
Digital Object Identifier (DOI) 10.1007/s10107-004-0531-x

Math. Program., Ser. A 102: 371–405 (2005)

Martine Labbé · Hande Yaman · Eric Gourdin

A branch and cut algorithm for hub location problems
with single assignment

Received: April 14, 2003 / Accepted: April 30, 2004
Published online: 7 July 2004 – © Springer-Verlag 2004

Abstract. The hub location problem with single assignment is the problem of locating hubs and assigning
the terminal nodes to hubs in order to minimize the cost of hub installation and the cost of routing the traffic
in the network. There may also be capacity restrictions on the amount of traffic that can transit by hubs. The
aim of this paper is to investigate polyhedral properties of these problems and to develop a branch and cut
algorithm based on these results.

Key words. Hub location – Polyhedral analysis – Branch and cut

1. Introduction

Hubs (concentrators, routers, multiplexers ...) are special nodes that route the traffic in
a communication or transportation network. Given a set of terminals (user nodes) and
a traffic matrix, the hub location problem consists in choosing a subset of terminals to
locate hubs and assigning the terminals to hub nodes in order to minimize the cost of
hub location and traffic routing. These problems have applications in transportation and
telecommunication (see the survey by Campbell et al. [7]).

Hub location problems can be classified regarding the way terminals are assigned to
hub nodes. In multiple assignment problems, the traffic of a same terminal can be routed
through different hubs. On the contrary, in single assignment problems, each terminal
is assigned to a single hub. We consider hub location problems with single assignment.
We study several versions with different capacity restrictions. The principal problem
considered is as follows. We are given a set of terminal nodes and a traffic matrix whose
entries represent the amount of traffic to be routed between every pair of terminals. We
must determine a subset of the terminal nodes to be the hub locations. If a node receives
a hub then it is assigned to itself. Each node that does not receive a hub is assigned to
exactly one hub node.

Here we adopt the terminology of telecommunication networks. The network con-
necting the hubs is called the backbone network and it is complete. The networks that
connect the terminals to hubs are the access networks and they are stars. Figure 1 depicts

M. Labbé: Université Libre de Bruxelles, Service d’Optimisation, Boulevard du Triomphe CP 210/01, 1050
Bruxelles, Belgium. e-mail: mlabbe@smg.ulb.ac.be

H. Yaman: Bilkent University, Department of Industrial Engineering, Bilkent, 06800 Ankara, Turkey.
e-mail: hyaman@bilkent.edu.tr

E. Gourdin: France Telecom R&D, DAC/OAT, 38-40, rue du General Leclerc, Issy-les-Moulineaux Cedex 9,
92794, France. e-mail: eric.gourdin@rd.francetelecom.com

372 M. Labbé et al.

backbone
links

hub

 access network

Fig. 1. A network with complete backbone and star access networks

a network with a complete backbone and star access networks. The nodes inside squares
are chosen to be the hub nodes.

The traffic between two nodes is routed on the shortest path between these nodes. We
assume that the cost of routing the traffic satisfies the triangle inequality. If two nodes are
assigned to the same hub, the traffic between them does not enter the backbone network.
So the traffic routed on the backbone links is the traffic of nodes that are assigned to differ-
ent hubs. More specifically, the traffic on a backbone link from node j to node l is the
sum of the traffic between all nodes assigned to node j and all nodes assigned to node l.

A hub has a fixed capacity in terms of the traffic that passes through it. This traffic
is the sum of the traffic on the links between this hub and the nodes that are assigned to
it and the traffic on the backbone links between this hub and the other hubs.

There is a fixed cost for installing a hub at a certain node and a cost per unit of traffic
routed between two given nodes. The aim is to locate the hubs and to assign the remain-
ing nodes to the hub nodes to minimize the total cost of installation and routing. We call
this problem the Quadratic Capacitated Hub Location Problem with Single Assignment
and abbreviate it by QHL.

We consider two relaxations of QHL based on the capacities. The first relaxation
is the Linear Capacitated Hub Location Problem with Single Assignment (LHL) where
each hub has a fixed capacity in terms of the traffic adjacent at nodes (the sum of the
traffic of commodities having this node either as origin or destination) that are assigned
to it (and not on the traffic between this hub and the other hubs). The second relaxation
is obtained by removing the capacity constraints and it is called the Uncapacitated Hub
Location Problem with Single Assignment (UHL).

The aim of this paper is to study the polyhedral properties of hub location problems
with single assignment and to develop a branch and cut algorithm to solve such prob-
lems. We present our results and the branch and cut algorithm for QHL as it generalizes
UHL and LHL.

To our knowledge, there is no previous study of QHL. But location and network
design problems arising in telecommunications have long been studied by both oper-

A branch and cut algorithm for hub location problems with single assignment 373

ations researchers and computer scientists (see e.g. [3], [12] and [21]). The interested
reader can refer to [11] for a survey of location problems arising in telecommunications
and to [24] for an annotated bibliography in network design.

Also, the formulations for LHL can be extended to QHL (see Section 5). For a survey
of formulations and solution methods for LHL and UHL see Campbell et al. [7].

The paper is organized as follows: In Section 2, we give a formal definition and
a formulation of QHL. In Section 3, we discuss the variants of QHL based on the
capacity restrictions. Section 4 is devoted to the polyhedral analysis and valid inequal-
ities. We present our branch and cut algorithm and the computational results in
Section 5.

2. Problem definition and formulation for QHL

Let I denote the set of terminal nodes with |I | = n and K the set of commodities. For
commodity k ∈ K , o(k) is the origin, d(k) is the destination and tk is the amount of
traffic where tk = to(k)d(k). We define Tim = tim + tmi for all (i, m) ∈ K . Origins and
destinations of commodities are terminal nodes and any pair of terminal nodes defines
a commodity. The values tii’s are defined to be 0 for all i ∈ I .

Each terminal either receives a hub or is connected to another node which receives a
hub. Let ai be the total traffic adjacent at node i, ai =

∑
m∈I Tim. The results presented

throughout the paper remain valid if ai ≥
∑

m∈I Tim for all i ∈ I .
If node i is assigned to concentrator node j �= i, then the traffic on the link between

nodes i and j is ai . The cost of routing traffic ai on the link between node i and node
j is denoted by Cij . Any node i that becomes a hub is assigned to itself. The cost of
installing a hub at node i is denoted by Cii .

We define the arc set A = {(j, l) : j ∈ I, l ∈ I, j �= l}. We denote by Rjl the cost
of routing a traffic unit on arc (j, l) if it becomes a backbone arc, i.e., if both nodes
j and l receive hubs. We assume that the cost vector R satisfies the triangle inequal-
ity and Rjl ≥ 0 for all (j, l) ∈ A. It is likely that in most real applications, one has
Rjl ≤ Cjl/aj . However, note that all the results presented in this paper hold even if this
were not the case.

If nodes j and l receive hubs, then the amount of flow on arc (j, l) is given by∑
k∈Kjl

tk where Kjl is the set of commodities k such that o(k) is assigned to j and d(k)

is assigned to l.
If node j becomes a hub node, then the total amount of traffic transiting through

node j cannot be larger than its capacity M . This total amount of traffic is equal to the
sum of the amounts of traffic adjacent to nodes assigned to hub j (including j) and the
amounts of traffic on the backbone arcs (j, l) leaving j and the backbone arcs (l, j)

entering j .
Our mixed integer programming formulation of QHL uses two types of variables.

The assignment variable xij = 1 if terminal i ∈ I is assigned to hub j ∈ I and 0
otherwise. If node i receives a hub then xii takes value 1 and node i is assigned to itself.
Further, we define zjl to be the total traffic on the arc (j, l) ∈ A.

374 M. Labbé et al.

Now, we can present our formulation:

min
∑

i∈I

∑

j∈I
Cij xij +

∑

(j,l)∈A
Rjlzjl (1)

s.t.
∑

j∈I
xij = 1 ∀i ∈ I (2)

xij ≤ xjj ∀(i, j) ∈ A (3)

zjl ≥
∑

k∈K ′
tk(xo(k)j + xd(k)l − 1) ∀(j, l) ∈ A, K

′ ⊆ K (4)

∑

i∈I
aixij +

∑

i∈I

∑

m∈I
Timxij (1− xmj) ≤ Mxjj ∀j ∈ I (5)

zjl ≥ 0 ∀(j, l) ∈ A (6)

xij ∈ {0, 1} ∀i ∈ I, j ∈ I. (7)

Constraints (2) and (7) ensure that each terminal either becomes a hub location or is
assigned to exactly one other node. Constraints (3) state that if a terminal is assigned to
a node then this node should be a hub location. Constraints (4) relate the traffic vector
z to the assignment vector x. Consider arc (j, l) ∈ A with Rjl > 0. Constraints (4) and
(7) imply

zjl = max
K
′⊆K

∑

k∈K ′
tk(xo(k)j + xd(k)l − 1) =

∑

k∈Kjl

tk(xo(k)j + xd(k)l − 1).

Capacity constraints (5) ensure that if we install a hub at node j , then the traffic that
passes through node j does not exceed the capacity M .

Note that these constraints are written in the quadratic form. A linear version which
will be used in the implementation is the following:

∑

i∈I
aixij +

∑

l∈I\{j}
(zlj + zjl) ≤ Mxjj ∀j ∈ I. (8)

Inequalities (4) imply that
∑

l∈I\{j}(zlj + zjl) ≥
∑

i∈I
∑

m∈I Timxij (1 − xmj). As
Rjl ≥ 0 for all (j, l) ∈ A, for any feasible x there exists a feasible z for which the
inequality is tight, implying the quadratic capacity constraints (5).

Let FQH denote the set of points (x, z) that satisfy constraints (2)–(7).

3. Variants of QHL

We first present two relaxations based on the capacity constraints.

Uncapacitated Case. If it is possible to assign all nodes to a single hub, i.e.,
∑

i∈I ai ≤
M then the problem is uncapacitated. Define FUH to be the set of pairs (x, z) that satisfy
the constraints (2)–(4), (6) and (7).

A branch and cut algorithm for hub location problems with single assignment 375

Linear Capacitated Case. If the capacity of a hub concerns only the traffic adjacent to
nodes assigned to it, then constraints (5) should be replaced by

∑

i∈I
aixij ≤ Mxjj ∀j ∈ I. (9)

Let FLH be the set of (x, z) that satisfy constraints (2)–(4), (6), (7) and (9).
Another type of relaxation corresponds to the situation where the routing cost is

negligible.

Concentrator Location Problem. If the routing costs on the backbone network are equal
to zero, then we have a pure location problem.We can remove variables zjl and the related
constraints from formulation QHL and obtain:

min
∑

i∈I

∑

j∈I
Cij xij

s.t. (2), (3), (5) and (7).

Let FQ be the set of vectors x that satisfy constraints (2), (3), (5) and (7). We also
consider the two relaxations based on the capacities.

Table 1 gives the names and abbreviations of the six problems with reference to their
capacity structures and routing costs.

4. Polyhedral analysis and valid inequalities

In the sequel, we assume that any two nodes can be assigned together, which implies
that ai + aj +

∑
m∈I\{i,j}(Tim + Tjm) ≤ M for all (i, j) ∈ A and that ai ≥

∑
m∈I Tim

for all i ∈ I .
Let ex

ij = (x, z) (resp. ez
ij = (x, z)) be the unit vector such that xlm = 0 for all

(l, m) ∈ A \ {(i, j)}, xij = 1 and zlm = 0 for all (l, m) ∈ A (resp. xlm = 0 for all
(l, m) ∈ A, zlm = 0 for all (l, m) ∈ A \ {(i, j)} and zij = 1).

