1 1.1 1.0
GaAs 8500 0.4 0.6 1.42 0.64
4H-SiC 900 3.0 2.0 3.26 400
GaN 1500 3.3 1.9 3.47 436.8

Table 1.1: Figures of merit for different materials.

High power handling of GaN power transistors have already been demon-

strated by fabrication of GaN high electron mobility transistor (HEMT) and

field effect transistor (FET) devices. Although the progress of GaN field effect
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transistors is impressive, advances in GaN bipolar transistor has been slowed

down by the difficulties associated with GaN p-type material. The motivation

behind bipolar transistors is the inherent device characteristics of higher power

handling capacity, linearity, higher transconductance and uniform turn-on volt-

age. Furthermore surface problems which most FET devices suffer from do not

affect bipolar transistor characteristics that much.

In the literature, AlGaN/GaN and InGaN/GaN based bipolar transistors

were fabricated with dc current gains of 1.5 to 10 [7, 8, 9]. Transistor fabrication

methods require base regrowth to renew the etched surface so that better contacts

can be achieved. However regrowth is a complex, tedious and difficult process,

some other fabrication methods are demanded in order to overcome etch damage.

BPECO/DI etching can be a tool for the required etching method. We have

demonstrated that BPECO/DI etching is a low damage etching method and p-

type contacts on BPECO/DI etched surfaces are much better than plasma etched

surfaces.

Furthermore BPECO/DI etching is an isotropic etching and this provides

undercut profile after etching that is not possible with dry etching methods. This

undercut profile makes self aligned transistor fabrication possible. Self aligned

fabrication is a key for RF device fabrication. There was no self aligned bipolar

transistor fabricated yet due to the unavailability of etching that both gives

undercut and does not attack metal contacts.

We have demonstrated that these two features of BPECO/DI etching can

solve two problems in fabrication of bipolar transistors. To sum up, by using

BPECO/DI etching, self aligned bipolar transistors were fabricated.

3



1.2 The objective and scope of the thesis

In this work, a low damage wet etching method bias assisted photoelectrochemi-

cal oxidation in deionized water (BPECO/DI) is introduced and then it is utilized

in bipolar GaN transistor fabrication for the first time in literature.

The thesis consists of 6 chapters. Chapter 1 contains the introduction and

motivation. In chapter 2, the theory of Schottky diode and bipolar transistor are

described.

Chapter 3 explains the BPECO/DI etching experiment setup and its exper-

imental results. Fabrication methods and bipolar transistor fabrication process

are given in chapter 4.

Chapter 5 goes into the experimental results of Schottky contacts on etched

surfaces by low damage etching method BPECO/DI etching and results for fab-

ricated GaN based bipolar transistors. Finally, chapter 6 contains the discussions

regarding this work and conclusion.
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Chapter 2

Theory and Design

2.1 Basics of Schottky Diodes

In surface damage studies due to etching mechanisms, comparison of Schottky

diode characteristics is an efficient and commonly used way [10, 11, 12]. In order

to analyze the damage, we have compared Schottky characteristics of contacts

on etched and unetched surfaces [13]. To understand the effects of damage, it

is essential to know the metal-semiconductor contact properties and the causes

behind their changes. Hence, in this section, we will give some introductory

knowledge on Schottky contacts, analysis of the forward and reverse character-

istics, and some mechanisms for their changes.

Rectifying metal-semiconductor contact is named Schottky after W. Schottky

proposed a model for barrier formation in 1931 [14]. When a metal is contacted

with a semiconductor, a potential barrier is formed due to separation of charges at

the metal-semiconductor interface. Energy band diagrams of Schottky contacts

on n- and p-type contacts under thermal equilibrium are given in Figure 2.1.
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Figure 2.1: Energy band diagrams of metal contact to n-type (a) and p-type (b)
semiconductor under thermal equilibrium.

Because of the thermionic electron emission over the barrier, the current-

voltage characteristic is given by the relation,

I = Is[exp(
qV

nkT
)− 1] (2.1)

where Is, n and A∗ are the reverse saturation current, ideality factor and the

modified Richardson constant, respectively. The formula implies that the diode

reverse current saturates and the forward current increases exponentially with

applied bias. However, in experimental results, there are deficiencies from ideal

due to surface states, traps, field emission (FE), thermionic field emission (TFE),

surface roughness, inhomogeneity in Schottky barrier heights and other damage

mechanisms during fabrication.

Although dry etching systems cause more damage than wet etching systems

due to damage created by highly energetic atoms, both etching systems can result

in change of surface morphology by changing the crystal structure of surface, by

depositing etching residues, by forming interface layers or by creating antisites

on the surface. These surface deficiencies can significantly affect the Schottky

diode characteristics [10, 11, 12].
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The reverse characteristics like reverse breakdown voltage and leakage cur-

rent degrade with damage mechanisms, and these can be improved by various

treatment methods. The trap assisted tunnelling, hopping through the increased

surface states, surface roughening, barrier lowering, barrier inhomogeneity due

to surface nonuniformity or antisites can increase the reverse current. These also

degrades the breakdown voltage. Various treatments like low damage wet etch-

ing [15], annealing [16] or surface passivation [17] were tried to get the original

characteristics back.

While the observations on leakage current and breakdown voltage are not

anomalous, there are conflicted observations on ideality factor. One explanation

for the anomaly in ideality factor is given by Tung [18] as nonuniform Schottky

barrier height. In order to understand the reason for anomaly in ideality factor,

we should examine the current transport mechanisms for metal-semiconductor

interfaces. In Figures 2.2, a metal-semiconductor interface at different biases are

given. There are 4 conduction mechanism shown (1. Thermionic emission, 2.

Tunneling through surface traps, 3. Field emission (and thermionic field emis-

sion) tunneling, 4. Hopping through the deep trap states). From thermionic

emission model, thermionic emission current saturates at reverse biases and ex-

ponentially increases with forward bias voltages. In ideal diodes, only this current

transport is taken into account and the other mechanisms are ignored. However

in real life this is not so.

