
. r £. Лг

;. , і-'·· г - ^  .. Jv-z/Vİat- -  - ,  с  : · - ν . ' / , · : >  ^ 4 · Γ ^ . < - ; . ^ · : : · ν · · ν - - ^ ' ,

/ %g



FORMAL GARCH PERFORMANCE IN A COMPUTABLE

DYNAMIC GENERAL EQUILIBRIUM FRAMEWORK

A THESIS

Submitted to the Faculty of Management 

and the Graduate School of Business Administration 

of Bilkent University

in Partial Fulflilment of the Requirements 

For the Degree of

Master of Science in Business Administration

ALi BORA YiGiTBA$IOGLU 

ANKARA, AUGUST 1998



1 certify that 1 have read this thesis and in my opinion it is fully adequate, in scope and in 

quality, as a thesis for the degree of Master of Science in Business Administration.

Assist. Prof. Aslihan Salih

I certify that I have read this thesis and in my opinion it is fully adequate, in scope and in 

quality, as a thesis for the degree of Master of Science in Business Administration.

Assoc. Prof. Kursat Aydogan

I certify that I have read this thesis and in my opinion it is fully adequate, in scope and in 

quality, as a thesis for the degree of Master of Science in Business Administration.

Assist. Prof. Levent Akdeniz

Approved for the Graduate School of Business Administration.



I Иео i j

НИ
İ 4 S

■7=Н/

1 3 -3 2

&053764



ABSTRACT

FORMAL GARCH PERFORMANCE IN A COMPUTABLE 
DYNAMIC GENERAL EQUILIBRIUM FRAMEWORK

ALİ BORA YİĞİTBAŞIOĞLU 
Master of Science in Business Administration

Supen isor: Assist. Prof. Aslihan Salih 
August, 1998

This study uses a Computable Dynamic General Equilibrium setting based on Brock’s (1979, 
1982) intertemporal growth and asset pricing models and applies this framework as a formal test 
to study the out-of-sample forecast performance of Bollerslev’s (1986) GARCH (1,1) 
Classical Historical Volatility forecasts. The solution to Brock’s growth model reflects the utility 
maximizing behavior of the consumer and profit maximizing behavior of producers, and is a 
framework that has recorded some remarkable successes in mirroring the real economy. All 
existing studies have used a sample realized variance in the forecast horizon to test the out-of- 
sample performance of conditional variance forecasting models. The realized variance is simply 
an approximation to the true distribution of variance in the forecast horizon, and is often an unfair 
benchmark of performance. Simulation of Brock’s model enables one to obtain the true 
distribution of asset returns and their variance at all times. The true distribution reflects all the 
possible states of a simulated economy, which is shown to mimic all the properties observed in 
empirical financial data. This framework affords the luxury of comparing the out-of-sample 
forecasts from various models with the true variance in the forecast horizon. The results jointly 
demonstrate that the GARCH (1,1) model performs significantly better than the Classical 
Historical Volatility when the true variance is used as the forecast comparison benchmark. It is 
concluded that the use of realized variance for out-of-sample performance is highly misleading, 
especially for short-run forecasts.

Key ^vords: GARCH, Classical Historical Volatility Forecast, Out-of-sample foiecast 
performance. Computable General Equilibrium Model, Benchmark, Realized Variance, True 
Variance.



ÖZET

HESAPLANABİLİR DİNAMİK GENEL DENGE ÇERÇEVESİNDE 
RESMİ GARCH PERFORMANSI

ALÎ BORA YİĞİTBAŞIOĞLU 
Master of Science in Business Administration

Tez Yöneticisi: Yrd. Doç. Dr. Ashhan Salih 
Ağustos, 1998

Bu çalısına, Brock’un (1979, 1982) Büyüme Modelini Hesaplanabilir Dinamik Genel Denge 
çerçevesinde kullanarak, Bollerslev’in (1986) GARCH ve Classical Historical Volatility 
modellerinin ileriye dönük tahmin performanslarını resmi bir test ortamında incelemektedir. 
Brock’un modelinin çözümü tüketicinin fayda fonksiyonunu maksimize edişini ve üreticilerin 
kârlarını maksimize edişlerini yansıtmakta, gerçek ekonomiyi çok yakından simüle etmektedir. 
Bütün akademik çalışmalar, tahmin penceresinde gerçekleşen varyans ölçüsünü şartlı volatilité 
modellerini değerlendirmekte kullanmaktadırlar. Fakat gerçekleşen varyans, gerçek varyans 
ölçüsünün sadece yaklaşık bir tahmini olmakla beraber, genellikle adil olmayan bir 
benchmark’dır. Brock’un modelini simüle ederek gerçek varyansı bulmak mümkündür. Elde 
edilen gerçek varyans ekonominin mümkün olan bütün durumlarım özetlemektedir. Gerçek 
varyans ile karşılaştırıldığında GARCH modelinin ileriye dönük performansının Classical 
Historical Volatility tahminlerinden çok daha iyi olduğu görülmektedir. Aynı anda, gerçekleşen 
vaiy'ansm performans benchmark’ı olarak kullanılışının yanıltıcılığıda sergilenmektedir.

Anahtar Kelimeler: GARCH, Classical Historical Volatility Tahminleri, İleriye Dönük Tahmin 
Performansı, Hesaplanabir Dinamik Genel Denge Modeli, Benchmark, Gerçekleşen Varyans, 
Gerçek Varyans.
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CHAPTER I

INTRODUCTION

Financial market volatility is of central importance for a variety of market 

participants. The literature is in agreement that financial market volatility is predictable 

(see Bollerslev, Chou and Kroner (1992), Engle (1993), Engle and Ng(1993)) and time- 

varying (Schwert (1989). This has important implications for portfolio and asset 

management (Merton, 1980), and the pricing of primary and derivative assets (Baillie and 

Myers(1991) and Engle, Hong, Kane, and Noh (1992)). Expected volatility is a key 

ingredient of the pricing mechanism of such diverse financial assets as bond and equity 

futures, options, and common stocks (Ritzman, 1991). Estimates about volatility are 

routinely used by participants in the derivatives markets for hedging.

Performance of different volatility forecasting models have been proposed and 

tested in the literature. Among all the volatility forecasting models, the GARCH family 

has received the greatest attention in the literature. ARCH and GARCH modeling in 

finance has enjoyed a prominent and varied history in the literature since its inception by 

Engle (1982) and generalization by Bollerslev (1986). It is an indispensable, often



integral, part of many textbooks devoted to finance and econometrics. An overview of 

ARCH modeling in Tim, Chou, and Kroner (1992) has suggested and cited its use in the 

implementation and tests of competing asset pricing theories, market microstructure 

models, information transmission mechanisms, dynamic hedging strategies, and the 

pricing of derivative securities.

While most researchers agree on the predictability of stock market volatility 

(Engle and Ng, 1993; Engle, 1993), there is considerable variation of opinion on how this 

predictability should be modeled. The proliferation of research in the light of the evidence 

for predictability has led to a variety of approaches. The ARCH and GARCH models of 

Engle (1982) and Bollerslev (1986) respectively, and their many variants have been 

extensively used, and are among the broad class of parametric models that incorporate 

time dependency into the conditional variance underlying an asset return process'.

' As a prelude lo further discussion, some notation on the difference between conditional and unconditional moments, 

central to the intuition underlying ARCH and GARCH, is necessary. The following discussion on conditional and 

unconditional moments is based on Engle .(1993):

Let Vf be the return on an asset received in period t. Let E represent mathematical expectation. Then the mean o f the 

return can he called p, and

E y ,  = p  ( I ! )

This is the unconditional mean, which is not a random variable. The conditional mean, nif, uses information from the 

previous periods, and can generally he forecast more accurately. It is given by:

m ,^E [ytlF ,.i]^ E ,.,[y[] (L2)

This is in general a random variable of the information set Fj,j. Note that, although Vf-F can be forecast, Vf-m cannot, 

using the information in Fi.j alone.

The unconditional and conditional variances can be defined in a similar way, as:

al =E[yrFp = Elyt-mt]^ + -Fp '
ht=Efllyr>^tl

The conditional variance thus potentially depends on the information set.



Models incorporating time dependence in the conditional variance, such as ARCH 

and GARCH, attempt to capture the well-known phenomenon of volatility clustering in 

financial data. Volatility clustering refers to the common occurrence in financial data 

whereby large shocks in magnitude to the return of a security tend to be followed by 

similarly high shocks of either sign.

The ARCH and GARCH type models of the conditional variance use the past 

values of the realized variance and shocks to forecast future variance. In so doing, the 

assumption of a constant variance over time is abandoned, and a structure governing the 

impact of past news is imposed (Engle and Ng, 1993). As such, the ARCH and GARCH 

type models explicitly incorporate recent news into the forecast of the future variance.

Alternative models of the volatility processes have also been proposed in the 

literature. Some of the most prominent are the historical variance models of Parkinson 

(1980), Garman and Klass (1980), Beckers (1983), and Abrahamson(1987), which will be 

discussed at length in Section II. These historical variance estimators use past historical 

price data to estimate a constant volatility parameter .

‘ Canina and Figlewski (1993), Figlcwski (1994), Lamoureux and Laslrapes (1993), and Pagan and Schwerl (1990) 

use the historical variance estimator in a comparative framework with ARCH and GARCH type models, and evaluate 

their respective performance in producing forecasts. A very readable and intuitive account of the historical volatility 

estimator is provided by Ritzman (1991).



Historical volatility could be used as an ex-ante estimate of what market 

participants believed the volatility of an asset’s return would be over some future period 

in time (Gordon, 1991). However, historical volatility is unlikely to reflect investors’ 

changed expectations at a given point in time, such as in the event of a release of good or 

bad news (Ritzman (1991), Gordon (1991)). Consequently, a measure incorporating the 

markets expectation of aggregate future variance, the implied volatility, has been 

proposed as the market proxy for an asset’s average volatility over the remaining lifetime 

of the option written on the asset. The performance and limitations of the implied 

volatility model have been studied by Day and Lewis (1992), Canina and Figlewski 

(1993), and Lamoureux and Lastrapes (1993). Implied volatility is calculated from the 

Black-Scholes option valuation formula for a European Call Option:

C = C(5o,2r,£7,r,r) (1.5)

where C is the call option price, Sq is the stock price today, X is the option strike price, r 

is the risk-free rate, T is the time remaining to maturity, and a  is the volatility. All 

variables but the latter are known, and thus cr can be solved for as follows:

„plied =cr{So,X,C,r,T) (1.6)

The market price of the (call) option thus reflects the market expectation of the 

assets average volatility over the remaining life of the option.



Although the Classical Historical Variance and Implied Volatility models fail to 

accomodate for the time-varying property of volatility, there is considerable evidence in 

the literature that volatility is in fact changing over time. For example, Schwert (1989) 

shows that the variations of volatility for monthly stock returns on the period 1857-1987 

range from a low of 2% in the early 1960’s to a high of 20% in the early 1930’s. As noted 

before, taking this feature into account appeared to be vital for many areas of the financial 

literature: continuous-time models and option pricing, CAPM, investment theory, 

amongst others (Engle and Ng, 1993). Another line of attack into modeling the time 

variation in volatility that has been developed since the early 1980’s are continuous-time 

diffusion models with stochastic volatility (Hull and White(1980), Wiggins (1987), 

Chesney and Scott (1989))^.

As mentioned above, volatility forecasting is a vital ingredient in many 

applications. As a result, the performance of different volatility forecasts have been 

studied extensively in the literature. These studies have followed two directions. In- 

sample tests of volatility attempt to determine the model that fits the data well"*. However,

■ Hansson and Hordahl have investigated the performance o f stochastic volatility models using Swedish OEX index 

data (1996), and Nelson (1990) has shown that a GARCH process can be interpreted as a discrete-time approximation 

of a diffusion model with stochastic volatility, thus connecting the two approaches.

 ̂ Studies doing in-sample tests o f ARCH and GARCH point out the need to use a large number of observations for the 

model to fit the data well (Figlewski (1994), Pagan and Schwert (1991)). Figlewski (1994) reports the difficulties in 

implementing ARCH estimation to a group of data sets. Lamoureux and Lastrapes (1993) observe that sophisticated 

ARCH type models with many parameters are needed to fit a data well, and the more parameters the model has. the 

worst its performance is in making forecasts “out-of sample*'. This study encounters little difficulty in fitting a



it is a well known fact that it is an easier task to develop a model that fits one's data well 

than it is to construct a model that makes good out-of-sample forecasts.

For out-of-sample tests, the definition of realized volatility is very important. The 

common practice is to compute realized volatility from the time-series return realization 

of the forecast horizon. Out-of-sample tests use forecasts obtained using the estimates of 

the model parameters, which are found in-sample' ,̂ and subsequently compare these 

forecasts to realized volatility^. In the case of ARCH and GARCH, the in-sample is used 

to obtain maximum likelihood estimates of the ARCH parameters, then these estimates 

are used in an ARCH forecast equation to make forecasts for the out-of-sample period. To 

evaluate the forecasts, forecast error criteria such as Root Mean Squared Error (RMSE) 

and Mean Absolute Error (MAE) are used.