Define Projx(F) to be the projection of set F on the x space.
To make the polyhedral analysis easier, we eliminate the xjj variables by substituting

xjj = 1 −∑
i∈I\{j} xji for all j ∈ I (see Avella and Sassano [4]). Then we obtain the

following formulation for QHL:

min
∑

i∈I

∑

j∈I\{i}
Cijxij +

∑

j∈I
Cjj (1−

∑

i∈I\{j}
xji)+

∑

(j,l)∈A
Rjlzjl

s.t.

xij +
∑

m∈I\{j}
xjm ≤ 1 ∀(i, j) ∈ A (10)

∑

i∈I\{j}
(ai − Tij)xij +

∑

i∈I\{j}

∑

m∈I\{j}
Timxij (1− xmj)

+(M − aj −
∑

i∈I
Tij)

∑

m∈I\{j}
xjm ≤ M − aj −

∑

i∈I
Tij ∀j ∈ I (11)

376 M. Labbé et al.

Table 1. Concentrator location and hub location problems and polyhedra

no routing cost routing on a complete backbone
no Uncapacitated Concentrator Uncapacitated Hub

capacity Location Problem (UCL) Location Problem (UHL)

constraints P
′
U = conv({x ∈ {0, 1}n(n−1) : P

′
UH = conv({(x, z) ∈ {0, 1}n(n−1)

(10)}) ×R
n(n−1)
+ : (10) and (12)})

linear Linear Capacitated Concentrator Linear Capacitated Hub
capacity Location Problem (LCL) Location Problem (LHL)

constraints P
′
L = conv({x ∈ {0, 1}n(n−1) : P

′
LH = conv({(x, z) ∈ {0, 1}n(n−1)

(10) and (15)}) ×R
n(n−1)
+ : (10), (15) and (12)})

quadratic Quadratic Capacitated Concentrator Quadratic Capacitated Hub
capacity Location Problem (QCL) Location Problem (QHL)

constraints P
′
Q = conv({x ∈ {0, 1}n(n−1) : P

′
QH = conv({(x, z) ∈ {0, 1}n(n−1)

(10) and (11)}) ×R
n(n−1)
+ : (10), (11) and (12)})

zj l ≥
∑

k∈K ′ ,o(k)�=j,l,d(k)�=j,l

tk(xo(k)j + xd(k)l − 1)

+
∑

i∈I\{j,l}:(j,i)∈K ′
tj i(xil −

∑

m∈I\{j}
xjm)+

∑

i∈I\{j,l}:(i,l)∈K ′
til(xij −

∑

m∈I\{j}
xlm)

+tj l(1−
∑

m∈I\{j}
xjm −

∑

m∈I\{j}
xlm) ∀K ′ ⊆ K, (j, l) ∈ A (12)

xij ∈ {0, 1} ∀(i, j) ∈ A (13)

zjl ≥ 0 ∀(j, l) ∈ A. (14)

Let F
′
QH = {(x, z) ∈ {0, 1}n(n−1)×R

n(n−1) : (x, z) satisfies (10)–(14)} and P
′
QH =

conv(F
′
QH). We do the same projection for all six problems (see Table 1). The linear

capacity constraints (9) become:
∑

i∈I\{j}
aixij + (M − aj)

∑

i∈I\{j}
xji ≤ M − aj ∀j ∈ I. (15)

Proposition 1. Projx(P
′
YH) = P

′
Y for Y ∈ {U, L, Q}.

This projection property will be used to relate some of the facets of the polyhedra
of hub location problems to the facets of the polytopes of the concentrator location
problems.

Proposition 2. The polytopes P
′
U , P

′
L and P

′
Q and the polyhedra P

′
UH , P

′
LH and P

′
QH

are full dimensional, i.e., dim(P
′
U) = dim(P

′
L) = dim(P

′
Q) = n(n − 1) and

dim(P
′
UH) = dim(P

′
LH) = dim(P

′
QH) = 2n(n− 1).

Proof. Let Y ∈ {U, L, Q}. Assume that all points (x, z) ∈ P
′
YH satisfy an equality

αx + βz = γ . Choose an arc (j, l) ∈ A and a point p = (x, z) ∈ P
′
YH . As p+ ez

jl is in

P
′
YH , we have βjl = 0 for all (j, l) ∈ A. Now consider a point p =∑

(j,l)∈A Nez
jl for

A branch and cut algorithm for hub location problems with single assignment 377

large enough N . As p is in P
′
YH , αx = 0 = γ . Finally, since for (i, j) ∈ A, the vector

p = ex
ij +

∑
(l,m)∈A Nez

lm is in P
′
YH , we obtain αij = γ = 0. The proof for PY can be

done similarly. �	

4.1. Facet Defining Inequalities Involving only the Assignment Variables

We give a characterization of facet defining inequalities which involve only the assign-
ment variables.

Theorem 1. For Y ∈ {U, L, Q}, an inequality αx ≤ α0 defines a facet of P
′
YH if and

only if it defines a facet of P
′
Y .

Proof. Assume that πx ≤ π0 defines a facet of P
′
Y and that all points (x, z) ∈ P

′
YH such

that πx = π0 also satisfy αx + βz = γ . Since for any point p = (x, z) ∈ P
′
YH we have

that p + ez
jl is in P

′
YH , it follows that βjl = 0 for all (j, l) ∈ A. As P

′
Y = Projx(P

′
YH)

and as P
′
Y and P

′
YH are full dimensional, α = λπ and γ = λπ0 for some λ �= 0.

Assume that πx ≤ π0 defines a facet of P
′
YH and that any x ∈ P

′
Y such that πx = π0

also satisfies αx = γ . As P
′
Y = Projx(P

′
YH), any (x, z) ∈ P

′
YH such that πx = π0 also

satisfies αx = γ . This proves that α = λπ and γ = λπ0 for some λ �= 0 since P
′
YH is

full dimensional. Thus inequality πx ≤ π0 defines a facet of P
′
Y . �	

The polyhedral properties of concentrator location problems are studied in
Yaman [23]. We will use the valid inequalities given in [23] in the branch and cut
algorithm.

4.2. Facet Defining Inequalities Involving only the Traffic Variables

Now we present some properties of the facet defining inequalities which involve only
the traffic variables.

Proposition 3. Let βz ≥ β0 be a facet defining inequality for P
′
YH for Y ∈ {U, L, Q}.

Then β ≥ 0 and β0 ≥ 0. Let A+ = {(j, l) ∈ A : βjl > 0}. If there exists I+ ⊆ I such
that (i) there is x ∈ P

′
YH with

∑
i∈I+

∑
j∈I\I+ xij = |I+| and (ii) for every (j, l) ∈ A+

either j ∈ I+ or l ∈ I+, then βz ≥ β0 is a positive multiple of zjl ≥ 0 for some
(j, l) ∈ A+.

Proof. Assume that there exists (j, l) ∈ A such that βjl < 0. Let (x, z) ∈ P
′
YH be such

that βz = β0. Consider (x
′
, z
′
) = (x, z)+ ez

jl . Then (x
′
, z
′
) ∈ P

′
YH and βz

′
< β0 imply

that inequality βz ≥ β0 cannot be valid. This shows that β ≥ 0. As β ≥ 0 and z ≥ 0,
we should have β0 ≥ 0.

If there exists I+ ⊆ I which satisfies conditions (i) and (ii), then there exists (x, z) ∈
P
′
YH where at least one extremity node of each arc (j, l) ∈ A+ is not a hub in x and so

zjl = 0 for all (j, l) ∈ A+. Thus β0 = 0. Now, if βz ≥ 0 is facet defining then it must
be a positive multiple of zjl ≥ 0 for some (j, l) ∈ A+. �	

378 M. Labbé et al.

If inequality zjl ≥ β0 is a valid inequality for PYH , then as set I+ = {j} satisfies
conditions (i) and (ii), β0 = 0. So variables zjl’s do not admit positive fixed lower
bounds.

Proposition 4. For (j, l) ∈ A, if tj l = 0 and {j, l, m} can be assigned together for all
m ∈ I \ {j, l}, then zjl ≥ 0 defines a facet of P

′
YH for Y ∈ {U, L, Q}.

Proof. For (j, l) ∈ A, assume that tj l = 0 and {j, l, m} can be assigned together for all
m ∈ I \ {j, l}. Let N denote a very large number. The following 2n(n− 1) points are in
P
′
YH , satisfy zjl = 0 and are clearly affinely independent:

–
∑

(t,s)∈A\{(j,l)}Nez
ts

– for (i, m) ∈ A such that m ∈ I \ {j, l}, ex
im +

∑
(t,s)∈A\{(j,l)}Nez

ts

– for i ∈ I \ {j, l}, ex
ij + ex

lj +
∑

(t,s)∈A\{(j,l)}Nez
ts

– for i ∈ I \ {j, l}, ex
il + ex

jl +
∑

(t,s)∈A\{(j,l)}Nez
ts

– ex
lj +

∑
(t,s)∈A\{(j,l)}Nez

ts

– for (i, m) ∈ A such that m ∈ I \ {j, l}, ex
im +

∑
(t,s)∈A\{(j,l),(i,m)}Nez

ts

– for i ∈ I \ {j, l}, ex
ij + ex

lj +
∑

(t,s)∈A\{(j,l),(i,j)}Nez
ts

– for i ∈ I \ {j, l}, ex
il + ex

jl +
∑

(t,s)∈A\{(j,l),(i,l)}Nez
ts

– ex
lj +

∑
(t,s)∈A\{(j,l),(l,j)}Nez

ts

– ex
jl +

∑
(t,s)∈A\{(j,l)}Nez

ts .

�	

4.3. Valid Inequalities Involving both Assignment and Traffic Variables

In this section, we present four families of valid inequalities that involve both assignment
and traffic variables. The results and their proofs are given for the quadratic capacitated
case as it is the most general one.

In the remaining of the paper, we present the results without removing the variables
xjj ’s for ease of presentation. So we define PQH = conv(FQH).

We first present an extended formulation of the hub location problem (see Skorin-
Kapov et al. [20]) and discuss how we can obtain valid inequalities from the projection
of this formulation. We define Xk

jl to be 1 if the origin of commodity k ∈ K is assigned
to hub j ∈ I and the destination is assigned to hub l ∈ I and 0 otherwise. To obtain the
new formulation, called the hub location formulation, we replace constraints (4) by

∑

l∈I
Xk

jl ≥ xo(k)j ∀j ∈ I, k ∈ K (16)

−
∑

j∈I
Xk

jl ≥ −xd(k)l ∀l ∈ I, k ∈ K (17)

−
∑

k∈K
tkXk

jl ≥ −zjl ∀(j, l) ∈ A (18)

Xk
jl ≥ 0 ∀(j, l) ∈ A, k ∈ K (19)

in QHL. Now we can project out the variables Xk
jl’s using Farkas’ Lemma.

A branch and cut algorithm for hub location problems with single assignment 379

Proposition 5. Given (x, z), there exists X that satisfies (16)–(19) if and only if

∑

a∈A
zaβa ≥

∑

k∈K
tk

∑

j∈I
(xo(k)jα

k
j − xd(k)j σ

k
j) (20)

for all (α, σ, β) ≥ 0 such that

βjl ≥ αk
j − σk

l ∀k ∈ K, (j, l) ∈ A (21)

0 ≥ αk
j − σk

j ∀k ∈ K, j ∈ I. (22)

Any inequality of the form (20) defined by (α, σ, β) ≥ 0 which satisfies inequalities
(21) and (22) is called a projection inequality.

Let Cp be the pointed cone of (α, σ, β) ≥ 0 that satisfy inequalities (21) and (22).
For (α, σ, β) �= (0, 0, 0) in Cp, define sets B = {(j, l) ∈ A : βjl > 0}, Sk = {j ∈ I :
αk

j > 0} for all k ∈ K , Tk = {l ∈ I : σk
l > 0} for all k ∈ K and K

′ = {k ∈ K : Sk �= ∅}.
The extreme rays of Cp lead to nondominated inequalities (20). Extreme rays such

that B = ∅ or K
′ = ∅ yield trivial nondominated inequalities which are implied by

the constraints of the formulation, such as zjl ≥ 0 or xd(k)j ≥ 0. We have a sufficient
condition for a special class of the remaining rays to be extreme.

Proposition 6. A ray (α, σ, β) ∈ Cp of the form αk
j = 1 if j ∈ Sk , σk

l = 1 if l ∈ Tk ,
βjl = 1 if there exists a k ∈ K such that j ∈ Sk and l �∈ Tk and other entries are 0 is an
extreme ray of Cp if the graph G

′ = (B, E) where B = {(j, l) ∈ A : βjl = 1} and E =
{{(j, l), (m, n)} : (j, l) ∈ B, (m, n) ∈ B, and there exists a k ∈ K such that βjl =
αk

j and βmn = αk
m} is connected, the bipartite graphs G

′
k = (Sk × Tk, E

′
k) where

E
′
k = {{j, l} : j ∈ Sk, l ∈ Tk, βjl = 0 or j = l} are connected for all k ∈ K and

Sk �= I for all k ∈ K .

Proof. Assume that the conditions are satisfied and that there exist distinct (α, σ, β)1

and (α, σ, β)2 in Cp such that (α, σ, β) = 1/2(α, σ, β)1 + 1/2(α, σ, β)2.
For k ∈ K , we have (αk

j)
1 = (αk

j)
2 = 0 if j �∈ Sk , (σ k

j)1 = (σ k
j)2 = 0 if j �∈ Tk and

β1
j l = β2

j l = 0 if (j, l) �∈ B.

If j ∈ Sk and l ∈ Tk and βjl = 0, we have (σ k
l)1 ≥ (αk

j)
1 and (σ k

l)2 ≥ (αk
j)

2.