In Figure 2.2-a, if very small biases are applied, the dominant current mecha-

nism depends on temperature and the density of the surface states. If the diode

is near ideal, then second and third mechanisms can be ignored. And in this

case, if the temperature is low then field emission tunneling dominates and for

moderate temperatures both conduction mechanisms contribute to the current

conduction.
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Figure 2.2: Conduction mechanisms for metal-semiconductor contact under very
small bias (a), reverse bias (b), forward bias (c)
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At reverse bias voltages, as seen in Figure 2.2-b, since the barrier thickness

decreases significantly, tunneling through near surface states and field emission

tunneling mechanisms, that exponentially depend the barrier thickness, dominate

the overall current.

At forward bias voltages, as seen in Figure 2.2-c, in contrast to reverse bias

conduction, effect of tunneling through near surface states and field emission

tunneling mechanisms decreases. Therefore the dominant mechanisms become

thermionic emission current and hopping through the deep trap states.

Some damage mechanisms can create both deep traps and surface states.

Treatments like annealing or H2 plasma passivate the surface states and cannot

improve the deep traps in the bulk. Hence, while ideality factor is not improved,

the reverse characteristics improve after treatments. In other words, the anomaly

in ideality factor lies under different damage mechanisms than near surface states.

2.2 Basics of Bipolar Transistors

Explanation of principles of bipolar transistors can be readily found in textbooks

[19]. To follow the main idea of this work, a brief summary of operation of bipolar

transistors is given in the following.

In Figure 2.3, a bipolar transistor schematic is given where the basic forward

active operation of a bipolar transistor is illustrated. In forward active operation,

base-emitter junction is forward biased and base-collector junction is reverse

biased. By forward biasing base-emitter junction, electrons are emitted from

emitter to base and holes are emitted from base to emitter. These holes injected

to the emitter form one base current component (Ipe). Then some of electrons

leaving emitter recombine at depletion region of base-emitter junction (Ird) and

some recombine at neutral region of base (Irn). These three terms are the main

9



Figure 2.3: Bipolar transistor operation at forward active mode.

components of base current. Since the current diffuses to collector region is too

low compared to the terms mentioned above , it can be neglected. Therefore,

the base current can be given by three components.

Ib = Ipe + Ird + Irn (2.2)

There are two important parameters defined γ and αT , emitter injection coeffi-

cient and base transport factor. The emitter injection coefficient γ is defined as

the ratio of current injected to base to total emitter current.

γ =
Ine

Ine + Ird + Ipe

(2.3)

From the equation above, having an efficient emitter requires to have Ird + Ipe

much smaller than Ine. It can be satisfied, by designing emitter doping much

higher than base doping or using heterostructure where the offset between base

and emitter valance bands provides a barrier to avoid holes to diffuse into emit-

ter region. On the other hand, Ird depends on the material type and quality.

Since GaN is a direct band gap material and its p-type is problematic, this term

dominates the base current and results in large base currents.
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The base transport factor αT is defined as the ratio of current reaching to

collector to current injected from base.

αT =
Inc

Ine

(2.4)

The difference between the current terms, Inc and Ine is the recombination current

in the neutral base region. Hence the quality and thickness of the base material

have significant effects on both transport parameters.

The common base current gain α and the common emitter current gain β are

the most important DC parameters in bipolar transistor characterization. As in

Equation (2.5) and (2.6), α is the ratio of collector current to emitter current

and β is the ratio of collector current to base current.

α = γαT (2.5)

β =
α

1− α
(2.6)

In bipolar transistor design, the device structure thicknesses and doping levels

are needed to be optimized to improve current gain β, breakdown voltage VB

and RF performance of the device.

As given in Equation (2.5) and (2.6) to increase β, the emitter injection coef-

ficient and base transport factor are demanded. The emitter injection coefficient

can be improved by engineering AlGaN/GaN or GaN/InGaN heterostructures.

The wider band gap emitter blocks hole current from base to emitter and this

increases γ. On the other hand, good base transport factor requires thin base

and large Dn. Thin base and large Dn decreases the recombination in neutral

region and gets αT closer to 1.

Together with the above design criterions, the base material quality and the

low damage etching mechanisms are essential to improve both γ and αT . The

base material quality reduces recombination and increases minority carrier life

time τn. To decrease τn, base structure can also be engineered by band gap and
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doping grading. As τn decreases, cut-off frequency of the device is also improved.

Finally, the base material quality and low damage etching are very critical to

obtain high β’s and good RF results.
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Chapter 3

Bias-Assisted Photoenhanced

Electrochemical Oxidation in

Deionized Water

GaN dry etch process is well established for electronic and photonic device fab-

rications. There are several plasma etching systems like electron cyclotron res-

onance (ECR), inductively coupled plasma (ICP), chemically assisted ion beam

etching, and reactively ion beam etching (RIE). The common properties of these

plasma etching systems are high etch rates and uniform etching properties. How-

ever, plasma etching results in significant surface damage that degrades optical

and electronic properties of material. There can be three results of plasma etch-

ing on the etched surface; 1) Deposition of residue on the surface, 2) Diffusion

of the plasma constituents or etching products, and 3) Generation of defects

in the crystal lattice. These surface damage mechanisms result in leakage cur-

rent by creating traps and these traps increase the tunnelling current between

semiconductor and metal deposited on the surface.
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Techniques for low-damage etching of GaN and its alloys are important for

optimization of devices such as HEMTs and HBTs [20, 21, 22, 23]. Ultravi-

olet photoenhanced electrochemical (PEC) etching and oxidation of GaN is a

versatile method that is both band-gap and doping selective [24, 25, 26, 27].

PEC etching can achieve a smooth surface with low etch damage [28, 29]. A

process similar to PEC etching and oxidation of GaN in alkaline solutions is

the bias-assisted photoenhanced electrochemical oxidation of GaN in deionized

water (BPECO/DI) [30]. In this approach, the oxide that forms on the surface

remains intact and thick oxide layers can be obtained. To achieve etching of the

GaN surface, the oxide grown by BPECO/DI can be removed by an HCl or HF

etch following the oxidation. In this study, the etching process employing bias-

assisted photoenhanced electrochemical oxidation in DI water and a subsequent

acid bath removal of the oxide is called ”BPECO/DI etch”.