This approach ignores the possibility of different return realizations for each time, 

which is vital for drawing conclusions about perfonnance, as each different return 

realization in the forecast horizon would lead to a different conclusion about the 

performance of a model. In other words, a formal out-of-sample performance test of a 

given model would require that one should have the true distribution of returns for each

GARCH (1,1) model to a simulated group of 1,000 .sets o f data, o f 1,500 days each- chosen to correspond roughly to 

one business cycle.

 ̂Using a fixed window history o f price data.

 ̂ In the case o f the classical historical volatility estimator, for example, a sample or history of returns (what is referred 

to as the “in-sample") is taken, the standard deviation within this sample is computed, and this becomes the average 

standard deviation (the historical volalilil) м for the forecast period ahead (what is referred to as the “out-of-sample").



time from which one can calculate the true variance. The performance of forecasts could 

then be judged on how closely they predict this true \’ariance parameter in the forecast 

horizon. However in real life one can only observe one realization out of that distribution 

for each time, and this realized variance would be the best estimate of the true variance’
n

over the forecast horizon .

For longer forecast periods, realized volatility calculations used in the literature 

will be increasingly closer the true variance with large number of observations that 

resemble the true distributions. However for short forecast horizons this approach is 

extremely problematic. As a forecaster, one has to think about all the possible outcomes 

and probabilities assigned to those before making any forecasts.

In marked contrast to any existing work in the literature, this study proposes to 

find and use “true” daily volatility to explore the performance of GARCH. “True” 

variance on a given day is calculated via simulation of a computable general equilibrium 

model based on Akdeniz (1998) and Akdeniz and Dechert’s (1997) solution to Brock’s 

(1979,1982) multifirm stochastic growth model.

The wide range of findings and disagreements in the literature on GARCH 

performance^ can be better understood in the light of the failure to account for the “true”

 ̂ Volatility and Variance are used interchangeably in this study. For reference, Variance is Volatility squared.
8

Assuming the realized return series is ergodic.
 ̂ See Figlcwski (1994), Engle and Ng (1993), Lamoureux and Lastrapes (1993), Day and Lewis (1992), Pagan and 

Schwert (1990).



volatility as a performance basis when evaluating out-of-sample forecast performance of 

ARCH and GARCH. As observed by Bollerslev, Kroner, and Chou (1992), further 

developments concerning the identification and formulation of equilibrium models 

justifying empirical specifications for the observed heteroskedasticity remains a very 

important area for research. This study also aims to explore the performance of the 

GARCH specification for observed heteroskedasticity in contrast to naive estimators such 

as the classical historical volatility estimates.

In practice it is impossible to determine the true probability distributions of real 

economic time-series, but this study uses a stylized solution to Brock’s (1979, 1982) 

intertemporal asset pricing model in which the true distribution of returns is calculated, 

and thus known. This setting is particularly chosen because of its success in simulating 

real life business cycle data, and reconciling some of the contentions to which the Capital 

Asset Pricing Model (CAPM) has been subject. This suggests that it will be a powerful 

tool in resolving the forecast performance debate among various volatility forecasts 

including the GARCH family of models.

This study uses a particular form of Akdeniz (1998) and Akdeniz and Dechert’s 

(1997) solution to Brock’s (1979, 1982) model to test the performance of out-of-sample 

forecasts of Bollerslev’s (1986) GARCH(1,1) model. Brock’s model is simulated by 

using Akdeniz and Dechert’s (1997) solution 1,000 times to obtain 1,000 daily stock 

return data sets. Each simulated data set consists of the return realization for three firms



over a period of 1,500 days ( approximately one business cycle). The true distribution on 

any day can be obtained from these 1,000 simulation observations of the return process 

for that day.

The results demonstrate that the GARCH (1,1) model performs significantly 

better than historical volatility as measured by the MAE and RMSE criteria, when the 

true variance is used as benchmark. For forecasts 7-days ahead, GARCH (1,1) performs 

better than Classical Historical Volatility in 865 cases out of 1,000 simulations. It is 

found that Classical Historical Volatility has an MAE 4.832 times greater than GARCH 

(1,1), and an RMSE 4.003 times greater than GARCH across all simulations in this 

horizon. For a 22-day forecast period. Classical Historical Volatility is outperformed by 

GARCH(1,1) in 800 cases in 1,000 simulations, and has MAE 2.759 times as much, and 

RMSE 2.324 times as much as GARCH (1,1). Even more strikingly, it is found that if one 

were to use out-of-sample realized variance to evaluate forecast performance (as done in 

the literature) in each simulation, the RMSE and MAE for GARCH (1,1) would increase 

approximately three-fold, while decreasing significantly for Historical Volatility 

estimates. This demonstrates that the GARCH (1,1) model does a very good job of 

forecasting the true variance parameter in short-term horizons.

Using a single time series realization to study GARCH performance in the short­

term is analogous to “mixing apples and oranges”. An unfair realized volatility measure is 

certain to penalize GARCH forecast performance. The benefit of foreknowledge in the



form of the “true” volatility as a benchmark for forecast comparisons is used to 

demonstrate the potential of the GARCH family of conditional volatility models. Whilst 

highlighting an ingredient that has been missing in the relevant literature, this study offers 

a means of explaining why most studies have not been sufficiently able to provide a more 

accurate picture of how well GARCH type models perform.

This study proceeds as follows. Chapter II. provides an overview of the literature, 

including more detailed discussions of the conditional variance e.stimators used in the 

literature, and goes on to discuss the computational general equilibrium model of Brock 

(1979, 1982) and the solution to the model by Akdeniz and Dechert (1997) that is utilized 

here, as well as highlighting the role of computational economics in the literature. 

Chapter III. discusses the model and the numerical solution. Chapter IV. details the 

results, and Chapter V. presents conclusions.

10



CHAPTER II

LITERA TURE REVIEW

II. 1 Introduction

Volatility is important to financial analysts for several important reasons. 

Estimates about volatility together with information about central tendency allow the 

analyst to assess the likelihood of experiencing a particular outcome. Volatility forecasts 

are particularly important for traders, portfolio managers and investors. Investors 

committed to avoiding risk, for example, may choose to reduce their exposure to assets 

for which high volatility is forecasted Traders may opt to buy options whose volatility 

they believe to be underpriced in the market, using their own subjective forecasts for 

volatility. The value of a derivative asset, such as options or swaps, depends very 

sensitively on the volatility of the underlying asset. Volatility forecasts for the underlying 

assets’ return are therefore routinely used by participants in the derivatives markets for 

hedging (see Baillie and Myers (1991), and Engle, Hong, Kane, and Noh (1992)). In a 

market where such forces operate, equilibrium asset prices would be expected to respond 

to forecasts of volatility (Engle, 1993).

II



Scholars and practitioners have long recognized that asset returns exhibit 

volatility clustering (Engle and Rothschild. 1992). It is only in the last decade and a half 

that statistical models have been developed that are able to accommodate and account for 

this dependence, starting most prominently with Engle’s (1982) ARCH and Bollerslev’s 

(1986) GARCH. A natural byproduct of such models is the ability to forecast both in the 

short and in the long run.

Given that volatility is predictable (Bollerslev (1992), Engle (1993), and Engle 

and Ng(1993)), it is clear that one must choose between alternative models of forecasting 

volatility to obtain an “optimal” forecast model. In particular, the choice must be made 

based on a clear set of criteria, such as long run or short run performance in a specific 

forecast horizon. Equally important, the criteria for performance must be carefully 

scrutinized for bias towards a particular model. What follows is a description of the most 

popular volatility forecasting models in the literature.

II.2 Forecasting Models in the Literature

n.2.1 GARCH(p,q):

The GARCH(p,q) was originally proposed by Bollerslev (1986) and is a 

generalization of Engle’s (1982) ARCH(p). A GARCH(p,q) model specifies that the 

conditional variance depends only on the past values of the dependent variable and this

12



relationship is summarized in the following equations;

Yt X,n + 8, (2.1)

sj4^..,~N (0,a?) (2.2)

/=1
(2.3)

= ¿у + a{L)e] + /3{L)(7] (2.4)

In the GARCH(1,1) case, (2.4) reduces to:

= 6) + + у9,(Т̂ _ (2.5)

Here y, refers to the return on day t, x,n  is the set of regressors, s, is the residual 

error of regression which is conditionally distributed as a normal random variable with 

mean zero and variance a]. Here a] is the conditional variance at time /, and is a

function of the intercept long run variance ----^ ---- , the squared residual from
\ - a - P

yesterday e]_̂  (the ARCH term) and yesterday’s forecast variance<Т‘_| (the GARCH

term).

This specification makes sense in financial settings where an agent predicts

13



today's variance by forming a weighted average of a long term average or constant 

variance, the forecast of yesterday (the volatility), and what was learned yesterday (or 

equivalently the shock). If asset returns were large in either way, the agent increases his 

estimate of the variance for the next day (Engle, 1996). This specification of the 

conditional variance equation takes the familiar phenomenon of volatility clustering in 

financial data into account, which is the property that large returns are more likely to be 

followed by large returns of either positive or negative sign, rather than small returns.

11.2.2 Historical Volatility

The most commonly used measure of volatility in financial analysis is standard 

deviation (Ritzman,1991). Standard deviation is computed by measuring the difference 

between the value of each observation on returns and the sample’s mean, squaring each 

difference, taking the average of the squares, and then taking the square root of this 

average. In mathematical terms, this is equivalent to

o-i,·/· = (2.6)

Where R| is the return on day i, R is the mean return in the sample 1, ..., T and the sum 

of squared differences is divided by T-I because the data under consideration is a sample.

14



and not the population.

The classical historical volatility estimates are computed in a similar fashion. The 

classical historical volatility estimate as defined by Parkinson (1980), Garman and Klass 

(1980), and other authors, as a forecast going N periods forward is simply the standard 

deviation of returns computed from the previous N periods. Equation (2.6) is thus the 

classical historical volatility estimate of the average volatility during days T+1, T+2, ..., 

2T. An alternative classical volatility estimate, motivated by the lognormality of stock 

price returns property (Black and Scholes, 1973), can be obtained by computing the 

logarithms of one plus the returns, squaring the differences of these values from their 

average, and taking the squared root of the average of the squared differences. For short 

time frames (of the order of one or two months) it does not make much difference which 

version of the classical historical estimator is used (Ritzman, 1991).

Alternate estimators have been derived in an attempt to improve on the efficiency 

of the classical historical volatility (CHV) estim ator'which simply uses the variance of 

the market close-to-close return:

F,"=(ln(Ä ,„/lnÄ ,)-R)^

f/" = _ J _ y w '

(2.7)

(2 .8)

As defined by Parkinson, Garman & Klass, and others.
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Where Cj denotes closing price at time /, and N is the number of periods. The classical 

historical volatility estimator is an estimate of the volatility using past history of data, and 

is used as a forecast of volatility over some future period.

All of these approaches are similar in that they assume the stock price follows a 

diffusion process with zero drift and constant volatility:

5
(2.9)

Based on this assumption, several authors develop measures which include more 

than the closing prices as estimators of the variance term adz.

Parkinson’s PK estimator (1980) of the variance of returns depends only on the 

high and low values, over each period. The statistic is the variance estimate over 

period i. To obtain an estimate of average variance over N periods, the high observed 

price Hi and the low observed price Lj , is cumulated to obtain V^, the average variance 

over N days:

V.i’K = (ln(7^,)-ln(I,))^
41n2

v^= — y

(2.10)

(2.11)
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The Garman and Klass (1980) estimator is an extension of the Klass estimator and 

develops a more accurate method of estimating the variance of the displacement (or 

diffusion constant cr) in a random walk. Garman and Klass (1980) assume that the 

logaritlun of stock prices follows a Brownian motion with zero drift, regardless of 

whether the market is open or closed. Their basic formula is given in equation (2.12), 

where Oj is the assets’ opening price and Cj is the closing price. The left-hand term is the 

squared difference between the open-to-high and open-to-close returns, while the right 

hand term is the squared open-to-close return:

In
O J

-In A
a .

-[21n(2)-l]* c VI n ^
o J

(2. 12)

= .5[ln//, - ln I , f - .3 9
. oJ (2.13)

The formula for situations when opening prices are not available (and the previous 

day’s close is used instead) is given by equation (2.14):

V/'> =̂ .5 [!n //,-ln I ,f- .3 9 C V 
I n - ^

\  G ,_ | J (2.14)

In this form, it can be seen that the Gannan and Klass (1980) estimator is really a
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weighted average of the PK estimator and the classical historical estimator.

When the market of interest does not trade 24 hours a day, the estimator to be 

used is given in equation (2.15). This version is simply a linear combination of the 

previous estimator (2.14) and a new estimator of the variance during the proportion of the 

day f when the market is closed:

f/G/C2=z ¡ 2

In
O.

