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Abstract. In traditional approaches for clustering market basket type data, relations among transactions are
modeled according to the items occurring in these transactions. However, an individual item might induce different
relations in different contexts. Since such contexts might be captured by interesting patterns in the overall data, we
represent each transaction as a set of patterns through modifying the conventional pattern semantics. By clustering
the patterns in the dataset, we infer a clustering of the transactions represented this way. For this, we propose a
novel hypergraph model to represent the relations among the patterns. Instead of a local measure that depends
only on common items among patterns, we propose a global measure that is based on the cooccurences of these
patterns in the overall data. The success of existing hypergraph partitioning based algorithms in other domains
depends on sparsity of the hypergraph and explicit objective metrics. For this, we propose a two-phase clustering
approach for the above hypergraph, which is expected to be dense. In the first phase, the vertices of the hypergraph
are merged in a multilevel algorithm to obtain large number of high quality clusters. Here, we propose new quality
metrics for merging decisions in hypergraph clustering specifically for this domain. In order to enable the use
of existing metrics in the second phase, we introduce a vertex-to-cluster affinity concept to devise a method for
constructing a sparse hypergraph based on the obtained clustering. The experiments we have performed show the
effectiveness of the proposed framework.
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1. Introduction

Clustering can be informally defined as grouping data items together such that the items
belonging to the same group are similar to each other. This problem has several important
applications in data mining. For example large corporations may be interested in grouping
their customers according to their buying patterns for various purposes such as targeted
advertisements, customized promotions, catalog design. Generally, a market database is
considered as a set of transactions such that each transaction contains all the items purchased
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by one customer. So, the customer segmentation problem becomes equivalent to clustering
these transactions based on the items they contain.

In most of the existing clustering algorithms, relations between transactions are defined
based on the individual items they contain. However, it is possible that an item might
induce different relations in different contexts. For example, consider three transactions
T1 = {milk, butter, cheese}, T2 = {milk, egg, bread} and T3 = {milk, babyfood, diapers}.
Although milk is common among all three transactions, its meaning is different in the first
two transactions compared to the third one. We can argue that T1 and T2 correspond to
customers who buy food for breakfast, while T3 corresponds to a customer with infant. So,
modeling relations among transactions based only on the occurrences of items may not
always be appropriate.

In a dataset, some correlations exist between different items due to their cooccurences in
transactions. For instance a correlation might exist between the items milk, toy, babyfood
and diapers due to customers with infants who buy these items frequently together. So a
customer might be considered as incurring relations over a set of items. Assume that by
using a pattern discovery algorithm, a set of interesting relations have been discovered for
the whole database. Then we can model the similarity between different transactions based
on the interesting relations they incur. For instance, if p1 = {babyfood, diapers, toy} is
found to be an interesting relation, we can argue that the transactions that incur this relation
are similar to each other. Furthermore, it is possible that some of the interesting relations
are similar to each other. For this example, a relation such as p2 = {milk, babyfood, toy} is
expected to be similar to p1. In this case, the transactions that incur a relation of the form p1

should also be considered to be similar to the transactions that incur p2. Note that we will
refer the relations among a set of items as patterns throughout the paper to avoid confusion.
By grouping similar patterns in a database together, it is possible to infer a clustering of the
transactions that incur these relations.

The framework we use for pattern clustering is as given in figure 1. A dataset D is
represented as a tuple (I, T ), corresponding to the set of items and the set of transactions
respectively. A hypergraph H = (V,N ) is defined as a set of vertices V and a set of nets
(hyperedges) N among those vertices (Berge, 1976). Each net n ∈ N is a set of vertices in
V , and defines a relation among them. Observe that it is possible to consider a one-to-one
correspondence between D = (I, T ) and H = (V,N ). Here, each item in I can be viewed
as a vertex in V and each transaction in T as a net in N so that each transaction defines a
relation among the set of items it contains.

For the ease of presentation, the implementation details and choices are omitted in figure 1.
For example, it is an implementation issue to choose which data representation to use in
each step (i.e. Di or Hi ). Also, it might be more convenient to combine some of those steps
together, and avoid extra storage required for the intermediate data representations. In this
paper, we will not discuss such issues, but will only concentrate on the main concepts.

In this framework, we assume that an algorithm to find interesting cooccurence patterns
in a dataset is available. In figure 1,D0 is the original dataset, andP is the interesting pattern
set in D0. We give definitions in Section 3.1 to represent each transaction as a set of patterns
(i.e. as in D1), instead of a set of items (i.e. as in D0). The similarities among different
patterns are determined based on the cooccurences of these patterns in transactions. So, in
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Figure 1. The framework for clustering patterns.
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H1, transaction setTP defines a relation among the pattern setP . SinceH1 is in the size of the
original dataset, a reduction technique is proposed in Section 3.2 to obtain H2 = (P,RP ).

The two-phase bottom-up clustering algorithm given in Section 4 is applied on H2 to
obtain a set of pattern clusters C f . The proposed clustering metrics and multilevel clustering
approach used in the first phase are discussed in Sections 4.1 and 4.2, respectively. In the first
phase, a large number of clusters with small sizes (i.e. set Cin) is obtained. Here, although
each vertex belongs to only one cluster, it can have affinities to other clusters. If a vertex has
affinities to a set of clusters, it is possible to argue that a relation exists among these clusters.
To capture these relations, hypergraph H3 is created as discussed in Section 4.3, and then
a method similar to the one given in Section 3.2 is used to obtain reduced hypergraph H4.
Finally in the second phase, the existing hypergraph-partitioning metrics are used on H4 to
obtain a final clustering C f , since H4 is expected to be sparse and well-separated.

To test the validity of this framework, the clustering result C f is used to cluster the
transactions in the given dataset. For this, the transactions are simply assigned to clusters
according to the patterns that they contain. Section 5 demonstrates such results for two
real life datasets (Section 5.1), as well as for synthetic datasets (Section 5.2). Experimental
results on synthetic datasets are used to perform empirical performance comparison with
state-of-the-art clustering algorithm ROCK in terms of sensitivity and scalability analysis.

2. Related work

In this section an overview of the relevant research conducted in this area is given. For a
more thorough analysis of clustering algorithms, the reader may refer to some survey papers
on this subject (Jain et al., 1999; Fasulo, 1999).

The k-means algorithm (MacQueen, 1967) is one of the widely-used partitional clustering
algorithms. Here, data is mapped onto a d-dimensional metric space and a distance function
between data points is defined. The aim of the algorithm is to partition the data into k clusters
such that the distance of each data point to the mean of its cluster is minimized. In some
cases it might not be possible to define the mean of a cluster. For this, a similar algorithm
called k-medoids (Kaufman and Rousseeuw, 1990) has been proposed, where a data point
is chosen as a representative of each cluster. These algorithms have been given mainly
for data with numerical attributes. The k-modes algorithm (Huang, 1997) extends these
concepts to the categorical domains by defining new dissimilarity measures. There are two
inherent weaknesses of these approaches. First, they assume that the clusters are in the
form of a sphere; second, noise in the data may pose some problems. One of the early
scalable algorithms in this class is CLARANS (Clustering Large Applications based upon
Randomized Search) (Ng and Han, 1994). Also, Bradley et al. (1998) have given a scalable
clustering framework applicable to such algorithms.