Similar to the PEC etching in alkaline solutions, the BPECO/DI etching

process is attractive due to the band gap and n/p doping selectivity that can be

achieved. However, this process has additional advantages that the BPECO/DI

oxidation and etching can be performed with a photoresist mask in place and

also without damaging existing ohmic or Schottky metalization on the sample.

Catalytic titanium masks are not needed for BPECO/DI etching and the process

can be applied to relatively large areas. Hence, the process does not suffer from

the inhomogeneities commonly observed close to the titanium mask edges used

with PEC and bias-assisted PEC (BPEC) processes. Thus, BPECO/DI etching

has the potential to be a technique that is more widely applied than PEC etching.

Doping selective etching by BPECO/DI etching was achieved. The different

band bending for n- and p-type GaN materials, as seen in Figure 3.1, explains

the reason behind the selectivity. Since n-type material band at the semicon-

ductor/electrolyte interface bends upwards, holes prefer to move to the surface.

However in p-type material, due to downward band bending, holes are taken
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Figure 3.1: Different band bending of n- and p-type GaN/electrolyte interface

away from the surface. In other words, to accumulate holes on the p-type mate-

rial surface, more potential is needed.

2GaN + 6h+ + 6OH− −→ Ga2O3 + 3H2O + N2 ↑ (3.1)

Oxide formation mechanism is given by Equation 3.1. As it is seen, the

photo-generated holes are essential for oxide formation. The oxidation products

are Ga2O3, 3H2O and N2. Due to the reaction product N2, bubbles going out

from the sample surface were observed during the oxidation .

3.1 Experimental Setup

The BPECO/DI oxidation setup is given in Figure 3.2. The sample is biased in

deionized (DI) water in the range of 4 to 20 Volts and the light from a 200 W Hg-

Xe UV lamp was focused by an elliptical mirror. The sample was placed close to

the focal point. We have used Al as counter electrode. And in case of oxidation

of Al electrode, before all oxidations, the electrode was dipped into HCl. There

is a cooling fan to prevent overheating of the sample by UV light. Different
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Figure 3.2: The experiment setup of BPECO/DI etching system

methods were tried to have contact to the sample, but the most convenient way

was found a nickel coated iron tip. The coating nickel is to prevent the corrosion.

During oxidation, the voltage on the sample and the current passing through were

measured to ensure that the contact to the sample was not lost and to record

the current during oxidation. The oxidation time was limited by thickness of the

undoped layer and was selected to be 3 hours after preliminary tests. The water

level was almost the same for all experiments and it was 1 cm above the sample

surface. Also in long oxidation times, the water evaporated by UV light was

refreshed by adding new DI water so that the water level was kept constant. The

DI water resistance was more than 13 MΩcm for all the oxidation experiments.
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3.2 Experiment

The layer structure used in this study consisted of a 0.5 µm undoped GaN layer

grown on top of 0.5 µm and 2x1018 cm−3 Si doped GaN layer at the bottom. All

samples were grown on sapphire substrates using MOCVD. Before the oxidation

of the samples with BPECO/DI, mesa etching and ohmic contact fabrication

steps were completed. The mesa structures were needed for establishing ohmic

contacts to the highly doped GaN layer. A few of the mesa structures were

partially masked with sputtered SixNy to enable etch depth measurement. For

the collection of photogenerated electrons, 1 mm wide ohmic contact metalization

was fabricated on the four edges of the samples.

In order to measure the BPECO/DI oxide thickness, the top of the mesa

structures were patterned by photoresist following BPECO/DI oxidation, and

the oxide was etched from the exposed areas by a 1:5 HCl:DI etch. After the

measurement of the oxide thickness from the exposed edge by using a profilome-

ter, the photoresist mask was removed and all of the remaining oxide on the

surface was etched. Next, in order to measure the etch depth, the SixNy mask

was removed by a 1:100 HF:DI etch and the etch depth was measured from

the exposed edge on top of the mesa structures. Some of the samples were an-

nealed at 700 ◦C for 30 seconds in an effort to remove the BPECO/DI etch

damage. As a final step, Ni/Au (45/50 nm) Schottky structures were patterned

and evaporated on the mesas. Immediately before loading of the samples to

the evaporator for Ni/Au evaporation, the samples were dipped to 1:2 HCl:DI

solution for 30 seconds, rinsed, and blown dry with nitrogen. AES and AFM

measurements were taken from bare samples without mesas and Schottky struc-

tures, but with the BPECO/DI contact metalization in place on four edges of the

sample. Capacitance-voltage measurements were done using an HP-4284 LCR

meter at 10 and 100 kHz. AES measurements were performed on a PHI 660
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scanning Auger microprobe. The AES spectra was taken from a 5x5 micron area

on the surface. All measurement results are given in Chapter 5.

3.3 Experimental Results

V oltage(V ) Time(min) EtchDepth(nm) OxideThickness(nm)
4 60 50 400
6 60 65 450
6 120 130 700
6 180 220 780
8 60 120 600

Table 3.1: Oxide thicknesses and etch depths measured at different oxidation
conditions.

Etch depth versus time and voltage data obtained as described above are

given in Table 3.1. The etch depths and oxide thicknesses given in Table 3.1

were measured from the top of the mesa structures as noted above. In earlier

work [30], saturation of oxide thickness with time was observed to set in after

1 hour of oxidation and the saturated oxide thickness reported at 5 V bias was

175 nm. In the present study, a similar saturation of oxide thickness is observed.

However, it takes about 2 hours for strong saturation to be observed, and the

resulting oxide thickness is much larger. Crucially, it needs to be noted that the

etch depth saturation was not observed at the maximum feasible etching time,

despite the strong saturation observed in the oxide thickness. Otherwise, we can

observe that the etch rate increases with increasing anode bias, and in general

stays in the same range as the values reported in earlier work [30].

