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Abstract-Cooperative spectrum sensing methods in the lit­
erature assume a static communication scenario with fixed 
channel and propagation environment characteristics. In order 
to maintain the level of sensing reliability and performance 
under changing channel and environment conditions, in this 
study, an online adaptive cooperation scheme is proposed. Energy 
detection data from each cooperating sensor are fused together 
by an adaptive weighted linear combination at the fusion center. 
Weight update operation is performed online through the use 
of orthogonal projections onto convex sets (POCS). Also, in this 
paper, an end-to-end methodology for a flexible experimental 
setup is proposed. This setup is specifically deployed to emulate 
the proposed adaptive cooperation scheme for spectrum sensing 
and validate its practical use in cognitive radio systems. 

Index Terms-projection onto convex sets, cognitive radio 
systems, adaptive data fusion, online learning, experimental 
setup, wireless propagation 

1. INTRODOCTION 

Cognitive radio (CR) systems, which are aware of their 
surroundings and has the ability of self-adaptation to dynamic 
environmental and channel conditions, have emerged as a 
novel paradigm in wireless communications [1]. One of the 
most distinguished features of these systems is spectrum 
sensing for dynamic spectrum access. It has been reported 
repeatedly in the literature that cooperation among spectrum 
sensors substantially increases the overall performance and 
sensing reliability of a CR system [2, 3]. Furthermore, cooper­
ative spectrum sensing has been shown to mitigate the negative 
effects that stem from practical problems like multipath fad­
ing/shadowing and noise power fluctuations by exploiting the 
diversities among multiple CRs (spectrum sensors) [3]. 

The literature on cooperative spectrum sensing has been 
exponentially growing for the last couple of years [3]. How­
ever, existing methods are developed based on a static com­
munication scenario assumption with fixed channel and ra­
dio frequency (RF) propagation environment characteristics. 
It would be too optimistic to admit that these cooperative 
techniques, with their non-adaptive nature, can survive in 
practice under dynamically shifting channel and environmental 
conditions. 

Online learning approaches are powerful tools for problems 
where drifts in concepts take place which are very much sim­
ilar to the problems specifically encountered in non-stationary 
random surroundings of a practical CR system. In this study, 

978-1-4577-0024-8111/$26.00 © 2011 IEEE 

an adaptive data fusion (ADF) scheme, which exploits inherent 
dynamics of the sensing problem by adapting the weight of the 
contribution from each spectrum sensor in an online manner, 
is proposed for cooperative spectrum sensing. Each sensor 
carries out conventional energy detection operation. Then, the 
output of energy detectors is sent to the fusion center for their 
corresponding weights to be updated online based on the ADF 
scheme through the use of orthogonal projections onto convex 
sets (POCS). 

There is a vast literature on the system models suggested 
and their analyses for spectrum sensing. However, reports 
on practical implementations of such models are limited. It 
is obvious that practical considerations for an end-to--end 
communications system introduce many physical layer issues 
such as synchronizing and frequency-offset estimation and 
recovery, and some other receiver impairments, which are just 
three among many to name few. This shows that experimen­
tal validation of such theoretical models and analysis under 
practical considerations is key to measure the performance of 
the proposed models. Therefore, in this study, an end-to-end 
methodology for a flexible experimental setup is proposed. 
Even though the experimental setup is designated specially for 
the proposed online adaptive cooperation scheme, with the use 
of the proposed end-to--end methodology, many other system 
models involving different types of channels and environments 
can be validated with slight modifications in it. 

In this regard, the contributions of this study can be sum­
marized as: (I) An online adaptive cooperation scheme is 
proposed for the spectrum sensing problem. This way, the level 
of sensing reliability and performance of sensing operation 
is maintained. (II) In addition, an end-to-end methodology 
for a flexible experimental setup is proposed. This setup 
is specifically deployed to emulate the proposed adaptive 
cooperation scheme for spectrum sensing and validate its 
practical use in cognitive radio systems. However, as shown in 
the sequel, proposed methodology and experimental setup may 
be implemented with slight modifications to investigate other 
system models developed for different practical scenarios. 

The organization of the paper is as follows. The statement of 
the problem and the system model are presented in Section II. 
In Section III, the proposed online adaptation and data fusion 
method is described. Details of the experimental setup, data 
collection, and processing are given in Section IV. Numerical 
results and discussions are presented in Section V. Finally, 
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conclusions are drawn in the last section. 