C.;-l -

/
+.88

ya/c

w
(2.15)

1V = _ y  VGK
N t i  '

(2.16)

II.2.3 Implied Volatility

There can be situations where an ex-ante estimate of what market participants believe the 

volatility of an assets’ return to be is needed. In such a case, a historical estimate, such as 

those described in section II.2.2, could be used. However, the historical estimate is 

unlikely to reflect investors’ changed expectations at a given point in time (e.g., in the 

event of the release of bad news). Consequently, it is necessary to focus some attention
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on the concept of implied volatility, which is an attempt to estimate the aggregate 

expectations of future variance that the market has at a given point in time. If we believe 

that investors and speculators price options according to the Black and Scholes (1973) 

option pricing formula, then the price of a European Call Option is given by

c = c(s„,x.a,r.T) (2.17)

This also suggests that the implied standard deviation (ISD) of the option should 

be given by:

cr = cr(5o,X,C,r,r) (2.18)

Equation (2.18) can be solved by numerical search procedures, such as Ne\vton 

Raphson or the method of bisection (Ritzman (1991), Gordon (1991))".

II.2.4 Stochastic Volatility

The development here borrows heavily from the discussion of stochastic volatility 

to be found in Hansson and Hordahl (1996), Taylor (1994), Harveys, Ruiz and Shephard

Lalanc and Rendleman (1976), Palell and Wolfson (1981), Scmalanscc and Trippi (1978), MacBelh and Melville 
(1979), Manasler and Rendleman (1982j have examined the properties and investigated the difficulties with the use of 
ISDs in practice.
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(1994), and Ruiz (1994).

From a theoretical point of view, it is useful to start with a continuous time 

specification for the price of an asset, while a discrete time approximation is generally 

used for estimation purposes. It is assumed, following Scott (1987) and Wiggins (1987), 

that the return of an asset dP/P follows a Geometric Brownian Motion while the 

logarithm of volatility follows an Omstein-Uhlenbeck process;

dP ! P = ccdt + adW,, (2.19a)

diner = -\n<j)dt + (fdW· ,̂ (2.19b)

dW,dW^=pdt, (2.19c)

Wliere P(t) denotes the price of an asset at time i, a  is the return drift, r  is a 

parameter which governs the speed of adjustment of log-volatility to its long-term 

meani^, <p determines the variance of the log-volatility process, and {lfi(0>^2(0 } is a 

two-dimensional Wiener process with correlation p.

In a discrete time approximation of the models above'^ the continuous return of an 

asset Vf, corrected for the unconditional meanju, is a martingale difference while the

See Taylor (1994), Harvey, Ruiz, and Shephard (1994), and Ruiz (1994) for details.
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logarithm of squared volatility In cr,- follows an AR(1) process;

r, = ln(P, ) -  ln(/>„, ) - ^  = exp(/7, / 2 )s ,, f , ~ 7A[0.1] (2 .20)

/2,̂ 1 =  ̂+ (f>h, +?!,, 7, ~ 7Â [0, cr: ] (2 .21)

(2 .22)

where Ô, and (j) are constants. The stochastic volatility for period t is at or exp(h,/2), and 

the realized value of the volatility process hj is in general not observable. The AR(1) 

process of the logarithm of variance, hj, is stationary if | |̂ < 1 and it follows a random 

walk if <j) =1.

IL3 Conditional Volatility Models in the Literature and Performance Studies

Performance of different volatility forecasts have been proposed and their 

performance tested in the literature. Among all the volatility forecasting models, the 

GARCH family has received the greatest attention in the literature. ARCH and GARCH 

modeling in finance has enjoyed a prominent and varied history in the literature since its 

inception by Engle (1982) and generalization by Bollerslev (1986). An entire volume of
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the Journal of Econometrics was devoted to its use in research in 1992. It is an 

indispensable, often integral, part of many textbooks devoted to finance and 

econometrics. An overview of ARCH modeling in Tim, Chou, and Kroner (1992) has 

suggested and cited its use in the implementation and tests of competing asset pricing 

theories, market microstructure models, information transmission mechanisms, dynamic 

hedging strategies, and the pricing of derivative securities.

While it has been recognized for quite some time that the uncertainty of 

speculative prices, as measured by the variances and covariances, are changing over time 

[ e.g Mandelbrot (1963) and Fama (1965)], it is only somewhat recently that applied 

researchers in financial and monetary economics have started explicitly modeling time 

variation in second or higher-order moments. The Autoregressive Conditional 

Heteroskedasticity (ARCH) model of Engle (1982) and its various extensions have 

emerged as one of the most noteworthy tools for characterizing changing variances. More 

than several hundred research papers applying this modeling strategy have already 

appeared. Volatility is a central variable which permeates many financial instruments and 

has a central role in many areas of finance. As one simple example, volatility is vitally 

important in asset pricing models as well as in the determination of option prices. From 

an empirical viewpoint, it is therefore of no small importance to carefully model any 

temporal variation in the volatility process. It is important therefore that the performance 

of the ARCH model and its various extensions be tested in vitro in a simulated dynamic 

general equilibrium model that has already corroborated the theoretical results of the
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САРМ and where the true distribution of the returns is known in its ex-ante form. It is a 

fact worth mentioning that there has been scant attention to this type of performance 

analysis of the GARCH family models in the relevant literature.

Implied and historical variance estimators have also received wide attention, and 

their empirical performance has been analyzed, both on a stand-alone basis, and in 

comparison with other conditional variance estimators. Figlewski (1994) examines the 

empirical performance of different historical variance estimators and of the GARCH(1,1) 

model for forecasting volatility in important financial markets over horizons up to five 

years. He finds that historical volatility computed over many past periods provides the 

most accurate forecasts for both long and short horizons, and that root mean squared 

forecast errors are substantially lower for long term than for short term volatility 

forecasts. He also finds that, with the exception of one out of five data sets used, the 

GARCH model tends to be less accurate and much harder to use than the simple 

historical volatility estimator for his application.

In another paper, Canina and Figlewski (1993) compare implied volatility 

estimators to historical volatility for S&P 100 index options, and find implied volatility to 

be a poor forecast of subsequent realized volatility. They also find that in aggregate and 

across sub-samples separated by maturity and strike price, implied volatility has virtually 

no correlation with future volatility, and does not incorporate the information contained 

in recent observed volatility.
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Pagan and Schwert (1990) compare several statistical models for monthly stock 

return volatility using US data from 1834-1925. They use a two-step conditional variance 

estimator [Davidian and Carroll (1987)], a GARCH (2,1) model, an EGARCH(1,2) 

model [Nelson (1988)], Hamilton's (1989) two-state switching-regime model, a 

nonparametric kernel estimator based on the Nadaraya (1964) and Watson (1964) Kernel 

estimator, and a nonparametric flexible Fourier form estimator [Gallant (1981)]. They 

find that taking the 1835-1925 period as the sample, nonparametric procedures tended to 

give a better explanation of the squared returns than any of the parametric models. Of the 

parametric models. Nelson’s EGARCH comes closest to the explanatory power of the 

nonparametric models, because it reflects the asymmetric relationship between volatility 

and past returns. However, they also find that Nonparametric models fare worse in out-of- 

sample prediction experiments than the parametric models.

Lamoureux and Lastraspes (1993) examine the behavior of measured variances 

from the options market and the underlying stock market, under the joint hypothesis that 

markets are informationally efficient and that option prices are explained by a particular 

asset pricing model. They observe that under this joint hypothesis, forecasts from 

statistical models of the stock-return process such as GARCH should not have any 

predictive power above the market forecasts as embodied in option implied volatilities. 

Using in-sample and out-of-sample tests, they show that this hypothesis can be rejected, 

and find that implied volatility helps predict future volatility. Using the analytical 

framework of the Hull and White (1987) model, they characterize stochastic volatility in
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their data by using the GARCH model. Their out-of-sample tests show that GARCH does 

not outperform the classical historical volatility estimator significantly. GARCH, 

Historical Volatility, and Implied Volatility are each used to forecast the mean of the 

daily variance over the remaining life of the option. For each day in the forecast horizon, 

each forecast is compared to the actual mean of the daily realized variance. In a bid to 

compare their results with other studies, they refer to Akgiray (1989). Using the root 

mean squared error (RMSE) criterion for stock index data, Akgiray (1989) finds that, at a 

forecast horizon of 20 days, GARCH variance forecasts are convincingly superior to 

historical volatility. Lamoureux and Lastrapes (1993) replicate Akgiray’s (1989) analysis 

with a 100 day forecast horizon and find that the relative rankings of historical volatility 

and GARCH are overturned. They also find that implied variance tends to underpredict 

realized variance, as evinced by a significantly positive mean error (ME) in their study. 

They also observe that, as GARCH weights the most recent data more heavily, GARCH 

overstates the frequency of large magnitude shocks, which leads to good in-sample fit and 

excellent short-term forecasts, but poor long term forecasts (see also Akgiray(1989) and 

Nelson (1992)).

Day and Lewis (1992) compare the information content of the implied volatilities 

from call options on the S&P 100 index to GARCH and Nelson’s EGARCH models of 

conditional volatility. By using the implied volatility as an exogenous regressor in the 

ARCH and EGARCH models, they examine the with-in sample incremental information 

content of implied volatilities and the forecast from GARCH and EGARCH models.
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Their out-of-sample forecast comparisons suggest that short-run market volatility is 

difficult to predict, and they conclude that they are unable to make strong statements 

concerning the relative information content of GARCH forecasts and implied volatilities.

Jorion (1995) examines the information content and forecast power of implied 

standard deviations (ISDs) using Chicago Mercantile Exchange options on foreign 

currency futures. Defining the realized volatility in the conventional sense , he regresses 

realized volatility on forecast volatility'"’ and a time series volatility specification 

modeled as GARCH (1,1), in the following way:

(y , j  — a + + Eij (2.23)

This regression is used to test whether GARCH (1,1) forecasts have predictive power 

beyond that contained in cr™. In other words, Jorion tests whether the coefficient of the 

GARCH forecast, bj, is significantly different from zero. GARCH forecasts are obtained 

by successively solving for the expected variance for each remaining day of the options 

life, then averaging over all days. He finds that MA(20) and GARCH (1,1) forecasts have 

lower explanatory power than ISDs'^. He concludes that his results indicate option- 

implied forecasts of future volatility outperform statistical time-series models such as

'3 The realized volatility of returns from day t to day T is thus the standard deviation o f returns in days t, t + l , .... f  
(Ritzman, 1991).
•‘t Where the forecast volatility is taken to be the ISD forecast o f volatility o f returns over the remaining contract life. 
'5 lorion finds that the slope coefficient b2 of the GARCH (1,1) forecast becomes small and insignificant, implying 
low forecast power compared to ISD.
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GARCH in the foreign exchange market'*’, although the volatility forecasts of ISDs are 

biased- suggesting ISDs to be too volatile. It is worth extra emphasis that .lorion conforms 

to the existing practice in the literature of utilizing the realized variance, in this case in 

the foreign exchange market for three currencies, for forecast comparison regressions.

West and Cho (1995) compare the out-of-sample forecast performance of 

univariate homoskedastic, GARCH'^, autoregressive, and nonparanietric models for 

conditional variances, using five bilateral (Canada, France, Germany, .lapan, and the 

United Kingdom) weekly exchange rates for the dollar, for the period 1973-1989. They 

compare the out-of-sample realization of the square of the weekly change in an exchange 

rate with the value predicted by a given model of the conditional variance for horizons of 

one, twelve, and twenty four weeks. The performance measure that they use is the mean 

squared prediction error (MSPE), using rolling and expanding samples for the out-of- 

sample forecasts. For one-period horizons, they find some evidence favoring GARCH 

models. For twelve and twenty-four-week ahead forecasts of the squared weekly change, 

they find little basis for preferring one model over another. At the one-week-ahead 

forecast horizon, they report that GARCH (1,1) produces slightly better forecasts in the 

MSPE sense, but they conclude that statistical tests cannot reject the null hypothesis that 

the MSPE from GARCH (1,1) is equal to the MSPE from other models at all horizons 

considered. They observe that, based on this inability to reject the null, there are no viable

This is in sharp contrast to Canina and Figlcwski (1993), who find that ISDs have poor performance in the U.S. 
stock market.

More specifically, GARCH (1,1) and ICiARCH (1.1) models are used. These are selected because in-sample 
diagnostics are found to be better than other GARCH models.
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reasons for preferring one model over another at all the horizons considered. It thus 

appears that GARCH performance leaves something to be desired, and although the 

GARCH models perform well, endorsement of these models is moderate. Although the 

in-sample evidence in their study clearly suggests that a homoskedastic model should be 

strongly dominated by the other models, they find this not to be the case. This is a 

surprising result, as the authors themselves acknowledge. There is one comment in their 

paper that is definitely worth reproducing in the context of this study: “...it might be 

largely a matter of chance which model produces the smallest RMSPE'*”. This element 

of chance is best explained and understood in terms of the use of realized out-of-sample 

variance, and this observation of West and Cho is one of the few veiled references in the 

literature to the arbitrariness of evaluating performance on the basis of a sample 

realization in the forecast horizon (which introduces the “chance” factor in performance 

referred to in the quotation), and the lack of formal tests of performance.

Amin and Ng (1990) study the asymmetric/leverage effect in volatility in option 

pricing. The asymmetric/leverage effect is a property of stock returns which has been the 

subject of much recent study (Black (1976), Christie (1982), French, Schwert and 

Stambaugh (1987), Nelson (1990), Schwert (1990)) and refers to the phenomenon 

whereby whereby stock return volatility is higher following bad news than good news. 

