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Abstract-A respiratory motion artifact reduction method in mag- 
netic resonance imaging is presented. The method is an image recon- 
struction algorithm based on the assumption that the respiratory 
motion of the chest is linear in space and arbitrary in time. The linear 
respiratory motion causes phase distortion on the MR data. In addi- 
tion, as a result of this motion, the MR data will be the samples of the 
Fourier transform of the spin density on a nonrectangular grid. In im- 
age reconstruction, before taking the inverse Fourier transform, the 
phase distortion is compensated and the rectangular samples are in- 
terpolated from the existing nonrectangular samples. Using this 
method, a significant amount of motion artifact suppression is achieved 
with a rough knowledge on the motion. In addition, it is demonstrated 
that the respiratory motion model parameters can he estimated using 
the information hidden in the motion artifacts. 

INTRODUCTION 

ESPIRATORY motion not only blurs the MR images but R also causes a ghost-like image artifact [ I ] .  There are many 
proposed ways of eliminating this distortion [ 2 ] .  The most com- 
monly used method is the respiratory gating [3]. In this method, 
data are collected during the minimum motion period. The ar- 
tifact suppression is satisfactory, but the data acquisition time 
increases. The method known as the motion artifact suppression 
technique (MAST) reduces the distortion by nulling the gra- 
dient moment [4]. In this method, artifact due to the velocity 
term of the motion between the 90" RF pulse and the data-col- 
lection period (in view motion) is compensated, but the distor- 
tion due to motion between the RF pulses (view to view motion) 
is ignored. Another method to reduce the respiratory artifact is 
the respiratory-ordered phase encoding (ROPE) [ 5 ]  where a 
respiratory signal is used to determine the order of phase en- 
coding. This method reduces the ghost artifact, but the image 
blurring is still a problem. Pseudo-gating is one of the newer 
respiratory artifact suppression techniques [ 6 ] .  Although this 
technique is good in reducing the ghost artifact, it also suffers 
from blurring. 

In all of these previous studies, researchers have tried to de- 
sign a new imaging pulse sequence so that the acquired MR data 
is the two-dimensional inverse Fourier transform of the final 
image. The new method we are proposing in this paper is an 
image reconstruction method and it can be used in conjunction 
with any one of the above techniques. 

The motion which is linear with respect to space variables is 
called the linear expansion motion [7]. In this type of motion, 
there is no motion at the center (origin) and the amplitude of 
the motion is proportional to the distance from the center. On 
the other hand, in the block motion, the object moves as a 
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whole. The respiratory motion of the chest can be assumed as 
a combination of both block and linear expansion motions. 
Throughout the text, this simplified version of respiratory mo- 
tion of the chest is called linear respiratory motion. Actually, 
the respiratory motion is more complicated but the linear ex- 
pansion and the block motions are the main components of it. 
For the linear respiratory motion model of the chest, the ac- 
quired data corresponds to phase-distorted nonrectangular sam- 
ples of the Fourier transform domain signal of the chest image. 
In the proposed image reconstruction method, the phase distor- 
tion of the data is compensated and rectangular samples of the 
Fourier transform domain signal of the chest image are obtained 
by interpolating the existing nonrectangular samples. Taking the 
inverse Fourier transform of the new data set, a ghost-free chest 
image is obtained. In a previous study [8], the respiratory mo- 
tion of the chest is modeled by only the linear expansion mo- 
tion. Because of this reason, block motion artifacts are observed 
in their reconstructed image. 

In addition, an iterative version of the proposed image recon- 
struction method is developed. It is known that the motion ar- 
tifact on the image contains information on the respiratory 
motion and, using the proposed iterative image reconstruction 
method, the motion parameters can be estimated. 

In the next section, the motion model of the chest is explained 
and the MR signal is formulated under the block and linear res- 
piratory motion. The third section is devoted to the recon- 
struction method. Simulation results and sensitivity of the re- 
construction method to the model parameters are explained in 
the fourth section. The iterative motion artifact suppression 
method is explained in Section V. 

Throughout the text, boldface capital letters like A represent 
2 X 2 matrices, boldface small letters like k stand for vectors 
with two entries. The first and second entries of a vector are 
represented by x and y subscripts, respectively. The diagonal 
entries of the diagonal matrices are defined in the same way. 
As an example, a, and a, are the diagonal elements of the matrix 
A ,  and k ,  and k ,  are the first and second elements of the vector 
k .  The functions which are written likef( t )  are continuous. On 
the other hand, the functions like f[ n 1 are discrete. 

11. FORMULATION OF THE PROBLEM 

The basic form of MR imaging equation is 

where s, ( t )  represents the acquired MR signal in the nth im- 
aging pulse sequence. m ( x )  is the magnitude of the transverse 
magnetization at position x at time 1. It is usual to assume that 
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this magnitude does not change during data acquisition, so it 
appears as if it is time independent. In the above equation, y is 
the gyromagnetic ratio and g, is the gradient vector of the nth 
pulse sequence. Only a 90" RF pulse is considered, and the 
timing is relative to this pulse, i.e., t = 0 when the 90" RF 
pulse applied. Here, all the RF pulses are assumed to be slice- 
selective. 

If a 180" RF pulse were applied at time T,/2, then the im- 
aging equation would be 

If there are r 180" RF pulses, then there will be r + 1 expo- 
nential functions in the integral. The integrals in these expo- 
nents will have alternating signs, so that the sign of the last 
integral will be positive. This long argument can be collected 
in a short imaging equation as: 

where q ( t ' ,  t )  is 1 if the number of 180" RF pulses between 
time t' and t is even, else it is - 1. 

On the other hand, the two-dimensional continuous Fourier 
transform of m ( x )  is given by 

M ( w )  = 1 1 m ( x )  exp ( -jto'x) d x .  

Let M[k] be the rectangular samples of M( to), i.e., 

M [ k ]  = M ( V k )  

M [ k ]  = 1 m ( x )  exp ( -jk'V'x) d x  

where V is a diagonal sampling matrix. According to the mul- 
tidimensional digital signal processing theory, it is possible to 
reconstruct an image of the object using these samples since the 
object is space limited. 

For a standard imaging pulse sequence, one can find proper 
functions for the gradients and sampling instances tkc,  such 
that 

-Vk = y 1: gk, ( t ' )  q ( t ' ,  t k v )  dt'.  (7 )  

See Appendix A for an example. For these gradients, the fol- 
lowing identity is obtained [see (3) and (7)]: 

S k , ( t k , )  = W k l .  ( 8 )  
Therefore, the imaging equation can be rewritten as: 

( 9 )  
The image reconstruction method is very simple. Just take the 
inverse two-dimensional discrete Fourier transform of the ac- 
quired data M[k], i.e., 

m [ n ]  = T - ' { M [ ~ ] } .  (10)  

If the object which we are trying to monitor moves during the 
data acquisition period, the related imaging equation will differ 

from the imaging equation (9) of the static object. Although this 
is the case, if one does not care about this motion, and takes 
the samples in the same manner as before and obtains an image 
by taking the inverse discrete Fourier tranform, then there will 
be motion artifacts on the image [ 1 1 .  These artifacts are ghost- 
like replicas of the moving structure. In addition, there will be 
blurring. 