II. STATEMENT OF THE PROBLEM AND SYSTEM MODEL 

Let a fixed, immobile spectrum sensor network be composed 
of M -many sensors, possibly situated at M geographically 
different locations. Each sensor, say Sensori, where i = 
1, . . .  ,M, carries out a sequence of analysis steps proposed 
in [4] upon receiving a signal riO as shown in Figure 1. The 
baseband equivalent of each one of the received signal by the 
i-th sensor, that is r i ( . ), can be represented as: 

ri(t) = { Vi(t), Ha, 

x(t) + Vi(t), HI, 
(1) 

where Vi(t) is complex additive white Gaussian noise 
(AWGN) with eN (0, O"n in the form of Vi(t) = VI,i(t) + 
jVQ,i(t) as both VI,i(t) and VQ,i(t) being N (0, 0"; /2) and 
j = H; x(t) is the complex baseband equivalent of the 
unknown signal transmitted by a single mobile source; Ha 

represents the hypothesis corresponding to absence of the 
unknown signal, whereas HI refers to the hypothesis corre­
sponding to presence of it at time t. Then, the problem can 
be stated as identifying the absence/presence of the unknown 
signal, x(t), by taking into account dynamic changes in the 
channel and the propagation environment that possibly stem 
from such practical problems and physical phenomena as 
shadowing, fading, mobility, etc. 

Each spectrum sensor, Sensori, yields a summary statistic 
Ui, where i = 1, . . .  ,M. At this point, it is worth mentioning 
that the output of each sensor can be considered to be of 
discrete form rather than a continuous form such as Ui [n] 
for the sake of notational convenience in the subsequent 
steps. Summary statistic at n-th discrete time instant, udn] 
is calculated by each secondary user over a detection interval 
of N samples as follows: 

n 

udn] = L Irdk]12 i = 1, 2, . . .  , M (2) 
k=n-N+I 

These data are transmitted over a very narrow-band channel, 
say "Broadcast Fusion Channel," to an immobile "fusion 
center. " In this regard, since sensors and fusion center are 
all assumed to be fixed, the set of signals reaches at the 
fusion center at n-th discrete time instant can be modeled as a 
Gaussian channel with zero-mean noise qi and with variance 
0= [or, o�, . . .  , olty: 

y[n] = urn] +q[n] (3) 

with y [n] = [YI [n] , . . .  , YM [nll, u [n] = [UI [n], . . .  , UM [nll 
and q [n] = [qI [n] , . . .  , qM [nll. At the fusion center, where 
the adaptive data fusion is realized online, a global test statistic 
Yc [n] is computed from Yi [n]. Carrying out analysis steps 
similar to the one presented in [2], the following linear rule 
at the fusion center with a test threshold 'Yc [n] is obtained: 

where 

Yc [n] ��� 'Yc [n] (4) 

M 
Yc [n] = L

i=I Wi [n] Yi [n] = yT [n] w [n] (5) 

and 

w [n] = [WI [n], . . .  , WM [nllT, Wi [n] ::::: ° (6) 

The performance metric used for this system model is the 
probability of false alarm (Pi) and the probability of detection 
(Pd): 

(7) 

and 

(8) 

where Q (.) is the complementary cumulative distribution 
function, which calculates the tail probability of a zero mean 
unit variance Gaussian random variable, 0" = [0"1, . . .  , O"M], 
�1io and �1il are system parameter matrix defined in [2]. For 
the sake of brevity, the sample number index, n, is removed 
in (7) and (8). 

Note that, different weight selection rules can be employed 
for different purposes, such as the ones described in [5, 6]. 
In this study, considering the dynamical characteristics of the 
mobile radio channel that undergoes shadowing, amplitude 
fading, and Doppler spread, as well as changes in propagation 
environment, an online adaptive data fusion method based on 
POCS is proposed for the combined test statistic Yc [n] calcu­
lation. As a result, the spectrum sensing system as a whole, 
becomes capable of adapting itself to changes dynamically 
occuring in the channel and the propagation environment by 
tracking the second-order data output from individual spectrum 
sensors. 