They find that a comparison of the mean absolute option pricing error under the GARCH, 

EGARCH, and Glosten, .lagganathan, and Runkle (GJR, 1992) models relative to the

18root mean squared performance error.
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mean absolute option pricing error under a constant volatility model favors EGARCH 

and GJR models.

Hansson and Hordahl (1996) estimate the conditional variance of daily Swedish 

OMX-index returns for the period January 1984-February 1996 with stochastic volatility 

(SV) and GARCH models. They find that the best in-sample fit is provided by the 

asymmetric unrestricted SV model with a seasonal effect. An evaluation of the 

forecasting power of the model is shown to provide better out-of-sample forecasts than 

GARCH models. They conclude in their study that the SV model specification is the 

preferred model for forecasting purposes.

Long memory processes and modeling aspects is another area that is exciting 

considerable interest in the GARCH literature. Bollerslev and Mikkelsen (1996) 

introduce a new class of fractionally integrated GARCH and EGARCH models to 

characterize U.S. financial market volatility. Recent empirical evidence indicates that 

apparent long-run dependence in U.S. stock market volatility is best accounted for by a 

mean-reverting fractionally integrated process'^. After in-sample estimation of variouŝ ** 

models on the Standard and Poors index, the authors simulate the price paths of options 

of different maturities with three alternative pricing schemes, and make option price 

forecasts for the three different EGARCH and an AR(3) data-generating mechanisms. At

•9 In such a process, a shock to the optimal forecast (grounded in the model) o f the future conditional variance decays 
a slow hyperbolic rale.
20 a R(3), AR-EGARCH, AR-IEGARCM, AR-FIEGARCH.
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70-days to maturity, the lEGARCH model results in the highest forecast prices, whereas 

the homoskedastic AR model unifonnly produces the lowest valuations. The prices for 

EGARCH and FIEGARCH are very close. As the maturity increases to 270 days, the 

prices generated by FIGARCH are between EGARCH and lEGARCH valuations. The 

AR(3) model consistently underprices long and short horizon options, and the FIGARCH 

model appears to be the best candidate for characterizing the long-run dependencies in the 

volatility process of the underlying asset.

II.4 The Computable Dynamic General Equilibrium Model 

11.4.1 Introduction

This study uses the method employed by Akdeniz and Dechert (1997) to solve the 

multifirm stochastic growth model of Brock (1979). Brock’s model reflects the utility 

maximizing behavior of the consumer and the profit maximizing behavior of the 

producers. The computational solution to Brock’s model produces results that resemble 

the “real” economy very closely and hence it is a very powerful tool with a rich variety of 

possible future applications. Many empirical anomalies, in particular the predictions of 

the Capital Asset Pricing Models (CAPM) and the contentions surrounding whether its 

predictions hold or not, have been resolved in the computational economy framework via
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the approach by Akdeniz (1998) and Akdeniz and Dechert (1997)^'. The power of this 

computational framework as a general tool is thus particularly chosen to study the 

performance of the GARCH model, and the economy that it simulates can be made to 

mirror stock market data very closely, having all the properties that empirical data 

possess such as excess kurtosis, conditional moment dependence on time, volatility 

clustering, etc. This is just one of the many possible applications that Brock’s model, via 

the numerical solution of Akdeniz and Dechert (1997), can be put in to use.

The next section will discuss the mulifirm stochastic growth model and asset 

pricing model of Brock (1979, 1982), and prepare the ground for discussions on the 

particular numerical solution method adopted for this study, which will be presented in 

Section III.

11.4.2 The Growth Model

The model used as the basis in this study is the optimal growth model with 

uncertainty. The long-run behavior of the deterministic one-sector optimal growth model 

has been studied by Cass (1965) and Koopmans (1965), who showed the existence of a 

steady state solution. The extension of this model to include uncertainty can be found in 

Brock and Mirman (1973) and Brock (1979, 1982). This study utilizes the case of

21 For details on more specific successes of this approach, the reader is directed to their papers.
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discrete Markov process driven technology shocks. There is an infinitely lived 

representative consumer who has preferences over sequences of consumption gi\'en by 

the following expression:

E o \^ P 'u { c ,) \ , 0<y9<l, (2.24)
./=0

where c, denotes consumption of the single good, and denotes expectation 

conditional on information at date zero. There are N production processes in this 

economy that can be used to produce one type of good that can be consumed or added to 

the capital stock. The following discusses the growth model in some depth, and borrows 

heavily from Akdeniz and Dechert (1997). The key elements of the model are 

recapitulated as follows^ .̂

max
c, ,x„

and

(2.25)

N

X. = E xi.
i = l

(2.26)

i = l
(2.27)

C,+X. =y. (2.28)

c,x, >0 (2.29)

ŷ  historically given

22 For a more detailed exposition, the reader is referred to Brock (1979), and Akdeniz and Dechert (1997).
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Where:

E

P
u

X.

y,

f.
1

Xi.

malhematical expectation

discount factor (constant) on future utility

utility function of consumption^^

consumption at date t

capital stock at date t

output at date t

production function of process i plus undepreciated capital 

capital allocated to process i at date t 

depreciation rate for capital installed in process i 

random shock

Observe here that fi(Xi,,^,) = gj(Xi,,^,) + (l-6i)Xj,, where g^Cx ,̂, ,̂) is the production 

function of process i, and (1 -  is remaining (undepreciated) capital after production 

in process i.

The optimal policy functions for consumption and investment for the 

representative consumer are obtained via maximization of the expected value of the 

discounted sum of utilities over all possible consumption paths and capital allocations '̂*. 

The following explanation is offered by Brock to elucidate the working of the model:

23 The utility function is characterized b> u : is strictly concave, strictly increasing, and continuously
dilTercnliabie with u(())=(), U‘(0)=oo anci
24'rhe x's at dale l must be measurable with respect to the xj's through dale 1-1.
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“There are N different processes. At date / it is decided how much to 

consume and how much to hold in the form of capital. It is assumed that 

capital goods can be costlessly transformed into consumption goods on a 

one-for-one basis. After it is decided how much to hold in the form of 

capital , then it is decided how to allocate capital across the N processes. 

After the allocation is decided nature reveals the value of rj, and g,(x., ,r,) 

units of new production are available from process i at the end of period t. 

But bjXjt units of capital have evaporated at the end of period t. Thus, the 

net new produce is g.(x., ,r,)- 5jXi, from process i. The total produce 

available to be divided into consumption and capital stock at date t+\ is 

given by

i][g,(x«>r,)-S*xJ + x, = l][g ,(x„,r,) + ( l - 5 J x J
i = l  ¡=1

N 

i = l

where

f(x,,T,) = gi(x,,r,) + (l-5 ,)x„

denotes the total amount of produce emerging from process i at the end of 

period t. The produce y,..] is divided into consumption and capital stock at
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the beginning of date /+1, and so on it goes”.

This study introduces a notational difference. Observe that Brock uses “r,” for his 

shock parameter, whereas in this study the shock parameter is denoted ”. The main 

assumptions for the model in this study arê :̂

(Al) the functions u and fj are concave, increasing, twice continuously 

differentiable, and satisfy the Inada conditions;

(A2) the stochastic process is a discrete Markov process with eight states of 

uncertainty for each production process;

(A3) the maximization problem has a unique optimal solution.

Then the first order conditions for the intertemporal maximization can be written as:

u'(c,.,) = PE,.,[u’(c,)f'(x ,4 ,)] (2.30)

!H"P'E,-,[u'(c,)x„] = 0 (2.31)

25 For a detailed explanation of the model see Brock (1982).



It is worth mentioning that Equation (2.30) will be the one used in the following 

sections to obtain a numerical solution to the growth model. Obser\ ing that the problem 

given by equations (2.25) to (2.29) is time stationary, the optimal levels of c,, x,, are 

functions of the output level y,, and can be written as;

c, =g(y,) X, =h(y.) X, =h,(y,) (2.32)

Now the aim is to solve the growth model for the optimal investment functions, 

hj, and then to analyze the underlying implications of the asset pricing model. As a further 

simplification, note that the first two functions in equation (2.32) can be expressed in 

terms of these investment functions:

h(y) = i]h ,(y )
i = l

c(y) = y -h (y )

(2.33)

(2,34)

II.4.3 The Asset Pricing Model

Brock’s (1982) asset pricing model has many characteristics in common with the 

Lucas (1978) model. The primary feature seperating the two models is that Brock’s 

model includes production. The inclusion of shocks to the production processes in the 

model directly links the uncertainty in asset prices to economic fluctuations in output
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levels and profits.

The asset pricing model closely resembles the growth model discussed in Section 

11.4.2. There is an infinitely lived representative consumer whose preferences are given 

by equation (2.24 & 2.25). The production side consists of N different firms. Firms 

maximize profits by renting capital from the consumer side:

(2.34)

Each firm takes the decision of hiring capital after the shock is revealed. The 

interest rate in industry i at time t is determined within the model. Following the 

convention in the literature, asset shares are normalized so that there is one (perfectly 

divisible) equity share for each firm in the economy. Thus, ownership of a proportion of 

the share of firm i at time t grants the consumer the right to that proportion of firm i’s 

profits at time t+1. Following Lucas (1978), it is assumed that the optimal levels of 

output, consumption, asset prices, and capital form a rational expectations equilibrium.

The representative consumer then solves the following problem:

max E ¿ P 'u (c ,)

IN

subject to: c, +x, +P, -Z, < ti, -Z,., +P, -Z,_, +2r.^,..,x.^,_

(2.35)

(2.36)
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C,, Z,, X, >0 (2.37)

(2.38)

(2.39)

Where:

R, price of one share of firm ; at date t.

Ẑ , number of shares of firm / owned by the consumer at date 1. 

t:., profits of firm / at date h

Again, for details of the model, refer to Brock (1982). First order conditions derived 

from the maximization problem are:

and

Pi.u'(c,) = pE,[u'(c,,,)(Tr.^ +Pi„,)]

u'(c,) = pE,[u'(c,^,)f'(x.,„,^,„)]

(2.40)

(2.41)

The first order conditions yield the prices for the assets. However, the 

transversality conditions

WmP' E( u\c,)Y^P„Z„ = 0 (2.42)

lim/?'£o[«'(c,)x,]=0 (2.43)
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are required to fully characterize the optimum^^. This condition, as noted by Judd (1992), 

suggests that we are looking for a bounded solution^’ to the growth model. Brock (1979) 

has shown that there is a duality between the growth model (2.25-2.29) and the asset 

pricing model (2.35-2.39). Thus the solution to the growth model also solves the asset 

pricing model. Once the solution to the former is found, equation (2.40) can be used to 

solve for the asset prices, and asset returns. To be more specific, once the optimal policy 

functions, hj(y), for the growth problem are obtained asset prices and asset returns can 

easily be calculated for given values of shocks.

II.5 The Model and Computational Economics in the Literature

In general no closed form solutions for stochastic growth models exists, except for 

the specific cases of logarithmic utility and Cobb-Douglas production functions with 100 

percent discounting, and carefully paired CES production and utility functions" . The 

recent advances in computer hardware and computational methods have enabled 

economists to study these models. As a result, more and more economists have been 

using computational methods to solve dynamic economic models over the past two 

decades.

26 Brock (1982) shows that the transversalily condition holds in this model. 
22 The optimal solution remains in a bounded interval: 0<a<V(<b<oo for all t. 
28 See Bcnhabib and Rustichini (1994).
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Sims (1990) solves the stochastic growth model by backward-solving, a class of 

methods that generates simulated values for exogenous forcing processes in a stochastic 

equilibrium model from a specified assumed distribution for Euler-equation disturbances, 

with a particular nonlinear form for the decision rule. The backward-solved simulations, 

whose solution paths were shown to be stationary (Sims, 1989), are applied to a one- 

sector neoclassical growh model with decision rule generated from a linear-quadratic 

approximation. Baxter, Crucini, and Rouwenworst (1990) solve the stochastic growth 

model by a discrete-state-space Euler equation approach. They focus on the Euler 

equations that characterize equilibrium behavior, and then compute approximations to 

equilibrium decision rules. Their approach is “exact” in the sense that their approximate 

decision rules converge to the true decision rule as the grid over which the decision rules 

are computed becomes arbitrariliy fine. Their approach to simulute the economy’s 

respononse to shocks relies on Tauschen’s (1986) method to generate a sequence for the 

technology shocks, and using their approximate policy function together with the 

resource constraint to determine associated equilibrium values of output, consumption, 

and investment. Benhabib and Rustichini (1994) provide exact solutions for a class of 

stochastic programming problems in growth theory, specifically those involving pairs of 

constant relative risk aversion utility functions and CES technologies. They incorporate 

depreciation schemes into their model, and generalize the solutions for the well-known 

case of logarithmic utility coupled with Cobb-Douglas production functions .