Another class of clustering algorithms is hierarchical algorithms. These algorithms find
a dendogram representing the nested sequence of clusters. Divisive hierarchical algorithms
start with one cluster and recursively partition it to find the singleton clusters. Conversely,
agglomerative hierarchical algorithms start with singleton clusters and successively merge
them. The metrics used in such algorithms are generally variations of the single-link (Sneath
and Sokal, 1973), average-link (Voorhees, 1986), complete-link (King, 1967) and minimum
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variance (Ward, 1963) metrics. Some of the hierarchical clustering algorithms for large
datasets are CURE (Guha et al., 1998) and ROCK (Guha et al., 1999).

It is also possible to scan data to compute certain data summaries in the preprocessing
step. Then, these summaries can be used instead of the original data in the clustering
algorithm. BIRCH (Zhang et al., 1996) is one of the earliest algorithms that propose such a
preclustering approach for the purpose of scalability. An extension of BIRCH has recently
been given for mixed numerical and categorical attributes by Chiu et al. (2001). Also, similar
ideas have been applied for metric spaces in BUBBLE (Ganti et al., 1999).

Generally, the distance based algorithms do not perform well when the number of di-
mensions is high. The main reason is the distribution of data over different dimensions.
That is, there might exist some irrelevant attributes, and the data points may be far apart
due to these. One method to overcome this problem is to use feature selection or extraction
algorithms such as Principal Component Analysis (Jolliffe, 1986) to reduce the dimension
of the dataset. FastMap (Faloutsos and Lin, 1995) is a dimensionality reduction algorithm
that is scalable for large datasets. However, one problem with such an approach is that the
relevant features may be different for different clusters. So, it might not be possible to obtain
features that are relevant to all clusters. As a remedy for this, Agrawal et al. (1998) give a
scalable algorithm CLIQUE to identify dense regions in subspaces of maximum dimension-
ality. There exist also variants of this algorithm such as PROCLUS (Projected Clustering)
(Aggarwal et al., 1999), MAFIA (Merging of Adaptive Finite Intervals) (Nagesh et al.,
1999), ENCLUS (Entropy-based Clustering) (Cheng et al., 1999), and ORCLUS (Oriented
Projected Cluster Generation) (Aggarwal and Yu, 2000).

Although these algorithms can be used effectively for numerical attributes, the region
definition may not be appropriate for categorical data, mainly because there exists no natural
ordering between the values of such attributes. As an extension, Ganti et al. (1999) have
defined interval region for categorical data as the cross product of subsets of attribute values.

Another scalable algorithm for clustering categorical attributes is ROCK (Guha et al.,
1999). Here, unlike CACTUS, each cluster is defined as a set of data tuples. The similarity
between two tuples is defined to be the number of common neighbors for them. Since the
complexity of the algorithm is quadratic in the number of input data, the algorithm is first
applied on a random sample from the dataset, and then the remaining data is assigned to
the clusters discovered. We give an empirical comparison of ROCK with our algorithm in
Section 5.2.

Han et al. (1997) have given a clustering algorithm based on the large itemsets discovered
in the database. Here, each itemset is considered as a relation over some set of items, and a
hypergraph model is used to represent these relations. A hypergraph partitioning algorithm
is then used to obtain a set of item clusters. Finally as a postprocessing step, the vertices
and clusters that do not satisfy some constraints are eliminated. A disadvantage of such an
approach is that some unnatural constraints like balance are required for such partitioning
algorithms. It is possible to relax such constraints, but then some assumptions about the
input data (e.g. sparsity, well separatedness, etc.) might be required. Another disadvantage
here is that the clusters are defined as distinct sets of items. However, it is possible that
some items might define different clusters in different contexts, as explained in the previous
section.
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3. Relation modeling

We assume that the given dataset D = (I, T ) is in the form of a market basket data, and
it contains a set of items I and a set of transactions T , such that each t ∈ T is a subset of
I . Our discussions in this paper will be based on cooccurence patterns; however it is also
possible to extend these ideas to sequential relations (Feldman, 1997). To determine the
interestingness of a pattern, we define a weight function in Appendix A based on confidence
(Agrawal et al., 1993) values. However, it is also possible to incorporate other measures
such as interest (Silverstein et al., 1997) and improvement (Bayardo et al., 2000). In the
subsequent subsections, we give definitions for representing each transaction as a set of
these patterns and then we propose a hypergraph model based on these concepts.

3.1. Pattern representation

Given a set of interesting patterns P derived from the transaction set T , we propose the
following definition to represent each transaction t ∈ T as a set of patterns in P:

Definition 3.1. A transaction t is defined to contain a pattern p ∈ P properly if and only
if t contains p while not containing any superset of p, i.e., p ⊂ t and there does not exist
any ps ∈ P for which p ⊂ ps and ps ⊂ t .

This definition is mainly because of our assumption that we can infer no relation between
patterns by only inspecting the items that they contain. Initially, we treat all interesting pat-
terns as independent of each other, even if they have subset-superset relationships. Consider
for example two interesting patterns p1 = {milk, sugar} and p2 = {milk, sugar, flour}. If
for a transaction t , p1 ⊂ p2 ⊂ t , we say that the relationship t induces among these items is
of the form {milk, sugar, flour}, but not of the form {milk, sugar}. That is because both p1

and p2 have been discovered as interesting patterns, and it is possible that they have different
meanings. For instance p1 might be induced by the customers who like to drink milk with
sugar; however, the existence of flour in t might change the context to the customers who
want to prepare pastry.

This suggests a modification of the usual semantics for a pattern. The conventional
meaning of a pattern is the existence of the items in that pattern. So, a pattern p will always
imply its subset patterns, because the existence of the items in p will imply the existence
of the items in the subsets of p. However in our case, we do not want such implications to
exist between patterns, because we assume that we can not infer a relation between patterns
based only on the items they contain. For this reason, we give a different semantics for
a pattern as suggested by Definition 3.1. Here, if a relation among a set of items can be
captured by a pattern p, then the patterns that are subsets of p do not exist for that set of
items. To put it another way, for a pattern p to exist in a transaction t , it is required not only
the existence of the items in p but also the absence of items that will cause any superset of
p to exist in t . For the above example, pattern p1 means that milk and sugar exist, but flour
does not. So, the customers who buy milk, sugar, and flour are initally distinguished from
the ones who buy only milk and sugar.
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On the other hand, there might be an immediate relation between two patterns such as
p1 = {coffee, sugar} and p2 = {coffee, sugar, cream}, although our initial relation model-
ing distinguishes them. However, we can argue that these two patterns are expected to be
clustered together in the later phases of the algorithm if they really belong to the same cluster.
The main idea here is to model the relationships according to global relations rather than just
the contents. As an example consider the items coffee and water, which probably character-
ize more than one cluster in a dataset. Assume that there are patterns as p1 = {coffee, water},
p2 = {coffee, water, bagel, cheese}, and p3 = {coffee, water, chips, crackers}. In the be-
ginning, our relation model distinguishes each of these patterns, and considers them as
separate entities. After the clustering algorithm, they might end up in the same cluster, or
in different clusters, depending on the global relations in the dataset. For instance, it is
possible that p2 and p3 might end up in the clusters that characterize breakfast items and
snacks, correspondingly, while p1 is left out as an outlier. The point here is that we can
not conclude a direct relationship among these patterns in the beginning, just because they
contain coffee and water.