III. PROPOSED METHOD 

Let w [n] = [WI [n] , . . .  , WM [n]f be the weight vector at 
each spectrum sensor at time step n. Then we define 

Yc [n] = yT [n] w [n] = L. Wi [n] Yi [n] (9) 
, 

as an estimate of the test threshold, 'Yc [n], at time step n, and 
the error, ec [n] = 'Yc [n] - Yc(n). For a fixed value of prob­
ability of false alarm, Pi, one can obtain the corresponding 
threshold value, 'Yc [n], from (7) as: 

'Yc = NO"Tw + Q-l(Pf)JwT�1io w (10) 

At each time step n, 'Yc [n] is evaluated using (10), for a fixed 
Pi value and the weight vector, w [n]. Along with the weight 
update equation presented in the next subsection, (10) provides 
weights adapt themselves in such a way that statistics of Pi is 
not affected from dynamic changes and drifts in the channel 
and/or the propagation environment. This is achieved via the 
controlled feedback mechanism based on the error term, ec [n]. 
One of the main advantages of the proposed online cooperative 
spectrum sensing strategy compared to other related methods 
in [2, 5-8], is this feedback mechanism. Weights of the 
spectrum sensors yielding correlation estimates different than 
(same as) the test threshold are reduced (increased) iteratively 
at each time step, making it possible to keep the performance 
of sensing not affected from the change in channel character­
istics. Another advantage of the proposed algorithm is that it 
does not assume any specific probability distribution about the 
data. 
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A. Set Theoretic Weight Update Algorithm 

Ideally, weighted sum of the received summary statistics of 
spectrum sensors should be equal to the test threshold "(e [n]: 

"(e [n] = yT [n] w (11) 

which represents a hyperplane in the M-dimensional space, 
w E ]RM. Hyperplanes are convex in ]RM. At time instant 
n, yT [n] w [n] may not be equal to "(e [n]. The next set of 
weights are determined by projecting the current weight vector 
w [n] onto the hyperplane represented by (11). This process is 
geometrically depicted in Figure 6. The orthogonal projection 
w [n + 1] of the vector of weights w [n] E ]RM onto the 
hyperplane "(e [n] = yT [n] w is the closest vector on the 
hyperplane to the vector w [n]. 

Let us formulate the problem as a minimization problem: 

min Iw* - w [n]1 , subject to: yT [n] w* = "(e [n] (12) 
w' 

Solution can be obtained by using Lagrange multipliers: 

(13) 

Taking partial derivatives with respect to w; : 

�.c = 2(Wi [n] - wt ) + >"Yi [n], i = 1, . . .  , M, (14) 
uw; 

setting the result to zero: 

2(Wi [n] - w;) + >"Yi [n] = 0, i = 1, . . .  , M (15) 

and defining the next set of weights as w [n + 1] = w* a set 
of M equations is obtained: 

>.. w [n + 1] = w [n] +"2Y [n] (16) 

The Lagrange multiplier, >.., can be obtained from the condition 
equation: 

as follows: 

yT [n] w* - "(e [n] = 0 

>.. = 2 "(e [n] - Ye [n] 
= 2 ee [n] 

Ily [n]112 Ily [n]112 
where the error, ee [n], is defined as 

ee [n] = "(e [n] - Ye [n] 

and Ye [n] = yT [n] w [n]. Plugging this into (16) 

ee [n] w [n + 1] = w [n] + 
Ily [n]112Y [n] 

(17) 

(18) 

(19) 

(20) 

is obtained. Hence the projection vector is calculated according 
to (20). 

Whenever a new set of summary statistics, u [n] are gener­
ated from spectrum sensors, another hyperplane is defined in 
]RM based on the new data values y [n] arrived at the fusion 
center from the broadcast fusion channel 

(21) 

This hyperplane will probably not be the same as "(e [n] = 

yT [n] w [n] hyperplane as shown in Figure 6. The next set 

of weights, w [n + 2], are determined by projecting w [n + 1] 
onto the hyperplane in (21). Iterated weights converge to the 
intersection of hyperplanes, we, [9].The rate of convergence 
can be adjusted by introducing a relaxation parameter /-L to 
(20) as follows 

ee [n] w [n + 1] = w [n] + /-L Ily [n]112Y [n] (22) 

where 0 < /-L < 2 should be satisfied to guarantee the 
convergence according to the POCS theory [10, 11]. 

If the intersection of hyperplanes is an empty set, then 
the updated weight vector simply satisfies the last hyperplane 
equation. In other words, it tracks test threshold, "(e [n], by 
assigning proper weights to individual spectrum sensors, in 
order to maintain the same Pj value under dynamically 
changing channel and propagation environment characteristics. 
Note that, the proposed online method does not need to wait 
until convergence to make a decision. 