A more thorough description and comparison o f .some o f the various methods can be found in Taylor and IJhIig 

(1990), and Danlhinc and Donaldson (1995).
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A series of important observations made by Judd (1995) emphasize the relevance 

of computational methods for science in general and economics in particular. Judd 

(1995). in surveying the interaction between economic theory and computational 

economics, discusses the methodological issues raised by the idea of “computational 

theory”, and the problems associated with its dissemination and exposition. It is 

important to evidence what computational methods is not. At the most obvious, 

computational economics is not a theoretical proof of a proposition, in the sense that a 

proof is a logical-deductive process in which a proposition is formulated, and auxiliary 

assumptions are added (such as linear demand, constant costs, etc.) to the basic ones in 

order to make a proof of the proposition possible. Computational methods have 

complementary strengths and weaknesses relative to theoretical methods. They can 

approximately solve an arbitrary example of the basic theory, and determine the nature of 

any individual point in the solution space being explored. The advantage is that 

computational methods do not need as many, if any, auxiliary assumptions to compute 

the equilibrium. The supposed weakness is that they can do this only one example, one 

point, at a time, and in the end can examine only a finite number of points. Some argue 

that deductive theory has a superiority in that its results are error free. This has to be 

balanced with the self-evident limitations of an approach that is exclusively limited to a 

small subset of examples that obey the conditions imposed to make the analysis tractable. 

Although computational methods often involve error, their superior range offers an 

advantage.
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Thus the vital conclusion drawn by Judd is that computational methods are a 

complement to theory, and can provide powerful insights for the investigation of those 

systems that are not analytically tractable. An exhaustive list of episodes are recounted, 

notably the work of Kydland and Prescott (1982), who showed that fairly simple dynamic 

general equilibrium models could display the type of economic fluctuations that we 

observe in the macroeconomy.

Brock’s model has been used for the last twenty years, and has been extensively 

cited in the literature. Nonetheless, some researchers have used a linear investment 

function specification, while others starting with Kydland and Prescott (1982) have used 

a quadratic approximation to the value function which similarly results in a linear policy 

function. Consequently, these studies have not succeeded in exploiting the numerous 

implications that exist in Brock’s model.

In this study the starting point is the use of numerical methods to obtain solutions 

for Brock’s (1979) growth model for any type of utility and production functions. The 

projection method of Judd (1992) is used to solve the stochastic growth model for the 

optimal investment functions, profits, and returns. The method proposed by Akdeniz and 

Dechert (1997) and Akdeniz (1998) is generalized to include discrete Markov-process 

driven shocks to both the output levels and elasticities. This refinement induces serial 

correlation in the squzired returns of the process, a manifestation which closely mirrors
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empirical asset return phenomena. The likelihood of subsequent high shocks in return of 

either sign, after a high shock is initially recorded in the system is increased, thus forcing 

volatility clustering and fat tailedness (excess kurtosis) in the return data, which agrees 

with empirical stock market return data.
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CHAPTER III 

THE MODEL

HI. I Introduction

This study uses a particular form of Akdeniz (1998) and Akdeniz and Dechert’s 

(1997) solution to Brock’s (1979, 1982) model to test the performance of out-of-sample 

forecasts of Bollerslev’s (1986) GARCH(1,1) model. Akdeniz (1998) and Akdeniz and 

Dechert’s (1997) model is simulated 1,000 times to obtain 1,000 daily stock return data 

sets. Each simulated data set consists of the return realization for a chosen firm over a 

period of 1,500 days (one business cycle).

Bollerslev’s (1986) GARCH(1,1) model for conditional variance is then fitted to 

the first 1,300 days of each data set. In-sample diagnostic tests are used to evaluate the 

model for these data sets. These diagnostic in-sample tests are elaborated in Section IV. 

Forecasts are then made for 7 and 22 days ahead (i.e. for the out-of-sample period [1301, 

..., 1307] and [1301, ..., 1322]), and average forecast volatilities over the horizon are 

computed for each data set. These forecasts are compared to the “true” variance on a 

given day, which is computed from the daily true distribution of the simulated return data
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sets, and to the realized variance^® in the forecast horizon. The GARCH (1,1) mean 

absolute forecast error is then calculated over all 1,000 simulations using both 

benchmarks. This is simply the average of the absolute value of all the forecast errors 

across each data set, which is computed by subtracting the GARCH(1,1) forecast of 

average variance over the forecast horizon from the “true” variance '̂ at the end points of 

the forecast horizon (in this case days 1307 and 1322 for 7 and 22-day aliead horizons)^^. 

A similar procedure is then carried out to compute the RMSE of the GARCH forecasts 

using both benchmarks at 7 and 22-day horizons. Finally, the whole procedure is repeated 

for forecasts obtained from the CHV estimator. The equations below define the MAE and 

RMSE specifically for the GARCH model forecasts 7-days ahead using true variance as 

benchmark. The other cases follow in exactly the same way:

J i 1000

1000 t r ^ '  ^
(3.1)

The right hand side of equation (3.1) refers to RMSE eomputed using the GARCH (1,1)

model at the 7-day horizon. Here v refers to the 1307th day true variance, and is a

constant that is subtracted from each GARCH forecast, denoted by , where the i 

refers to the forecast in a particular simulation, and is summed over all simulations. The 

equation below defines MAE for GARCH at the 7-day horizon, and is self-explanatory.

30 Realized variance is obtained for each simulated return set via programming in EVIEWS. Refer to Appendix C.
31 The procedure is similar when computing MAE using realized variance as benchmark. Instead of subtracting true 
variance on the 1307th and 1322nd days, the realized variance for the horizons are calculated for each return data .set 
and subtracted from the GARCH forecasts of average variance in the two horizons.
32 This procedure is explained at greater length in Chapter IV.
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1 f 1000

1000 I t r ' '
■\R1 ^^TRlU-ll (3.2)

GARCH(1,1) estimation and forecasting is done through programming in 

EVIEWS. In EVIEWS, heteroskedasticity-consistent covariance estimator and the 

Berndt-Hall-Hall-Hausman (BHHH) algorithm is used to estimate the GARCH(l.l) 

equation. The BHHH algorithm for maximizing likelihood is preferred over the 

alternative Marquardt algorithm because of its speed, and the heteroskedasticity 

consistent covariance estimator option is chosen to accommodate for the fact that what is 

actually being done is quasi maximum likelihood estimation (maximum likelihood with 

an invalid assumption) -as the residuals of estimation are not conditionally normal- and 

hence need to be corrected for by robust standard errors (Bollerslev and Woodridge, 

1991).

The next section discusses the GARCH(1,1) model and forecasting in EVIEWS, 

and the particular form adopted in this application of the numerical solution used by 

Akdeniz (1998) and Akdeniz and Dechert (1997) to solve Brock’s (1979, 1982) growth 

model.
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п и  GARCH (1,1)

А full discussion of the analytical issues concerning the GARCH model can be 

found in the seminal paper by Bollerslev (1986), and in Hamilton (1994). This section 

focuses, instead, on the implementation of the GARCH (1,1) model in EVIEWS, and 

particularly on forecasting in EVIEWS after the GARCH(1,1) equation has been 

estimated for each return data set in the “in-sample” (days [ 1 1 3 0 0 ] ) .

Recapitulating section II.2.1, the GARCH (1,1) model is described by the 

following equations:

y, =x,7i + e, (3.3)

~V (0,a?) (3.4)

ct2 = ¿0 + as]_̂  + (3.5)

A useful insight can be obtained by lagging equation (3.5) by one period and by 

substituting for the lagged variance on the right hand side. Then an expression with two 

lagged squared returns, and a two period lagged variance is obtained. By successively 

substituting for the lagged conditional variance, an illuminating expression is found:
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<7f =
a>

(3.6)
7=1

An ordinary sample variance (c.f. classical historical variance estimator) would give each 

of the past squares an equal weight rather that declining weights (as in GARCH). Thus 

the GARCH variance is like a sample variance but it emphasizes the most recent 

observations. Since a j  is the one day ahead forecast variance based on past information, 

it is tenued the conditional variance.

EVIEWS uses the return history of days [1, ...,1300], for each data set in turn, to 

estimate the parameters {n:} of the conditional mean (equation 3.3) and the parameters 

of the conditional variance equation (equation 3.5).

The estimated a  and ¡5 parameters convey a measure of volatility persistence in 

the system. As noted by Bollerslev (1986), a  + y0<l is necessary for wide-sense 

stationarity; a  + = 1 implies a unit root, and a + p>  \ signifies an explosive process

(see Bollerslev (1986), Hendry (1996)). The closer « + is to unity, the more persistent 

are the volatility shocks, and the less rapidly their effect dies out.

Forecasts in EVIEWS in the out-of-sample horizon are computed according to the 

following expression:
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Thus,

crj =o) + (a  + P)(7^_ (3.7)

=0) + {a + p)a] 3̂00 (3.8)

<̂ no2 = <y + (a  + P)ct]̂301 (3.9)

=o) + (a + /3)[o) + {a + ]

and so on.

crfjoo is computed using the information available in days [1,..., 1299]. However, no new 

information of the (unknown) future variance is allowed to enter when making forecasts 

of the conditional variance out-of-sample. Since no new information is incorporated into 

the forecast, the GARCH forecast of conditional variance quickly converges to its long- 

run variance as the forecast horizon increases (Bollerslev(1986), Figlewski (1994)):

a>
hn̂ -nm \ - a - p

(3.10)

at a rate that depends on the value of (« + /?).
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III.3 The Numerical Solution

With the exception of restricted special cases of the utility and production 

functions, there generally are no closed form solutions for the optimal investment 

functions. Thus, numerical techniques are necessary for analysis of the properties of the 

asset pricing model. The numerical procedure adopted in this study is the projection 

method of Judd (1992). Alternative methods have been proposed in the literature^ ,̂ but 

Judd’s method is chosen because it is fast, extremely accurate^“*, and because the entire 

investment function can be estimated. The following discussion on the numerical method 

used in this study borrows heavily from Akdeniz and Dechert (1997) and their notation 

and equations are reproduced with their permission.

Judd’s method takes advantage of the time stationarity of the solutions instead of 

solving for a specific solution to the Euler equation (2.30), and solves for the optimal 

investment functions hj{y). To be able to achieve this, optimal policy functions are

characterized as Chebyshev sums:35

h(y,a,) = ^a„\j//y )
j=i

(3.11)

These methods arc discussed in a special volume o f the .loiirnal of Business & Economic Statistics (January 1990). 
I’his method yields results that are accurate to within $1 in $1,000.000.

‘̂ ^See i^ivlin (1990) for a description of approximation methods using Chebyshev polynomials.
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Here the term vj/j refers to the j-1 Chebyshev polynomial which has been shifted to the

estimation range [y„j„, y„,aJ36

V; (y )= r
\

y - y  .2  nun I
V y — y . )·' nux J  nun '

(3.12)

and n is the number of coefficients used.

Observing that along an optimal solution the following relationship will hold:

and

Xu.=h,(y.)

= h ,(y ,„ )

then define the residual functions from the Euler equation as:

iH,(y,a) = u' y-Xh(y,a^)
V  j  /

pE u ( X  f j (h (y ,a ; )> ^ ) -h (Z f . (h (y ,a J ,^ ) ,a . ) f '(h (y ,a ,) ,4)

(3.13)

I hi.s e.stimation interval is chosen such that this interval contains the observed ergodic distribution ol j t
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In numerical simulations Akdeniz and Dechert (1997) use a discrete probability 

space for the random shocks. In this study, a simple Markov process governs the arrival 

of the shocks. In what follows, the expectation notation will be used instead of writing 

out sums explicitly. The residual functions defined in equation (3.11) will all be equal to 

zero when evaluated at the optimal policy functions, for all values of y. In order to solve 

for the optimal values of the coefficients of the Chebyshev sums, a discrete set of y’s 

corresponding to the zeros of a Chebyshev polynomial of order m^’ is taken. Then the 

projection of the residual functions so defined is:

B ,(a )  =  S 9 î , (y , ,a )v ı ; . (y J (3.14)

and the coefficients are sought for which these projections are simultaneously equal to

39zero. This is accomplished via a Newton-Raphson numerical routine

Once the growth model is solved for the optimal investment functions, equation 

(3.6) is solved for the asset pricing functions. It is noted that this can be reduced to 

solving a set of linear equations. Then define:

G,(y) = B(yK(c(y))

and

Here m is taken to be greater than n. the number o f coefficients.
38see Fletcher (1984) for the use of the Oalerkin projection method in numerical analysis.

C language routine is utilized, based on Akdeniz and Dechert (1997) and Press et al (1992).
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b , ( y )  = Zu '(c(Y (y ,^J))7 i,(y ,^Jq^

where a discrete (Markov) random variable is used with P(^ = = q, 40

Then, a solution to

r G .( y )  = Z G ,(Y (y ,i ))q , + b,(y) (3.15)

is looked for the functions Gj. A way of achieving this is tlxrough the use of Chebyshev 

approximations to Gj. The coefficients of the approximating polynomials are then solved 

for. Letting

G,(y) = 2]c,.v|;.(y) (3.16)

with vj/j is defined as before. Then let y)....,y,„ be the zeros of ij/,„ where m>n+l. Then 

one needs to find Cji....,Cin such that, for k= l.... ,m

P" Í  CijVj(y.) = Z i  c.H'i ((Y(y. + b, (y ,)j=l j=«

For programming purposes, a discrete random variable must be used. This discrete random variable is assigned from 
an 8-state Markov process.
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= S iZ ¥ ,(Y (y ,,i) )q .lc ,.+  b ,(y j (3.17)

Note that this is linear in the coefficients. However, as there are m>n equations here, in 

general they cannot all be expected to hold. The solution will be taken to be those 

coefficients that minimize the sum of the least square errors between the left and right 

hand sides of the equations. Define T to be the m x n matrix whose k, j  element is 

vi/^(yj, and define M to be the m x n matrix whose k, j  element is y^.vj/,(Y(v,'^ ))q .
s

Also let bj be the vector of elements of bi(y]<). Then in matrix form is sought that 

minimizes the following expression below

[(p 'T -M )a ,-b ,]  [(p -'T -M )a,-b ,l (3.18)

The solution that minimizes (3.18) is A = P ''T -M . Then, using the least squares 

principles the solution can be written as;

a, =(A'A)-'A 'b.