In general, there can be motion in all directions but we as- 
sume the motion is restricted to be in the selected plane, so that 
the excited spins are allowed to move within the selected plane, 
but they can never leave that plane. This assumption is accept- 
able for the respiratory motion in a transaxial plane of the chest. 

Let the time-varying magnitude of the transverse component 
of the magnetization at position x at time t be m ( x ,  t ) .  (See 
Fig. 1 for an example time-variant proton density distribution.) 
Since the proton density is proportional to the f i ( x ,  t ) ,  in lit- 
erature sometimes m(x, t )  is called the proton density. From 
now on, m ( x ,  t )  will be called proton density or magnitude of 
the transverse component of the magnetization, interchangea- 
bly. 

Assume that our aim is to monitor the proton density at an 
arbitrary time, say t = 0. We labeled this specific proton den- 
sity distribution by m ( x ) ,  i.e., 

m ( x )  = m ( x ,  0). (11) 

Consider an infinitesimal area element at the position xo at 
time to. If there is respiratory motion, then the protons in that 
element may move to another position. Let the function r be the 
position of that area element at time t .  

r = r ( t ;  xo, t o )  (12) 

Actually, the function r is a function for time-varying coordi- 
nate transformation. A rectangular grid shown in Fig. 1 is trans- 
formed to a curve-linear coordinate system at time t .  Two 
properties of this function will be used in the following para- 
graphs. The first one is the identity property of the function: 

r ( t ;  xo, t )  = xo. 

r ( t ;  r ( t 2 ;  xo. t l ) ,  f*) = r ( t ;  xo, 2 1 ) .  

(13) 

And the second one is the transitivity property: 

(14) 

In this paragraph, the relation between m (x, t )  and m ( x )  will 
be explained. Let the area of an infinitesimal rectangular region 
in the selected plane at the position x be d x  [see the shaded 
region in Fig. l(a)]. The number of protons inside this region 
at time t = 0 is: 

m ( x )  d x .  (15)  

As the time goes, these protons may move. The region which 
contains these protons may not be rectangular. At time t ,  the 
position and the area of the differential region will be r ( 1 ;  x, 
0)  and ar ( t ;  x, O)/ax d x ,  respectively [see the shaded region 
in Fig. l(b)]. Here a r ( t ;  x, O)/ax is the Jacobian of r with 
respect to x. (See [9] for further information on the Jacobian 
operator.) Therefore, the total number of protons inside the re- 
gion can be found as 

(16) 
a r ( t ;  X, 0) 

d x .  
m ( r ( t ;  x, O),  t )  ax 

Since the number of protons is preserved, (15) and (16) must 
be equal. This equality gives the desired relation between m (x, 
t ) ,  and m ( x ) :  

(17) 
ar ( t ;  x, 0) 

ax . m ( x )  = m ( r ( t ;  x, o), t )  
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(b) 
Fig. 1. A time-varying proton density distribution. (a) The proton density 
distribution at time r = 0, m ( x ) ,  or A ( x ,  0) .  (b) The proton density dis- 
tribution at time r ,  m ( x ,  r ) .  The shaded region shown in (a) lies at position 
x.  The protons in this region move to another position r ( r ,  x, 0 )  at time f. 
The new region covering these protons is the shaded region shown in  (b). 

As the protons are moving, the gradient magnetic field ap- 
plied to a proton is time dependent. Consider a proton at posi- 
tion x at time r .  The gradient magnetic field that effects this 
proton at a previous time t' is 

g, ( t ' )  r ( f ;  x, t ) .  (18)  
For that reason, the phase of a proton at time t is 

where T, is the time between nth 90" RF pulse and 0th 90" RF 
pulse. T,, is added to the time variables of r because the motion 
must be defined with respect to a global reference. Here, this 
global reference is selected as the time when 0th 90" RF pulse 
is applied. But, in the imaging equations, the time variables are 
defined with respect to the current (n th)  90" RF pulse. The 
difference between these two references is T,,. The term ~ ( t ' ,  

t )  in the integral stands for the phase reversal 180" RF pulses 
[see (3)]. So the imaging equation can be written as 

. r ( / '  + T,,; x',  t + I-,z) v ( r ' ,  t )  dt' dx ' .  (20)  ) 
The imaging equation can be transformed to the moving coor- 
dinates by replacing the variable x' with r ( r ;  x, 0 ) .  

where &/ax is the Jacobian of the transformation. Using (17) 
and (14), the above equation can be simplified into the form 

. r ( t '  + T,); x, 0 )  T J ( ~ ' ,  t )  dt' d x .  ( 2 2 )  

The above equation is the imaging equation for the moving ob- 
jects. It is the counterpart of the imaging equation for the sta- 
tionary objects, i.e., (3). 

If one samples the signal s, ( r  ) as if it is a signal of a station- 
ary object, then the acquired samples M [ k ]  will be formulated 
as [see (9)] 

1 

f i [ k 1 =  5 s t n ( x )  exp ( j y  gL(t') 

* r (r '  + TL,; x, 0 )  v ( f ' ,  r k , )  dr' 

The phase term in (23) is equal to 

+ y S u ' g l ( r ' )  ( r ( f '  + Tk\; x, 0 )  - x )  v ( r ' ,  r k 8 )  dt ' .  

(24)  

The first term in the above equation is equal to ( - k r V r )  [see 
(7)]. The second term is the undesired phase added to the spins 
due to motion. The symbol 4 ( k ,  x )  represents this undesired 
phase term throughout this text. 

'I. 5 

4 ( k ,  x)  = y So g L ( t ' )  ( r ( t '  + T ~ ~ ;  x, 0 )  - x)  

. ~ ( t ' ,  t k t )  dt'.  (25) 

Therefore, the imaging equation of a moving object can be re- 
written by substituting (7) into (23): 

X [ k ]  = j j m ( x )  exp ( - jk7-VTx) exp ( j 4 ( k ,  x))  d x .  

( 2 6 )  
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The Taylor expansion of the undesired phase term 4 ( k ,  x )  
around x = xo is 

where 4ho ( k ,  x )  stands for the higher order terms. The constant 
and linear terms of the expansion are as a result of block and 
linear respiratory motion, respectively. The block and the linear 
respiratory motion models are explained in the following sub- 
section. 

A. Block Motion Model 

patient is modeled by 
During MR data acquisition, whole body movement of the 

r ( t ;  x ,  0) - x = f ( t )  (28)  
where the vectorf(t)  is the motion function. Note that, using 
this model (block motion model), it is not possible to account 
for the rotational motion of patient. For the case where there is 
only the block motion, the undesired phase term, 4 ( k ,  x ) ,  is 
independent of x .  For this type of motion, the linear and higher 
order terms of the 4 ( k ,  x )  are zero and the constant term is 

% 
4(k xo) = Y so d ( t ’ ) f ( t ’  + TkJ 77(t’, tk,) d t ’ .  (29) 

Since 4 ( k ,  x )  is x independent, the undesired term can be 
taken out of the integral of the imaging equation (26), and the 
following result is obtained 

m[kI = exp ( j + ( k ,  x o ) )  ~ [ k l .  (30) 
Therefore, m [ k ]  is a phase-distorted version of the two-di- 
mensional discrete Fourier transform of m ( x ) .  