Algorithm 1 The pseudo-code for the Adaptive Data Fusion 
(ADF) algorithm 

Adaptive Data Fusion[n] 
for i = 1 to M do 

Wi [0] = fa,I nitialization 
end for 

"(e [n] = NIJTw [n] + Q-l(Pr)JwT [n] �Ho w [n] 
ee [n] = "(e [n] - Ye [n] 
for i = 1 to M do 

Wi [n + 1] +--- Wi [n] + /-L ,,;ll1,l,2 Yi [n] 
end for 

Ye [n] = L:i Wi [n] Yi [n] 
if Ye [n] ::::: "(e [n] then 

return HI 
else 

return Ho 
end if 

IV. EXPERIMENTAL SETUP, DATA COLLECTION AND 

PROCESSING 

The entire set of experiments and data collection were 
realized in Texas A&M University at Qatar, Doha, at the 
Wireless Research Laboratory located in the Department of 
Electrical and Computer Engineering. The details of the ex­
perimental setup, devices and equipments used will be given 
in this section along with the methodology employed in data 
collection and processing. 

A. Experimental Setup, Devices, and Equipments Used 

As shown in Figure 1, there are two different types of 
channels in the the system model: (C.l) the channel be­
tween the unknown signal source and sensors, and (C.2) the 
channel between sensors and the ADF center, which is also 
referred to as broadcast fusion channel. In the system model, 
(C.l) denotes the channel representing a conventional wireless 
propagation environment through which sensors receive the 
signal. In the experiment, (C.l) is emulated by capturing the 
signal that is transmitted over the air by an unknown signal 
source under HI hypothesis.ln contrast to (C.l), system model 
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assumes an AWGN channel for (C.2). In order to emulate such 
a scenario a direct cable (wired) connection is used between 
transmitter-receiver pair. Characteristics of the emulated (C.2) 
will be discussed subsequently. 

Since there are two different types of channels, there are 
two types of transmitter-receiver pairs as well operating on 
each side of both (C.l) and (C.2). In the experiments, Agilent 
vector signal generator (VSG) E4438C is used for emulating 
the transmitters in the system model as: (T.I) unknown signal 
source whose presence/absence will be identified, and (T.2) the 
sensors (energy detectors) that function as transmitters by 
sending their output after applying energy detection operation 
through the broadcast fusion channel. Since VSG E4438C can 
be programmed and controlled through the use of a computer 
and of a software running on it such as MATLAB, both types 
of transmitters (i.e., (T.I) and (T.2)) can be emulated by a 
single VSG in time division multiple access (TDMA) fashion. 

In parallel with the transmitters, there are also two different 
types of receivers operating on each end of (C.l) and (C.2): 
(R.I) sensors, and (R.2) ADF center. In order to emulate both 
(R.I) and (R.2), Agilent PSA Series vector signal analyzer 
(VSA) E4440A is used. 

In the sequel, it is worth mentioning some important char­
acteristics of both VSG and VSA. Agilent VSG E4438C can 
be used as a transmitter since many important transmission 
parameters along with the baseband data to be transmitted 
can be controlled through the use of MATLAB. Beside its 
many built-in functions, the device allows to employ and 
modify very well-known standards such as Global System for 
Mobile (GSM) and North American Digital Cellular (NADC). 
Also, the authors developed a specific MATLAB script which 
can control and modify the transmit parameters of VSG and 
enables the VSG to transmit specific in-phase/quadrature (I1Q) 
values to act as a (T.2)-type transmitter. Similarly, Agilent 
PSA Series VSA E4440A is used as a receiver which yields 
baseband I1Q samples as its output for given reception settings. 
The VSA is controlled by its software interface that allows one 
to receive the signal and to provide the output as I1Q samples 
in vector format that can directly be used in MATLAB. Block 
diagram of the experimental setup is given in Figure 2 with 
corresponding identifiers described in Section IV-A. 