In association rule mining problem (Agrawal et al., 1993), support of a pattern p (denoted
as sup(p)) in a dataset D is defined to be the ratio of the number of transactions that contain
all the items in p to the total number of transactions in D. To extend this idea to the new
semantics of the patterns, we propose the following definition:

Definition 3.2. Assume that we are given a dataset D and a set of patterns P for this
dataset. The proper count of a pattern p ∈ P , denoted as procount(p), is defined to be the
number of transactions in D that contain p properly. The proper support of p is the ratio of
proper count of p to the total number of transactions in D, and it is denoted as prosup(p).

It is possible to make modifications on the itemset counting algorithms such as Apriori
(Agrawal et al., 1993) or DIC (Brin et al., 1997) for the purpose of finding the proper support
values of patterns. In Appendix B, we give such an algorithm, which is based on DIC.

3.2. Hypergraph modeling and relation summarization

As discussed earlier, having items in common may not necessarily mean that there is a
relation between patterns. Here, we propose a hypergraph model that uses the information
of the relations that exist globally in the database while determining the local relations.

Since a transaction is a set of items, it is natural to view it as incurring a relation over
the items it contains. Definition 3.1 suggests that it is also possible to view a transaction
as a set of patterns. Hence, each transaction can be considered as incurring a relation also
over some set of patterns. These relations can be modeled as a hypergraph by representing
each pattern as a vertex and each transaction as a net, corresponding to H1 = (P, TP )
in figure 1. Note that the number of nets in H1 is equal to the number of transactions in
D0, which is expected to be too large. For this reason, we first determine the interesting
relations over patterns in dataset D1 = (P, TP ) ≡ H1, and then approximate the relation
corresponding to each transaction in H1 by a set of these interesting relations. So, in the
new hypergraph (i.e. H2), each transaction corresponds to a set of interesting nets instead
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Figure 2. Relations among patterns induced by transactions: (a) actual relations, and (b) reduced set of relations.

of only one net. Since an interesting relation is expected to occur in several transactions,
there will be several nets in H2 that are structurally the same. By grouping such nets and
assigning an appropriate weight to each group, we can reduce the number of nets in the
hypergraph to the number of interesting relations discovered.

Figure 2 shows an example about such a hypergraph modeling, where each net is con-
nected to its vertices through a set of line segments. In part (a), transactions t1 and t2 are
represented as a set of patterns p1–p6. In the corresponding hypergraph model, there ex-
ists a vertex vi for each pattern pi , and a net n j for each transaction t j . Assume that in
the overall dataset, the discovered interesting relations are {p1, p2, p3}, {p3, p4, p5} and
{p5, p6} together with all their subsets. Depending on the concepts that Definition 3.1 is
based on, we find the interesting relations that are maximal with respect to each transaction.
In part (b), transactions t1 and t2 are shown as sets of such relations. Based on this, nets n1

and n2 are replaced with n11, n12 and n21, n22, n23 respectively. Here, since n12 and n22 are
structurally equivalent, they can be represented by only one net with a weight equal to 2
(assuming weights of individual nets are 1).

The rationale behind choosing the maximal relations with respect to a transaction can
be explained by an instance of this example. Consider the interesting relations {p1, p2, p3}
and {p2, p3}. Although both are subsets of t1, only the maximal one {p1, p2, p3} has been
taken for this transaction. Clearly the nets corresponding to these relations (i.e. n11 and n21)
have different semantics and t1 conforms to only one of them (i.e. n11).

Note that the hypergraph illustrated in figure 2(b) is in fact the reduced form of the
hypergraph in figure 2(a). Here, the globally uninteresting relations have been eliminated
while the interesting ones have been kept. For instance, since no interesting relation among
p4 and p6 exists in the database, the relation imposed by transaction t2 over these patterns
is ignored. So, we can say that the local relations induced by n1 and n2 are remodeled in
figure 2(b) according to the global relation information.

We can formally describe the above procedure for hypergraph modeling as follows.
Assume that we are given a dataset D0 = (I, TI ) and a set of interesting patterns P . We
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construct (possibly abstractly) a new dataset D1 = (P, TP ) such that every transaction tP

in TP corresponds to one transaction tI in TI and tP is the set of patterns p ∈ P that
are properly contained in tI . Then we find the interesting relation patterns in D1 by using
some pattern discovery algorithm, and denote this set as RP (meaning the relation set over
patterns). After that, we use an algorithm such as the one described in Appendix B to find
the proper support of each relation in RP . Finally, using the sets P and RP , we construct
hypergraph H2 = (V2,N2) such that V2 = P and N2 = RP . That is, for every p ∈ P there
exists a vertex in V2 and for every r ∈ RP there exists a net in N2. The weight of each net
is assigned the proper support of the corresponding r .

4. Pattern clustering

We propose a two phase approach to cluster hypergraph H2, which represents the relations
among patterns. As the first phase, a set of clusters Cin is obtained using a multilevel bottom-
up hypergraph clustering algorithm. Then, the sparse and well separated hypergraph H4

is constructed from H2 based on these initial clusters. As the second phase, the existing
metrics and algorithms are applied on H4 to find the final clustering result.

4.1. Clustering model and metrics

In most of the agglomerative hierarchical clustering algorithms (e.g. CURE (Guha et al.,
1998), ROCK (Guha et al., 1999), CHAMELEON (Karypis et al., 1999) the decision of
merging two clusters depends on the similarity between them. Such an approach is in fact
appropriate for a graph model, because each edge in the graph represents a relation between
a pair of vertices. However, a hypergraph model is more general in that the relations are
given among a set of vertices. So using a metric that exploits this extra information is more
appropriate in this case.

For the following discussions, assume that we are given a hypergraph H = (V,N ) and
a set of clusters C such that each ci ∈ C is a subset of V and for all pairs of clusters ci and
c j (i �= j), ci ∩ c j = ∅. In the given hypergraph, each net n ∈ N has a weight w(n), while
each vertex is assumed to be nonweighted. Since a net n and a cluster c are both subsets of
vertices, their intersection can be defined as the number of vertices that are both in n and c,
and denoted as |n ∩ c|. Finally, the number of vertices in n is denoted as |n| and the number
of vertices in c is denoted as |c|.