As (σ k
l)1 + (σ k

l)2 = 2 and (αk
j)

1 + (αk
j)

1 = 2, we have that (σ k
l)1 = (αk

j)
1 and

(σ k
l)2 = (αk

j)
2. As the graph G

′
k is connected, we can conclude that (αk

j)
i = γ i

k for all

j ∈ Sk and (σ k
j)i = γ i

k for all j ∈ Tk for i = 1, 2.

Let (j, l) ∈ B and k ∈ K such that j ∈ Sk and l �∈ Tk . Then β1
j l ≥ γ 1

k and β2
j l ≥ γ 2

k .

As β1
j l + β2

j l = 2 and γ 1
k + γ 2

k = 2, we have β1
j l = γ 1

k and β2
j l = γ 2

k for all k ∈ K

such that j ∈ Sk and l �∈ Tk . As the graph G
′

is connected and as Sk �= I for all k ∈ K ,
γ i
k = γ i for all k ∈ K and i = 1, 2. So both (α, σ, β)1 and (α, σ, β)2 are multiples of

(α, σ, β). �	

380 M. Labbé et al.

Corollary 1. The inequality
∑

(j,l)∈A:j∈S,l∈T
zjl ≥

∑

k∈K ′
tk(

∑

j∈S
xo(k)j +

∑

l∈T
xd(k)l − 1) (23)

where S and T are nonempty disjoint subsets of I and K
′ ⊆ K is a valid inequality for

PQH and it is not dominated by other projection inequalities.

Proof. Consider (α, β, σ) such that αk
j = 1 if j ∈ S, σk

l = 1 if l ∈ I \ T for k ∈ K
′

and βjl = 1 if j ∈ S and l ∈ T and other entries are 0. �	
Remark that constraints (4) are special cases of projection inequalities (23) where

S = {j} and T = {l}.
Some lower bounds on the traffic which flows on the backbone links can also be

computed using the capacity restrictions.

Theorem 2. For j ∈ I , the traffic bound inequalities
∑

l∈I\{j}
zjl ≥

∑

i∈I\{j}
T o

ij xij + T o
j xjj (24)

∑

l∈I\{j}
zlj ≥

∑

i∈I\{j}
T d

ij xij + T d
j xjj (25)

are valid for PQH where

T o
ij = min

∑

m∈I\{i,j}
tim(1− um)

s.t.
∑

m∈I\{i,j}
(am − Tim − Tjm)um +

∑

m∈I\{i,j}

∑

l∈I\{i,j}
Tmlum(1− ul)

≤ M − ai − aj −
∑

m∈I\{i,j}
(Tim + Tjm) (26)

um ∈ {0, 1} ∀m ∈ I\{i, j} (27)

and

T d
ij = min

∑

m∈I\{i,j}
tmi(1− um)

s.t. (26) and (27)

for i ∈ I \ {j},
T o

j =min
∑

m∈I\{j}
tjm(1− um)

s.t.
∑

m∈I\{j}
(am − Tjm)um +

∑

m∈I\{j}

∑

l∈I\{j}
Tmlum(1− ul)

≤ M − aj −
∑

m∈I\{j}
Tjm (28)

um ∈ {0, 1} ∀m ∈ I\{j} (29)

A branch and cut algorithm for hub location problems with single assignment 381

and

T d
j =min

∑

m∈I\{j}
tmj (1− um)

s.t. (28) and (29).

Proof. Assume that node i ∈ I \ {j} is assigned to node j ∈ I . Then the traffic of
commodities from node i to nodes not assigned to node j travels on the backbone arcs
going out of node j . The value T o

ij is a lower bound on this traffic. �	
We now present another family of valid inequalities which give lower bounds on the

amount of traffic on the backbone arcs.

Theorem 3. For S ⊂ I , T ⊂ I such that S ∩ T = ∅, IS ⊆ I and Ii ⊆ I for all i ∈ IS ,
the strengthened projection inequality

∑

j∈S

∑

l∈T
zjl ≥

∑

i∈IS

[
∑

m∈Ii

tim
∑

l∈T
xml − τi(1−

∑

j∈S
xij)] (30)

is valid for PQH where

τi = max
∑

m∈Ii

tim
∑

l∈T
uml

s.t.
∑

l∈T
uml ≤ 1 ∀m ∈ Ii

∑

m∈Ii

(am +
∑

s∈I\Ii

Tms)uml +
∑

m∈Ii

∑

s∈Ii

Tmsuml(1− usl) ≤ M ∀l ∈ T

uml ∈ {0, 1} ∀m ∈ Ii, l ∈ T

for all i ∈ IS .

Proof. If
∑

j∈S xij = 1, for all i ∈ IS , then inequality (30) means that the flow on the
S-T cut must be larger than or equal to the sum of traffic between nodes in IS and nodes
assigned to concentrators in T . Hence, inequality (30) is obtained by down-lifting of the
terms (1 −∑

j∈S xij) for i ∈ IS . Specifically, for a node i ∈ I , consider the following
structure:

∑

j∈S∪T
xij ≤ 1 (31)

∑

l∈T
xml ≤ 1 ∀m ∈ I (32)

φi,(S,T) =
∑

m∈I
tim

∑

j∈S
xij

∑

l∈T
xml (33)

∑

m∈I
amxml +

∑

m∈I

∑

s∈I
Tmsxml(1− xsl) ≤ M ∀l ∈ T (34)

xij ∈ {0, 1} ∀j ∈ S ∪ T (35)

xml ∈ {0, 1} ∀m ∈ I, l ∈ T (36)

382 M. Labbé et al.

where φi,(S,T) represents the amount of traffic that originates at node i and that travels
on arcs from set S to set T given the assignment vector x. Let Fi,(S,T) be the set of points
(φi,(S,T), x) that satisfy constraints (31)–(36) and Pi,(S,T) = conv(Fi,(S,T)). If inequality
φi,(S,T) ≥

∑
j∈S πij xij +

∑
m∈I

∑
l∈T πi

mlxml +πi
0 is valid for Pi,(S,T) for each i ∈ IS ,

then inequality
∑

j∈S
∑

l∈T zjl ≥
∑

i∈IS
(
∑

j∈S πij xij +
∑

m∈I
∑

l∈T πi
mlxml + πi

0)

is valid for PQH since
∑

j∈S
∑

l∈T zjl ≥
∑

i∈I φi,(S,T) and φi,(S,T) ≥ 0 for i ∈ I \ IS .
If node i ∈ IS is assigned to some node j in S, then φi,(S,T) =

∑
m∈I tim

∑
l∈T

xml ≥
∑

m∈Ii
tim

∑
l∈T xml . Otherwise,

∑
m∈Ii

tim
∑

l∈T xml − τi ≤ 0 = φi,(S,T). So
φi,(S,T) ≥

∑
m∈Ii

tim
∑

l∈T xml − τi(1−
∑

j∈S xij) is valid for Pi,(S,T). �	
Below we compare these inequalities with projection inequalities (23).

Proposition 7. For any disjoint subsets S and T of the node set I and K
′ ⊆ K , inequal-

ity (23) is dominated by strengthened projection inequality (30) where IS = I and
Ii = {m ∈ I : (i, m) ∈ K

′ } for i ∈ I .

Proof. Inequality (23) is
∑

j∈S

∑

l∈T
zjl ≥

∑

k∈K ′
tk(

∑

j∈S
xo(k)j +

∑

l∈T
xd(k)l − 1)

=
∑

i∈I

∑

m∈Ii

tim(
∑

j∈S
xij +

∑

l∈T
xml − 1)

=
∑

i∈I
[
∑

m∈Ii

∑

l∈T
timxml −

∑

m∈Ii

tim(1−
∑

j∈S
xij)].

Clearly τi ≤
∑

m∈Ii
tim for all i ∈ I . �	

As the set T becomes large, the gain over the projection inequalities decreases. If all
nodes in Ii can be assigned to the nodes in T , then τi =

∑
m∈Ii

tim. If this is the case
for all i ∈ IS then inequalities (23) and (30) are equivalent.

In the sequel, we consider inequalities (30) where S = {j} and T = {l}. We use
φi,(j,l) instead of φi,({j},{l}).

The value of τi can be improved if we fix the values of some of the variables. Let I 0

and I 1 be two disjoint subsets of I , define Ii = I\(I 0 ∪ I 1) and compute

τi(I
0, I 1) = max

∑

m∈Ii

timum

s.t.
∑

m∈Ii

(am +
∑

s∈I 0

Tms −
∑

s∈I 1

Tms)um

+
∑

m∈Ii

∑

s∈Ii

Tmsum(1− us) ≤ M −
∑

m∈I 1

(am +
∑

s∈I\I 1

Tms)

um ∈ {0, 1} ∀m ∈ Ii .

Then

φi,(j,l) ≥
∑

m∈I 1

timxij +
∑

m∈Ii

timxml − τi(I
0, I 1)(1− xij)

A branch and cut algorithm for hub location problems with single assignment 383

is valid for Pi,(j,l) when xml = 1 for all m ∈ I 1 and xml = 0 for all m ∈ I 0. Since the
values of some of the variables are fixed, τi(I

0, I 1) ≤ τi . By lifting the variables whose
values are fixed to 0 or 1, we can obtain a valid inequality of the form

φi,(j,l) ≥
∑

m∈I 1

timxij +
∑

m∈Ii

timxml − τi(I
0, I 1)(1− xij)

+
∑

m∈I 0

αpxml −
∑

m∈I 1

αp(1− xml). (37)

The following theorem tells us how to compute the lifting coefficients.

Theorem 4. Inequality (37) is valid for Pi,(j,l) where αp = min{α0
p, tip} for all p ∈ I 0

where

α0
p = τi(I

0, I 1) − max
∑

m∈Ii

timum +
∑

m∈Yp

αmum

s.t.
∑

m∈Ii∪Yp

(am +
∑

s∈I0\(Yp∪{p})
Tms −

∑

s∈I 1∪{p}
Tms)um

+
∑

m∈Ii∪Yp

∑

s∈Ii∪Yp

Tmsum(1− us)

≤ M −
∑

m∈I 1∪{p}
(am +

∑

s∈I\(I 1∪{p})
Tms)

um ∈ {0, 1} ∀m ∈ Ii ∪ Yp

and Yp ⊂ I 0 is the set of indices of the variables that have been lifted before xpl and
αp = max{α1

p, tip} for all p ∈ I 1 where

α1
p = max

∑

m∈Ii

timum +
∑

m∈I 0

αmum +
∑

m∈Y 1
p

αmum − (τi(I
0, I 1)+

∑

m∈Y 1
p

αm)

s.t.
∑

m∈Ii∪I 0∪Y 1
p

(am −
∑

s∈I 1\(Y 1
p∪{p})

Tms + Tmp)um

+
∑

m∈Ii∪I 0∪Y 1
p

∑

s∈Ii∪I 0∪Y 1
p

Tmsum(1− us)

≤ M −
∑

m∈I 1\(Y 1
p∪{p})

(am +
∑

s∈Ii∪I 0∪Y 1
p∪{p}

Tms)

um ∈ {0, 1} ∀m ∈ Ii ∪ I 0 ∪ Y 1
p

and Y 1
p ⊂ I 1 is the set of indices of the variables that have been lifted before xpl .

Proof. Let Pi,(j,l)(I
0, I 1) = conv(Fi,(j,l) ∩ {x : xml = 0 ∀m ∈ I 0, xml = 1 ∀m ∈

I 1}). We first lift the variables with indices in I 0 and then the variables with indices in
I 1. When lifting xpl with p ∈ I 0, we have an inequality of the form

φi,(j,l) ≥
∑

m∈I 1

timxij +
∑

m∈Ii

timxml − τi(I
0, I 1)(1− xij)+

∑

m∈Yp

αmxml

384 M. Labbé et al.

which is valid for Pi,(j,l)(I
0 \ Yp, I 1) and we would like to find an αp such that the

inequality

φi,(j,l) ≥
∑

m∈I 1

timxij +
∑

m∈Ii

timxml − τi(I
0, I 1)(1− xij)

+
∑

m∈Yp

αmxml + αpxpl (38)

is valid for Pi,(j,l)(I
0 \ (Yp ∪ {p}), I 1). For inequality (38) to be valid, we should have:

αp ≤ φi,(j,l) −
∑

m∈I 1

timxij −
∑

m∈Ii

timxml + τi(I
0, I 1)(1− xij)−

∑

m∈Yp

αmxml

(39)

for all x ∈ Pi,(j,l)(I
0 \ (Yp ∪ {p}), I 1). We have two cases to consider:

Case 1: xij = 0. Then φi,(j,l) = 0 and inequality (39) becomes:

αp ≤ τi(I
0, I 1)−

∑

m∈Ii

timxml −
∑

m∈Yp

αmxml.

The value α0
p gives the minimum of the right hand side.