B. Respiratory Motion Model 

modeled as follows: 
The linear expansion motion around an arbitrary point is 

r ( t ;  x ,  0) - x = F ( t )  ( x  - x o ) .  (31)  
This is a position-dependent motion of protons. We call this 
model the linear respiratory motion model. The diagonal matrix 
F( t ) ,  which brings the time dependence to the model, is called 
the fluctuation matrix. xo is the point where there is no motion 
and it is called the center of expansion. For the transaxial view 
of the chest, this point corresponds to the backbone. It is as- 
sumed that the left and right sides of the chest move symmet- 
rically. And it is also assumed that if a proton in the front part 
of the chest moves two units in y direction, then a proton in the 
center moves only one unit. In this formulation, the fluctuation 
functions in the x and y directions may be completely arbitrary. 

Inserting (31) and (25) gives the following result: 

* ( x  - xo).  (32)  
Therefore, if respiratory motion of the body fits the above mo- 
tion model, then the undesired phase term in the imaging equa- 
tion (26) will contain only the linear term [see (27)]. The 
constant and higher order terms will be zero. 

Inserting (32) into (26) and taking the x independent factor 
out of the integral yield the following equation for the linear 
respiration model: 

m[k] = exp ( j A k T V T x o )  M ( V ( k  - A k ) )  (33) 
where 

A k  = V - I (  y ifk‘ F(t ’  + Tk,)  g k , ( t ’ )  ? ( t ’ ,  t k , )  dt‘ . (34) 

Here the samples of the MR signal, 312 [ k], are also the sam- 
ples of the phase-distorted 2-D discrete Fourer transform of 
m ( x )  that are taken in a nonrectangular manner. The deviation 
of the samples from the rectangular samples ( A k )  is a function 
of k .  

111. RECONSTRUCTION ALGORITHM 

Reconstruction of an artifact free image of an object, which 
has a known block motion, is relatively easy. Before taking the 
inverse discrete Fourier transform, a phase correction of the 
MRI signal is enough to obtain a good quality image: 

) 

There is no approximation in the reconstruction algorithm. So 
if the object motion exactly fits to the block motion model and 
if the model parameters are exactly known, then a perfect image 
reconstruction is possible. The above image reconstruction 
technique is applicable to the block motion with any function 
of time. A constant velocity block motion version of this re- 
construction technique was previously proposed by Korin et a l .  

The reconstruction algorithm of an object which has a linear 
respiratory motion is more complicated, but feasible as dem- 
onstrated in this paper. As it is shown in (33), the samples of 
the MR signal are the nonrectangular samples of the continuous 
Fourier transform of m ( x ) .  Furthermore, the phases of the sam- 
ples are also distorted. The phase error of the samples are com- 
pensated using the equation 

[lo]. 

S [ k ]  = m[k] exp ( j A k T V T x 0 ) .  (36) 

Here the entries of A[k]  are the phase-compensated versions 
of the samples of the MR signal, m[ k ] .  Referring to (33) and 
the above equation, it is possible to write 

S [ k ]  = M( V ( k  - A k ) ) .  (37) 

Here the entries of M (  V( k - A k ) )  correspond to the non- 
rectangular samples of the Fourier transform of m ( x ) .  To re- 
construct the image, it is necessary to recover the rectangular 
samples of M ( u )  from its nonrectangular samples. The two- 
dimensional discrete inverse Fourier transform of the recovered 
rectangular samples will be the motion artifact free image. 

In the reconstruction method, the most difficult and the most 
important part is the recovery of the rectangular samples of the 
continuous Fourier transform of the image, M ( o ) ,  from its 
nonrectangular samples. 

The positions of the rectangular samples are not arbitrary. In 
almost all of the imaging pulse sequences, the phase encoding 
gradient (8,) is zero during the data acquisition period. In this 
period, the frequency encoding gradient ( 8,) has a nonzero 
value. For the case there is no motion, the acquired data in each 
acquisition period corresponds to the samples of M ( o )  on a 
line (my = w , ~ ) .  Similarly if there is motion, the samples are 
taken on a line but at a different position and the samples on 
this line are taken nonuniformly . 
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This can be shown easily. Equation (34) can be written as: 

Ak,  = 5" f,(t' - TL) g x , k , ( t ' )  TI(?'> t k , )  d', (38)  

Ak, = i j;w - TA!) g r . k , ( t ' )  TI(?'? t r , )  d t ' .  (39)  

U ,  0 

Since there is no phase-encoding gradient and no 180" RF 
pulse during the data acquisition period, the above equation for 
A k ,  may be modified as: 

where t ,  is the instant where the first data is acquired. As a 
result, Akv is k,-independent. 

Ak., = A k , [ k x ,  k? . ] ,  (41 1 
(42)  Ak,. = Ak, . [k , . ] .  

Therefore, the sample positions on M ( w )  will look like those 
in Fig. 2. 

Using this property, the recovery of the rectangular samples 
from the nonrectangular samples is reduced to two one-dimen- 
sional problems. 

First, for each kv ,  a one-dimensional signal is defined as 

M k , ( w r )  = M(w,,  z)!(k,. + A k , ) ) .  (43 1 
The acquired data at the k,.th phase encoding step is nonuni- 
formly sampled. 

W k r ,  k?.l = M r , ( z J J k r  + A k , ) ) .  (44) 
The first one-dimensional problem is the recovery of the rect- 
angular samples of Mk,  ( U , )  from its nonuniform samples. 

After this step, the second one-dimensional problem must be 
solved. For each k.,, another one-dimensional signal is defined. 

M k , ( W \ . )  = M ( t J , k , ,  my). (45)  

The signal Mkt ( w ,  ) is again sampled in a nonuniform manner. 
The samples are at the positions ~ , . ( k , .  + A k , ) .  The uniform 
samples of MA$ ( U , )  correspond to .the rectangular samples of 

Therefore, the two-dimensional nonrectangular to rectangu- 
lar sample conversion problem can be solved by solving two 
one-dimensional interpolation problems. 

There are many studies on one-dimensional nonuniform sam- 
pling. In 1956, Yen proved that the recovery of a band-limited 
signal from its nonuniform samples is possible if there is a suf- 
ficient number of data 1111. 

Both Mk, ( my) and Mk> ( U , )  satisfy the requirement because 
M (  o) is the Fourier transform of a space-limited signal. Here, 
a method for the recovery of the uniform samples of Mk,(w,) 
from its nonuniform samples will be introduced. The uniform 
samples of Mk, ( U , )  can be obtained in the same manner. 