Akdeniz and Dechert (1997) prove that equation (3.15) defines a contraction mapping of 

modulus P on the space of bounded continuous functions so that the procedure outlined 

above is well defined and has a unique solutioi/'. The next section discusses the discrete

For details, refer to their paper (1997).
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Markov process that governs the arrival of shocks to the output and elasticities. The 

explicit form of the Markov chain is also provided. The parameters corresponding to the 

(Markov) states are reported in the appendix.

III.3.3 A Discrete Markov Process for the Shocks

In this application the Akdeniz (1998) and Akdeniz and Dechert (1997) model 

with 8 possible states of uncertainty is used"*̂ . The states vary from state 1 (very bad 

shock) to state 8 (very favorable shock). The states in between, namely states 2 to 7, have 

shocks that are going from bad to good in a stepwise increasing manner. The occurrence 

of state 1 results in an inordinately bad shock, compared to any other state; likewise 

occurrence of state 8 results in an disproportionally good shock, compared to neighboring 

states. For states 3 to 6 (intermediate shocks), the economy is equally likely to move to 

any other state. For states 1,2 7, and 8, the economy is constrained to move to one of 3 

contiguous states. This calibration of the economy aims to increase the long run time 

spent by the economy in extreme states and induces excess kurtosis and volatility 

clustering in the return data. The Markov transition matrix between states is given in the 

Table 1 in the next page:

42 see Appendix F.
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Table 1: Markov Transition Matrix Governing the Shocks

state 1 state 2 state 3 state 4 state 5 state 6 state 7 state 8

state 1 1/3 1/3 0 0 0 0 0 1/3

state 2 1/3 1/3 1/3 0 0 0 0 0

state 3 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

state 4 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

state 5 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

state 6 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

state 7 0 0 0 0 0 1/3 1/3 1/3

state 8 1/3 0 0 0 0 0 1/3 1/3

IIL3.4 The Numerical Solution

This section presents the solution to the model that is used to simulate the 

economy. This study uses the constant relative risk aversion utility function (CRRA),

u(c)= —
r

wherey, the utility curvature is set equal to -1.37 to match postwar U.S. data"*̂ . In

Campbell and Cochrane (1994) estimate that a CRRA utility function with a utility curvature parameter o f -1.37 
matches postwar US data. This value is used to match the data to .selected U.S. indices (see Chapter IV.)
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keeping with the common practice in the literature, the value of the daily discount 

parameter P is taken to equal 0.99987413. The production side of the economy is 

characterized by firms with the Cobb-Douglas production functions:

where ^  is the shock parameter in the production function. The values of a and are 

chosen at random, and a value of 5 is picked such that it corresponds to values that agree 

with aggregate data. A glance at Appendix F reports the wide variability that is used for 

the shock parameters in different states of the economy.

Despite the fact that the estimation problem appears to be a relatively 

straightforward computational exercise, there are a variety of difficulties that appear in 

the implementation of a numerical procedure that converges to the desired optimal policy 

functions. These problems are discussed in Akdeniz and Dechert (1997). To produce an 

economy that mirrors real financial data in its many properties requires a considerable 

variation in the parameters used in the numerical model. The Markov model for the 

shocks produces the desired autocorrelation in squared returns that is very widespread in 

financial data. Very bad shocks at the extreme states drives fat-tailedness in the return 

data. The relatively larger negative extreme shocks forces negative skewness, in keeping 

with what is observed in the equity markets. Forcing the numerical model to converge to 

the desired policy functions while mimicking all the desired properties of empirical 

financial data is not easy in practice.
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CHAPTER IV  

RESULTS

Using Akdeniz (1998) and Akdeniz and Dechert’s (1997) numerical solution to 

Brock’s (1979, 1982) stochastic growth and asset pricing models, 1,000 simulations are 

done to obtain 1,500 daily returns (per simulation). Akdeniz’s computational dynamic 

general equilibrium model has enjoyed considerable success in simulating the real 

economy, most specifically in its ability to produce levels of output and consumption data 

that closely mirror real data, and in standing up to the predictions of the CAPM. This 

study has sought to fit the numerical model to reflect real financial data by a change in 

the parameters of the model, and by introduction of a Markov process driving the shocks 

to output levels and elasticities. Real financial data, for example returns of indices such as 

that of S&P500, exhibit volatility clustering, excess kurtosis, negative skewness, strong 

autocorrelation in the squared return time series, and first order autocorrelation in the 

returns time series. The numerical model in this study induces returns time series that 

have all these properties. Each simulation produces daily returns for three firms. For ease 

of exposition, only the first firm is considered. The following table presents a set of 

descriptive statistics for all 1,000 simulations:
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Тable 2: Average, Minimum, and Maximum Kurtosis and Skewness, 1,000 Simulations

average minimum maximum

kurtosis 3.944 3.021 4.848

skewness -0.7452 -1.043 -0.431

The average kurtosis and skewness are computed tlirough programming in 

EVIEWS'. Table 2 shows that the data in the simulation model is pronouncedly 

leptokurtic and that there is an asymmetric response of volatility to news- as seen by the 

significantly negative average skewness. Thus, an increase in volatility is likely to be 

greater following a large downward move in return, referred to as the leverage effect^.. 

These two findings -leptokurtosis and significantly negative skewness- closely mirror 

empirical financial data of many types, including equities^, and the simulated economy 

captures many of the empirical regularities of asset returns. A comparative base for 

kurtosis and skewness in the data in relation to daily return distributions in United States 

indices is provided"* in Table 3;

 ̂ see appendix
2 first noted by Black (1973), subsequent)} studied by Nelson (1990); Glosten, Jagannathan and Runkle (1993); fngle  
(1993) and others.
 ̂ see Bollerslev, Engle and Kroner, 1998.
 ̂T he distributional characteristics o f all indices (except S&F500) are reported from Salih and Kurtas (1998). i he 

kurtosis and skewnesses refer to the distribution of returns in pre and post-index futures introduction periods.
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Table 3: Distributional Characteristics of Simulated Data versus a Selection of Indices

INDEX SKEWNESS KURTOSIS

SIMULATION -0.7452 3.944

NYSE -0.380 3.919

RUSSEL 2000 -0.914 3.739

S&P5005 -0.691 3.873

Table 3 compares skewness and kurtosis across three U.S. indices and the 

simulated data that this study uses. U.S. indices are chosen for comparison because the 

numerical model is calibrated to U.S postwar utility curvature and discount parameters. It 

is immediately apparent that the simulated data has distributional characteristics that 

closely mimic real return data

As noted before, because volatility forecasting is an integral part of many 

applications in the finance and econometrics literature, and because ARCH type models 

for the conditional variance have received such wide attention, the out of sample forecast 

performance of many models have been tested. All existing studies use realized volatility 

to judge the performance of volatility forecasting models. The following two figures 

demonstrate how realized volatility can be an unfair benchmark for performance. For 

notational convenience, all the variance parameters are multiplied by 10,000 in the

5 The S&P500 composite index returns arc computed for the period 1̂ '̂ Januarj' 1985 to |st Januaiy 1987.
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remainder of this study.

Fif’ure I: Realized Variance versus True Variance, 7-day steps

Realized Variance versus True Variance, 7-day steps, simulation 100.

The darker series in Figure 1 is a time-series plot of realized variance, from only 

one sample time series chosen randomly from the simulation. The realized variance is 

computed as the variance per 7-day period in the simulation sample return time series. In 

1,500 days, there are 214 such 7-day periods, hence the abscissa in the graph runs until



the 214th 7-day period. The smoother series is the true variance time series \^hich is 

calculated from the true probability of multiples of the 7th daŷ ’. Thus realized variance 

in this sample computed over days 1,..., 7 would be expected to correspond closely to the 

true variance on day 7, and so on, for realized volatility to be a fair measure as a 

benchmark. A look at Figure 2 shows this is not the case. In fact, the sample realized 

variance seems to spend most of its time below the time series for true variance, and 

frequently peaks dramatically (to an order of 450% of the true variance on the same day). 

This shows that using realized variance as a benchmark can be quite misleading. This is 

especially true for out of sample performance studies, as the error in forecast using a 

realized sample variance as a benchmark could be potentially huge, whereas the error 

computed relative to the true variance might be much less, especially when the model is 

actually forecasting the true variance quite well. The following figure repeats the 

procedure described above for multiples of 22-days:

That is to say days 7, 14. 21, 28,..,, 1498,
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Figure 2: Realized Variance versus True Variance, 22-day steps

Realized Variance versus True Variance, 22-day steps

Figure 2 conveys a similar message, albeit in a less pronounced way. This is to be 

expected as the peakness of the realized variance is smoothed by incorporating more data. 

The total number of 22-day periods in this case is 68, and these multiples of 22-days are 

plotted in the abscissa. Realized variance is the variance in each 22-day period, and 

corresponds to the peaked series in the figure. The less peaked series is a plot of multiples
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of 22nd day true variances (days 22,44,66,...,1498). Although the relative difference of 

the two series is less pronounced than in Figure 1, the same pattern of high bias is 

observed in the (simulation) sample realization. These two figures jointly provide 

evidence that realized volatility is not a reliable benchmark to compare forecast variances 

from conditional variance models. It is evident that this has serious implications for 

performance studies, not least because it is precisely the case that realized variance is 

biased in favor of historical variance estimators, which have been proposed as alternatives 

to ARCH models. Using it as a benchmark is sure to favor historical estimates and 

penalize ARCH models.

This study uses the GARCH (1,1) model’. With each simulated return set, 

GARCH is estimated on the first 1300 days (the sub-sample) and out-of-sample forecasts 

are computed for the next 7 and 22 days, according to the procedure described in 

equations (3.5) to (3.7). It is known that GARCH forecasts perform best in the short-run, 

and that long run forecasts simply converge to the long-run variance (equation (3.8)). 

Therefore short-run forecast performance is concentrated upon.

GARCH estimation and forecasts are carried out in EVIEWS. The following 

discussion illustrates the procedure with an example. One simulation is chosen at 

random*, and the distributional characteristics, diagnostic tests, and forecasts are studied. 

General guidelines for dynamic misspecification, remaining ARCH effect tests, the

7 abbrcvialed to GARCH throughout the remainder of this paper, 
to be specific, simulation 260 is used. I he results are, on the whole, generalizable to other data sets.
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Ljung-Box (1977) diagnostic test, and a particular instance where the GARCH model 

rapidly adjusts to a series of bad shocks to produce very accurate forecasts (in contrast to 

Classical Historical Volatility which performs very poorly) are addressed here. Attention 

is then turned to overall performance in out-of-sample of GARCH and Classical 

Historical Volatility^. Mean Absolute (forecast) Error'*’ and Root Mean Square (forecast) 

Error" are computed, as described in Section III.l, and final results are given.

IV.l An Example^

The example considered is one of 1,000 simulations. The return series is named 

“ret260”, and the table below is the standard EVIEWS descriptive statistics window:

Table 4: Distributional Characteristics for ret260

Mean 0.002494

Median 0.003280

Maximum 0.016368

Minimum -0.016778

Std. Dev. 0.004689

Skewness -0.773897

Kurtosis 4.196743

9 abbreviated to CHV throughout the remainder o f this paper.
10 MAE.
' '  RMSE.
12 It is emphasized that the example rcllects all the other simulated series in that exactly the same estimation 
procedures are carried out on these.
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Descriptive statistics for series ret260 conform to the pattern found earlier in the 

average simulated data characteristics. There is excess kurtosis and leverage effect in the 

sample return series. Next the correlogram of the return process is looked at in Figure 3:

Figure 3: Correlogram of ret260for IS Lags
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0,15

Correlogram ret260,15 lags

o> 0.05 .
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Confidence interval 
= -0.05547

Autocorrelation

The return series has significant positive autocorrelation in the first lag. The 

Ljung-Box (1978) Q-statistic on the first fifteen lags follows a distribution with 

degrees of freedom equal to the number of lags. It is common practice in the literature to 

compute the LB test statistic at 15 degrees of freedom. This statistic has a critical value of
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24.99 at the 5% level. Figure 3 confirms that the original return260 series has high serial 

correlation in the levels, and is found to have Ljung-Box Q-statistic of 79.595 at 15 lags.