Case 2: xij = 1. Then φi,(j,l) =
∑

m∈I 1 tim +
∑

m∈Ii∪Yp
timxml + tip. So we have

αp ≤
∑

m∈I 1

tim +
∑

m∈Ii∪Yp

timxml + tip −
∑

m∈I 1

tim −
∑

m∈Ii

timxml −
∑

m∈Yp

αmxml

=
∑

m∈Yp

(tim − αm)xml + tip.

It is easy to show by induction that αm ≤ tim for all m ∈ Yp .
To have the strongest inequality we choose αp = min{α0

p, tip}.
The lifting for p ∈ I 1 can be done in a similar way. �	
A last family of valid inequalities can be obtained by computing lower bounds on

the traffic on arc (j, l) using the total number of terminals assigned to hubs j and l.

Theorem 5. Let I
′ ⊆ I and T µ(I

′
) denote a lower bound on the traffic on arc (j, l) ∈ A

when µ terminals of set I
′
are assigned to j and l for µ = 0, .., |I ′ |. Define dT µ+1(I

′
) =

T µ+1(I
′
) − T µ(I

′
) for all µ = 0, .., |I ′ | − 1. If dT µ+1(I

′
) ≥ dT µ(I

′
) for all µ =

0, .., |I ′ | − 1, then the step inequality

zjl ≥ T µ(I
′
)+ dT µ+1(I

′
)[

∑

i∈I ′
(xij + xil)− µ] (40)

is valid inequality for PQH for any µ = 0, .., |I ′ | − 1.

A branch and cut algorithm for hub location problems with single assignment 385

Proof. Let λ = ∑
i∈I ′ (xij + xil). Then by definition zjl ≥ T λ(I

′
). If µ ≤ λ then

T λ(I
′
) = T µ(I

′
)+∑λ−1

r=µ dT r+1(I
′
). Since dT r+1(I

′
) ≥ dT µ+1(I

′
) for all r ≥ µ, we

have
∑λ−1

r=µ dT r+1(I
′
) ≥ (λ− µ)dT µ+1(I

′
). So

zjl ≥ T λ(I
′
) = T µ(I

′
)+

λ−1∑

r=µ

dT r+1(I
′
) ≥ T µ(I

′
)+ (λ− µ)dT µ+1(I

′
).

If µ > λ, then we can show that
∑µ−1

r=λ dT r+1(I
′
) ≤ (µ− λ)dT µ+1(I

′
). Hence

zjl ≥ T λ(I
′
) = T µ(I

′
)−

µ−1∑

r=λ

dT r+1(I
′
) ≥ T µ(I

′
)+ (λ− µ)dT µ+1(I

′
).

This proves that inequality (40) is valid for PQH when xij + xil = 0 for all i ∈ I \ I
′
.

Further, it is clear that assigning more terminal nodes to nodes j and l cannot decrease
the traffic on arc (j, l). �	

Now, we present a simple way to compute lower bounds T µ(I
′
)’s. Let gm(I

′
) be the

maximum number of terminals in I
′
that can be assigned to a given hub m. As a hub node

is assigned to itself, gj (I
′
) and gl(I

′
) can be different. Let g(I

′
) = max{gj (I

′
), gl(I

′
)}.

If µ is larger than g(I
′
), then at least g(I

′
)(µ− g(I

′
)) commodities travel from j to l.

Let t (k)(I
′
) denote the kth smallest traffic with origin and destination in I

′
. We define

the lower bounds T µ(I
′
)’s as follows:

T µ(I
′
) =

{
∑g(I

′
)(µ−g(I

′
))

k=1 t (k)(I
′
) if µ > g(I

′
)

0 otherwise.

These bounds T µ(I
′
)’s satisfy dT µ+1(I

′
) ≥ dT µ(I

′
) for all µ = 0, .., |I ′ | − 1. So

they lead to valid inequalities.

5. A branch and cut algorithm for QHL

In this section, we discuss the branch and cut algorithm to solve QHL. We first compare
several formulations to choose the one to use in the algorithm. We strengthen this for-
mulation using projection inequalities. The remaining part of the section is devoted to
the discussion of different ingredients of the branch and cut algorithm. We first present a
preprocessing and strengthening algorithm. Then we discuss the separation algorithms
implemented for each family of cuts. We make some initial tests to decide about the
parameters of the branch and cut algorithm. Then we present computational results
using some data supplied by France Telecom and the AP data from the OR Library (see
Beasley [6]).

386 M. Labbé et al.

5.1. Comparing Formulations

We first present the formulation we use in our branch and cut algorithm. This formula-
tion, called QHL1, can be obtained by replacing the quadratic capacity constraints (5)
in QHL by the linear constraints (8).

Formulation QHL1 has O(n2) variables and exponentially many constraints. When
we start the branch and cut algorithm, we do not include constraints (4) in the lin-
ear programming (LP) relaxation. We add these inequalities whenever we find them
to be violated by the optimal solution of the current LP relaxation. For a given arc
(j, l) ∈ A and a solution (x∗, z∗), let Kjl = {k ∈ K : x∗o(k)j + x∗d(k)l − 1 > 0}. If

z∗j l−
∑

k∈Kjl
tk(x∗o(k)j +x∗d(k)l−1) < 0, the set Kjl yields the most violated inequality.

Recall the variables Xk
jl’s defined in Section 4.3. Constraints (4) in formulation

QHL1 are obtained by projecting out the variables Xk
jl’s from the system:

Xk
jl ≥ xo(k)j + xd(k)l − 1 ∀(j, l) ∈ A, k ∈ K

zjl ≥
∑

k∈K
tkXk

jl ∀(j, l) ∈ A

Xk
jl ≥ 0 ∀(j, l) ∈ A, k ∈ K

which corresponds to the standard linearization of zjl =
∑

k∈K tkxo(k)j xd(k)l (see Dant-
zig [8]). Inequalities (4) are the only non redundant projection inequalities of this system.

The second formulation we consider is the hub location formulation given by (1)–
(3), (6)–(7), (8) and (16)–(19). This formulation, denoted by QHL2, has O(n4) variables
and O(n3) constraints.

We can also obtain a multicommodity flow formulation QHL2m using the variables
Xk

jl’s by replacing (16)–(19) by

∑

l∈I\{j}
Xk

jl −
∑

l∈I\{j}
Xk

lj = xo(k)j − xd(k)j ∀j ∈ I, k ∈ K

zjl ≥
∑

k∈K
tkXk

jl ∀(j, l) ∈ A

Xk
jl ≥ 0 ∀(j, l) ∈ A, k ∈ K.

This formulation is valid since the costs Rjl’s satisfy the triangle inequality. This also
implies that the LP relaxations of QHL2 and QHL2m have the same value.

Ernst and Krishnamoorthy [10] suggest a formulation with a smaller number of vari-
ables. They aggregate the commodities having the same origin to decrease the number
of flow variables. Define f i

jl to be the flow of commodities originating at node i ∈ I

and traveling along arc (j, l) ∈ A. Formulation QHL3 can be obtained by replacing
constraints (4) in QHL1 by the following set of constraints:

A branch and cut algorithm for hub location problems with single assignment 387

∑

l∈I\{j}
f i

jl −
∑

l∈I\{j}
f i

lj =
∑

m∈I
tim(xij − xmj) ∀i, j ∈ I (41)

zjl ≥
∑

i∈I
f i

j l ∀(j, l) ∈ A

f i
jl ≥ 0 ∀i ∈ I, (j, l) ∈ A.

Formulation QHL3 has O(n3) variables and O(n2) constraints. Obviously the LP
relaxation of QHL2 has a larger value than the one of QHL1 and the one of QHL3.
However, the comparison between QHL1 and QHL3 is not so clear as shown by the
following example.

Example 1. Suppose we have five nodes and two commodities with one unit of traffic
from node 1 to node 2 and from node 1 to node 3. Consider the vector x with nonzero
coordinates given by x44 = 1, x55 = 1, x14 = 0.7, x15 = 0.3, x24 = 0.5, x25 = 0.5,
x34 = 0.9, x35 = 0.1 (see Figure 2).

As x11 = x22 = x33 = 0, there is no flow on the arcs adjacent to nodes 1, 2 and
3. Since the right hand sides of the flow balance constraints (41) for nodes 4 and 5 are
equal to zero, the vector (x, z, f) where f = z = 0 is feasible for the LP relaxation of
QHL3.

However (x, z) is not feasible for the LP relaxation of QHL1 since constraint (4) for
arc (4, 5) and K

′ = {(1, 2)} yields z45 ≥ 0.7+ 0.5− 1 = 0.2.

1

4

5

2

3

0.7

0.3

0.5

0.5

0.9

0.1

1

1

Fig. 2. Assignment with zero traffic in the LP relaxation of QHL3

1

4

5

2

3

0.3

0.5

0.5
0.4

0.5

0.5

0.3

1

1

Fig. 3. Assignment with zero traffic in the LP relaxation of QHL1

388 M. Labbé et al.

Now consider the vector x with nonzero coordinates given by x11 = 0.3, x44 =
1, x55 = 1, x14 = 0.4, x15 = 0.3, x24 = 0.5, x25 = 0.5, x34 = 0.5, x35 = 0.5 (see
Figure 3).

As x1j + x2l ≤ 1 and x1j + x3l ≤ 1 for all (j, l) ∈ A, (x, z) where z = 0 is feasible
for the LP relaxation of QHL1. However the flow balance constraint for node 1 is

f 1
12 + f 1

13 + f 1
14 + f 1

15 − f 1
21 − f 1

31 − f 1
41 − f 1

51 = 2× 0.3 = 0.6.

So any (x, z) with z = 0 is infeasible for the LP relaxation of QHL3. �	
We now present the results obtained from these four formulations for a small sample

of test problems. We have seven problems with 10 nodes, six problems with 12 nodes
and five problems with 15 nodes generated from the same cost and traffic data. We keep
M = 10 and multiply the traffic values by Q ∈ {1, 2/3, 1/2, 1/3, 1/4, 1/5, 1/6} to have
different types of problems with respect to the tightness of capacities and the effect of
the routing cost. We removed problems with Q = 1 for n = 12 and n = 15 and the
problem with Q = 2/3 for n = 15 as they were infeasible. This set of problems will be
used in the remainder of this section to decide about different components of the branch
and cut algorithm.

To compare the formulations presented above, we use a branch and cut algorithm
which will be described in detail in Section 5.5. We should note that for formulation
QHL1, the only valid inequalities separated are constraints (4). For the other formula-
tions, we have a pure branch and bound algorithm.

The results are given in Table 2. The columns gap, CPU and first give the duality
gap at the root node (i.e., gap = opt−db

opt
∗ 100 where opt is the optimal value and db

is the dual bound before branching), the CPU time in seconds to solve the problem and
the CPU time to solve the first LP relaxation, respectively. We set a time limit of one
hour. If the problem is not solved to optimality within one hour of CPU time, then we
write time in the column CPU. If we run out of memory, then we write memory. For
formulation QHL1, we do not report the CPU time to solve the first LP as it was less
than 0.01 seconds for all problems. We do not report it for formulation QHL2 either,
because it was always longer than the one for QHL2m. Finally, the gap for QHL2m is
also omitted since it is equal to that of QHL2.

We observe that the duality gap decreases as Q decreases independently of which
formulation we choose. This is because QHL approaches the uncapacitated concentrator
location problem as Q tends to 0.

Formulations QHL2 and QHL2m do not seem promising to solve big problems as the
time to solve the LP relaxations grows very fast. However, the other two formulations
do not perform much better as they have larger duality gaps and it takes a lot of time to
close this gap. It is clear that if we would like to use one of these two formulations, we
should strengthen it.