Using the sinc interpolation, Mk, ( w ,  ) can be recovered from 
its uniform samples as 1121 

M ( w ) .  

The above summation is defined for all integer k values. But 
M k r ( v y k )  is assumed to be zero f o r k  $ [ - (N/2) ,  ( N / 2 ) )  for 
some N .  The summation must be carried out for the nonzero N 
values. 

Fig. 2.  An example distribution of the nonrectangular sample positions in  
the M ( w )  plane. In this example, there are 10 phase-encoding steps and, 
in each encoding step, 10 samples are acquired. The positions of the sam- 
ples are marked by cross sign. The positions of samples acquired in  each 
phase-encoding step lie on a horizontal line. This type of sampling is a 
result of the respiratory motion. 

But MA! ( w ,  ) is sampled nonuniformly at the instances U ,  ( k ,  
+ A k , ) .  Therefore, the relation between the nonuniform sam- 
ples and the uniform samples can be written as 

M r 8 ( v , k )  sinc ( k ,  + A k ,  - k ) .  (47)  - - 

h t l  - l N / 2  ) . l N / 2 ) )  

The above equation can be converted in matrix form as 

where G(kv + A k , )  and G ( k )  are the nonuniform and the uni- 
form sample vectors, and S is the transformation matrix. The 
elements of the matrix are sinc ( k ,  + A k,. - k ) .  

To calculate the uniform samples from the nonuniform sam- 
ples, the matrix S must be inverted. 

Gk3(k) = S - ' G k 3 ( k A  + A k , )  (49) 

If the number of nonuniform samples are equal to the number 
of rectangular samples, then the S matrix will be a square al- 
temant matrix. And after a few mathematical manipulations, it 
can be proven that the S matrix is invertible for any set of dis- 
tinct k! + Ak!'s [13]. 

The matrix S may be practically singular if some nonuniform 
samples are too close to each other or if there is no sample 
around a uniform sample position. Unfortunately, this fact oc- 
curs frequently. To overcome this problem, the well-known sin- 
gular value decomposition method is used and the uniform 
samples are calculated by multiplication of the pseudo-inverse 
of S with the nonuniform sample vector. See [ 141 for the details 
of the singular value decomposition and the pseudo-inversion. 

Instead of solving the problem by the pseudo-inversion of the 
matrix, some approximate methods may be proposed. The lin- 
ear and third-order Lagrange and cubic spline interpolation 
methods can be used if a fast image reconstruction algorithm is 
required. See Appendix B for the details of the above interpo- 
lation methods. The performances of the methods are compared 
and tested in the next section. 

As a summary, in this section the block and the respiratory 
motion artifact free-image reconstruction algorithms are pro- 
posed. In the former, only the distorted phases of the acquired 
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data are compensated before taking the inverse Fourier trans- 
form. In the later one, the rectangular samples are interpolated 
after the phase compensation. And then the inverse Fourier 
transform of the calculated data gives the artifact free image. 

IV. SIMULATIONS AND RESULTS 
In this study, some simulations are carried out to see the 

properties of the proposed image reconstruction method. First, 
a fictitious phantom is selected as a test object. This object is 
assumed to have a respiratory motion. The MR signal is simu- 
lated under these conditions. The reconstruction method is tested 
with this MR signal. The reconstruced image has almost no 
blurring and motion artifact. The different interpolation meth- 
ods are used in recovering the uniform samples from the non- 
uniform samples and their effect to image quality is observed. 
The new reconstruction method is tested using wrong values of 
model parameters. It is shown that if the error in the model 
parameters are reasonable, then a substantial amount of motion 
artifact reduction is the reconstructed image will be observed. 
1n.other words, the new method is not very sensitive to the 
model parameters. 

Let the mathematical phantom object shown in Fig. 3 be the 
test object. Assume that the object moves as it is defined in the 
linear respiratory motion model [see (3 l)]. Let the parameter x,, 
(the center of the linear expansion) be positioned near the back- 
bone of the phantom. The diagonal fluctuation matrix is as- 
sumed to be 

Here, the fluctuation functionf( t )  is periodic (see Fig. 4) 

(51 )  
The amplitudes of the fluctuation function in the x and y direc- 
tions, a, and a,, are selected as 4% and 10% for the simula- 
tions, respectively. The motion period, T,,, is assumed to be 
2800 ms. 

During the study, a standard spin-warp imaging pulse se- 
quence is applied to the test object (see Fig. 5 ) .  In each simu- 
lation experiment, a fixed repetition time is used and T,. = 1500 
ms. The echo time, Te, is 30 ms, and 256 samples are acquired 
with a 20 ps sampling period from each MR signal. Therefore, 
the data acquisition period r ,  = 5.12 ms. A total of 256 phase 
encoding steps are carried out. The time interval fx is 3 ms. 
The gradient pulse amplitudes are arranged so that a region 
which has a size of 256 X 256 mm is viewed. 

If the inverse Fourier transform were directly applied to the 
simulated MR signal which is taken from this moving object, 
then the image would have the respiratory motion artifact (see 
Fig. 6). The same data is reconstructed using the proposed 
method (see Fig. 7). The motion artifacts and blurring due to 
the motion are significantly suppressed. 

The practical difficulty of the proposed image reconstruction 
method is the computational time. The most time-consuming 
part of the method is the interpolation from nonrectangular sam- 
ples to rectangular samples. As it was explained in the previous 
section, to find the rectangular samples from the nonrectangular 
samples it is required to calculate the pseudo-inverses of ( 256 

Fig. 3. The two-dimensional mathematical chest phantom. The white cir- 
cular object represents the heart. The small circular objects.stand for the 
backbone. The lungs are represented by two elliptic objects which have 
different internal structures. The thin layer covering the phantom stands for 
the fat around the body. The proton density is given in arbitrary units. The 
circular objects have 1 unit of proton density, whereas the lungs have 0.1 
unit. The other parts of the phantom are assumed to be filled with 0.5 units 
of protons density. The field of view ( f r , f , )  is (256 mm, 256 mm). 

Time (seconds 1 

Fig. 4. The respiratory fluctuation function which is used in the simula- 
tions. It is periodic with a period of T,, = 2800 ms. The function is equal 
to exp ( -16?/T;) for -T,,/2 < r 5 T,,/2. 

Tr 

n n  

G n 

-..G ... xo 

Gx -?- -p 
Fig. 5. The Fourier transform MR imaging pulse sequence used in  the 
simulations. The repetition time, T, = 1500 ms. The echo time T ,  is 30 
ms. 256 samples are acquired with a 20 ps sampling interval from each 
MR signal. Therefore, the data acquisition time rx is 5.12 ms. A total of 
256 phase-encoding steps are carried out. The time interval t ,  is 3 ms. The 
gradient pulse amplitudes are arranged so that a region which has a size of 
256 X 256 mm is viewed. 
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Fig. 6 .  An image of the object which has a respiratory motion if a standard 
FT reconstruction method is used. The motion model parameters a,, a,, 
xo. and yo are 4 % .  I O % ,  7 mm, and 98 mm, respectively. The respiratory 
motion artifact can be observed on the image. As a measure of the image 
quality, the average of the intensity levels at the outside of the region of 
interest, e, is evaluated as 0.121 units. The region of interest (R01)  is 
inside the rectangle shown in the figure. 