The undercutting of annealed Ti/Al/Ni/Au ohmic pads were observed by

scanning electron microscopy. A representative image is shown in Figure 3.3,

where the undercutting of the metalization is clearly observed. For this spe-

cific sample, the oxidation was performed for 60 minutes under 10 V bias. The
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Figure 3.3: An SEM image of the Ti/Al/Ni/Au metalization undercut by the
BPECO/DI etching.

roughness observed on top of the metalization is typical of Ti/Al/Ni/Au and

other Ti/Al based annealed ohmic contacts to GaN. The roughness of the etched

surface can also be seen in Figure 3.3.

Ga N O C S Cl
As grown 40.1 40.3 10 8.1 1.5 -
Oxidized 34.4 - 58.8 6.7 - -
Oxidized etched 37.9 37.9 11.9 11.9 - 0.4
Oxidized etched
and annealed

34.4 32.3 12.8 19.7 0.5 0.3

Table 3.2: Atomic concentration percentages as measured by Auger electron
spectroscopy on samples at various stages of etching process.

The relative percentages of atoms on the surface given by AES is shown in

Table 3.2. It is seen that oxidation results in a surface without any nitrogen

content. After the removal of the oxide, the atomic percentage of oxygen on the

surface was very close by 1% to the levels in the original sample. It can also be
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seen that, annealing of the etched sample did not create a significant change in

atomic percentages.

Besides p-type etching tests were performed. A p-type layer of 1.0 µm thick

and 2x1019 cm−3 Mg doped was used in these tests. Prior to BPECO/DI oxi-

dation, for activation, the layer was annealed at 750 ◦C for 20 minutes. It was

observed that the p-type material was etched at bias voltages more than 12 V

while n-type material etch was done over 4 V. This implies that by biasing the

sample between 4 to 12 Volts, p/n selective etching is achieved.
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Chapter 4

Fabrication of Bipolar

Transistors

The fabrication process of self-aligned bipolar transistor consists of 10 steps.

These steps are emitter metallization, base etch, base metallization, collector

etch, collector metallization, mesa isolation, post formation, air bridge metalliza-

tion, planarization and RF pad formation. In this fabrication, the most critical

point is the low damage base etching and self-aligned base contact formation. It

was demonstrated that BPECO/DI etching is a low damage etching method and

gives undercut that makes the self-aligned base contact possible. Hence, we have

managed to fabricate low damage and self-aligned base contacts by engineering

BPECO/DI etching.

4.1 Metal Organic Chemical Vapor Deposition

(MOCVD) Growth

Metal-organic chemical vapor deposition (MOCVD) and molecular beam epitaxy

(MBE) growth are two major GaN growth methods [31, 32]. All samples used
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in this work were grown in the MOCVD machine located in Nanotam Research

Center in Bilkent University. All GaN bipolar transistor structures were grown

on sapphire substrates. An unintentionally doped buffer layer was first grown

and followed by an n-type subcollector and an unintentionally doped collector.

Then a p-type Mg doped base and n+ emitter layers were grown. The carrier

concentrations for the emitter, base and collector were estimated to be n=5x1018,

p=1x1017 and n=7x1016 cm−3. The layer structure used in this study is given in

Figure 4.1.

200nm Emitter n+ GaN Si 5x1018 cm−3

150nm Base p GaN Mg 2x1019 cm−3

500nm Collector undoped GaN
500nm Subcollector n+ GaN Si 5x1018 cm−3

1000nm Buffer undoped GaN
Sapphire

Figure 4.1: Structure of Bipolar Junction Transistor

4.2 Process Steps

4.2.1 Sample Preparation

The samples used in the fabrication were cut into 8x8mm2 square pieces because

the masks that we used were 7x7mm2 and 1 mm edge was required to have

contacts for BPECO/DI oxidation. After cleaving into small pieces, the samples

were cleaned by two step process before fabrication. First, the samples were

dipped into acetone for 3 minutes under ultrasound, then dipped into isopropanol

for 3 minutes under ultrasound. Finally, the samples were rinsed in deionized

water, dried with nitrogen and baked at 110 ◦C for 1 minute for dehydration.
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4.2.2 Lithography

Photolithography (PL) is a process to pattern a mask on thin layer of radia-

tion sensitive photoresist and it is required to define the areas to be etched or

coated by metal. Positive photoresist, AZ5214E, was used in our lithography

processes and the alignment and exposure were done by using Karl-Suss MJB3

mask aligner.

Normal Lithography for Etching

In normal lithography process for etching, first the photoresist, AZ5214E, was

spined at 4000 rpm for 40 seconds and at this rate, the photoresist thickness

was around 1.5 µm. Then it was soft baked at 110 ◦C for 50 seconds and

exposed to 6 mW UV light for 28 seconds. Then the pattern was developed in

AZ 400K/DI(1:4) for approximately 32 seconds and post baked at 110 ◦C for 3

minutes.

Normal Lithography for Metal Evaporation

We have utilized lift-off photoresist (LOR 5B) in our photolithograpies for met-

allization to ease the lift-off process. LOR is a polymethylglutarimide (PMGI)

based polymer and it dissolves in AZ400K developer. First, the lift-off photore-

sist (LOR 5B) was spinned at 4000 rpm for 40 seconds. At this spin rate, the

approximate LOR thickness was about 1.2 µm. Then it was baked at 170 ◦C for

5 minutes. After LOR bake, the photoresist, AZ5214E, was spinned at 5000 rpm

for 40 seconds. Next it was baked at 110 ◦C for 50 seconds and exposed to 6 mW

UV light for 28 seconds. Then the pattern was developed in AZ400K/DI(1:4) for

35-40 seconds. The development took 3-5 seconds more because of development

of LOR resist.
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Image Reverse Lithography

In some parts of our process like collector etch, bridge post and mesa definition,

image reverse lithography is needed. First the photoresist, AZ5214E, was spinned

at 5000 rpm for 40 seconds and its thickness was around 1.3 µm at this rate.