5.2. Projection Inequalities

Given a current solution (x∗, z∗), to check whether there exists a projection inequality
(20) violated amounts to solving a linear programming problem with O(n3) variables
and O(n4) constraints. Since the size of this LP is about the same as that of the LP

A branch and cut algorithm for hub location problems with single assignment 389

Table 2. Comparison of formulations

QHL1 QHL2 QHL2m QHL3
n Q gap CPU gap CPU CPU first gap CPU first
10 1 72.22 382.56 31.40 time time 3.91 43.33 455.82 0.12

2/3 59.86 1025.53 24.23 time time 2.92 31.24 memory 0.15
1/2 47.93 129.13 10.43 841.24 449.97 2.71 16.08 139.49 0.15
1/3 37.71 27.80 3.38 75.98 40.62 2.23 8.36 11.85 0.12
1/4 33.01 23.26 2.71 71.36 34.00 1.87 7.53 8.34 0.11
1/5 28.43 15.66 1.65 38.22 18.03 1.39 5.60 5.02 0.14
1/6 24.85 10.30 1.14 44.08 20.77 1.4 4.57 5.3 0.13

12 2/3 63.77 memory 23.14 time time 20.76 31.88 memory 0.7
1/2 52.16 2313.95 9.43 time time 18.40 17.22 memory 0.6
1/3 41.93 793.41 3.99 609.53 329.40 13.55 9.78 367.78 0.7
1/4 35.85 458.10 2.55 229.69 123.51 11.96 7.55 101.84 0.61
1/5 31.54 234.08 2.59 154.70 84.6 9.27 6.27 47.53 0.63
1/6 27.87 112.88 1.98 261.10 137.08 9.03 5.17 31.48 0.46

15 1/2 64.25 time 22.39 time time 185.50 32.44 memory 3.74
1/3 51.04 time 9.91 time time 170.09 18.35 memory 4.85
1/4 41.48 time 3.61 time 2441.83 143.37 10.41 memory 3.58
1/5 36.69 time 2.94 2762.05 1330.32 145.00 8.08 2889.87 3.68
1/6 31.66 time 1.13 768.79 428.04 101.87 4.95 141.91 3.57

relaxation of QHL2, we prefer to use heuristics to separate some specific families of
projection inequalities. We focus on the projection inequalities (23) for which the sep-
aration is easy if we are given the sets S and T . We use Algorithm 1 to separate the
projection inequalities.

Algorithm 1 Separate Projection
for all i ∈ I such that x∗ii > 0 do

add inequality (23) if it is violated for S = {i}, T = I\{i} and K
′ = {k ∈ K : x∗o(k)i − x∗d(k)i > 0}

add inequality (23) if it is violated for S = I\{i}, T = {i} and K
′ = {k ∈ K : x∗d(k)i − x∗o(k)i > 0}

end for
for all k ∈ K do

add inequality (23) if it is violated for S = {i ∈ I : x∗o(k)j−x∗d(k)j > 0}, T = {i ∈ I : x∗d(k)j−x∗o(k)j > 0}
and K

′ = {k′ ∈ K :
∑

j∈S x∗
o(k
′
)j
+∑

l∈T x∗
d(k
′
)l
− 1 > 0}

end for

In Table 3, we present the results obtained by using the projection inequalities with
formulations QHL1 and QHL3. Clearly, formulation QHL1 with the projection inequal-
ities outperforms the other formulation.

We can also observe that the problems with large Q values remain much harder to
solve. The difficulty of the problem changes a lot with Q. If the number of nodes is not
very big, then we can solve the problems with small Q values by an off-the-shelf MIP
solver. Problems with bigger number of nodes or larger Q values request the development
of a specially tailored branch and cut algorithm.

5.3. Preprocessing and Basic Strengthening

The preprocessing algorithm (Algorithm 2) is based on the capacity restrictions and first
checks if the problem is feasible. If so, it also checks for any pair of nodes whether they

390 M. Labbé et al.

Table 3. Improvement due to projection inequalities

QHL1+pro QHL3+pro
n Q gap CPU gap CPU
10 1 32.86 376.61 32.80 2138.56

2/3 24.36 709.90 24.53 3575.78
1/2 10.86 37.66 10.77 179.39
1/3 4.68 5.42 4.76 21.75
1/4 4.68 3.24 4.47 9.40
1/5 3.58 2.82 3.00 6.43
1/6 2.56 1.58 2.16 5.76

12 2/3 25.25 time 24.74 time
1/2 13.17 556.85 12.24 time
1/3 7.71 38.47 6.47 208.73
1/4 5.31 12.61 5.23 52.86
1/5 4.78 10.91 4.14 31.03
1/6 3.66 9.37 3.24 27.59

15 1/2 26.56 time 24.88 time
1/3 15.52 time 14.30 time
1/4 7.91 383.52 7.10 2118.01
1/5 6.39 184.55 5.38 684.50
1/6 4.58 29.83 2.85 92.17

can be assigned to the same hub. It removes the nodes that cannot be assigned with any
other node. It also adds constraints imposing lower bounds on the traffic and a lower
bound on the number of concentrators to be installed.

Algorithm 2 Preprocessing
for all i ∈ I do

if ai +
∑

l∈I Til > M then
the problem is infeasible

else if ai + am +
∑

l∈I\{i,m}(Til + Tml) > M for all m ∈ I \ {i} then
fix xii = 1 and xmi = 0 for all m ∈ I \ {i}
remove node i from the set I by doing the necessary changes in the cost and demand vectors

else if ai + am +
∑

l∈I\{i,m}(Til + Tml) ≤ M for all m ∈ I \ {i} then
for all j ∈ I\{i} do

add inequality xij ≤ xjj

end for
else

for all m ∈ I \ {i} such that ai + am +
∑

l∈I\{i,m}(Til + Tml) > M do
for all j ∈ I do

add inequality xij + xmj ≤ xjj

end for
end for

end if
compute T o

i and T d
i as described in Theorem 2

di ← ai + T o
i + T d

i
end for
apply the algorithm of Martello and Toth [18] to compute the L2 bound (a lower bound on the optimal value
of a binpacking problem) to determine a lower bound L on the number of hubs to satisfy all demands di ’s
and add inequality

∑
j∈I xjj ≥ L

for all j ∈ I do
add the traffic bound inequalities

∑
l∈I\{j} zjl ≥

∑
i∈I T o

i xij and
∑

l∈I\{j} zlj ≥
∑

i∈I T d
i xij

end for

A branch and cut algorithm for hub location problems with single assignment 391

The traffic bound inequalities used in the processing are weaker than inequalities (24)
and (25). But in this way, we need to solve n quadratic integer programming problems
instead of n2. Similar quadratic integer programming problems also arise in the separa-
tion and lifting of valid inequalities for QHL. We use the branch and bound algorithms
given in Yaman [23] to solve these problems with small sizes.

It is possible to compute lower bounds for T o
i ’s and T d

i by solving a series of linear
knapsack problems. Algorithm 3 computes a lower bound on T o

i + T d
i for each i ∈ I

but it can be easily modified to compute lower bounds T o
i ’s and T d

i ’s separately.

Algorithm 3 Compute Traffic
for all i ∈ I do

di ← ai

end for
improved ← 1
while improved do

improved ← 0
for all i ∈ I do

compute Ti = min{∑m∈I\{i} Tim(1− um) :
∑

m∈I\{i} dmum ≤ M − di , u ∈ {0, 1}n−1}.
if ai + Ti > di then

di ← ai + Ti and improved ← 1
end if

end for
end while

For problems with n ≥ 20, we do preprocessing based on lower bounds for T o
i ’s and

T d
i ’s computed using Algorithm 3 rather than their exact values.

In Table 4, we present the results obtained using the preprocessing and basic strength-
ening algorithm. We compute T o

i ’s and T d
i ’s by solving quadratic problems. The first and

second columns give the results without preprocessing and with preprocessing respec-
tively. The last column gives the percentage improvement in the duality gap and in the
CPU time due to preprocessing and strengthening. The sign 	 indicates that the improve-
ment in the CPU time cannot be computed as the problem is not solved to optimality in
one hour without preprocessing.

Preprocessing and strengthening are quite effective in all kinds of problems, but
they are more effective on problems with tight capacities. As long as the computation
time is concerned, the preprocessing performs well and leads to an improvement for all
problems. The least improvement is around 21%.

The demands di’s computed during preprocessing can be used to obtain a relaxation
of QHL which is a LHL. As

∑
i∈I ai > M , we can expect di > ai so that such a relax-

ation is stronger than a relaxation obtained using demands ai’s. This relaxation will be
used often to avoid solving quadratic problems which arise in the separation and lifting
of valid inequalities of QHL.

5.4. Other Valid Inequalities and Separation Algorithms

This section discusses the valid inequalities and their separation algorithms used in the
branch and cut algorithm. The separation routine is run at every node of the branch and
cut tree. Let (x∗, z∗) denote the current solution.

392 M. Labbé et al.

Table 4. Improvement due to preprocessing and basic strengthening

without prep. with prep. % improvement in
n Q gap CPU gap CPU gap CPU
10 1 32.86 376.61 0.00 0.07 100.00 99.98

2/3 24.36 709.90 3.51 1.83 85.59 99.74
1/2 10.86 37.66 6.26 4.94 42.32 86.88
1/3 4.68 5.42 4.55 2.42 2.82 55.35
1/4 4.68 3.24 3.41 1.72 27.14 46.91
1/5 3.58 2.82 2.26 0.79 36.89 71.99
1/6 2.56 1.58 1.06 0.62 58.66 60.76

12 2/3 25.25 time 7.29 29.18 71.12 	

1/2 13.17 556.85 7.92 31.58 39.84 94.33
1/3 7.71 38.47 7.48 18.12 2.93 52.90
1/4 5.31 12.61 4.74 9.26 10.79 26.57
1/5 4.78 10.91 3.42 4.97 28.50 54.45
1/6 3.66 9.37 2.51 3.58 31.29 61.79

15 1/2 26.56 time 7.02 145.42 73.56 	

1/3 15.52 time 11.25 2003.95 27.53 	

1/4 7.91 383.52 6.91 147.81 12.60 61.46
1/5 6.39 184.55 5.94 122.76 7.02 33.48
1/6 4.58 29.83 3.00 23.39 34.54 21.59

Lifted Quadratic Cover Inequalities (Yaman [23]) A subset C ⊆ I such that
∑

i∈C ai +∑
i∈C

∑
m∈I\C Tim > M is called a quadratic cover. This notion is very close to that of

cover for knapsack constraints (see Balas [5], Hammer et al. [15] and Wolsey [22]). If
C ⊆ I is a quadratic cover, then the quadratic cover inequality

∑
i∈C xij ≤ (|C|−1)xjj

is valid for PQH .
To separate the quadratic cover inequalities, we use the branch and bound algorithm

given in Yaman [23]. For a given j ∈ I , we define I1 = {i ∈ I : x∗ij = x∗jj } and
I0 = {i ∈ I : x∗ij = 0}. We fix xij = 1 for all i ∈ I1 and xij = 0 for all i ∈ I0. If we find
a cover C, we also fix xij = 0 for i ∈ I \ (I1 ∪ I0 ∪C). We lift first the variables whose
values are fixed to 0 and who have x∗ij > 0. If the resulting inequality is violated, then
we lift the variables whose values are fixed to 1 except xjj . After, we lift the remaining
variables whose values are fixed to 0. The last variable we lift is xjj . This is similar to
the order given by Gu et al. [14].

We can also separate cover inequalities on linear knapsack constraints which give
relaxations of the quadratic constraint. For j ∈ I and K

′ ⊆ K , the linear knapsack
inequality

∑

i∈I
aixij +

∑

(i,m)∈K ′
Tim(xij − xmj) ≤ M (42)

is valid for PQH (see Yaman [23]). So any cover inequality based on this knapsack
inequality is also valid for PQH .

For a given j ∈ I , the problem of finding the set K
′

which defines a knapsack
inequality for which there is a violated cover inequality is the same problem as the sep-
aration of quadratic cover inequalities. So, we adopt the following heuristic method: We
take K

′ = {(i, m) ∈ K : x∗ij − x∗mj > 0}. Then we separate and lift the cover inequality

on the knapsack inequality (42) defined by K
′
.

A branch and cut algorithm for hub location problems with single assignment 393

Another possibility is to consider inequality
∑

i∈I dixij ≤ M where di’s are com-
puted during preprocessing. In general these inequalities are different from inequalities
(42). However we are not able to compare their strengths. Still, as the inequalities (42)
have demands that are based on the actual assignment vector and the associated flow in
the backbone network, they are likely to be more useful for problems which do not have
very tight capacities.

For problems with n ≥ 20, we separate cover inequalities based on linear knapsack
constraints rather than quadratic cover inequalities. For each node j ∈ I , we first look
for a violated lifted cover inequality based on the linear knapsack (42). If there is none,
then we try to find one for the knapsack with demands di’s. We do it sequentially to
avoid adding the same inequality twice. The lifting is as explained above.

Lifted Strengthened Projection Inequalities We separate the strengthened projection
inequalities (30) where S and T are singletons. For a given arc (j, l), for each node
i ∈ I , we take I 1 = {m ∈ I : x∗ml = 1}, Ii = {m ∈ I\I 1 : x∗ij + x∗ml > 1},
I+i = {m ∈ I\(I 1 ∪ Ii) : x∗ml > 0} and I 0

i = I\(I 1 ∪ Ii ∪ I+i). We fix xml = 1
for all m ∈ I 1 and xml = 0 for all m ∈ I+i ∪ I 0

i . We compute τi(I
+
i ∪ I 0

i , I 1) and
then lift the variables. For j ∈ I , we use the linear knapsack constraint (42) defined by
K
′ = {(i, m) ∈ K : x∗ij − x∗mj > 0} as the capacity constraint to avoid solving quadratic

problems. The lifting order is I+i , I 1 and I 0
i .