Fig. 8. An image using the linear interpolation. The rectangular samples 
are calculated using the linear interpolation of the nonrectangular samples. 
The motion artifact is reduced. The remaining motion artifacts are due to 
the errors in the interpolation method. The average of the intensity levels 
at the outside of the region of interest is 0.0548 units. 

Fig. 7 .  An image using the proposed reconstruction method. Almost all 
the motion artifacts are suppressed. The exact motion model is assumed to 
be known. The rectangular samples are calculated using the pseudo-in- 
verses of 257 different matrices. The average of the intensity levels at the 
outside of the ROI, e,  is 0.0217 units. 

x 256) matrices using the singular value decomposition (SVD) 
method where 256 is the dimension of the image. The distri- 
bution of the nonuniform samples in each row is arbitrary. 
Therefore, 256 different S matrices must be decomposed. On 
the other hand, the positions of the nonuniform samples in each 
column are the same. Therefore, only one SVD is enough for 
the interpolation in the y direction. A total of 257 SVD are re- 
quired. In a SUN-3 160 system, which has a floating point ac- 
celerator (fpa), each SVD takes approximately 13 CPU min. 
Therefore, an image reconstruction time is approximately 56 h. 

Much quicker image reconstruction can be achieved by some 
other interpolation methods. The linear interpolation method re- 
quires much less computation time. First, the nonuniform sam- 
ples are sorted with respect to the sampling positions. And the 
rectangular samples are taken from an imaginary piecewise lin- 
ear curve, the comers of which are on the nonuniform samples. 
This method adds a total of 10 s to the conventional reconstruc- 
tion time. The image obtained by this method is also acceptable 
(see Fig. 8). Linear interpolation is useful for reconstruction of 
the images which do not have much motion artifact. 

Fig. 9. An image using the third-order Lagrange interpolation. The rect- 
angular samples are calculated using the third-order Lagrange interpolation 
of the nonrectangular samples. Before the interpolation, 12 x 256 samples 
which are too close to somi other samples are removed from the nonrec- 
tangular sample set. The average of the intensity levels at the outside of 
the region of interest is 0.0464 units. 

The third-order Lagrange and cubic spline interpolation 
methods are also applied. It is observed that these interpolation 
methods fail if there are very close samples. The noise on the 
neighbor samples may cause very high swings on the interpo- 
lated data. So the samples which are closer than a threshold are 
replaced with their averages. In a sense, this corresponds to 
removing singularities in the S matrix. In this way, the inter- 
polation method is stabilized. 

The third-order Lagrange interpolation is applied after sort- 
ing the samples and removing the singularities (see Fig. 9). The 
quality of the images which are obtained using the third-order 
Lagrange interpolation are better compared to the images ob- 
tained using the linear interpolation. The Lagrange interpola- 
tion adds a total of 15 s to the conventional reconstruction time. 
The cubic spline interpolation method is best among the quick 
interpolation methods (see Fig. 10). The overhead of the cubic 
spline method is approximately the same as the Lagrange inter- 
polation method (15 s). 

As a fifth interpolation method, a composite interpolation 
method is used. The motion in the x direction is compensated 
by using the cubic spline interpolation method, and the motion 

-- . 
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Fig. 10. An image using the cubic spline interpolation. The rectangular 
samples are calculated using the cubic spline interpolation of the nonrec- 
tangular samples. Before the interpolation. 12 x 256 samples which are 
too close to some other samples are removed from the nonrectangular sam- 
ple set. The average of the intensity levels at the outside of the region of 
interest is 0.0396 units. 

Fig. 1 1 .  An image using the composite interpolation. The motion in  the x 
direction is compensated using the cubic spline interpolation. In this direc- 
tion, there were not any too close samples, so all the samples are used. In 
the y direction. the motion compensated by the pseudo-matrix inversion. 
To find the pseudo-inverse, 24 eigen-values of the S matrix are set to 0. 
The average of the intensity levels at the outside of the region of interest 
is 0.0321 units. 

in the y direction is compensated by the singular value decom- 
position. The result is almost as good as the image obtained by 
the motion artifact suppression using SVD in both directions 
(see Fig. 11). But it is much quicker (approximately 15 min). 

The selection of the interpolation method among these five 
methods depends on the quality of the image one wants to ob- 
tain and the amount of time that can be afforded for the recon- 
struction of the images. 

In all of the above image reconstruction methods, the exact 
motion model is assumed to be known. If the exact motion 
model is not known, then the reconstructed image will have 
some motion artifacts. The important point is that even if an 
approximate respiratory motion model is used, the reconstruc- 
tion image would still be better then the image which is recon- 
structed by the standard methods. To test this fact, some 
simulations are conducted with wrong a , ,  a , ,  xo, yo, a n d f ( t )  
values to observe the sensitivity of the reconstruction technique 
to these parameters. The cubic spline method is used in all of 
these simulations. And these results are also theoretically jus- 
tified. 

A .  Sensitivity of the Reconstruction Method to the Fluctuation 
Function 

In reality, it is not possible to measure or estimate the fluc- 
tuation matrix F( t )  exactly. The image must be reconstructed 
using an approximate value for F( t ) .  The proposed reconstruc- 
tion method is not very sensitive to this parameter. If one re- 
constructs the image of a moving object using P ( t )  instead of 
F( t ) ,  then the reconstructed image will have a similar artifact 
of the image of the object under a respiratory motion with the 
qarameter [ F ( t )  - P ( r ) ] .  If the measurement error [ F ( t )  - 
F( t ) ]  is reasonable, then substantial amount of image artifact 
reduction is expected. This fact is justified both experimentally 
and theoretically. 

Three simulations are carried out to observe the effect of the 
measurement error. F (  t )  has three parameters: f( r ) ,  a,, and q. 
The measurement error on these parameters are analyzed sep- 
arately. If the measurement error in the amplitude of the fluc- 
tuation function in the x direction is less than 100% (i.e.,  if I a ,  
- b., I < 1 a, I ), there will be artifact suppression. In the first 
simulation, a ,  is assumed to be measured with 50% error ( 6 ,  = 

Fig. 12. Demonstration of the sensitivity of the proposed method to the 
motion function amplitude a,. The image is obtained by the proposed re- 
construction method using fir = 2 %  instead of its exact value a ,  = 4%. 
The remaining motion parameters which are used in  the reconstruction are 
the exact motion parameters. The composite interpolation method is used. 
To find the pseudo-inverse, 33 eigen-values of the S matrix are set to 0. 
The average of the intensity levels at the outside of the region of interest 
is 0.0658 units. 