B. Experimental Methodology and Data Collection 

The experiment is realized in two stages as shown in 
Figure 2: (I) The part that includes (T.I)-(C.I)-(R.I) path 
and (II) the remaining part which includes (T.2)-(C.2)-(R.2) 
path. First stage is established and repeated for each sensor in 
a TDMA fashion and received baseband signal (the output of 
VSA) is fed into MATLAB. For Ho hypothesis, of course, the 
unknown signal source emulated by VSG is inactive so that 
rx-side of each sensor (i.e., (R.I)) emulated by VSA captures 
the ambient noise over the air. For HI hypothesis, the VSG is 
programmed in such a way that it continuously transmits a ran­
dom data (which exist in the memory of the device) according 
to NADC standard with the given transmit parameters. Data 
corresponding to each hypothesis are recorded for a very large 
period of time in order to obtain sufficient statistics. Recorded 
data are, later on, split into parts and organized in such a way 
that each part corresponds to an independent realization. 

At the second stage of the experiment, upon splitting and 
organizing, the recorded data (baseband I1Q values) for each 
hypothesis are placed into the memory of the VSG through the 
use of MATLAB. This way, the tx-side of each sensor (i.e., 
(T.2)) is realized. Note that (C.2) is assumed to be AWGN in 
the system model mentioned earlier. Therefore, a direct cable 
connection is used between VSG and VSA to emulate the 
AWGN channel. Such a realization is reasonable due to the 
following observations. First of all, a perfectly isolated direct 
cable connection implies a frequency-flat channel response. 
Second, assuming that no changes occur in the experimental 
setup throughout the data collection, the power of the channel 
remains the same and acts as a fixed scaling factor (corre­
sponding to cable loss) to the data transmitted. Third, even 
though the cable connection is assumed to be perfect, thermal 
noise, which exists in the RF front--end of the receiver and can 
be characterized as a disturbance of AWGN form, cannot be 
avoided and always exists in the received signal. These reasons 
show that a direct cable connection provides a reasonable 
approximation to realization of a theoretical A WGN channel. 
Parameters of the VSA are set to receive the data sent over 
the cable. When the transmission begins, VSA starts to capture 
the signal and store it on a computer to be fed into MATLAB 
on which ADF algorithm runs to generate the output.Finally, 
the output of ADF is obtained and results are shown and 
interpreted. 

C. Data Formatting and Processing 

At the second stage of experiment, upon capturing the data 
by VSA, a normalization is performed. Such a step might 
be required, especially when HI hypothesis is of concern, 
since the transmission loss causes the captured baseband I1Q 
values to be very small for VSG to deal with. The same 
reasoning is valid for Ho assuming that the captured data 
is a bandlimited complex AWGN of CN(O,l). However, 
prior to this normalization step, one should consider the 
synchronization between VSG and VSA. Synchronization is 
extremely important, because data collection step for ADF to 
work properly relies on obtaining the correct values. Therefore, 
before transmitting the output of each sensor through the use of 
VSG, output of energy detectors are placed into the memory of 
VSG in the following format: Px+y = (�x), where Ox denotes 
the zero-padding operation with a zero"-vector of length x 

and dy represent the output of the energy detector for any 
sensor, and Px+y denotes the packet format to be sent over 
the cable through the use of VSG. Unless stopped, VSG keeps 
sending the information back to back; therefore, in order to 
make sure VSA captures at least one complete d, capturing 
time of VSA is set to three times the total duration of a single 
packet p. With the aid of the packet format p employed, burst 
detection is employed to synchronize the packet in which the 
data is placed. Next, again by taking advantage of Ox upon 
the burst detection, noise power estimation and normalization 
mentioned earlier in this subsection are established. Due to the 
clock mismatch between the VSG and VSA, a clock recovery 
algorithm is implemented to remove the frequency drift present 
in the I1Q samples that are provided by VSA. As will be 
shown subsequently, the direct cable connection (experimental 
broadcast fusion channel) would not exhibit a perfect AWGN 
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behavior due to the inherent pulse shaping filter operation 
performed by VSG beside some other impairments such as 
coupling and so on. However, after the employment of burst 
detection, normalization, and clock recovery steps, one can 
assume that the output of broadcast fusion channel is obtained 
as close as possible to the theoretical model proposed. Finally, 
the real part of output data are fed into ADF in order to make 
a decision in regards to Ho and HI hypotheses. 