For a net n and a cluster c, if |n ∩ c|�= 0, we can say that there exists a mutual relationship
between n and c. We call such a relation net cluster co-relation and define it as follows:

Definition 4.1. Let P(A | B) denote the conditional probability of A given that B has
occurred. The net cluster co-relation cr (n, c) between a net n and a cluster c is:

cr (n, c) �= P(v ∈ c | v ∈ n) × P(v ∈ n | v ∈ c), (1)

where v denotes an arbitrary vertex.
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In fact the co-relation function is the product of two one-way relations. The first multi-
plicand indicates how much net n implies cluster c and the second one indicates how much
cluster c implies net n. This function can be formulated as:

cr (n, c) = |n ∩ c|
|n| × |n ∩ c|

|c| (2)

Note that throughout the paper, the first multiplicand will be referred to as the fraction of n
belonging to c, and the second will be as the fraction of c spanned by n.

Assume that we are to merge clusters ci and c j and obtain cluster ci j = ci ∪ c j .
For a net n for which |n ∩ ci | �= 0, if cr (n, ci j ) > cr (n, ci ), this means that: (1) n has
vertices in also c j , (2) there are not too many vertices not spanned by n in c j . So, we can
say that the change in the cr value captures both the similarity and the dissimilarity in terms
of net n between clusters ci and c j . Before defining a gain function for merging decisions
based on this concept, we should extend this idea for a cluster c to include all nets n ∈ N
for which cr (n, c) �= 0.

Definition 4.2. The quality of a cluster c, denoted as Q(c), is defined to be the weighted
sum of cr (n, c) values for all n ∈ N . Each weight in this sum is assigned according to the
weight of the corresponding n and the number of vertices that n spans in c. This can be seen
in the following formula:

Q(c) �=
∑

n∈N
|n ∩ c| ×w(n) × cr (n, c) (3)

Note that this quality function has been defined to facilitate the evaluation of a merging
decision. The initial quality of a cluster c can be compared with its quality after a merging
operation. However, it might not be so meaningful to compare the qualities of different
clusters, because there might be variations in the characteristics (net weights, number of
nets, etc.) of these clusters. Nevertheless, this does not pose a problem because, such a
comparison is not required in the algorithm we propose. As will be explained in the next
subsection, the vertices are visited in a random order, and the merging decisions are made
in a local fashion.

It is also possible to extend Definition 4.2 to define the quality function for a subset of a
cluster to facilitate comparison of the qualities of a cluster before and after merging.

Definition 4.3. Assume that we are given a cluster c and a set of vertices s such that s ⊆ c.
The quality of s in c (denoted as Q(s, c)) is defined as:

Q(s, c) �=
∑

n∈N
|n ∩ s| ×w(n) × cr (n, c) (4)

Observe that Q(si , c) + Q(s j , c) = Q(si ∪ s j , c) for any two mutually disjoint subsets si

and s j of c. Based on these definitions, we can finally define the merge gain for two clusters
as follows:
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Definition 4.4. If clusters ci and c j are to be merged to obtain cluster ci j , the merge gain
g(ci , c j ) for ci and c j is defined as:

g(ci , c j ) �= (Q(ci , ci j ) − Q(ci )) + (Q(c j , ci j ) − Q(c j )) (5a)

= Q(ci j ) − (Q(ci ) + Q(c j )) (5b)

To examine the intuition behind this gain function, consider the first term in Eq. 5(a). It is
in fact the weighted sum of the changes in net cluster co-relation values cr (n, ci ) for all nets
n ∈ N and n ∩ci �= ∅. As discussed before, the change in a cr (n, c) value during a merging
operation indicates both the similarity and dissimilarity between the merging clusters in
terms of net n. So, if we take a weighted sum of these changes for all relevant nets, we can
capture the overall similarity and dissimilarity between two clusters. For the proper weight
function, we should consider the relative importance of each net n for a given cluster c.
Here, if n spans more vertices in c and/or its weight is higher compared to other nets, we
expect that the change in cr (n, c) should be more important compared to other nets. This
is in fact what Eq. 5(a) suggests, as also can be clearly observed from the reformulation of
this equation:

g(ci , c j ) =
∑

n∈N
|n ∩ ci| ×w(n) × (cr (n, ci j ) − cr (n, ci ))

+
∑

n∈N
|n ∩ c j| ×w(n) × (cr (n, ci j ) − cr (n, c j ) (6)

4.2. Multilevel clustering algorithm

Based on the metrics we have defined in the previous subsection, we propose a bottom-up
clustering algorithm, which is applied on hypergraph H2 to produce a set of initial clusters
Cin. In this algorithm, each vertex is treated as a singleton cluster in the beginning and such
clusters are merged successively during the course of the algorithm. Since it is possible that
some incorrect merging decisions are made, we also propose a refinement scheme that is
incorporated between the merging operations.

The input of the algorithm is a hypergraph H = (V,N ), and the output is a set of clusters
C. The pseudocode for the top level of the algorithm is as given in figure 3. Here, in the
beginning of each level, the cluster set is initialized such that every cluster in C corresponds
to a vertex in V . Then the single level clustering procedure is executed, followed by the
refinement procedure. At the end of each level, a new hypergraph is created such that each
cluster in the old hypergraph corresponds to a single vertex in the new hypergraph. Note that
during this conversion, the necessary information (e.g. the number of vertices in a cluster
spanned by a net, etc.) is stored so that the calculations of the defined metrics give exactly
the same values for the old and new hypergraphs. In our implementation, the termination
condition occurs when no pair of clusters has been clustered in the previous level.

The single level clustering procedure is as shown in figure 4. Here, the aim is to increase
the quality of each cluster by successively merging appropriate clusters. For this, the vertices
are visited in a random order and the gain function given in Eq. (6) is used to determine the
vertices to be merged.
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Figure 3. Pseudocode for multivel clustering.

Figure 4. Pseudocode for single level clustering.

After each level of clustering, a refinement step is applied on the clusters. The reason for
this step is that the merging decisions made early in the clustering are not necessarily the
right ones. The approach we use here is based on extracting individual vertices from their
clusters and assigning them to the clusters that seem best at that time. In fact this procedure
is similar to the one given in figure 4. However, here instead of clusters, their constituent
vertices are visited in a random order. Each visited vertex is extracted from its cluster, and
it is treated as a singleton cluster for a remerging decision. Here, the same operations used
on a visited cluster in figure 4 are applied on this singleton cluster.

In fact, this refinement scheme is based on the assumption that during clustering op-
erations, it is more difficult for a poor cluster to grow in size than a good cluster.1 This
assumption is in fact due to the merging criterion we use: two clusters are merged only if
the similarities between them are high enough and the dissimilarities are low enough. Since
a poor cluster contains vertices from different natural clusters, it is expected to be dissimilar
to most of the other clusters. So it is more difficult for a poor cluster to be merged.