Step Inequalities We use the following heuristic to separate the step inequalities: For
a given arc (j, l), we take I

′ = {i ∈ I : x∗ij + x∗il > 0}. We add the violated inequalities
to the formulation.

The valid inequalities we discuss below are valid and facet defining under some con-
ditions for the polytopes of concentrator location problems. For details, seeYaman [23].
Here we give the definition of each inequality and briefly discuss the separation algo-
rithm.

Quadratic Binpacking Inequalities on Three Nodes (Yaman [23]) Let {i, j, l} ⊆ I be
such that i �= j �= l. If {i, j, l} is a quadratic cover then the quadratic binpacking
inequality

xij + xil + xji + xjl + xli + xlj ≤ 1

is valid for PQH . We separate these inequalities by enumeration and we add all that are
violated.

Binpacking inequalities (Deng and Simchi Levi [9]) are introduced for the polytope
of capacitated facility location problem (CFLP) with single assignment. Let I

′ ⊆ I and
J ⊆ I . Define b(I

′
) to be the minimum number of concentrators to be installed to assign

all nodes in I
′
. The binpacking inequality

∑

i∈I ′

∑

j∈J
xij −

∑

j∈J
xjj ≤ |I ′ | − b(I

′
)

is valid for PQH .

394 M. Labbé et al.

Residual capacity inequalities (Leung and Magnanti [17]) are valid inequalities
for the polytope of CFLP. Let I

′ ⊆ I and J ⊆ I . Define D(I
′
) = ∑

i∈I ′ di and

r = D(I
′
)− �D(I

′
)

M
�M . The residual capacity inequality

∑

i∈I ′

∑

j∈J
dixij − r

∑

j∈J
xjj ≤ D(I

′
)− r�D(I

′
)

M
�

is valid for PQH .
The separation algorithm for the binpacking and residual capacity inequalities is as

follows: We look at all sets of the form J = I\{l} for some l ∈ I such that x∗ll > 0. For
a given l, the binpacking inequality becomes

b(I
′
)−

∑

i∈I ′
xil ≤

∑

j∈I\{l}
xjj .

We take I
′ = {i ∈ I : di

M
− x∗il > 0} and b(I

′
) to be the L2 bound of Martello

and Toth [18] for binpacking. We evaluate the binpacking inequality for this I
′

and J

and add it to the formulation if it is violated. Otherwise we check whether the residual
capacity inequality defined by the same sets I

′
and J is violated.

Effective Capacity Inequalities (Aardal et al. [1]) are also valid inequalities for the
CFLP polytope. Let J

′ ⊆ I . For each j ∈ J
′

choose Ij ⊆ I and define I
′ = ∪

j∈J ′ Ij .

Define also M̄j = min{M,
∑

i∈Ij
di} for each j ∈ J

′
and λ = ∑

j∈J ′ M̄j − D(I
′
). If

λ > 0 then the effective capacity inequality
∑

j∈J ′

∑

i∈Ij

dixij +
∑

j∈J ′
(M̄j − λ)+(1− xjj) ≤ D(I

′
)

is valid for PQH . We separate these inequalities as described in Aardal [2], but we do
not look for the P-depots structures.

Lifted W-2 Inequalities (Avella and Sassano [4]) The W − 2 inequalities are intro-
duced for the p-median polytope and are also valid for the polytope of UCL. Let
W ⊆ I with |W | ≥ 4 and H ⊂ AW = {(i, j) ∈ A : i ∈ W, j ∈ W } such that
for each j ∈ W there exists exactly one i ∈ W such that (i, j) ∈ H . Define also
U = {i ∈ W : there is no j such that (i, j) ∈ H }. The W − 2 inequality

∑

(i,j)∈AW

xij +
∑

i∈U

∑

j∈I\W
xij ≤ |W | − 2

is valid for PQH when xlu = 0 for all (l, u) ∈ A such that l ∈ I \W and u ∈ U . The
lifting coefficients are given in Yaman [23].

We separate the W-2 inequalities using a heuristic algorithm. We consider triples
{i, j, l} such that x∗ij+x∗j l+x∗li+x∗ji+x∗lj+x∗il > 0.8. For a given set W , we determine sets
H and U and lift the variables xij ’s with i ∈ I \W and j ∈ U in decreasing order of xij ’s.
If the lifted W −2 inequality is violated, then we add it to the formulation and pass to the
next triple. Otherwise, we add a node s �∈ W for which

∑
t∈W\smin

x∗ts+
∑

t∈W x∗st > 0.8
where smin = argmink∈Wx∗ks and repeat the same steps.

A branch and cut algorithm for hub location problems with single assignment 395

k-triangle Inequalities (Yaman [23]) Consider the graph H
′ = (I

′
, A
′
) where I

′ ⊆ I

with |I ′ | = 2k+ 1 for some k ≥ 1 and number the nodes in I
′
from 1 to 2k+ 1. The arc

set A
′

consists of all arcs (i, i + 1) for i = 1, .., 2k and all arcs (j, l) where j and l are
both odd and j > l. Then the k-triangle inequality

∑
(i,j)∈A′ xij ≤ k is valid for PQH .

As the separation problem for the k-triangle inequalities is NP-complete (see
Yaman [23]), we use a simple greedy heuristic. We consider ordered triples {i, j, l}
such that x∗ij > 0 and x∗ij + x∗j l + x∗li > 0.8. If the k-triangle inequality is violated, we
add it to the formulation and pass to the next triple. Otherwise, we add nodes t and s not
yet considered which have a contribution of at least 0.8 to the left hand side. Then we
repeat the same steps.

Lifted k-leaf Inequalities (Yaman [23]) Given an arc (i, j) ∈ A and a subset I
′ ⊆ I \{i, j}

with |I ′ | = k, the k-leaf inequality

kxij +
∑

t∈I\{i,j}
(k − 1)xit +

∑

t∈I ′
xti +

∑

t∈I ′
xjt ≤ k

is valid for PQH when xli = 0 for all l ∈ I \ (I
′ ∪ {i})}). The lifting coefficients for

xli = 0 for all l ∈ I \ (I
′ ∪ {i})}) are given in Yaman [23] for certain sequences.

The k-leaf inequalities are separated exactly in O(n3) time as described in
Yaman [23]. Then the variables xli with l ∈ I \ (I

′ ∪ {i}) are lifted by solving lin-
ear knapsack problems. We add the most violated inequality for each (i, j) ∈ A.

2-cycle Inequalities (Yaman [23]) Take a subset D ⊂ I with |D| = 3 and a node
c ∈ I \ D. Let Cd be a directed cycle on the nodes of D. Renumber the nodes such
that D = {1, 2, 3}, the cycle is 1, 2, 3, 1, the node c = 4 and I \D = {5, 6, .., n}. The
2-cycle inequality

2x12 + 2x23 + 2x31 + x14 + x24 + x34 +
∑

i∈I\{4}
x4i ≤ 3

is valid for PQH . We separate these inequalities by considering triples {i, j, l}. If x∗ij +
x∗j l + x∗li > 0.8, then we add all violated 2-cycle inequalities with 1 = i, 2 = j , 3 = l

and m ∈ I \ {i, j, l}. Otherwise, if x∗ji+x∗lj +x∗il > 0.8, then we add all violated 2-cycle
inequalities with 1 = j , 2 = i, 3 = l and m ∈ I \ {i, j, l}.

Odd Hole Inequalities (Padberg [19]) are valid inequalities for the stable set poly-
tope and thus for the UCL polytope and for PQH . These inequalities can be separated in
polynomial time by solving a series of shortest path problems on a bipartite graph (see
Grötschel et al. [13]).

5.5. Branch and Cut Algorithm and Computational Results

In this section, we present the basic parts of our branch and cut algorithm and discuss
the computational results. The branch and cut algorithm is implemented in C++ using
ABACUS 2.3 (see Jünger and Thienel [16]) and the LP solver CPLEX 7.0. The runs are
taken on an Intel Pentium III, 1 GHz, 1 GB RAM running under Suse 7.2.

396 M. Labbé et al.

We start with the LP relaxation that contains constraints (2), (8) and xij ≥ 0 for all
i, j ∈ I and zjl ≥ 0 for all (j, l) ∈ A. We run the preprocessing and strengthening
algorithm. Then we give the formulation to ABACUS.

Primal Heuristic The solution (x∗, z∗) of the current LP relaxation is feasible if x∗
is integer and (x∗, z∗) satisfies constraints (4). If x∗ is integer but (x∗, z∗) does not
satisfy constraints (4), we compute a feasible z

′
by taking z

′
j l =

∑
k∈K tkx∗o(k)j x

∗
d(k)l

for all (j, l) ∈ A. If x∗ is not integer, we apply a rounding heuristic (Algorithm 4) to
obtain an integer x

′
that satisfies the capacity constraints (5). If we can find such an x

′
,

we compute z
′

as described above. The heuristic is run each time an LP is solved.

Algorithm 4 Rounding Heuristic
for all i ∈ I do

if x∗ii ≥ 0.5 then
x
′
ii ← 1

else
find node j = argmaxl∈I x∗il
x
′
ij ← 1

end if
end for
for all j ∈ I such that x

′
jj = 0 do

if there exists a node i such that x
′
ij = 1 then

x
′
j l ← 0 for all l ∈ I \ {j} and x

′
jj ← 1

end if
end for
capf eas ← 0 and tour ← 1
while not capf eas and tour ≤ 15 do

capf eas ← 1 and increment tour

for all j ∈ I do
if x

′
jj = 1 then

sj ← M −∑
i∈Ij ai −

∑
i∈Ij

∑
m∈I\Ij Tim where Ij = {i ∈ I : x

′
ij = 1}

else
sj ← 0

end if
if sj < 0 then

capf eas ← 0
end if

end for
if not capf eas then

if
∑

j∈I sj < 0 then

x
′
j∗l ← 0 for all l ∈ I \ {j∗} and x

′
j∗j∗ ← 1 where j∗ = argmax

l∈I :x
′
ll
=0

∑
i∈I x∗il

else
sort nodes in I such that s1 ≤ s2 ≤ .. ≤ sn
if −s1 ≤ sn and there exists a node i �= 1 such that x

′
i1 = 1 and sn > ai ≥ −s1

then
x
′
i1 ← 0 and x

′
in ← 1

else
x
′
j∗l ← 0 for all l ∈ I \ {j∗} and xj∗j∗ ← 1 where j∗ = argmax

l∈I :x
′
ll
=0

∑
i∈I x∗il .

end if
end if

end if
end while

A branch and cut algorithm for hub location problems with single assignment 397

Table 5. Comparison for branching and enumeration strategies

breadth first depth first best first
nodes LP’s CPU nodes LP’s CPU nodes LP’s CPU

var 225.8 2528.1 376.15 245.6 2633.9 379.28 216.4 2413.6 362.87
sos 751.4 8173.1 1381.12 1543.8 13921.8 2108.9 711.8 7878.8 1315.89

Branching and Enumeration Strategies We consider two branching strategies. The first
strategy, denoted by var, is to branch on the most fractional xjj variable, i.e., we branch
on xjj if j = argmini∈I |x∗ii − 0.5|. If all x∗jj ’s are integer then we branch on the most
fractional variable xij . The reason for giving a priority to variables xjj ’s is that we can
expect to have a more balanced tree.

The second strategy, denoted by sos, is to branch on the assignment constraints (2).
We find the first node i for which we can find a subset J ⊂ I such that

∑
j∈J x∗ij is

close to 0.5. Then in one branch we fix
∑

j∈J xij to 1, and in the other branch we fix∑
j∈I\{j} xij to 1.
Three enumeration strategies are tested: breadth first, depth first and best first.
In Table 5, we present the results for the two branching strategies and three enumera-

tion strategies. We separate the quadratic cover inequalities, the strengthened projection
inequalities and the step inequalities. For this analysis, we excluded the problems with
10 nodes, since all these problems were solved in less than 5 seconds after preprocessing.
We added problems with 16 nodes with Q ∈ {2/3, 1/3, 1/4, 1/5, 1/6}.

We report the average values for the number of nodes in the branch and cut tree
(denoted by nodes), the number of LP’s solved (denoted by LP’s) and the CPU time in
seconds taken over all problems.

For the first branching strategy, there is not a big difference between the results
obtained using different enumeration strategies. Still the best first strategy seems to be
slightly better. Further, the CPU time for the second strategy is about four times the CPU
time for the first strategy. Based on these results, we decided to use the first branching
strategy and the best first enumeration strategy in our branch and cut tree algorithm.