0.5a,). And the image is reconstructed with 6, instead of a ,  (see 
Fig. 12). The ghost artifact due to motion in the y direction is 
completely suppressed and the artifact due to the x motion is 
reduced. Second, a similar simulation is carried out for the fluc- 
tuation function amplitude in the y direction. The motion arti- 
fact suppression is observed on the image which is reconstructed 
with 6,. = 8% instead of its actual value of 10% (see Fig. 13). 
In general, if I a) - 6, I < I a,. 1 ,  then the proposed reconstruc- 
tion method is helpful in the artifact reduction. In both experi- 
ments, the fluctuation function f( t )  is assumed to be known. 
An additive white noise on the measured fluctuationA function 
f ( t )  is assumed. The signal-to-noise ratio (SNR) o f f ( t )  is 20 
dB. The image obtained byf ( f )  is shown in Fig. 14. Since the 
error functionf( t )  - f ( t )  is not periodic, then A k  - A k  is not 
periodic either, so there is no ghost-like image artifact but there 
is blurring on the image. As the SNR of thef( t )  decreases, the 
contrast-to-noise ratio of the reconstructed image decreases. 
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Fig. 13. Demonstration of the sensitivity of the proposed method to the 
motion function amplitude a,. The image is obtained by the proposed re- 
construction method using r i ,  = 8% instead of its exact value a ,  = 10%. 
The remaining motion parameters which are used in the reconstruction are 
the exact motion parameters. The composite interpolation method is used. 
To find the pseudo-inverse, 33 eigen-values of the S matrix are set to 0. 
The average of the intensity levels at the outside of the region of interest 
is 0.0761 units. 

Fig. 14. The image is reconstructed using the proposed method with a 
white noise error in  the fluctuation function. The SNR of the fluctuation 
function is 20 dB. The remaining motion parameters which are used in the 
reconstruction are the exact motion parameters. The composite interpola- 
tion method is used. To find the pseudo-inverse, 39 eigen-values of the S 
matrix are set at 0. The average of the intensity levels at the outside of the 
region of interest is 0.11 I O  units. 

The theoretical analysis of the sensitivity of the reconstruc- 
tion method to F ( t )  is also conducted. The acquired data were 
formulated as [see ( 3 3 ) ]  

X [ k ]  = exp (-jAk'V'x,) M ( V ( k  - A k ) ) .  ( 5 2 )  

The proposed reconstruction method is based on this equation. 
M [  k ]  is calculated using 311 [ k ] ,  before taking the inverse Fou- 
rier transform of M [  k ]  (remember M [  k ]  = M (  V k ) ) .  The im- 
age reconstruction is possible if A k  and x, are exactly known. 
In the reconstruction, if one uses A k  instead of A k  then the 
image k ( x )  will be obtained instead of m ( x ) .  In this recon- 
struction, the following equation will be the base of the method: 

X [ k ]  = exp ( -jAk^'V'x,) " i ( V ( k  - A k ) ) .  (53) 

If the above equation is combined with ( 5 2 ) ,  the following re- 
sult will be obtained: 

k( V ( k  - A k ) )  

= exp ( - j ( A k  - Vrx0)  M ( V ( k  - A k ) ) .  (54) 

Let k = k - AAk. One must be careful while changing the k 
vector by k + A k ,  because A k and Ak are both functions of k 
[see (34)]. But, if one assumes that 

A k [ k ]  = A k [ i ] ,  ( 5 5 )  

the following approximate equation can be obtained: 

k[k] = exp ( - j ( A k  - A k ) r  V'XO) 

. M ( V ( k  - ( A k  - A k ) ) ) .  ( 5 6 )  

Since the approximate equation is similar to ( 5 2 ) ,  the image 
artifact of the reconstructed image will again be a respiratory 
type of image artifact and the amount of this artifact will be 
small and proportional with the error in A k .  

There is a linear relation between A k and F( t ) :  

'A, 

A k  = y V - '  1 F ( r ' )  g,,(t') v ( t ' ,  t k v )  dt ' .  ( 5 7 )  

Therefore, the error*in F ( t )  is proportional with the error in 
A k .  As a result, if F ( t )  were used instead of F ( t )  as the fluc- 
tuation function in the reconstruction algorithm, then there 
would be artifacts in the reconstructed image as if there is a 
motion with fluctuation function F( t )  - F( t ) .  

The conclusion of this discussion is that reconstruction of an 
image with a reasonable estimate of the fluctuation matrix F(  t )  
considerably reduces the motion artifacts on the image. 

B. Sensitivity of the Reconstruction Method to the Offset of 
the Motion Model 

Sensitivity discussion in this subsection is similar to the pre- 
vious sections. If one reconstructs a moving object image with 
the motion function offset Po instead of xo, then the recon- 
structed image will suffer from a motion artifact. This motion 
artifact will be similar to the artifact of the image of an object 
which has a block motion with + ( k ,  x,) = - A k r V ( x o  - 
fo). A simulation result is given to confirm this argument. The 
reconstruction is carried out using Po instead of its real value xo 
(see Fig. 15). The motion artifact on this image is similar to the 
motion artifact of the image of the object which has a block 
motion in the x-direction. A similar simulation is carried out for 
the offset error in the y-direction (see Fig. 16). 

The sensitivity of the reconstruction method to the offset of 
the motion model is also theoretically analyzed. If the MR sig- 
nal were taken from an object which has a respiratory motion 
with the motion model offset xo, then the acquired data would 
be as given in ( 5 2 ) .  Assume that the image is reconstructed 
using an erroneous value of offset (Po). The relation between 
the Fourier domain samples of the reconstructed image and the 
acquired data is: 

311[k] = exp ( - jAkTV7fo)  "i( V ( k  - A k ) ) .  ( 5 8 )  

If the above equation is combined with (52) ,  the following 
result will be obtained: 

"i( V ( k  - A k ) )  

= exp ( - jAk7V7(xo - Po)) M (  V ( k  - A k ) ) .  ( 5 9 )  
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Fig. 15. A simulation image to demonstrate the sensitivity of the proposed 
method to the motion model offset xo. The MR image is reconstructed using 
the proposed method using a wrong value of the offset (2, = -3  mm, xo 
= 7 m m ) .  The artifact on the reconstruction image is a result of this 10 
mm error. For the image reconstruction, the composite interpolation method 
is used. To find the pseudo-inverse, 42 eigen-values of the S matrix are set 
to 0. The average of the intensity levels at the outside of the region of 
interest is 0.0629 units. 

Fig. 16. A simulation image to demonstrate the sensitivity of the proposed 
method to the motion model offset yo. The MR image is reconstructed using 
the proposed method using a wrong value of the offset (yo = -93 mm, yo 
= -98 mm). The artifact on the reconstruction image is a result of this 5 
mm error. For the image reconstruction, the composite interpolation method 
is used. To find the psuedo-inverse, 42 eigen-values of the S matrix are set 
to 0. The average of the intensity levels at the outside of the region of 
interest is 0.0715 units. 