As an example, consider the hypergraph with eight vertices v1–v8 and seven equal-
weighted nets n1–n7 shown in figure 5. Here the natural clusters that we want to discover are
shown with dashed curves. In the beginning, one cluster for each vertex is created and they
are visited in a random order. Assume that the first visited cluster is the one corresponding
to v4. In this case, the merge gain will be maximum if the cluster corresponding to v5 is
selected. So the vertices corresponding to different clusters are merged together and form
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Figure 5. An incorrect merging decision is made if v4 is visited first. Solid curve shows the cluster formed after
this merging. Dashed curves show the natural clusters.

a poor cluster. Whatever the remaining visit order is, this cluster will not be merged with
another one. The reason is that it is dissimilar to v1, v2, and v3 because it contains v5; and it
is dissimilar to v6, v7 and v8, because it contains v4. So, the group v1, v2, v3 and the group
v6, v7, v8 are merged next. In the refinement step, when v4 and v5 are visited, they leave
their current clusters and move to the ones that they really belong to, that is v4 moves to
the cluster containing v1, v2, and v3; and v5 moves to the cluster containing v6, v7 and v8.
Note that in the early phases of the clustering, the most appropriate vertex to be merged
with v4 seemed to be v5. The main reason here was that none of the initial clusters had been
reflecting the characteristics of the natural cluster that v4 belonged to before v1, v2 and v3

were merged together.
For complexity analysis, consider one level of the clustering algorithm, which is given

in figure 4. Here, each cluster cm ∈ C is visited in a random order, and the gain function
g(cm, c j ) is computed for all relevant clusters c j . Observe that the merging operation here
is performed only if this gain function is positive. So it is not required to consider the
clusters that share no nets with cluster cm , because they will definitely give nonpositive
gains, according to Definition 4.4. To compute the relevant gain functions for the visited
cluster cm , each net n ∈ N for which |n ∩ cm| �= 0 is processed. Here, processing a net n
corresponds to computing its contribution to the gain function g(cm, c j ) for each cluster c j

for which |n ∩ c j| �= 0. Let sn , size of net n, denote the number of vertices connected to n,
i.e., sn = |n |. In the first level of the multilevel algorithm, each cluster in C corresponds to a
single vertex in V . So, the number of operations performed when net n is processed is O(sn)
in the worst case. Since each cluster is visited only once in one level, the number of times
net n is processed is O(sn). Hence, the total complexity of computing gain functions for
all vertices in one level becomes O(

∑
n∈N sn

2). Note that the merge operations in figure 4
are performed using disjoint set operations, the complexity of which are dominated by
the complexity of gain function computations. For practical purposes, we can consider
the number of levels in figure 3 as constant. As a result, the worst case complexity of
this multilevel algorithm can be considered to be O(

∑
n∈N sn

2). Observe that the relation
summarization technique proposed in Section 3.2 effectively reduces the execution time of
this algorithm through reducing the sizes and the number of nets of the input hypergraph.

4.3. Inter-cluster relation summarization

The metrics used in the multilevel algorithm to obtain the set of initial clusters Cin dictate
that the cluster sizes are not too large compared to the sizes of individual nets. This is
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Figure 6. Affinities of vertices v1 and v2 defining relations among clusters.

because, as the cluster sizes increase far beyond the sizes of the nets, there will be more
and more nets that induce dissimilarity between clusters. For instance, an internal net of a
cluster will always indicate dissimilarity for the further merging decisions. So the cluster
set Cin is expected to contain clusters that contain only strongly related vertices. Here, we
give a method to model the relations among these clusters by a more sparse hypergraph.
Here, each cluster c ∈ Cin is represented as a vertex in the new hypergraph, and the relations
are determined based on the vertices in H2.

Although each vertex in H2 has been assigned to a particular cluster, a vertex might still
have affinities to other clusters. We say a vertex v has affinity to a cluster c if the quality of
v in c (i.e. Q(v, c) in Definition 4.3) is high enough. Consider figure 6 as an example. Here,
the clusters that vertices v1 and v2 belong to are not specified, but the affinities of them to
the given clusters are shown with the dashed arrows. Observe that if a vertex has affinity to
different clusters, we can infer that there should exist some relation among these clusters.

A user controllable threshold value is used to determine the affinities of vertices to
clusters. For a vertex v, assume that cm is the cluster for which Q(v, cm) is maximum. Then,
vertex v is defined to have affinity to a cluster ck if and only if Q(v, ck)/Q(v, cm) is greater
than the threshold value. It is possible to model the nets of the new hypergraph based on
these affinities. The straightforward approach is to create a new net n for each vertex v in
H2, such that n spans the vertices corresponding to the clusters that v is affine to. For the
example of figure 6, the net created for v2 would span the vertices corresponding to the
clusters c1, c2 and c3. Let us denote this hypergraph asH3 = (Cin,PC). Note that the number
of nets in H3 is equal to the number of vertices in H2. Since our aim is to obtain a sparse
hypergraph, it is required to decrease this number.

In fact, this problem is similar to the one in Section 3.2. In both, we have a set of data
items with several relations among them, and our aim is to obtain a global summary of these
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relations. So, we use a similar method also here. Assume that a set of interesting relations
RC is discovered for D3 ≡ H3, using an existing pattern discovery algorithm. We construct
the new hypergraph H4 = (V4,N4), by assigning a vertex for each cluster in Cin and a net
for each relation in RC . Then, for each net n ∈ N4, we assign a weight that is equal to
procount(rn)/

∑
v∈n |cv|, where rn is the relation corresponding to n and cv is the cluster

corresponding to v. Observe that the weight of each net is normalized by the sum of the
sizes of relevant clusters. The intuition here can be explained by the help of an example.
Assume that there exists a relation r over three clusters c1, c2 and c3. If this relation is
extremely strong, then all the vertices in these clusters would induce this relation. So the
fraction of these vertices that actually incur this relation gives a measure of the strength of
this relation.

4.4. Clustering sparse hypergraph

Since hypergraph H4 is expected to be sparse and well separated, the existing partitioning
based metrics and algorithms can be used effectively. In our current implementation, we
have used a straightforward approach that is based on the minimum cutsize metric (Lengauer,
1990), in which the aim is to minimize the number of external nets. Note that we say net
n is external if all the vertices v ∈ n do not belong to only one cluster. The algorithm we
use here is greedy in nature. At every step, we merge the clusters that will cause the largest
decrease in the cost function. Such merging operations goes on until no such operation is
possible, or the user wants no more merging.

5. Experimental results

First, we have applied our clustering framework on two real life datasets to demonstrate
the effectiveness of our models. After that, we have used a synthetic data generator to
perform empirical comparisons with state-of-the-art clustering algorithm ROCK in terms
of sensitivity and scalability characteristics.