Then it was soft baked at 110 ◦C for 50 seconds and exposed to 6 mW UV light

for 14 seconds. Next it was post baked at 120 ◦C for 120 seconds and flood

exposed to 6 mW UV light for 28 seconds. The pattern was developed in AZ

400K/DI(1:4) for approximately 25 seconds. For collector etch, the photoresist

was post baked at 110 ◦C for 3 minutes to decrease the etch rate of photoresist.

4.2.3 Etching

In our fabrication, GaN was etched by either BPECO/DI etching system in

polymer laboratory or RIE etching system in Class 100 laboratory in Advanced

Research Laboratory.

Dry Etching

In our processes, an ultra high vacuum Leybold RIE system was used as dry

etching system. GaN based materials can be etched by using CCl2F2 gas plasma.

Also in planarization step, we have etched PMGI by using CHF3 and O2 gas

mixture.

BPECO/DI Etching

BPECO/DI etching is our newly developed etching mechanism. This technique is

not well established as RIE etching and there are still problems with this system

as explained in Chapter 3. The importance of utilizing BPECO/DI etching is
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that base etching is preferred to be low damage and the etching profile should

have negative slope so that the self-aligned structure can be obtained without

shorting the emitter and base as shown in Figure 4.2.

Figure 4.2: Self-aligned metallization on a)positive and b)negative slope etched
surfaces

The BPECO/DI etching was performed at 20 V for 2x60 minutes to etch 200

nm GaN emitter layer. After 60 minute oxidation, the grown oxide was etched

in HCl and then another 20 V 60 minute oxidation was performed to etch 200

nm emitter layer.

4.2.4 Metallization

The metallization is a step to make ohmic or Schottky contacts to the desired

regions defined by photolithography step. For this process, the metals were

evaporated by using ultra high vacuum LE590 boxcoater. All the metallization

processes were done under vacuum less than 5x10−6 mBar. The metallization

step is also very critical to make good ohmic and Schottky contacts, therefore the

samples were dipped into HCl/DI (1:2) solution right before loading to vacuum

chamber to remove the native oxide on the surface. As a result, contact quality

was increased.
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4.2.5 Annealing

The contacts were annealed by using rapid thermal annealing (RTA) system

to have better ohmic contacts on n- and p-type materials. The ohmic contacts

deposited were annealed at 750 ◦C under nitrogen and 550 ◦C under air for n- and

p-types, respectively. Also annealing is very critical before BPECO/DI oxidation

because non-annealed metals and metals annealed at temperatures higher than

750 ◦C or lower than 650 ◦C were oxidized during BPECO/DI etching and they

were removed in HCl bath. However, if the metals were annealed at 680 ◦C, they

were not affected by BPECO/DI etching and they were not removed during HCl

bath.

4.3 Bipolar Transistor Fabrication Process

The bipolar transistor fabrication is a 10 step process and the device structure

given in Figure 4.3. Also a scanning electron microscope (SEM) image of the

device before planarization can be seen in Figure 4.5.

4.3.1 Activation Annealing

During MOCVD growth, magnesium (Mg) in the p-type material is deactivated

by hydrogen (H) atoms. A high temperature annealing was required to activate

Mg atoms. Hence the samples were annealed at 750 ◦C for 60 minutes. The ac-

tivation temperature was kept high enough so that the activation was completed

and low enough so that the GaN crystal structure was not deformed and the Mg

diffusion to n-type layers were avoided. The activation time was usually between

15-30 minutes if p-type materials at the top most layer but in npn structure,
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Figure 4.3: Bipolar junction transistor device structure

there is a 200nm emitter layer on the base and its duration was increased to 60

minutes to increase the outdiffusion of H atoms.

4.3.2 Emitter Contact

The emitter contact was patterned by a normal photolithography and then

Ti/Al/Ni/Au (200 A◦/1500 A◦/800 A◦/6000 A◦) was evaporated. The total

metal thickness was approximately 850 nm. Since the contact hills to RF pads

were defined at this step, the thick emitter metal made the planarization easier

and reliable. Then the metal was annealed to increase ohmic quality and not

to be oxidized in the next BPECO/DI etching process. The emitter metal after

annealing is seen in Figure 4.4.
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Figure 4.4: The emitter metal after annealing

4.3.3 Base Etch

Before base etching by BPECO/DI etching, a 200nm SixNy layer region was

patterned by photolithography, and SixNy was grown by PECVD and then

lift-off. This SixNy layer protected some unused parts on the sample so that

the BPECO/DI etch depth was measured. After SixNy growth, the layer was

BPECO/DI oxidized at 20 V for 60 minutes and the oxide was removed by HCl

bath. Then the etch depth was measured from SixNy features on the sample.

The etch depth was usually in the range of 90-120 nm. Therefore to etch total

of 200nm, once BPECO/DI oxidation was done at 20 V for 60 minutes and the

oxide was removed by HCl bath. Finally, the SixNy layer was removed in a

diluted HF/DI(1:100) solution and the final etch depth was measured.
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4.3.4 Base Contact

After base etching, base PL was done and Ni/Au (100 A◦/200 A◦) metallization

was used to have ohmic contact to p-type GaN material. After lift-off, the metal

was annealed at 550 oC for 180 seconds under air to make ohmic contact.

4.3.5 Collector Etch

The collector contact should be on the highly doped subcollector region so that

a good ohmic contact was done to collector region. Therefore the base and

unintentionally doped (UID) collector layers were needed to be etched. With an

image reverse lithography of base, it was etched down to subcollector region via

RIE etching.

4.3.6 Collector Contact

After collector contact PL, Ti/Al/Ni/Au (200 A◦/1500 A◦/400 A◦/500 A◦) was

evaporated. The collector contact was not annealed but since it was made on a

highly doped n region, it showed good ohmic quality.