Because of the similar reasons in subsection A of this section, 
the vector k cannot be replaced by k + A k ,  unless we assume 
that 

A k [ k ]  = Ak[k^] .  (60) 

Then the following approximation will be obtained: 

k[k^] = exp ( - j A k 7 V T ( f , ,  - xo)) M( V(k^) ) .  (61)  

This equation is in the same form as (30). Therefore, the re- 
constructed image will suffer from the block motion if it is con- 
structed with an approximate xo. But the amplitude of this block 
motion will be small and it is proportional to the error in the 
offset, provided that the error in the offset is smaller than the 
offset itself. 

C. Sensitivity of the Reconstruction Method to the Higher 
Order Terms of the Undesired Phase 

It is known that the actual respiration motion is not linear in 
space. For example, while the motion of the heart (for a phase 
of cardiac cycle) fits the block motion model, there is no motion 
within the spinal cord. If a linear respiration motion is used as 
a model of the chest motion, then the heart and spinal cord are 
also assumed to obey the model. Obviously, this is not true. 
Therefore, the question is “what will be the artifacts if the lin- 
ear motion model is used for reconstructing an image of an ob- 
ject which has a nonlinear motion? ”. 

The effects of the nonlinearity of the motion can be observed 
in the higher order terms of the undesired phase of the imaging 
equation (26) 

W [ k ]  = 1s m ( x )  exp ( - j k T V T x )  exp ( j + ( k ,  x))  dx .  

(62 )  

Although the motion model does not fit to the linear respi- 
ratory motion model, if that model is chosen for the reconstruc- 
tion, then the following equation will be the relation between 
the acquired data and the Fourier transform of the reconstructed 
image. 

W [ k ]  = exp ( - jAkTVTx,)  k ( V ( k  - A k ) ) .  (63) 

Combining the above equation and (62) and (34), and assum- 
ing 

A k [ k ]  = Ak[k^] (64) 

4 ( k ,  x)  = 4(k^, x )  ( 65 

yield the following result: 

k [ k ]  = s s m ( x )  exp ( - jkTVTx)  exp { j 4 ( k ,  x) 

- A k T V ( x  - x O ) }  dx.  ( 66 

Since selection of A k depends on the linear respiratory model 
than one selects the model parameters such that 

For the linear respiratory motion model which satisfies the above 
equality, the reconstruction method cancels the linear term of 
the undesired phase. If there is a constant phase term, it can be 
canceled by the block motion compensation technique. There- 
fore, (66) can be written as 

k [ k ]  = 11 m ( x )  exp ( - jkTVTx)  exp { j& , , (k ,  x ) }  dx .  

( 6 8 )  

As a conclusion, the proposed reconstruction method cancels 
the linear and constant terms of the undesired phase of the ac- 
quired MRI signal. If the main components of a motion is linear 
expansion and/or block motion, then substantial amount of mo- 
tion artifact suppression will be obtained. 

To observe this effect by simulation, an object which has a 
nonlinear respiratory motion is selected. The heart of the phan- 
tom (the white circular block of the phantom) is assumed to be 
moving as a block, while the other parts of the phantom have a 
linear respiratory motion. To obtain the MRI signal of this 
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J(1) a r A  

Fig. 19. The block diagram of the proposed image reconstruction 
algorithm. 

Fig. 17. Nonlinear motion during data acquisition causes nonlinear motion 
artifacts. The MRI signal is obtained by assuming the heart of the phantom 
has a block motion, as explained in the text while the rest of the phantom 
has a linear respiratory motion. The image is reconstructed by the conven- 
tional image reconstruction method. The average of the intensity levels at 
the outside of the region of interest is 0.138 units. 

Fig. 18. Reconstructed image of the nonlinear motion using the proposed 
image reconstruction method. There is a motion artifact on the image due 
to the nonlinear motion of the phantom. For the image reconstruction, the 
composite interpolation method is used. To find the pseudo-inverse, 47 
eigen-values of the S matrix are set to 0. The average of the intensity levels 
at the outside of the region of interest is 0.0835 units. 

phantom, two simulations are carried out. The heart of the 
phantom is removed and two independent objects are obtained. 
The block motion model is used in obtaining the MRI signal of 
heart. Another MRI signal is obtained by assuming the remain- 
ing part of the phantom has a linear respiratory motion. The 
MRI signal of the phantom, which has a nonlinear motion, is 
acquired by adding the MRI signals of these two simulations. 

The image shown in Fig. 17 is reconstructed directly by tak- 
ing the inverse Fourier transform of the MR signal. On the other 
hand, the image shown in Fig. 18 is reconstruction by the pro- 
posed method. There is a considerable improvement in the im- 
age quality. The resultant image has some motion artifacts due 
to the higher order undesired phase terms. 

As a result, the nonlinearity of the respiratory motion affects 
the reconstruction image quality. But it is demonstrated that, 
using the proposed image reconstruction algorithm, the effects 
of the constant and linear terms of the respiratory motion are 
compensated and a significant reduction in the motion artifact 
is obtained. 

v. ESTIMATION OF THE MOTION MODEL PARAMETERS 

The proposed image reconstruction algorithm may be ex- 
pressed in block diagram form, as shown in Fig. 19. 

As it is seen, for the reconstruction the motion model param- 
eters are necessary. Three of these parameters (a,, a, ,  andf ( t ) )  
may be measured using displacement transducers. The other two 
parameters, the coordinates of the center of expansion, (x0 and 
y o ) ,  may be marked by the operator on the image which has the 
ghost artifact. 

Finding the position of the center of expansion can be auto- 
mated by the aid of a simple algorithm. The position of the 
center of expansion, (xo, yo), must be at the bottom center of 
the image. The location can be found from the original image 
which has the ghost artifact. For this purpose, the image pro- 
jections, p , ( ~ )  and p , (  y ) ,  to the x and y axis are obtained (see 
Fig. 20). And the estimated center of expansion is calculated. 
io is the mean value of X, which satisfies p , ( x )  > T ,  and yo is 
the minimum y which satisfies p ,  ( y )  > T. Here, T is an ex- 
perimental threshold constant. With this algorithm, the center 
of expansion is estimated with no error for the phantom we used. 
In the real experiments, there can be estimation errors. But it is 
already shown that the proposed algorithm is not very sensitive 
to the errors in the estimation of xo. 

The respiratory motion measurement systems which are com- 
merically available cannot be used directly to obtain all of the 
motion parameters. In these systems, usually there is one dis- 
placement transducer and, therefore, only the fluctuation func- 
t ionf( t )  can be measured. The measured motion signal is used 
for respiratory gating or some other respiratory motion artifact 
suppression methods. To calculate the model parameters a, and 
a,, it is not only necessary to use two transducers but it is nec- 
essary to know the positions of these displacement transducers. 
Since the ghosts on the images contain information on the mo- 
tion, it is possible to overcome this practical difficulty by the 
aid of an estimation algorithm. An iterative method is proposed 
to find the motion parameters [15]. In Fig. 21, the block dia- 
gram of the iterative method is shown. 