Useful Cuts To see which cuts are useful to close the duality gap and decrease the CPU
time, we conduct the following test. Initially we separate only the projection inequalities.
Then we add sequentially each family of cuts to the existing cuts in the following order:

1. Lifted quadratic cover inequalities (cover)
2. Lifted strengthened projection inequalities (spro)
3. Step inequalities (step)
4. Quadratic binpacking inequalities on three nodes (quadbin)
5. Binpacking and residual capacity inequalities (binres)
6. Effective capacity inequalities (effcap)
7. Lifted W − 2 inequalities (w-2)
8. k-triangle inequalities (k-tri)
9. Lifted k-leaf inequalities (k-leaf)

10. 2-cycle inequalities (2-cycle)
11. Odd hole inequalities on the conflict graph (odd)

398 M. Labbé et al.

Table 6. Performance of cuts

ineq. no. of violated ineq.’s % imp. in gap % imp. in LP’s % imp. in CPU
prep (7.99) (10334.56) (1169.73)
cover 337.78 (7.43) 6.48 (5422.67) 21.05 (732.17) 12.04
spro 28120.00 (7.31) 1.65 (2844.33) 39.93 (440.25) 29.87
step 336.78 (7.28) 0.29 (2675.00) 1.24 (397.97) 1.26

quadbin 50.00 (7.28) 0.00 (2880.00) -4.05 (462.14) -7.45
binres 2.22 (7.28) 0.00 (2880.11) -0.01 (465.27) -0.41
effcap 0.00 (7.28) 0.00 (2880.11) 0.00 (467.23) -0.77
w-2 65.11 (7.17) 1.20 (2738.22) 3.07 (447.99) 0.23
k-tri 3.33 (7.17) 0.00 (2735.89) 0.04 (446.88) 0.03

k-leaf 1.22 (7.24) -0.72 (2786.33) -1.16 (455.33) -1.36
2-cycle 5.78 (7.24) 0.00 (2660.78) 2.31 (420.84) 2.56

odd 1.56 (6.10) 0.68 (1501.4) 3.59 (2722.36) -1331.00

In Table 6, we report the average number of all violated inequalities found during
the branch and cut tree exploration, average percentage improvement in the duality gap,
in the number of LP’s solved and in the CPU time for each family of cuts added to the
the previous ones of the above list. In parenthesis, we report also the average gap, the
average number of LP’s solved and the average CPU time (the percentage improvements
are the averages of the percentage improvements taken over all problems). For odd hole
inequalities, we did not test problems with 16 nodes as it takes too long to solve them.

Cover inequalities and strengthened projection inequalities are the most useful cuts.
Step inequalities are also useful for problems with large Q values. Hence, we decided to
keep these three families of inequalities in the branch and cut algorithm. Further, even if
they seem to be useful to reduce the duality gap and the number of LP’s solved, the odd
hole inequalities take too long to separate and they are not violated often. So we remove
the odd hole inequalities from the branch and cut algorithm.

When we separate all inequalities except the odd cycle inequalities, around 17% of
the total CPU time is spent for separation and lifting of inequalities except projection
inequalities. Preprocessing takes around 0.02% and the time spent for the LP’s is around
39% of the total CPU time. Most of the remaining CPU time is spent for the separation
of projection inequalities.

To decide for the rest of the inequalities, we conduct the following test. The branch
and cut algorithm contains the first three families of inequalities. Then we add each
family separately to see if it improves the results. The results are presented in Table 7.
Detailed results are given in Yaman [23].

None of the families of inequalities seem very useful to improve the results. The
k-triangle inequalities improve the number of LP’s and the CPU time but mainly for
problems with small Q values. As the separation algorithm for k-triangle inequalities
is an enumerative heuristic, it can become time consuming for large n. Hence, we do
not keep these inequalities in the branch and cut algorithm. In conclusion, we keep only
cover, strengthened projection and step inequalities.

As the separation and lifting procedures for cover inequalities require the solution
of quadratic problems, it can be useful to switch to procedures which approximate the
quadratic knapsacks by linear knapsacks, as the problem size grows bigger. We switch
for n ≥ 20. We will discuss this further when we present the computational results.

A branch and cut algorithm for hub location problems with single assignment 399

Table 7. Performance of cuts-2

ineq. no.of violated ineq.’s % imp. in gap % imp. in LP’s % imp. in CPU
cover, spro, step (7.28) (2675.00) (397.97)

quadbin 50.00 (7.28) 0.00 (2880.00) -4.05 (462.14) -7.45
binres 2.22 (7.28) 0.00 (2675.11)-0.01 (401.08) -0.66
effcap 0.00 (7.28) 0.00 (2675.00) 0.00 (400.71) -1.20
w-2 64.44 (7.17) 1.20 (2771.89) -1.78 (447.68) -8.07
k-tri 3.11 (7.29) -0.17 (2679.22) 0.87 (399.77) 0.44

k-leaf 1.22 (7.28) 0.00 (2691.67) -1.53 (401.01) -2.05
2-cycle 6.22 (7.29) -0.17 (2684.56) 0.05 (401.23) -0.41

Cover inequalities are kept in the formulation. Other cuts are removed by ABACUS
when they become inactive, i.e. when the corresponding slack variables become basic.

Tailing Off We apply the following rule: If the improvement over the five consecu-
tive LP’s is less than 0.05% then we branch.

Test Instances We have two sets of data from France Telecom, the first one has 17
nodes and the second one has 22 nodes. Using the traffic and cost data of these two
sets and different values for the hub capacities M and the traffic demand level Q, we
obtain different problems. Each problem name has the form f t, n, M, Q where n is
the number of nodes, M is the capacity of a hub and Q is the demand level. We only
consider feasible problems, since infeasibility is reported during preprocessing. In these
problems, the traffic matrix T and the routing cost vector R are symmetric. So we remove
half of the commodities and the links. We take the fixed demand of each terminal to be
ai = �

∑
m∈I (tim + tmi)�.

In the problems with 17 nodes, all commodities have positive traffic demand. This
is not the case for the problems with 22 nodes. As a result, problems with 22 nodes are
easier than the problems with 17 nodes in general.

We also generated several problems using the AP data set for hub location problems
from the OR Library (see Beasley [6]). These problems have 10, 20, 25, 40 and 50
nodes. There are four problems of each kind, differing in the fixed cost for installing
hubs and the capacity of hubs. We modified the data to fit to our algorithm (we take
M to be the average of the hub capacities, we made the traffic and cost data symmetric
and removed the commodities from a node to itself) and we created different problems
by taking Q ∈ {1, 1/2, 1/3, 1/4, 1/5}. Each one of these problems is called nCK, Q

where C is the capacity type and K is the cost type. Both C and K are either L or T .
For C, the value T corresponds to tight capacities. For K , the value T corresponds to
harder instances for the LHL.

Computational Results In Tables 8–12, we present the results for the test instances
described above. The time limit is four hours. If the problem is not solved to optimality,
we report the final gap if a feasible solution is found. For each problem we give the
number of hubs installed in the optimal solution to evaluate the tightness of the instance
capacities. We also report the number of violated inequalities of each family.

400 M. Labbé et al.

Table 8. The results for problems with 17 nodes

BRANCH AND CUT CPLEX
problem gap nodes LP’s CPU gap nodes CPU

ft,17,10,1/2 0.61 7 50 3.02 4.62 1010 57.09
ft,17,10,1/3 12.79 1673 19689 5037.55 20.51 28331 time 20.27 %
ft,17,10,1/4 9.90 707 7595 1681.66 11.99 25723 11252.57
ft,17,10,1/5 7.58 199 2113 471.49 7.59 2797 1110.87
ft,17,10,1/6 6.26 183 2002 433.60 5.50 1327 504.10
ft,17,15,2/3 10.40 671 6858 1324.15 25.57 26400 time 10.90%
ft,17,15,1/2 17.33 memory 0.032% 30.83 18240 time 25.57%
ft,17,15,1/3 12.12 1137 11060 2648.59 17.16 16118 time 13.36%
ft,17,15,1/4 9.14 283 3214 898.29 9.58 6641 3757.29
ft,17,15,1/5 7.00 197 2868 744.82 6.20 2192 882.98
ft,17,15,1/6 5.34 91 1125 251.25 4.05 381 238.99
ft,17,20,1 5.69 99 988 103.41 18.55 100547 12902.41

ft,17,20,2/3 19.56 memory 1.59 % 37.37 15201 time 34.27%
ft,17,20,1/2 13.82 1185 11990 2522.11 27.02 12049 time 19.76%
ft,17,20,1/3 10.78 551 5169 1508.09 14.31 17724 11693.77
ft,17,20,1/4 7.62 263 2748 807.11 7.94 3217 1816.67
ft,17,20,1/5 7.07 139 2036 515.66 6.22 1351 441.31
ft,17,20,1/6 5.64 79 1018 211.27 4.15 406 276.61

For problems with 17 nodes, we compare the performance of our branch and cut
algorithm with the one of CPLEX 7.0 MIP solver. The formulation given to CPLEX is
the aggregated multicommodity flow formulation QHL3 with the additional constraints
xij ≤ xjj for all (i, j) ∈ A. The variables whose values are fixed to 0 or 1 during the
preprocessing are removed from this formulation. We report the duality gap, the number
of nodes in the branch and cut tree and the CPU time in Table 8. The duality gap is com-
puted using the best upper bound found by any of the two methods. When the program
stops because of the time limit or lack of memory then we report the final duality gap
computed using the best upper bound of the corresponding method.

For problems with large Q values, our branch and cut algorithm is faster than CPLEX
7.0. The biggest difference occurs for problem f t, 17, 20, 1. For this problem CPLEX
takes around 125 times more CPU time. The branch and cut algorithm is not able solve
problems f t, 17, 15, 1/2 and f t, 17, 20, 2/3 to optimality and stops with a gap of
0.032% and 1.59% respectively. The duality gaps at the root node are 17.33% and
19.56% which are very big. However for CPLEX, the gaps were 30.83% and 37.37%
which shows that these were hard problems. The other problems that are not solved to
optimality by CPLEX in four hours are solved by the branch and cut algorithm. The
longest one f t, 17, 10, 1/3, takes less than one and a half hour.

As Q decreases, the duality gap we obtain using the aggregated flow formulation
with CPLEX is smaller than the duality gap we obtain using the branch and cut algo-
rithm. For these problems, the two solution methods do not differ much for the CPU
time. There are two problems where CPLEX is faster than the branch and cut algorithm
but the biggest difference is around one minute.

It is possible to use the preprocessing algorithm to strengthen the formulation before
giving it to the CPLEX MIP solver. To see if this can improve the results, we add all
inequalities that are generated during preprocessing to the formulation. Moreover, we
also add knapsack inequalities of the form

∑
i∈I dixij ≤ Mxjj for each j ∈ I . In

A branch and cut algorithm for hub location problems with single assignment 401

Table 9. CPLEX on QHL3 with and without strengthening

without strengthening with strengthening
problem gap nodes CPU gap nodes CPU

ft,17,10,1/2 4.62 1010 57.09 1.36 75 9.25
ft,17,10,1/3 20.51 28331 time 20.27 % 9.62 18506 time 3.17 %
ft,17,10,1/4 11.99 25723 11252.57 6.91 8673 8558.75
ft,17,10,1/5 7.59 2797 1110.87 5.78 2062 1258.97
ft,17,10,1/6 5.50 1327 504.10 4.84 1139 562.28

Table 10. The number of violated inequalities for problems with 17 nodes

problem no. of conc. cover spro step
ft,17,10,1/2 7+5 7 448 26
ft,17,10,1/3 8 813 266331 6145
ft,17,10,1/4 6 484 88057 520
ft,17,10,1/5 5 212 17673 0
ft,17,10,1/6 5 205 14321 0
ft,17,15,2/3 9+1 123 95847 3041
ft,17,15,1/3 5 1163 113225 675
ft,17,15,1/4 5 522 22247 10
ft,17,15,1/5 5 196 15659 0
ft,17,15,1/6 5 8 5969 0
ft,17,20,1 8+3 30 11386 774

ft,17,20,1/2 5 1606 126807 1287
ft,17,20,1/3 3 880 35368 20
ft,17,20,1/4 4 216 15063 0
ft,17,20,1/5 3 2 1157 0
ft,17,20,1/6 5 0 5674 0

Table 9, we compare the results with and without these inequalities for the first five
problems with 17 nodes.

We see that strengthening the formulation decreases the duality gap and the number
of nodes in the tree for all problems. However, the CPU time decreases for problems
with large Q values and increases for problems with small Q values. We can conclude
that for the hard problems, the strengthening improves the results considerably. Still, the
branch and cut algorithm performs better than CPLEX on each of these problems.

Results of Tables 8 and 9 allow to conclude that preprocessing is useful when using
formulation QHL3 and confirm that formulation QHL3 performs worse than QHL1
even with preprocessing. Similar tests were also performed for formulation QHL2m and
yielded to the same conclusion as for QHL3.