4.3.7 Mesa Isolation

The devices on the sample and more importantly the base hill and subcollector

region should be isolated. For this reason, mesa PL was done and etched down

to the middle of the undoped buffer layer.
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4.3.8 Post Formation

Post between the base hill and base metal was required before bridge metalliza-

tion because the bridge would go over this post. The post material was a polymer

PMGI. PMGI is widely used for this purpose, because of its desired reflow prop-

erties and its suitable chemistry to the normal PL. After PMGI spinned, post

PL was done and then it was exposed under 200 W UV source. After exposure,

PMGI was developed in developer MF319/DI (1:1) and the photoresist was re-

moved with acetone. Finally, the post was baked to reflow. The reflow is needed

to provide a smooth and continuous way for the bridge or to prevent breaking

the bridge from edges.

4.3.9 Air Bridge Process

After post reflow, bridge metallization PL was done and Ti/Au (300 A◦/8000

A◦) was evaporated. The bridge metal should be thick enough to increase its

endurance. The SEM picture of the device after air bridge formation is given in

Figure 4.5.

4.3.10 Planarization

The planarizaion is required for RF pad metal formation. We have used benzo-

cyclobutene (BCB) for planarization. After hard bake, BCB is very resistive to

chemicals and has a very high resistance (1x1019Ωcm), hence it is widely used

for this purpose. After spinning BCB and hard baking, by RIE etching with

CHF3 and O2 gas mixture, BCB was etched below the level of emitter, base and

collector hills. It has to be noted that BCB etching is very critical. Etching

less than the required level, would make open all the contacts and etching more

would short the emitter base contacts. Hence the emitter metal was evaporated
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thick (850nm) to prevent shorting emitter base contacts. Together with emitter

region thickness (200nm), there was a 1 µm safe region to stop etching.

4.3.11 RF Pad Metal Formation

After planarization, the RF pad metal PL was done and Ti/Au (300 A◦/6000

A◦) was evaporated. Thick metal pads decrease the parasitic resistances and

increase the device performance. The RF pad metal formation was the last step

of fabrication and final view of the device pictures taken by optical microscope

is given in Figure 4.6.
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Figure 4.5: The device after air bridge process (top) and the air bridge connecting
the base to the base hill (bottom)
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Figure 4.6: The final view of the fabricated device
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Chapter 5

Measurements and Results

5.1 Schottky Measurements and Results

The current-voltage characteristics of Schottky contacts fabricated on surfaces

with various treatments are summarized in Table 5.1. The estimated breakdown

voltage was calculated assuming uniform field in the undoped GaN.

Voltage
(V)

Time
(min)

Etch
Depth
(nm)

Post Etch
Treatment

Breakdown
Voltage
(VBR (V))

Ideality
Factor

Estimated Break-
down Voltage VBR

(V)
- - 0 - -70 1.25 -70
4 60 50 - -54 1.52 -63
4 60 50 annealed -60 1.89 -63
6 60 65 - -44 1.71 -61
6 60 65 annealed -51 1.72 -61
6 120 130 - -33 1.67 -52
6 120 130 annealed -41 1.82 -52
8 60 120 - -38 1.93 -52
8 60 120 annealed -54 1.97 -52

Table 5.1: Characteristics of Schottky contacts fabricated on GaN surfaces with
various treatments.
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Figure 5.1: Reverse current-voltage characteristics of Schottky contacts fabri-
cated on surfaces after various treatments.
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Figure 5.2: Forward current-voltage characteristics of Schottky contacts fabri-
cated on surfaces after various treatments.
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Figure 5.1 and 5.2 show the reverse and forward current characteristics of

these devices. From these results, we saw that the BPECO/DI etching results

in a reduction in breakdown voltage and an increase in the ideality factor. The

breakdown voltages were higher for samples that have been annealed after the

removal of the BPECO/DI oxide. After annealing, under certain conditions,

breakdown voltages increased back to a value that was expected from the decrease

in the undoped layer thickness. Thus, it was demonstrated that by etching

of BPECO/DI oxide and subsequent annealing it is possible to fabricate good

quality Schottky diodes on surfaces etched as much as 120 nm. Thus, it can be

suggested that after the oxidation, etching, and annealing procedures the surface

obtained is low damage.

The capacitance-voltage (C-V) characteristics presented in Figure 5.3.a-c in-

dicated that all diodes were fully depleted at reverse biases and the untreated

surface had uniform carrier density profile. After etching of the PEC grown

oxide, the surface had a region of low carrier density as indicated by the high

slope observed in Figure 5.3.b for bias voltages close to 0 V. After annealing,

the C-V characteristics shown in Figure 5.3.c approached to that of an untreated

surface shown in Figure 5.3.a. Given the information about the point defects in

GaN [33, 34], it may be concluded that the defects created by bias assisted PEC

oxidation are gallium vacancies bound to oxygen interstitials. Previous stud-

ies based on photoluminescence investigation of GaN etched by PEC in KOH

solution have reached the same conclusion [35].

AFM scans indicated a roughening of the etched surfaces after oxidation.

The mean roughness of the as grown sample was 0.3 nm. As measured from a

sample that was oxidized for 2 hours with 6 V bias, the root mean square (RMS)

roughness of the etched surfaces was 15.6 nm and the mean RMS roughness of

the etched surfaces after annealing was 10.3 nm. The increased roughness of the
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Figure 5.3: The 1/C2 as a function of bias for a Schottky structure a) on un-
treated surface b) on surface etched by PEC oxidation at 6 V for 120 minute c)
on surface etched as in b) and annealed as described in the text.

etched surface indicated that the oxidation process was not diffusion limited de-

spite the presence of an oxide cover. This indicated that our process of oxidation

likely had some deficiencies manifesting itself in the nonsaturating etch depths

and the increase in roughness. It was also possible that the increased roughness

was related to the defects in the material being etched [36].