In all our experiments, we have used a simple scheme based on discovering large itemsets
to determine the sets P , RP and RC . For the relation sets RP and RC , we have taken all
the large itemsets discovered in the corresponding dataset D1 and D3, respectively. For the
pattern set P , we have eliminated the large itemsets with too small weights (as defined in
Appendix A), assuming that they are not interesting. In our experiments, we have used the
public license Apriori implementation by Christian Borgelt2 to discover the large itemsets.

The minimum support parameter for the Apriori program is set according to the context
and the input dataset. The method we have proposed in Appendix B to find the proper support
values and our multilevel clustering algorithm require no parameters at all. To determine
the affinity of a vertex to a cluster for creating the hypergraph of the second phase, we have
allowed a 20% difference margin in the quality functions; that is we have set the threshold
value mentioned in Section 4.3 to 0.8. The merging operations of the second phase did not
require our intervention, and continued until no such operation is possible.

To evaluate the final clustering result, we have made one additional pass over the database
to assign each transaction in the dataset to one of the clusters in C f . Let w(p) denote the
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weight value for pattern p as defined in Appendix A. To assign transaction t to a cluster, we
have considered each pattern p that is properly contained in t and have selected the cluster
c for which

∑
p∈c w(p) is maximum.

We have performed our experiments on a 1.33 GHz AMD Athlon PC with 512 MB RAM,
and Linux Operating System. The programs used for our framework have been written partly
in C and C++ languages. For the comparisons we make in Section 5.2, we have used an
implementation of ROCK in C language, supplied by Vipin Kumar and Micheal Steinbach.

5.1. Experiments on real life datasets

We have applied our clustering framework on two real life datasets. The first one is the
Mushroom dataset from UCI Machine Learning Repository.3 Here, each record in the
dataset contains the attributes of a single mushroom. Although the mushrooms are from
23 different species, the class information provided is only in terms of being edible or
poisonous. The number of data records is 8124, and the number of attributes is 22. We have
used the approach given by Guha et al. (1999) to convert this dataset to a market basket
type data. Then we have eliminated the items that occurred in more than 3000 transactions,
because such items cause an exponential blow-up in the resource consumption of the Apriori
algorithm (Bayardo et al., 2000). As a result, the new dataset contained 8124 transactions
and 95 items.

The second dataset we use is Reuters-21578, version 1.0, text categorization test collec-
tion.4 In this dataset, each document is a Reuters newswire story, and has been assigned
some category information by a human indexer. We have eliminated the documents that
belonged to no category or more than one category to obtain a set of 8654 single category
documents. To convert this dataset to a market basket type data, we have made use of the
term weighting scheme given by Salton et al. (1988). To apply it in our context, we have
first eliminated the words that occurred too infrequently (in less than 50 documents) or too
frequently (in more than 1000 documents). Then for each document, we have selected 15
words that give the highest value for the product of term frequency and inverse document
frequency (Salton and Buckley, 1988). As a result, we have obtained a market basket data
where each document corresponds to a transaction, and each selected word corresponds
to an item. The number of transactions in this dataset is 8654, and the number of items is
16839.

For both datasets, the overall framework has been completed in less than 2 minutes.
We have observed that discovering interesting patterns and relations were the dominating
operations in terms of execution times.

5.1.1. Mushroom dataset. We have applied the Apriori algorithm on the original dataset
with a minimum support threshold of 1%. Then we have eliminated the patterns that have
weights (as defined in Appendix A) less than 0.3. So, we have obtained an interesting pat-
tern set containing 999 elements. The minimum support parameters used to discover RP
and RC have been set to 0.5%. In Table 1, the discovered clusters that have sizes greater
than 30 are demonstrated. Here, 32 out of 36 clusters contain either completely edible,
or completely poisonous mushrooms. Observe that the poisonous mushrooms have been



HYPERGRAPH MODELS FOR PATTERN-BASED CLUSTERING 45

Table 1. Clustering results for Mushroom dataset.

Edible Poisonous Edible Poisonous Edible Poisonous

32 0 32 0 42 0

54 0 48 0 44 0

56 0 30 0 96 0

48 0 48 0 0 276

96 0 30 0 38 0

180 0 184 0 0 1708

88 0 104 0 52 0

48 0 48 0 0 1280

48 192 304 0 908 15

140 0 56 256 48 0

48 0 48 0 72 0

220 0 72 0 48 35

grouped in a small number of clusters with large sizes. The main reason is that the charac-
teristics that cause a mushroom to be poisonous are more decisive compared to the edible
characteristics.

5.1.2. Reuters dataset. The minimum support thresholds we have used for discovering
the sets P , RP and RC are 0.5%, 0.05%, and 2% respectively. While selecting the patterns,
we have used a minimum weight threshold of 0.2. The results are demonstrated in figure 7.
Here, each bar corresponds to one cluster, and illustrates the category distribution of the
documents in that cluster. Note that only the clusters that contain more than 30 documents
have been included in these figures. We also demonstrate some of the corresponding pattern
clusters in figure 8.

In Section 1, we have argued that some items might have different meanings in different
contexts. An example for this can be the word adjust in clusters 3 and 4 as seen in figure 8.
When it occurs with season, a corporate category is inferred (i.e. cluster 3), and when it
occurs with split, the category becomes economy (i.e. cluster 4). Also, consider cluster 29,
which is characterized by only one pattern. Here, this pattern occurs due to the articles about
the shortage of Sterling in England. Observe that none of these words are meaningful by
themselves; but when they occur together, they define a cluster with category money-fx (i.e.
money foreign exchange) as seen in the document clustering results in figure 7.

Observe that in the majority of the clusters in figure 7, only a single category dominates
each document cluster. However, there also exist some poor clusters, in which documents
from different categories exist. By observing the pattern clusters given in figure 8, it is
possible to argue that some of these poor clusters in fact define new categories. For instance,
clusters 16 and 45 contain documents from different categories (see figure 7), but all these
documents are related to countries Canada and Japan respectively (see figure 8).

Another interesting point to mention is that there exist different clusters for the same
categories as can be seen in figure 7. This is mainly due to different subcategories in a
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Figure 7. Document clustering results for Reuters dataset.

category. Consider for example clusters 19 and 53. Although both belong to the category
commodity, one is about coffee, and the other is about sugar as seen in figure 8. Clusters 15,
25 and 31 can be another example for this. Again, all of them are from the same category
corporate, but each one describes a different concept.
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Figure 8. Some of the pattern clusters for Reuters dataset.