In the second column of Table 10, we report the number of hubs installed for each
problem. When some of the nodes are assigned to themselves and removed from the
problem during preprocessing, we add the number of such nodes to the number of hubs
installed.

We also report the number of violated inequalities of each family in Table 10. We
observe that the step inequalities are violated when Q is large. After a certain value of Q

there is no more violated step inequalities. The number of violated quadratic cover and
strengthened projection inequalities also decreases as Q decreases since the capacities
become loose.

402 M. Labbé et al.

Table 11. The results for problems with 22 nodes

problem gap nodes LP’s CPU no. of conc cover spro step
ft,22,10,1/2 2.42 131 597 155.54 5 729 3852 0
ft,22,10,1/3 4.72 1305 5040 870.84 4 4336 20291 1
ft,22,10,1/4 2.76 229 857 165.47 4 783 2704 0
ft,22,10,1/5 0.13 3 14 3.94 3 34 18 0
ft,22,10,1/6 0.00 1 4 1.82 3 11 11 0
ft,22,15,2/3 5.90 1057 4596 894.94 4 3018 15577 0
ft,22,15,1/2 2.78 81 360 87.18 4 457 1380 0
ft,22,15,1/3 0.00 1 7 3.65 3 24 7 0
ft,22,15,1/4 0.34 9 28 5.96 2 24 11 0
ft,22,15,1/5 0.00 1 7 2.87 2 4 3 0
ft,22,15,1/6 0.00 1 6 2.40 2 3 4 0
ft,22,20,1 6.87 memory 1.38%

ft,22,20,2/3 3.15 41 215 70.34 3 351 627 0
ft,22,20,1/2 1.01 7 53 22.49 3 61 37 0
ft,22,20,1/3 0.07 3 20 8.36 2 14 3 0
ft,22,20,1/4 0.00 1 10 4.20 2 0 4 0
ft,22,20,1/5 0.00 1 10 3.83 2 0 3 0
ft,22,20,1/6 0.00 1 7 2.86 2 0 4 0

Before moving to other test instances, we test the following strategies for the unsolved
problems f t, 17, 15, 1/2 and f t, 17, 20, 2/3:

1. Use Algorithm 3 during the preprocessing and separate the cover inequalities on
linear knapsacks (42) to avoid solving quadratic problems.

2. Separate also the inequalities that are removed from the branch and cut algorithm
except the odd hole inequalities.

3. Give the objective value of the best solution found as the starting upper bound.
4. Use depth-first search.

We did one change at a time. Problem f t, 17, 15, 1/2 was solved to optimality in
12613.79 seconds of CPU time when we solved linear knapsacks rather than quadratic
problems. The other changes did not improve the results. We also solved the other prob-
lems applying the first strategy. The results did not change significantly.

Based on this result and some preliminary tests, we decided to use Algorithm 3 dur-
ing the preprocessing and to separate the cover inequalities on linear knapsacks for the
remaining test instances as they have bigger sizes than the problems we solved up to
now. We also adapted the separation of projection inequalities so that we only consider
the commodities with nonzero traffic demands.

In Table 11, we report the results for problems with 22 nodes. There is one prob-
lem that is not solved to optimality as we ran out of memory. The remaining instances
were solved rather fast except problem f t, 22, 15, 2/3. There is only one step inequality
violated. As the separation of step inequalities does not take much time, removing them
would not change the total CPU time significantly.

In Table 12, we report the results for the hub location problems from the OR library.
We omit the results for problems with 10 nodes as all of these problems are solved at
the root node in less than one second. We also remove problems of type LL, T L with
Q = 1/4 and Q = 1/5 since in these problems the capacity constraints are redundant.

A branch and cut algorithm for hub location problems with single assignment 403

Table 12. The results for hub location problems

problem gap nodes LP’s CPU no. of conc cover spro step
20LL,1 2.68 41 199 52.34 4 151 755 1
20TL,1 0.33 3 22 5.73 4 47 73 0

20LL,1/2 0.00 1 3 0.98 2 0 6 0
20TL,1/2 0.00 1 2 0.70 2 0 1 0
20LL,1/3 0.00 1 5 1.61 2 0 13 0
20TL,1/3 0.00 1 4 1.21 2 0 4 0
20LT,1/3 0.87 15 58 14.80 4 64 165 0
20TT,1/3 1.20 13 44 6.40 4 39 133 0
20LT,1/4 0.50 17 48 10.2 3 18 106 0
20TT,1/4 0.92 19 62 12.52 3 46 62 0
20LT,1/5 0.00 1 2 0.66 2 0 4 0
20TT,1/5 0.00 1 2 0.68 2 0 2 0
25LL,1 1.54 23 138 155.41 5 379 829 0
25TL,1 4.98 281 1404 823.46 5 1870 7757 19

25LL,1/2 0.00 1 7 6.88 2 6 16 0
25TL,1/2 0.00 1 7 4.14 2 3 8 0
25LL,1/3 0.00 1 5 4.97 2 0 11 0
25TL,1/3 0.00 1 4 4.18 2 0 4 0
25LT,1/3 2.11 65 262 193.81 5 396 1231 5
25TT,1/3 5.91 471 1728 751.55 5 1473 4743 32
25LT,1/4 0.00 1 6 7.26 4 20 18 0
25TT,1/4 0.00 1 8 4.78 3 15 17 1
25LT,1/5 0.88 17 52 32.48 4 10 115 0
25TT,1/5 1.02 5 14 10.58 3 7 14 0
40LL,1 8.63 memory 7.46 %
40TL,1 6.88 memory 6.08 %

40LL,1/2 2.43 memory 0.8 %
40TL,1/2 0.23 5 23 298.2 3 26 52 0
40LL,1/3 0.00 1 6 86.23 3 0 15 0
40TL,1/3 0.00 1 7 89.11 2 2 8 0
40LT,1/3 4.14 memory 3.34 %
40TT,1/3 8.17 memory 6.82 %
40LT,1/4 0.66 25 92 1006.84 4 198 358 0
40TT,1/4 1.09 21 103 324.09 4 102 336 0
40LT,1/5 2.68 memory 1.09 %
40TT,1/5 0.07 3 14 163.55 3 16 32 0
50LL,1 3.87 memory 2.34 %
50TL,1 memory

50LL,1/2 6.10 memory 5.21 %
50TL,1/2 21.74 memory 21.18%
50LL,1/3 0.00 1 6 326.78 3 0 10 0
50TL,1/3 0.29 3 12 393.7 2 0 15 0
50LT,1/3 7.21 memory 7.02 %
50TT,1/3 6.60 memory 6.30 %
50LT,1/4 memory
50TT,1/4 20.87 memory 20.49 %
50LT,1/5 0.53 19 66 1406.92 4 102 187 0
50TT,1/5 0.55 7 43 1037.19 3 69 99 0

The problems of type T T , LT are infeasible for Q = 1 and Q = 1/2 and are not
considered. So we report the results for 48 problems.

Among these 48 problems, 34 of them are solved to optimality. For the 14 problems
not solved, we ran out of memory. All problems with 20 and 25 nodes are solved to
optimality. We could solve the problems with 40 and 50 nodes only for small values

404 M. Labbé et al.

of Q. Once again, we see that the difficulty of the problem depends a lot on the demand
and capacity level of the problem.

For two problems, the program stopped before finding a feasible solution. In fact,
a feasible solution can be found by assigning each node to itself. In most cases, such a
solution has a very big cost compared to the one of the optimal solution (the number of
hubs installed is not more than five for the problems solved), which will probably not
improve the performance of the algorithm.

There are also two problems where the algorithm stopped with a gap of more than
20%. Looking at the gaps of the other problems, we can say that this may be due to
the bad quality of the upper bound rather than the lower bound. In fact, for bigger size
problems, we believe that a better heuristic can improve the performance of the branch
and cut algorithm.

In conclusion, problems with small values of Q can be solved by the CPLEX MIP
solver for reasonable sizes. The hard problems are the ones where Q is large, so that the
traffic demand is high and capacities are tight. The branch and cut algorithm is able to
solve such problems of reasonable size.

Acknowledgements. The research of the first author was partially supported by the Banque Nationale de Bel-
gique. The research of the second author was supported by France Telecom R&D under contract no. 99 1B
774. Their support is gratefully acknowledged.

References

1. Aardal, K., Pochet, Y., Wolsey, L.A.: Capacitated Facility Location: Valid Inequalities and Facets. Math.
Oper. Res. 20, 562–582 (1995)

2. Aardal, K.: Capacitated Facility Location: Separation Algorithms and Computational Experience. Math.
Program. 81, 149–175 (1998)

3. Andrews, M., Zhang, L.: Approximation Algorithms for Access Network Design. Algorithmica 34, 197–
215 (2002)

4. Avella, P., Sassano, A.: On the p-Median Polytope. Math. Program. 89, 395–411 (2001)
5. Balas, E.: Facets of the Knapsack Polytope. Math. Program. 8, 146–164 (1975)
6. Beasley, J.E.: OR-Library: distributing test problems by electronic mail. J. Oper. Res. Soc. 41, 1069–1072

(1990)
7. Campbell, J.F., Ernst, A.T., Krishnamoorthy, M.: Hub Location Problems. In: Facility Location: Appli-

cations and Theory, Z. Drezner, H.W. Hamacher (eds.), Springer, 2002, pp. 373–407
8. Dantzig, G.B.: On the Significance of Solving Linear Programming Problems with Some Integer Vari-

ables. The Rand Corporation, document, 1958, p. 1486
9. Deng, Q., Simchi-Levi, D.: Valid Inequalities, Facets and Computational Results for the Capacitated Con-

centrator Location Problem. Department of Industrial Engineering and Operations Research, Columbia
University, New York, NY 10027-6699, 1992

10. Ernst,A.T., Krishnamoorthy, M.: SolutionAlgorithms for the Capacitated SingleAllocation Hub Location
Problem. Ann. Oper. Res. 86, 141–159 (1999)

11. Gourdin, E., Labbé, M.,Yaman, H.: Telecommunication and Location. In: Facility Location: Applications
and Theory, Z. Drezner, H.W. Hamacher (eds.), Springer, 2003, pp. 275–305

12. Goemans, M.X., Williamson, D.P.: The primal-dual method for approximation algorithms and its applica-
tion to network design problems. In: Approximation Algorithms for NP-Hard Problems, D.S. Hochbaum
(ed.), PWS Publishing Company, 1997, pp. 144–191

13. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization.
Springer-Verlag, Berlin, 1988

14. Gu, Z., Nemhauser, G.L., Savelsbergh, M.W.P.: Cover Inequalities for 0-1 Linear Programs: Computation.
INFORMS J. Comput. 10, 427–437 (1998)

15. Hammer, P.L., Johnson, E.L., Peled, U.N.: Facets of Regular 0-1 Polytopes. Math. Program. 8, 179–206
(1975)

A branch and cut algorithm for hub location problems with single assignment 405

16. Jünger, M., Thienel, S.: The ABACUS system for branch-and-cut-and-price algorithms in integer pro-
gramming and combinatorial optimization. Softw. Pract. Experience 30, 1325–1352 (2000)

17. Leung, J.M.Y., Magnanti, T.L.: Valid Inequalities and Facets of the Capacitated Plant Location Problem.
Math. Program. 44, 271–291 (1989)

18. Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implementations, Wiley, NewYork,
1990

19. Padberg, M.W.: On the Facial Structure of Set Packing Polyhedra. Math. Program. 5, 199–215 (1973)
20. Skorin-Kapov, D., Skorin-Kapov, J., O’Kelly, M.: Tight linear programming relaxations of uncapacitated

p-hub median problem. Eur. J. Oper. Res. 94, 582–593 (1996)
21. Swamy, C., Kumar, A.: Primal-dual Algorithms for Connected Facility Location Problems. In: Approx-

imation algorithms for combinatorial optimization, K. Jansen, S. Leonardi, V. Vazirani (eds.), 5th inter-
national workshop, APPROX 2002, Proceedings. Lect. Notes Comput. Sci. 2462, Springer, Berlin, 2002
pp. 256–269

22. Wolsey, L.: Faces for a Linear Inequality in 0-1 Variables. Math. Program. 8, 165–178 (1975)
23. Yaman, H.: Concentrator Location in Telecommunication Networks, Ph.D. Thesis, Université Libre de

Bruxelles, 2002. Available at http://smg.ulb.ac.be/
24. Yuan, D.: An Annotated Bibliography in Communication Network Design and Routing. In: Optimization

Models and Methods for Communication Network Design and Routing. Ph.D. Thesis, Department of
Mathematics, Linköping University, Sweden, 2001