The fact that near ideal breakdown voltages and C-V characteristics were

obtained on 120 nm etched surfaces after a 700 oC 30 s anneal indicated that

the damage induced by BPECO/DI was shallow and could easily be removed.
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In contrast, surfaces etched by RIE by only 10 nm using the best techniques

requires a 850 oC, 30 s anneal for damage removal. Deeper RIE etches requires

etching of the sample by KOH for damage removal, making the process unusable

for practical purposes. Similarly, the PEC process is not suitable for use in

self-aligned emitter-base etching GaN HBT structures, since PEC employs KOH

during the etching process which needs to be performed at low etching rates

to achieve low damage. Thus, etching of GaN by etching of BPECO/DI oxide

stands out as a unique tool for deep etching without creating extensive surface

damage. Such a process is critically needed for GaN based HBT fabrication.

The reduction of the roughness after annealing might be a factor in the im-

provement of the Schottky characteristics seen with annealing. However, the

C-V and AES results showed that the improvement was more likely to be related

to removal of point defects. The reduction of the RMS roughness observed with

the annealing may be attributed to decomposing of the oxide that remains on

the surface after oxide etching. However, no change in oxygen ratio was observed

with AES. So, the mechanism with which the annealing resulted in smoothing

of the etched surface remained unclear.

We have demonstrated good quality Schottky contacts on surfaces etched

120 nm using the BPECO/DI process. These results presented here are the

first experiments reporting a good quality Schottky devices on GaN surfaces

etched more than a few tens of nanometers by any method. The good quality

of the Schottky contacts indicated that low-damage etching of GaN surfaces

could be achieved by BPECO/DI process. Annealing of the etched surfaces

at 700 oC for 30 seconds in nitrogen resulted in successful removal of the etch

damage. After this anneal, the Schottky breakdown voltages approached to the

values expected from the reduced thickness of the n-GaN layer. Capacitance-

voltage measurements indicated the reduction in Schottky breakdown voltages

after etching and the improvement observed after annealing was most likely due
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Figure 5.4: I-V characteristics of 7µm TLM pattern on control, BPECO/DI
etched and RIE etched surfaces

to point defects. The roughening that resulted from the BPECO/DI oxidation

and etching was not clearly understood and was likely to be related to deficiencies

in our specific equipment and should be investigated further on.

In addition to Schottky contact study, p-type and n-type ohmic contacts

were formed on BPECO/DI etched surfaces. From the measured n-type ohmic

contacts, no difference was observed between the I-V characteristics of TLM

patterns on etched surface and unetched surface. However for the p type contacts,

the measured I-V characteristics degraded with BPECO/DI etching but it was

much better than the I-V characteristics of the contact on the RIE etched p-type.

The changes in Schottky diode characteristics and ohmic characteristics sug-

gest that the BPECO/DI etching results in a damage near surface. Improvement

of reverse characteristics and nearly unchanged ideality factors support that some

of the damage can be improved and some cannot be removed by short annealing.
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An explanation for the observed Schottky characteristics and ohmic behaviors

can be that BPECO/DI etching creates defects on or close to surface. These

states cause trap assisted tunnelling and degrade reverse leakage as explained in

Chapter 2. Annealing removes these states and therefore passivation of surface

states improves reverse characteristics. Also compensating defects very near to

surface decrease the free carrier density near the surface by capturing electrons.

This was observed in C-V measurements and it got close to the original case

after annealing out the near surface states. This defect can be gallium vacancies

bound to oxygen interstitials VGa − ON , because during oxidation, OH− ions

prefer to make chemical reactions with gallium (Ga) atoms instead of nitrogen

(N) atoms. This fact and presence of oxygen (O) atoms increase the density

of gallium vacancies VGa. Hence a consistent picture is that there are gallium

vacancies VGa and gallium vacancies bound to oxygen interstitials VGa−ON , that

is, gallium vacancy-oxygen complexes [33, 34]. This defect was also observed in

PEC etched surfaces as the origin of yellow luminescence [35]. Since these defects

are compensating, the degradation in p-type ohmic quality can also be explained

by decreased hole concentration on the p-type surface.

The change in ideality factor of Schottky diodes might be explained by

nonuniform Schottky barrier height (NSBH) explanation of Tung [18]. It is

known that the Schottky barrier height is nonuniform for inhomogeneous sur-

faces. This inhomogeneity can be due to the nonuniform etching, surface rough-

ness due to nonuniformity sources coming from the etching system like light

intensity, potential distribution, etc. As a result of this nonuniformity, there are

patches with different SBH’s and the current conduction occurs through these

patches. This conduction mechanism is called ”parallel conduction mechanism”

and a sum of individual currents flowing through the patches with area (Ai) and

SBH (φi) is given by;

I =
∑

i

Ii = A∗T 2[exp(βVa)− 1]
∑

i

exp(−βφi)Ai (5.1)

40



Tung claims that ”The parallel conduction mechanism is in significant error when

the SBH varies spatially on a scale less than, or comparable to, the depletion

region width. The error arises because the equation fails to take into account

the interaction between neighboring patches with different SBH’s.” The situation

can be explained by the conduction path through a low SBH patch with neighbor

high SBH patches is pinched off. The pinch off is defined as majority carriers

see a barrier higher than the band-edge at metal-semiconductor interface. This

pinch off results in deficiencies in ideality factor.

The being pinched off for a patch is directly related to its size. The potential

distribution by solving the Poission equation gives that the potential increases up

to a distance then it decreases along the patch, if the patch size is less than the

peak point position, then the patch is pinched off due to the potential distribution

electrons see a higher barrier than the band edge barrier. This condition is given

by the equation:

∆

Vbb

>
2R0

W
(5.2)

where ∆ is the barrier height difference between low SBH and neighbor SBH’s,

Vbb is the band banding potential, R0 is the radius of the patch, and W is the

depletion width.

As it is mentioned, the patch sizes less than or comparable to depletion width

are pinched off. Since the doping of semiconductor controls the depletion width,

the number of pinched off patches are directly related to the doping of semicon-

ductor. After knowing the potential distribution, the current flowing to and from

low SBH patches can be calculated.

n = 1 +
γ

3η1/3V
2/3
bb

(5.3)

where η ≡ εs

qND
and the patch size characteristics γ is defined as γ ≡ 3(∆R2

0/4)1/3
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Then an ideality factor can be calculated from dI/dV and it is given in Equa-

tion (5.3). This also explains the doping and applied potential dependence of

the ideality factor and enlightens the anomaly on the ideality factor.