In the previous discussions, it is known that with the rough 
motion parameters, it is possible to reconstruct image. As the 
motion parameters become closer to the actual parameters, the 
image quality will increase. The image quality is measured by 
the error e .  The error is the square sum of the intensities of the 
pixels where the object is not standing. As the error e gets closer 
to zero, the image quality increases. The minimization algo- 
rithm shown in Fig. 21 finds the parameters which minimize 
the error e .  The error is a function of the estimated motion model 
parameters, 6, and ci,: 

e = e(&,,  6,). (69) 

It is known that the reconstruction algorithm has a well behav- 
ior, with respect to these motion parameters (see the previous 

- 
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Fig. 20. The projections of the image shown in Fig. 6 .  (a) The projection 
to x-axis, p x ( x ) .  (b) The projection toy  axis, p , (  y ) .  The image shown in 
Fig. 6 is obtained by the conventional reconstruction method. p , ( x )  is ob- 
tained by summing the intensities of the pixels on the vertical lines. Sim- 
ilarly, p ,  ( y )  is obtained by the sum of the intensities of the pixels on the 
horizontal lines. The dashed line shown in both graphics represents the 
threshold level T .  

Find the center 
of expansion 
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Fig. 21. The block diagram for the iterative image reconstruction method. 
By the aid of a displacement transducer, f(r) is measured. The center of 
expansion (io, yo), is found using p , ( x )  and p , (  y) .  The remaining two 
motion model parameters which are necessary for the proposed reconstruc- 
tion method are found by the iterative image reconstruction method. The 
error of the image, e ,  is the average of the intensity levels at the outside of 
the region of interest. 

sections). The multivariate function e must have a global min- 
imum at 

ci, = a,, (70) 

a,. = a,. (71) 

t 

Fig. 22. The three-dimensional plot of the error function e(ci,, a,). The 
minimum of e function is observed at (4%, 10% ). The function is smooth. 
Finding its minimum is not difficult. 

And no local minimum is expected. As an example, a three- 
dimensional plot of the error function is given (see Fig. 22). 
The minimum at the expected point can be seen and there is no 
local minimum. There are many known multivariate minimi- 
zation algorithms in the literature [16]. The polytope, Powell, 
and quasi-Newton minimization algorithms are used to find the 
global minimum. The polytope algorithm solved the example 
problem in 160 iterations with a 0.01 % error. On the other hand, 
the Powell minimization algorithm solved the problem in 83 
iterations within the same error bound. The quasi-Newton 
method reached the minimum in 141 iterations. The above al- 
gorithms are implemented using a SUN-3 160 workstation; each 
iteration took approximately 63 s. 

Estimation of the fluctuation functionf ( t )  would be possible 
if it were periodic. But it is known that, similar to the other 
physiological motions of the body, the respiratory motion of the 
chest is quasi-periodic. And it is difficult to represent the mo- 
tion with a small number of parameters. Hence, the measure- 
ment off(  t )  is recommended. 

As the number of unknown parameters increases, the image 
reconstruction time increases but the cost of additional instru- 
mentation setup decreases. To choose the best method, the cost 
of instrumentation and time spent for reconstruction must be 
compared. 

VI. CONCLUSION 
In this work, a respiratory motion artifact reduction method 

in MR imaging of the chest is proposed. The respiratory motion 
of the chest in a transaxial cross-section is assumed to be linear 
with respect to space variables. Under this assumption, it is 
demonstrated that the acquired data correspond to nonrectan- 
gular samples of the phase-distorted Fourier transform of the 
spin density on the cross-section of the chest. The proposed 
reconstruction method has three steps. The first step is the com- 
pensation of the phase distortion on the samples. The second 
step is the interpolation of the samples on a rectangular grid 
using the samples on the nonrectangular grid. A motion artifact 
free chest image can be obtained in the last step by taking the 
inverse Fourier transform of these calculated samples. 

Using this image reconstruction method, all the respiratory 
motion artifacts can be suppressed if the respiratory motion fits 
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model which is used in the reconstruction. But it is shown that, 
with an approximate respiratory motion model of the chest, a 
substantial amount of reduction in the motion artifact is ob- 
tained, as well. 

The proposed image reconstruction method does not require 
any specific imaging pulse sequence. It can be used with any 
Fourier transform pulse sequence. Therefore, this method will 
increase the motion artifact suppression capability of the other 
standard respiratory motion artifact suppression methods. The 
cost is a small amount of increase in the image reconstruction 
computation. 

The proposed image reconstruction method requires a knowl- 
edge on the respiratory motion of the chest during the data ac- 
quisition period for perfect reconstruction. This motion can be 
measured using a special design or can be estimated from the 
acquired MR data itself. We believe that both methods are fea- 
sible. 

APPENDIX A 
In general, the MR signal s , ( t )  was formulated as [see ( 3 ) ]  

Let h ( t )  be a bandlimited signal and let { t i :  i = 1 * . . N } 
be an arbitrary set of time instances. Without loss of generality, 
one may assume ti L tj if i > j .  Let & ( t )  be the signal which 
is obtained by the interpolation of { h ( t i ) :  i = 1 . . . N } .  

Linear interpolation is defined as 

where 

( 7 7 )  

The linear interpolation may be called first-order Lagrange in- 
terpolation. 

The third-order Lagrange interpolation is defined as 

L( t )  = ( 7 8 )  
t i + 2  2 t i + , ,  i = 1, 2 * N - 3 

(0 otherwise. 

( 7 2 )  

For the spin-echo pulse sequence shown in Fig. 5 ,  if T, << T I  
(i.e., all the spins are relaxed before each 90” RF pulse) and 
if T ,  >> t , ,  then 

The cubic spline is an interpolation method for smooth func- 
tions. Each time segment [ t, + I . . . t ,]  is interpolated by a third- 
order polynomial function, &, ( t ) .  The coefficients of these func- 
tions are calculated SO that 

6ctJ = h ( f , )  ( 7 9 )  

k ( t , + J  = h ( t , + , )  ( 8 0 )  

(81  1 

m ( x )  = p ( x ,  y )e -T*IT2(x , \ ) .  ( 7 3 )  

Since, all the MR samples are taken after the 180” RF pulse 
and v ( t ’ ,  t )  is independent from t. It can be written as 6: ( t , )  = &:- , ( t , )  

-1 for t‘ < T , / 2 ,  
(74) 

1 for t ’  L T , / 2 .  

Let the sampling matrix V be diagonal 

( 7 5 )  

and let N X N be the image size in pixels. 
Using simple algebra, it is possible to find the gradient am- 

plitudes and the sampling function which satisfies ( 7 ) .  The fol- 
lowing will be the solution: 

APPENDIX B 

where & l ( t )  is thefirst derivative of & ( t ) .  As a boundary con- 
dition, &( t )  and &+ , ( t N )  are assumed to be zero. For cubic 
spline interpolation, the function &( t )  is defined as 

( 8 3 )  
h, t ,+ ,  L t > ti, i = 1 ,  2 * N - 1 

0 otherwise. 
& ( t )  = 

For the details of these interpolation methods, refer to [ 141. 
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