V. RESULTS AND DISCUSSION 

Throughout the experiment, the sampling rate of VSA for 
both types of receivers (i.e., (R.1) and (R.2)) is chosen to be 
tlts = 1O-5s. In realizing HI hypothesis, a pseudo-random 
sequence is chosen in VSG memory to be continuously 
transmitted in NADC format to emulate the unknown signal 
source. For the first stage of the experiment, VSG is kept at 
a place where optical line-of-sight (LOS) is present between 
the VSG and VSA. Each sensor collects N = 20 complex 
samples to generate an output for the energy detector and 
be fed into the broadcast fusion channel. For each sensor, 
this procedure is repeated 5000 times to obtain as many 
independent realizations as possible. In total, M = 20 sensors 
are assumed to be present in the environment where all of them 
are assumed to have LOS with the unknown signal source. 

After collecting the data for both hypotheses, ADF is fed by 
the experimental data in such a way that a Bernouilli random 
variable decides whether the input to ADF is selected from Ho 
data or from HI data. Note that such a scheme constitutes one 
of the most challenging spectrum sensing behavior for ADF, 
since Bernoulli random variable implies maximum uncertainty 
about the absence/presence of the unknown signal. It must be 
stated here that most of the practical communication systems 
(depending also on the traffic type) transmit signals in bursts. 
Nevertheless, for the sake of testing the proposed method 
under challenging conditions, maximum uncertainty about the 
absence/presence of the unknown signal is adopted. 

First of all, noise characteristics of both channels (C.1) and 
(C.2) should be investigated. Due to space limitations, only 
autocorrelation coefficient estimates of the captured data under 
Ho hypothesis will be examined in comparison with those of 
pseudo-noise case. The results are plotted in Figure 3. As can 
be seen, autocorrelation estimates (unbiased) of the captured 
data exhibit significant correlation within the first O.4ms. This 
mainly stems from VSA filter which introduces correlation 
and distorts the statistical characteristics of the noise. 

When the processed data collected through the use of exper­
imental setup, they are fed into the proposed ADF mechanism. 
The result is given in Figure 4. From Figure 4, one can 
conclude that ADF performs quite well under practical sce­
narios by solely looking at the Pm = 1 - Pd values obtained. 
However, it is desired to investigate the theoretical results in 
a comparative manner to draw a solid conclusion regarding 
the performance of the ADF under practical conditions. For 
this purpose, the proposed ADF algorithm is examined for the 
following two cases. In the first case, ADF algorithm running 
on the receiver is assumed to be fed directly by the output 
of broadcast fusion channel (i.e., (C.2)). In other words, in 
the first case the baseband I1Q samples generated by (R.2) are 
the exact same values as those of the output of (C.2). In the 

Fig. 1. System model for the proposed ADF algorithm. 

(T.1) 
.--------"---1 

'----y--- ' 

Wireless Connection 
(C.1) 

(R.2) (-----------""-----------, 

l _____ ,..-___ ) 
Wired Connection 

(C.2) 
[Broadcast Fusion Channel] 

Fig. 2. Block diagram of the experimental setup emulating the system model 
given in Figure 1 along with the corresponding identifiers for different types 
of channels, transmitters, and receivers. 

second case, the output of (C.2) is assumed to pass through 
a low-pass filter which is assumed to exist inherently at the 
receiver before (R.2) yields the baseband I1Q samples. The 
results for both cases are shown in Figure 5. As shown in 
the figure, low-pass filtering improves the performance of the 
ADF algorithm. This mainly stems from the fact that correlated 
inputs yield small error values in (19) which in tum results 
in fast convergence of weights in (20). It is important to state 
that such a correlation is already introduced into the data (as 
shown in Figure 3) to be fed into (T.2) since the same VSA 
is used throughout the experiment for both (R.1) and (R.2) in 
TDMA fashion. 

VI. CONCLUSION 

An online adaptive cooperative spectrum sensing scheme 
based on POCS theory is proposed in order to maintain the per­
formance and the reliability of spectrum sensing. Performance 
of the scheme is also investigated by a set of real data collected 
from an experimental setup. The contributions of this study 
are two-fold. First, an online adaptive data fusion scheme to 
be deployed in a cooperative spectrum sensing framework is 
introduced. Second, performance of the proposed method is 
validated through an experimental setup. Experimental results 
show that the proposed adaptive online cooperation method 
yields reliable spectrum sensing decisions based on probability 
of false alarm and detection metrics. Results also assure that 
the proposed spectrum sensing method can be utilized under 
challenging spectrum usage scenarios such as a cognitive radio 
system with a primary unknown signal source transmitting 
according to a Bernoulli trial process. 
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