Explanations given above can enlighten the measurement results. Although

we have used all available measurement instruments to investigate the etching

damage, temperature dependent measurements and deep level transient spec-

troscopy (DLTS) can be done for further understanding of the damage mecha-

nism of BPECO/DI etching.

5.2 Bipolar Transistor Measurements and Re-

sults

The fabricated devices, as explained in Chapter 4, were measured on HP 4145B.

The I-V characteristics of TLM patterns on all regions, base-emitter and base-

collector junctions were measured to characterize the device performance.

Figure 5.5: I-V Characteristics of 6 µm TLM on the base region
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After etching the emitter layer and forming the self-aligned base contact, the

current-voltage characteristics of TLM patterns on base region were measured.

The I-V characteristic of a 6 µm TLM pattern of 40x100 µm is shown in Figure

5.5. In addition to the high base resistance, a rectifying voltage of 5V for nonan-

nealed base contact and 2 V for annealed base contact were observed in the base

TLM measurements. These nonidealities, the high base resistance and rectifying

voltage, are mainly due to the low doping concentration in the base and poor

base contacts. A similar rectifying, 2 V, voltage can also be seen in Figure 5.4,

the I-V characteristics of TLM pattern on bare p-type material and it could be

deduced that it would be much worse if RIE etched.

I-V characteristics of base-emitter junction and base-collector junction were

shown in Figure 5.6 and Figure 5.7. Figure 5.6 demonstrates that self aligned

base-emitter junction was not shorted and diode characteristics proved that the

base metal was on p-type layer. In order to further determine the base con-

tact placement, two experiments were performed. We have intentionally etched

one sample less than emitter thickness and another sample more than total of

emitter and base thicknesses. In other words, base metals were placed on emit-

ter and collector layers. Both I-V measurements showed back-to-back Schottky

characteristics. Figure 5.8 shows I-V characteristics of TLM patterns on sample

intentionally etched less than emitter thickness. Therefore it was sure that in

our experiment, we achieved to place the base metal on the p-type layer.

The ideality factor and breakdown voltage of base-emitter junction were in

the range of 2-3.5 and 14-22 V respectively. On the other hand, the ideality factor

and breakdown voltage of base-collector junction were between 4-5.5 and 50-75

V respectively. High ideality factors for GaN based p-n junctions have commonly

been seen because of low doped base region. Furthermore high ideality factor

of base-collector junction could be related to the low doping of collector region.

Also the low breakdown voltage of base-emitter junction was due to the high

43



Figure 5.6: I-V Characteristics of base-emitter junction in linear scale (top) and
logarithmic scale (bottom)
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Figure 5.7: I-V Characteristics of base-collector junction in linear scale (top) and
logarithmic scale (bottom)
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Figure 5.8: I-V Characteristics of TLM patterns on sample intentionally etched
less than emitter thickness in linear scale (top) and logarithmic scale (bottom)
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doping of emitter and thin base layer. The effect of high base resistance is also

effective on both the degradation of ideality factors and the low current densities

in both junctions. Due to high access base resistance, the current density in

base-emitter junction was too low because base-emitter junction is affected by

access base resistance much more than base-collector junction.
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Chapter 6

Discussions and Conclusions

The lack of a low damage etching process that is compatible with rest of the

fabrication steps has been a factor hindering GaN HBT fabrication. For the

fabrication of GaN HBTs, an n/p doping selective etch process that does not

result in damaged surfaces after 100 to 150 nm etching is necessary.

In this study, we demonstrated that BPECO/DI etching yields low-damage

surfaces after etching as much as 120 nanometers. A post-etch anneal at 700

oC is required to improve the surface characteristics to near ideal. The prop-

erties of surfaces oxidized and etched by BPECO/DI were investigated using

Schottky diodes fabricated on etched surfaces and also by using Auger electron

spectroscopy (AES) and atomic force microscope (AFM) measurements. The

results presented here should motivate further investigation of BPECO/DI for

use in GaN HBT processing.

Then we have fabricated self aligned bipolar transistors by engineering

BPECO/DI etching. The fabricated devices did not work as estimated. The

reasons that degrade the transistor performance can be base material quality as-

sociated with growth or fabrication. First of all, the fabricated p-type layer with

the similar conditions of p-type material of npn layers has shown 1 Ωcm sheet
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resistance and this is comparable to the p-type sheet resistances in the literature.

However, the p-type surface was always very rough compared to n-type materials

and hexagonal shaped defects were intensively seen on the surface.

On the other hand, the problems might come from fabrication. First of

all, the activation annealing has to be done before emitter etch because the

emitter contact cannot stand for long and high temperature activation annealing.

Furthermore since there is undercut, the mushroom like emitter structure melts

and the emitter-base junction shorts. Hence while activating p-type base, there

is a 200nm emitter layer on the base. This might prevent the outdiffusion of the

H atoms that inactivate the Mg atoms in p region.

There are also some uncertainties with BPECO/DI etching. For instance, the

roughening mechanism still cannot be understood fully. The reason of roughening

in PEC etching is proposed to be dislocations and this can be overcome by

increasing the UV light intensity or decreasing the concentration of electrolyte.

However, we could not achieve smooth surface as in PEC etching. Also while

etching npn layers, the etch rates were decreased and surface roughness was

significantly increased compared to n layers etched with the same conditions.

This can be explained by the reduction of hole lifetime in highly doped emitter

layer. Also the high defect and dislocation density in p-type region affect n+

emitter region grown afterwards. Hence this also explains that the etch rate of

n+ emitter layer decreases and the surface roughness increases.

The future study can be focused on npn layer growth and also on HBT

fabrication by utilizing BPECO/DI etching. Even though currently there are

still problems that should be solved for good bipolar transistor characteristics,

this fabrication method is a very strong candidate for the future GaN bipolar

transistor fabrication.
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