The squared return, taken as a proxy for the variance, is called var260. It exhibits 

a much greater degree of autocorrelation and a slow decay, confirming strong time 

dependence in volatility. The correlogram of var260 up to 15 lags is given in Figure 4.

Figure 4: Correlogram of var260for 15 Lags:

t  0.15

I .0.05

Correlogram var260,15 lags

Lags
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Figure 4 reports very strong autocorrelation for the squared return series, decaying 

gradually over 3 lags. The LB test statistic at 15 lags has a value of 241.77, and a 

probability of 0.0000 at all lags. The descriptive statistics and correlograin of ret260 and 

var260 are very good examples of what numerous financial data have been found to 

exhibit, in particular to those which ARCH type tests are applied. Thus the raw data 

provide extremely convincing evidence of conditional heteroskedasticity.

Tables 5 to 8 detail the output of GARCH (1,1) applied to the ret260 series on the 

first 1300 days. Due to the significant first lag autocorrelation of the return, the 

conditional mean is regressed on a constant and its own first lag. A correct conditional 

mean specification is vital to the success of GARCH, and the following conditional mean 

specification is adopted in GARCH estimation in EVIEWS on all the simulated return

series:

r, =7t,r,_,+7t^+s, (4.1)

where r, is the return in period t, tv, are coefficients to be estimated is a constant), 

and s, is the residual.

Table 5 summarizes some preliminary estimation details, such as the sample size 

(in this case days 1 to 1300), the number of iterations used to maximize the likelihood, 

and the options used in estimation (the BHHH algorithm and Heteroskedasticity 

Consistent Covariance Estimator to reflect the fact that robust standard errors are used).
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Tables: GARCH (1,1) Equation Labe! in EVIEWS

ARCH // Dependent Variable is RET260 

Sample(adjusted): 2 1300

Included observations: 1299 after adjusting endpoints 

Failure to improve Likelihood after 19 iterations 

Bollerslev-Woodrige robust standard errors & covariance

Table 6 reports the estimates for the conditional mean in the GARCH estimation. 

RET260(-1) refers to the first lag on which the return time series is regressed. The use of 

the lagged dependent variable explains why the sample size is adju.sted to 1299.

Table 6: GARCH Output for the Conditional Mean

Conditional Mean Equation

Variable Coefficient Std. Error t-Statistic Prob.

RET260(-1) 0.135892 0.026949 5.042643 0.0000

C 0.002253 0.000115 19.63080 0.0000

It can be seen that both the lagged dependent variable (RET260(-1)) and the constant in 

regression are highly significant. The autocorrelation in the first lag of the return process
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is in agreement with empirical data'^

Table 7 gives output summaries for the conditional variance equation. Here C 

refers to the a> term, ARCH(l) to the a  term,'and GARCH(l) to the/? term in equation 

(3.3).

Table 7: GARCH Output for the Conditional Variance

Variance Equation

Variable Coefficient Std. Error t-Statistic Prob.

C 9.27E-06 1.08E-06 8.591400 0.0000

ARCH(l) 0.450936 0.053984 8.353159 0.0000

GARCH(l) 0.119120 0.053104 2.243129 0.0251

This table shows that there is long-run mean reversion in the conditional variance

(significant C term), and that the data exhibits significant ARCH and GARCH effects, the 

former being highly significant (at order 0.0000), and the latter significant at 5 percent. 

The maximized log-likelihood, which is not reported in the tables, is 5227.32 for this 

equation.

There are various ways for testing for the adequacy of the GARCH (1,1) model.

•3 Sheecly ( 1997) studies the relationship between volatility clustering and return correlation. Also .sec Bertero and 
Mayer( 1989), Boucrelle and Le Fur (1996).
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The simplest way is to re-estimate with a more complex specification, and to see whether 

the new parameters are significantly different from zero. For this example, adding lags to 

both the return process and adding extra ARCH and GARCH terms are found to provide 

no real improvement, and additional parameter coefficients are not found to be 

significant. The EVIEWS diagnostic menu has a set of tests which can be applied to 

investigate the adequacy of a particular ARCH equation. GARCH (1,1) is examined in 

terms of these diagnostic tests, which are formulated in terms of standardized residuals 

and squared standardized residuals.

Standardized residuals are the conventional residuals divided by their one step 

ahead standard deviation. If the model is correctly specified, the standardized residuals 

would be expected to be distributed as a mean zero and variance one series, although they 

need not be necessarily normal. After GARCH estimation, the standardized residuals for 

ret260 are found to have variance 0.999960 and mean -0.029332, suggesting good fit.

Another diagnostic test is the correlogram of the standardized residuals. This is 

presented in Figure 5:
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Figure 5: Correlogram of Standardized Residuals for IS Lags

Correlogram of Standardized Residuals, 15 Lags

Figure 5 demonstrates that the conditional mean equation is correctly specified. 

The LB test statistic at 15 lags is 22.821, which is not significant at the 5% critical value 

of 24.99. After GARCH estimation, the null hypothesis of no autocorrelation in the 

standardized residuals cannot be rejected. Compared to the raw ret260 series, which had a 

Q-Statistic of 79.819 at 15 lags, a dramatic improvement is obtained by modeling the 

conditional mean in the form of equation (4.1). To test for the presence of additional 

ARCH effects, the squared standardized residuals and their serial correlations are looked 

at. The ARCH-LM test is a formal test for heteroskedasticity, and consists in regressing 

squared residuals on their ov.n lagged values. Thus, failure of the ARCH-LM test to
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detect additional heteroskedasticity would clear the way for concluding that the GARCH 

(1,1) is the correctly specified model, and that it captures all the relevant ARCH effects in 

the data. Figure 6 reports the correlogram of the squared standardized residuals after 

GARCH is done.

Figure 6: Correlogram of Squared Standardized Residuals for 15 Lags;

Correlogram of Squared Standardized Residuals, 15 Lags
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Figure 6 presents some dramatic results. The squared standardized residuals have 

a p-value of 0.793 at 15 lags, and the LB statistic is 10.417. Comparison with the series 

var260 reveals that the LB statistic has fallen from a highly significant 248.30 to 10.417, 

indicating that the conditional variance process is being modeled correctly with GARCH
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(1,1). This result is confirmed with the ARCH-LM test at 15 lags. This test uses the 

following regression to test for the significance of past squared residuals;

iv; =/3^+ + /3,uly +... + (4.2)

The ARCH-LM tests for additional ARCH effects. The output is an F-statistic and a TR^ 

statistic, distributed as , which is the outcome of a Lagrange Multiplier (LM) test with 

degrees of freedom equal to the number of lagged, squared residuals. The outcome of the 

ARCH-LM test is presented in the next page in Table 8:
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ТаЫе 8: ARCH-LM Test After GARCH Estimation is done, 15 Lags.

ARCH LM Test:

F-statistic 0.681958 Probability

Obs*R-squared 10.27555 Probability

Sample(adjusted): 17 1300

Included observations: 1284 after adjusting endpoints

White Heteroskedasticity-Consistent Standard Errors & Covariance

0.804348

0.802058

Variable

C

STD_RESID^2(-1)

STD_RESID^2(-2)

STD_RESID''2(-3)

STD_RESID''2(-4)

STD_RESID''2(-5)

STD_RESID^2(-6)

STD_RESID^2(-7)

STD_RESID^2(-8)

STD_RESlD^2(-9)

STD_RESID''2(-I0)

STD_RESID''2(-11)

STD_RESID''2(-12)

STD_RES1D^2(-13)

STD_RESID^2(-14)

STD_RESID^2(-15)

Coefficient

1.020075

- 0.003590

0.040156

- 0.010904

0.005521

- 0.018278

- 0 . 019869.

0.011925

- 0.039774

0.005970

0.031438

- 0.037047

0.010593

0.016913

0.013981

- 0.028586

Std. Error

0.116663

0.030159

0.039897

0.026851

0.025711

0.026386

0.027163

0.026210

0.024798

0.026845

0.032147

0.026433

0.033188

0.028543

0.026639

0.026098

t-Statistic

8.743781

- 0.119037

1.006489

- 0.406086

0.214733

- 0.692700

- 0.731496

0.454963

- 1.603927

0.222385

0.977939

- 1.401501

0.319180

0.592536

0.524848

- 1.095322

Prob.

0.0000

0.9053

0.3144

0.6847

0.8300

0.4886

0.4646

0.6492

0.1090

0.8240

0.3283

0.1613

0.7496

0.5536

0.5998

0.2736
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The ARCH-LM test confimis there are no remaining ARCH effects after 

GARCH(1,1) is done. Testing at 15 lags for the squared standardized residuals, the F- 

statistic probability is 0.804380 while the x~ statistic probability is 0.802058. This 

agrees well with the results depicted in Figure 7, where the Q-statistic at 15 lags had a 

probability of 0.793. Hence, the set of results reported in Tables 3 to 8 and Figures 3 to 6 

provide convincing statistical evidence that the GARCH (1,1) model is adequate for the 

series in this example.

Before presenting overall results of GARCH performance out-of-sample, it is 

sensible to do a preliminary assessment of the performance of GARCH in the return 

series discussed in the example. To illustrate, the following is carried out: GARCH 

forecasts of variance in the forecast horizon (days [1301...1307]) is compared to true 

variance on day 1307. For reference, realized variance over the same period is also given, 

which is a sample variance in the out-of-sample realization.

Table 9 reports forecasts of average volatility for days [1301,.. 1307] for CHV and 

GARCH, and compares the forecasts to true volatility on day 1307. Figure 7 shows the 

GARCH 7-day ahead variance forecasts for days 1301,...,1307.
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Table 9: Forecasts Out-of-Sample Using GARCH and CHV.

TRUE VARIANCE" 0.2180

FORECAST AVE. VARIANCE

REALIZED VARIANCE 0.1730

GARCH 0.2070

CHV 0.0741

This example highlights how badly amiss the CHV model forecasts go, compared to 

GARCH forecasts. Recent extreme news in the raw return series adversely affects the 

performance of CHV, while GARCH forecasts quickly adjust and come quite close to the 

true 1307th day variance.

I't True variance on day 1307.
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Figure 7: Out-of-Sample GARCH Forecasts compared to True and Realized Variance

7Kiay Horizon Tme Variance vs. Q^RCH FoTBcasts
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Table 9 and Figure 7 provide two key insights: that it would be concluded that 

GARCH performs less well if realized variance instead of true variance is used as the 

benchmark, and that CHV performs badly regardless of which benchmark is used, but 

less badly compared to realized variance. This is due to the fact that realized variance is 

biased towards the CHV model. Although this is merely an example, it provides the 

motivation to look at how GARCH perfonns in the aggregate across all the simulations. It
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also highlights an essential problematic across all studies on GARCH forecast 

performance, the absence of a true variance measure as benchmark. Basing GARCH 

forecast perfonnance in the example on realized variance would lead to the false 

conclusion that GARCH performs less well than it actually does.

IV.2 Overall Forecast Performance Across All Simulations

The extended example was offered as an illustration of what is done per each 

simulation. To obtain overall performance, two things are done. First, GARCH and CHV 

forecasts are calculated for each simulated return series, the average over 7-day and 22- 

day forecast horizons are computed, and compared to the true variance on the 1307th or 

1322nd day respectively. The criteria used to evaluate performance are the RMSE and 

MAE.. Next, the realized variance is calculated for each simulation over the forecast 

horizons'^. This is the benclunark that has been used in the literature to test performance 

of GARCH. It is in this respect that the results are startling and compelling. Tables 10(a) 

and 10(b) report the results. Using realized variance as benchmark, GARCH 

performance is only marginally better (and only in the MAE sense) than a naive estimator 

such as CHV for the 7-period ahead forecast, and is much worst than CHV at the 22-day 

forecast horizon. The picture changes drastically when true variance as benchmark is 

used. Here GARCH has a much lower RMSE and MAE at both horizons than it had when

15 I hat is. the variance оГгстгп for day, 1301...., 1307 and days 1301......1322 arc computed for each of the 1,000
siinulalions. Programming for ihis is dttne in IZVIEWS.
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realized variance was used as benchmark. It also outperforms CHV by a large margin. 

This demonstrates that the GARCH model has considerably lower forecast error (both in 

RMSE and MAE sense) than previously found in the empirical literature when the true- 

distribution variance measure that accounts for all the different possible states of the 

economy in the forecast horizon is used as benchmark. This “true” variance is the second 

moment of the true return distribution that is obtained from 1,000 simulations for each 

day of the computable dynamic general equilibrium model. The realized variance per 

each simulation forecast horizon is only one possible realization of the second moment of 

the true return distribution in that horizon, and hence is just an estimate of the true 

variance. Here one can do better and use the true parameter and not just the best possible 

estimate based on available information in a particular time series realization. This 

enables one to use foil information about the economy, and is the benchmark that should 

be used if one had the luxury to be able to discover it. The computable general dynamic 

equilibrium framework affords that luxury. The striking implications for GARCH 

performance are reported in Table 10.
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Table 10a: Forecast Evaluation of GARCH in 1,000 Simulations16

CRITERION RMSE 7-DAY MAE 7-DAY RMSE 22-DAY MAE 22-DAY

GARCH-TRUE 0.0622 0.0327 0.0512 0.0303

GARCH-REALIZED 0.1890 0.0948 0.1280 0.1250

CHV-TRUE 0.2490 0.1580 0.1190 0.0896

CHV~REALIZED 0.1880 0.1250 0.0122 0.0108

Table 11b: Ratios

MODEL RMSE MAE

RATIO CHV7D-TRUE / GARCH7D-TRUE 4.003 4.832

RATIO CHV22D-TRUE / GARCH22D-TRUE 2.324 2.759

In addition to documenting the unmistakable improvement in GARCH forecast 

performance using true variance as benchmark, Table 10 also confirms that, as the 

forecast horizon lengthens, the ratio of CHV forecast error decreases relative to GARCH 

forecast error. This is to be expected as realized variance is closer to true variance as 

more observations are included.