5.1.3. Discussions. At the end of the framework we have given, each transaction is as-
signed to one of the pattern clusters discovered. However, another application here could be
to use these pattern clusters as new features for the transactions. For instance, Baker et al.
(1998) have proposed a supervised feature clustering method for text categorization. Here,
the similar words are grouped together and these groups are used as the new features of the
documents. Obviously, such a clustering can be used only for the words that have context in-
sensitive meanings (e.g. wheel, tire, throttle, honda, harley, etc.). To overcome this problem,
we can extend this idea to the pattern clusters. Consider for example cluster 20 illustrated in
figure 8. The words compare, january, february, statistics, rose, index may be meaningless
when they are viewed independent of each other. However, if they occur in the patterns
shown in the figure, they impose the category economic. Since all these patterns in fact
describe the same concept, it should not matter which pattern is contained by a transaction.
So, we can view each pattern cluster c as a feature fc, and say a transaction t has the feature
fc if and only if t contains at least one of the patterns in c, according to Definition 3.1. Such
an approach can be effectively used as a dimensionality reduction algorithm.
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5.2. Experiments on synthetic data

We have also performed experiments on synthetic datasets to compare the effectiveness
of our algorithm with ROCK. For this, we have implemented a synthetic data generator
similar to the one that has been used by Guha et al. (1999) to perform experiments on
ROCK. Here, we have started with a base case where the clusters are fairly well separated,
and the transaction sizes are uniform. Then step by step, we have increased the inter-cluster
similarities; increased the variations in transaction sizes; and decreased the intra-cluster
similarities. For each case, we have compared the results of our algorithm with ROCK.

For the base case we have a dataset with 100000 transactions, and 5000 items. While
a small portion of these items belong to a group of clusters, the majority of the items are
outliers. For the base case there are 10 clusters, each containing 16 items. The 60 percent of
the items in a cluster exclusively belong to that cluster. The remaining 40 percent is selected
from a shared pool of items. For the purpose of creating significant inter-cluster similarities,
we have kept the size of this shared pool much smaller than the actual number of items.
Specifically, there are 48 items in this pool for the base case. In other words, 40 percent of
the items in each cluster are selected randomly among these 48 items.

After the natural clusters in the dataset are specified, each transaction is randomly assigned
to one of these clusters. A transaction that belongs to a cluster contains a small number
of items from that cluster, along with other randomly selected items. Namely for the base
case, each transaction contains 25 items, 4 of which are randomly selected from the items
of the corresponding cluster, and the remaining 21 are randomly selected among all items.
We can argue that this is close to the real life situation where a customer buys a couple of
items from a cluster, along with a variety of other irrelevant items.5 Also, such an approach
results in weak intra-cluster similarities, so that we can compare the performance of the
algorithms effectively.

Dataset 1 in Table 2 is the base case described above. To create Dataset 2 mentioned in
the same table, we have decreased the number of items in the shared pool from 48 to 12.
That is, 40 percent of the items in each cluster are selected randomly among 12 items now,
instead of 48. So, the similarities between different clusters (in terms of the common items
contained) increases considerably in Dataset 2. For Dataset 3 in Table 3, we have used
the same parameters used for Dataset 2, but we allowed variations in the transaction sizes.
Specifically, instead of setting the size of each transaction to 25, we have set it to a random

Table 2. Clustering results for synthetic dataset.

Dataset 1 Dataset 2

% Clustered % Error Time (sec) % Clustered % Error Time (sec)

Pattern Based Cl. 99.60 0.11 340 98.63 1.09 301

ROCK-sample 100.00 0.38 113 98.16 17.42 129

ROCK-fast label 100.00 2.07 522 100.00 20.26 533

ROCK-slow label 100.00 0.51 915 100.00 16.50 907
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Table 3. Clustering results for synthetic dataset (cont’d).

Dataset 3 Dataset 4

% Clustered % Error Time (sec) % Clustered % Error Time (sec)

Pattern Based Cl. 98.58 1.05 319 90.98 4.61 274

ROCK-sample 91.26 32.96 202 94.34 63.32 234

ROCK-fast label 99.41 25.23 500 100.00 66.94 586

ROCK-slow label 99.98 20.67 881 98.35 67.77 885

number between 10 and 40. Finally for Dataset 4, we have decreased the ratio of exclusive
items in each cluster from 60 percent to 40 percent, in addition to the changes described
above. That is, 40 percent of the items in each cluster exclusively belong to that cluster, and
the remaining items are selected from the shared pool of 12 items. It is obvious that such an
approach decreases the intra-cluster similarities, while increasing the similarities between
different clusters.

We have executed our algorithm and ROCK on these datasets, and reported the results
in Tables 2 and 3. Here, we have given the results for three different executions of ROCK.
First, we have performed random sampling on the given dataset to obtain a dataset of 5000
transactions. Then, we have executed ROCK on this small dataset, and reported the results
on the second rows (i.e. ROCK-sample) of the tables. Note that only the transactions in
the sample dataset are clustered here. The method given by Guha et al. (1999) is to label
the transactions in the original dataset based on these clustering results. For this purpose,
a set of representative transactions Li is chosen for each cluster i . Then, each transaction
T in the original dataset is assigned to cluster j such that T has the maximum normalized
number of neighbors in L j . In our experiments, we have used this approach to obtain the
results given on the third and fourth rows (i.e. ROCK-fast label and ROCK-slow label) of
the tables. Here, we report two different results for the labeling, because there is a runtime-
quality tradeoff depending on the sizes of the chosen representative sets Li . For the faster
execution (i.e. third row of the table), we have chosen the representative set Li as 20 percent
of the transactions in cluster i . For better quality but slower execution (i.e. fourth row), we
have set this ratio to 40 percent.

We needed two more parameters to execute ROCK on a sample dataset: k and θ . k is
simply the number of clusters to be obtained as a result, whereas θ is the threshold for the
similarity measure. More specifically, two transactions Ti and Tj are defined to be neighbors
if and only if |Ti ∩Tj |

|Ti ∪Tj | ≥ θ . For the purpose of handling outliers effectively, it is suggested by

Guha et al. (1999) that k should be set to a number larger than the actual number of natural
clusters. In accordance with this, we have executed ROCK on each dataset by setting k to
10, 25, 50, and 75 in turns. At the same time, for each k value we have tried a different
θ value in 0.01 increments to find the best (k, θ ) combination for each dataset. It turned
out that the best results for each dataset are obtained by using one of the following (k, θ )
combinations: (25, 0.05), (25, 0.06), (50, 0.05), and (50, 0.06). Note that we have reported
only the best results obtained for each dataset in Tables 2 and 3.
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On the other hand, we needed to supply parameters for the pattern discovery algorithms
we have used in our framework. Here, we have set the minimum support thresholds as
0.004, 0.0004, and 0.004 to discover the sets P , RP and RC , respectively.6 The minimum
confidence thresholds we have used for the corresponding datasets are 0.1, 0.1, and 0.4,
respectively. We have used the same parameters to obtain all the results reported in the first
rows of Tables 2 and 3.

Observe that the given tables illustrate the clustering results in terms of three different
criteria. The first one (% clustered column) is the percentage of the transactions properly
clustered. We define the properly clustered transactions for both algorithms as the ones
belonging to clusters of sizes larger than 2 percent of the given dataset. The second criteria
(% error column) is the percentage of the incorrectly clustered transactions. For instance,
if a discovered cluster contains 2000 transactions from natural cluster A, 500 transactions
from natural cluster B, and 200 transactions from natural cluster C, we define the number
of incorrectly clustered transactions for this cluster as 700. Finally, the last criteria is the
total execution time required to obtain the reported clustering results.