G7D, for example, refers to GARCU 7-day forecast and 1122D pertains to classical historical variance forecast lor 
22-davs.
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Figure 8: GARCH Histogram of 7-day Ahead Forecasts Across Aii Simulations'^:

Histogram of GARCH Forecasts, 7-Days

..^

This figure reports the overall GARCH forecasts across all 1,000 simulated data sets. 

Note that GARCH forecasts are distributed predominantly about the true variance 

(0.218). This demonstrates how good a job GARCH is doing in out-of-sample tests in the 

whole. Now comparing this with CHV forecasts, the results are all the more striking:

1  ̂Note that the true variance on day I V)1 is 0.0000218, As all variances are multiplied by a factor 10,000 the true 
variance in the histograms corresponds to 0.21S. Similarly, lor 22-day ahead forecasts, the true variance is 0.225 on 
day 1322.
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Figure 9: CHV Histogram of 7-day Ahead Forecasts Across All Simulations:

Histogram of CHV Forecasts, 7-Days
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Figure 9 demonstrates that, at the 7-day ahead forecast horizon, CHV forecasts are going 

badly off Observe also the low frequency with which CHV forecasts come within 

proximity of the true 1307th day variance. The dominating majority of CHV forecasts 

appear to be concentrated in very high or very low variance levels. In fact, one observes 

the exact opposite for CHV performance m comparison to GARCH performance . Thus 

the CHV model’s forecasts leave a lot to be desired. Figure 11 reports the histogram of 

GARCH forecasts at the 22-day horizon;

See Figure 9.
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Figure 10: GARCH Histogram of 22-day Ahead Forecasts Across AH Simulations:

Histogram of GARCH Forecasts, 22-Days
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Here again, the GARCH (1,1) model forecasts very accurately in the aggregate. Note that 

the great majority of forecasts exhibit a high degree of proximity to the true 1322nd day 

variance (0.225). This finding too is contrasted with CHV performance at the same 

horizon in Figure 11:
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Figure 11: CHV Histogram of 22-day Ahead Forecasts Across Ail Simulations:

Histogram of CHV Forecasts, 22-Days
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As more information is incorporated in the Classical Historical Volatility estimate, less 

variation is observed in the aggregate forecasts. However, using more past information 

simply makes the CHV model approximate the long run variance parameter more closely. 

This is not necessarily more efficient for pointwise variance estimates'^ as more recent 

information might be more revealing for forecasts into the immediate future. At the 22- 

day horizon, the histogram again gives little room to uncertainty about the poorness of 

CHV forecasts.

l\)iniwise in ihc scn.se that a "point”, i.c. a day (such as day 1307, or 1322) is forecasted.
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CHAPTER V 

CONCLUSIONS

This study has applied a computable dynamic general equilibrium framework to 

study the performance of variance forecasting models. All previous studies have used a 

sample realization in the forecast horizon to test the out-of-sample performance of such 

models. This study has differed markedly from the literature in proposing to find and 

implement the real variance as the benchmark for out-of-sample forecast performance 

tests. The true variance for each time is obtained from the true distribution of 1,000 

simulations of the computable dynamic general equilibrium model. This true distribution 

reflects all the possible states of the economy. The real variance thus reflects the true 

variability of returns in the economy in the forecast horizon. For a conditional variance 

model to perform well, it must be able to forecast the true variance of returns in the 

economy, and not just one of many possible sample realizations of the return variance, as 

all studies have done so far. It has moreover been shown that the computational dynamic 

general equilibrium framework is quite successful in mirroring reality in the equity 

financial markets.
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It is found that the realized volatility, as used in the literature, is biased against the 

GARCH (1,1) conditional variance model, and using realized variance results in a 

relatively poor perfonnance at 7-day and 22-day horizons. The GARCH model perfomis 

dramatically better when the true variance is used, and improvements in forecasts from 

232% to 483% percent are recorded in 7-day and 22-day horizons, using the MAE and 

RMSE criteria'. The historical variance models are found to record very poor 

performance compared to true variance in both horizons. The computable general 

equilibrium framework hence provides a setting for a formal test of alternative variance 

forecasting models. The results have also shown that realized variance is a very 

precarious benchmark when evaluating the performance of different conditional variance 

forecast models. This is offered as an explanation of why many studies of GARCH type 

models have typically documented such a large disparity in forecast performance of such 

models. It is believed that the use of out-of-sample realized variance exemplifies a 

misconception at the center of the existing literature on GARCH performance.

There are a wide range of future developments which are possible in this field. No 

attention has been focused on using a simulated dynamic equilibrium setting to formally 

test the many variance forecasting models in the literature. One possibility is to extend 

the approach in this study to test the forecast performance of different GARCH type 

models, such as the EGARCH (Nelson, 1990) or the TARCH (Zakoian, 1993). A re- 

parametrization of Akdeniz (19960 and Akdeniz and Dechert’s (1995) model could also

see Table 10.
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be carried out to induce further characteristics in the data that make it suitable to an 

alternative type of the GARCH family of models. The results of this paper would also 

suggest that such models would perform better than they have been claimed to do in the 

existing literature.

An alternative suggestion would be to compare out-of-sample performance of a 

battery of GARCH tests (including GARCH (1,1) and EGARCH) to Classical Historical 

Volatility and to Non-Parametric and Stochastic Volatility models. It is predicted that a 

semi-parametric GARCH model (where the return process is modeled non- 

parametrically, and the variance process is modeled as GARCH) would perform best in 

such a formal test in the dynamic general equilibrium setting. A formal dynamic general 

equilibrium test of the EGARCH specification forms the subject of current investigation, 

and it is thought that many developments are possible in the light of these findings.

It is believed that in a world where so much rides on making the right forecast of 

volatility, a formal setting to verify the relative perfomiance of different models, such as 

the one used in this study, is an important contribution to the forecast debate. Finding the 

models that perform best in a setting the mirrors the real economy the most closely 

possible is likely to have big implications for practitioners and scholars alike.
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APPENDIX A: GARCH ESTIMATION IN EVIEWS

//This program dynamically imports files into the EVIEWS M’orkfle, does GARCH(1,1) 
estimation, and forecasts 7 days into the future uing the past return history from day 1 to 
1300. The results are stored in the vector M.//

vector(lOOO) M

//the following allocates string variables to handle the dynamic data import problem//

%l=".dat"
for !i=l to 1000
%2="!i"
%3=%2+%l
read(o) c:\afiles\%3 ret%2

//the following looks at the sample o f days 1 to 1300 o f each original return file, and 
calculates and stores GARCH(1,1) coefficients in the active workfile in EVIEWS. GARCH 
is done using the BHHH algorithm, and the heteroskedasticity consistent covariance 
estimator is chosen//

smpl 1 1300
equation eq%2.arch(l,13jH) ret%2 ret%2(-l) c

//now the out of sample range of days 1301 to 1307 are chosen to compute forecasts 
from the estimated GARCH coeffients found previously//

smpl 1301 1307 
forecast eq%2for 
forecast retf sef varf%2 
smpl 1301 1307

//the following computes average forecasted variance in the forecast sample o f days 1301 
to 1307//

genr avarf%2=@mean(varf%2)
smpl 1301 1301 
avarf%2

//the following stores average forecasted variance in the sample for each o f the 1000 
files in the (1... 1000) vector .M, and quits the program//
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M(!i)=avarf%2(1301)
write(e) c:\forecas\varf%2.xls varf%2
smpl 1301 1307
write(e) c:\forecas\M.xls avarf%2

next
save
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APPENDIX B: KURTOSIS PROGRAM IN EVIEWS

The following EVIEWS program computes kurtosis for each simulation return file and 
stores them in the vector K.

vector(lOOO) K

%l=".dat"

for !i=l to 1000

%2="!i"
%3=%2+%l

smpi 1 1500

read(o) c:\afiles\%3 ret%2

genr quartic%2=(ret%2-@mean(ret%2))M

K(! i)=( 1 /15 01 )* (1 /(@var(ret%2))^2)* @sum(quartic%2)

next

save
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APPENDIX C: REALIZED VARIANCE PROGRAM

The following EVIEWS program computes the realized variance for each simulation 
return file for the days 1301,..., 1322 and stores them in the vector R. The case for 
realized variance in the horizon 1301.... 1307 is done in the same way.

vector(lOOO) R

%l=".dat"

for !i=l to 1000

%2="!i"
%3=%2+%l

smpi 1 1500
read(o) c:\afiles\%3 ret%2 

smpl 1301 1322

genr real%2=@var(ret%2) 
smpl 1301 1301 
real%2
R(!i)=real%2(1301)
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The foUowing EVIEWS program calculates the skewness for each simulated return file 
and stores tehm in the vector S.

veclor(1000)S

%l=".dat"

for !i=l to 1000

%2="!i"
%3=%2+%l

smpl 1 1500
read(o) c:\afiles\%3 ret%2

genr cubed%2=(ret%2-@mean(ret%2))^3

S( !i)=( 1/1500.5)*(1 /(@var(ret%2))^ 1.5)* @sum(cubed%2)

next

APPENDIX D: SKEWNESS PROGRAM IN EVIEWS
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APPENDIX E: TRUE DISTRIBUTION PROGRAM IN DELPHI

//The following program computes the true dislribulkm for days [1,..., 1500] using all the 
simulated return data files. The true variance is then computed from the true distirbution 
for each day//

unit Unitl;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs, 
StdCtrls;

type
TForml = class(TForm)
Button 1: TButton;
Label 1: TLabel;
procedure ButtonlClick(Sender: TObject); 

private
{ Private declarations} 

public
{ Public declarations } 

end;

var
Forml: TForml;

implementation

{$R *.DFM} 
var
tab:array [1.. 1500,1..1000] of double; 
sum,mean :array [1..1500] of double;

procedure variance; 
var i,j integer; 
temp :double; 
begin

for i:=l to 1500 do 
begin
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sum[i]:=0;
mean[i]:=0;

end;

for i:==l to 1500 do 
begin
for j:=l to 1000 do
sum[i]:=sum[i]+tab[i][j]; 

niean[i] :=sum[i]/1000; 
end;

for i;=l to 1500 do 
begin
for j:=l to 1000 do 
begin
temp : =tab [i ] [j J -mean [i] ; 
tab[i]0]:-temp*temp; 

end; 
end;

for i:=l to 1500 do 
begin 
sum[i]:=0; 
mean[i]:=0; 
end;

for i:=l to 1500 do 
begin
for j:=l to 1000 do 
sum[i]:=sum[i]+tab[i]0]; 

mean[i];=sum[i]/999; 
end;

end;
procedureTForml.ButtonlClick(Sender: TObject);
var i,j integer;
st,st2,filename:string;
f,output:textFILE;
gl,g2:double;
begin

for i~ l to 1000 do 
begin

st~inttostr(i); 
if length(st)=l then 
st:='00’+st
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else if length(st)=2 then 
st:=’0'+st;

assignfile(f,'a:V+st+'.dat'); 
label l.caption:=st; 
label 1 .refresh;

reset(f);
for j:=l to 1500 do 
begin
readln(f,gl,g2);
tabO][i]:=gl;

end;
end;
variance;
assignfile(output,'var.daf); 
rewrite(output); 
for i:=l to 1500 do 
writeln(output,mean[i]); 
closefile(output); 
closefile(f);

end;

end.
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APPENDIX F: PRODUCTION FUNCTION PARAMETERS

Firm 1

STATE a 0 5

1 0.07 0.06 0.11402441

2 0.28 0.08 0.11402441

3 0.36 0.09 0.11402441

4 0.44 O.IO 0.11402441

5 0.52 0.11 0.11402441

6 0.60 0.12 0.11402441

7 0.68 0.13 0.11402441

8 0.89 0.145 0.11402441

Firm 2

STATE a 0 5

1 0.76 0.34 0.21246614

2 0.68 0.32 0.21246614

3 0.60 0.30 0.21246614

4 0.52 0.28 0.21246614

5 0.44 0.26 0.21246614

6 0.36 0.24 0.21246614

7 0.28 0.22 0.21246614

8 0.20 0.20 0.21246614

Firm 3

STATE a 0 5

1 0.20 0.10 0.15246614

2 0.28 0.11 0.15246614

3 0.36 0.12 0.15246614

4 0.44 0.13 0.15246614

5 0.52 0.14 0.15246614

6 0.60 0.15 0.15246614

7 0.68 0.16 0.15246614

8 0.76 0.17 0.15246614
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