5.2.1. Discussions. The results demonstrate that performance of ROCK starts to degrade
when the intra-cluster similarities are weakened, and the inter-cluster similarities are made
denser. However, the framework we propose still gives relatively good results because of
the existence of patterns defining the natural clusters. In other words, despite the fact that
different clusters share a lot of items, it is the cooccurence of these items in the transactions
that defines the natural clusters.

Actually, there are some similarities between ROCK and our algorithm in capturing global
relationships in the dataset. For example, consider two transactions T1 and T2. According
to the model used in ROCK, each transaction Ti that shares enough number of items with
T1, and enough number of items with T2 will incur a relationship between T1 and T2, since
Ti is defined to be a common neighbor for T1 and T2. However in our model, T1 and T2 are
considered in terms of the interesting patterns that they contain. For simplicity, assume that
T1 contains only pattern p1, and T2 contains only p2. Then each transaction Ti that contains
both p1 and p2 (and hence that is a common neighbor for T1 and T2) will incur a relation
among p1 and p2—but not among T1 and T2, as it is the case in ROCK.

Modeling relations among patterns instead of transactions has some advantages. First of
all, our clustering algorithm does not directly depend on the actual transactions. For instance,
we have shown in the experiments that our framework is not affected by the variations in
the transaction sizes. However, since ROCK uses a static model for similarity modeling, we
have observed some degradations by such variations. We can argue that a single θ value is
not sufficient to model both the dense relationships (e.g. two transactions for which 4 out
of 10 items are common), and the weak relationships (e.g. two transactions for which 4 out
of 40 items are common) in the dataset.

Another advantage is that we don’t need to make some unrealistic assumptions about
the transactions, as long as we can use an effective pattern discovery algorithm for the
given dataset. For instance in real life, a customer is unlikely to buy items from only one
cluster. As an example, consider a customer who buys items for breakfast, and items for
an infant. We can say that this customer belongs to two different clusters. If most of the
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Figure 9. Scalability results for ROCK and our pattern based clustering algorithm.

transactions in the dataset are in this form, it becomes difficult to model relationships based
on pairwise similarities between transactions. However, if the pattern discovery algorithm
used can handle such cases effectively, our framework can still be used for clustering such
a dataset.

5.2.2. Scalability analysis. As mentioned earlier, our framework uses the original dataset
only to discover the interesting patterns, and to model the relations among these patterns. The
actual clustering algorithm is performed on the hypergraph that represents these relations. In
the end, a single scan is performed on the original dataset for the purpose of assigning each
transaction to a cluster. So, we can say that scalability of our framework mainly depends
on the scalability characteristics of the pattern discovery algorithms used. Since we have
used Apriori in our implementations for this purpose, we can expect the overall framework
to scale well with the size of the dataset.

Figure 9 gives a comparison of our framework with ROCK algorithm in terms of scal-
ability. The dataset we have used in this experiment is the base dataset we have described
in the previous subsections. The results show that both algorithms scale linearly with the
size of the dataset. Note that ROCK performs the actual clustering on the sample dataset,
of which size was kept constant in our experiments. The only operations performed on the
original dataset by ROCK are sampling and labeling.

6. Conclusions

We have proposed a novel framework for the problem of clustering in large databases. The
main idea here has been to view each transaction as a set of interesting data patterns. We did
not focus on how to select such patterns, because it is a separate research subject by itself.
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However, we have shown that even the simplest scheme that is based on support and con-
fidence definitions gives meaningful results. The main reason for this is that, the clustering
algorithm we have proposed handles some of the possible imperfections in selecting these
patterns. For example, if a long pattern has not been selected, the patterns that are subsets
of this pattern are clustered together to give the same effect. Or, if an irrelevant pattern is
selected, it is left as a singleton, because it is dissimilar to the other patterns.

In the experiments, we have first used two real life datasets of which characteristics are
quite different. Mushroom dataset is in fact a categorical data with a relatively small number
of attributes, and the relations in this dataset are quite dense. Conversely, the relations in
Reuters data are sparse, and over ten thousand items (i.e. words) are contained in the dataset.
Despite this difference, the framework we have given has discovered meaningful clusters in
both datasets. Also, our experiments on synthetic data demonstrated that the framework we
propose performs better than state-of-the-art clustering algorithm ROCK especially when
the clusters are not well separated.

In this work, several novel concepts were blended in a framework for the problem of
clustering in large databases. However, these concepts can also be effectively used separately
for other applications in different domains. For instance, the idea of representing each
transaction as a set of interesting patterns can be used for modeling similarities between
transactions in some other data mining algorithms that require similarity modeling. The
relation summarization technique we have given to obtain a reduced hypergraph can find
applications in the out-of-core hypergraph partitioning problem. The models and metrics
we have proposed for merging decisions in initial clustering can also be exploited in the
coarsening phases of other hypergraph partitioning algorithms. Similarly the refinement
step embedded between levels and the sparsening model based on an initial clustering can
be used with slight modifications in different multilevel bottom-up algorithms.

Appendix A: Pattern weighting

An association rule is defined as an implication of the form A ⇒ B, where A and B are
disjoint itemsets. A is called the antecedent and B is called the consequent of the rule.
The support of an association rule is the support of the itemset (A ∪ B). The confidence of
the rule, denoted as conf (A ⇒ B) is given as the ratio of sup(A ∪ B) to sup(A). To assign
a weight for a pattern, Han et al. (1997) used an approach based on confidence values.
According to this, the weight of a pattern is the average confidence value of the association
rules that include all the items in the corresponding pattern and that have a singleton as
a consequent. For example, the weight of a pattern {a, b, c} is equal to the average of
confidence values of the following rules: {a, b} ⇒ {c}, {a, c} ⇒ {b} and {b, c} ⇒ {a}. This
weighting schema is in fact based on the existence of a pattern and its subsets. However,
for the new semantics we have given in Definition 3.1, the absence of the supersets of a
pattern should also be considered. For example, assume that all subsets and supersets of
a pattern {a, b, c} are as shown in figure 10. Assume further that each rational number on
the arrow of the form X → Y is equal to the confidence value of the rule X ⇒ Y . Note
that according to the approach given by Han et al. (1997), the weight of {a, b, c} should be
equal to the average value of the arrows entering it (i.e. 0.5). In our case, we should also



HYPERGRAPH MODELS FOR PATTERN-BASED CLUSTERING 53

Figure 10. Assigning a weight to pattern {a, b, c}.

Figure 11. Trie data structures (a) used in DIC algorithm and (b) modified version for finding proper supports.

take into account the leaving arrows. An arrow leaving p and entering ps with a confidence
value f means that f fraction of the transactions t for which p ⊂ t do not properly contain
p because p ⊂ ps ⊂ t . If there are too many such transactions for a pattern p, we can
expect that p is not so important compared to its supersets. To incorporate such information
into the weighting schema, we multiply the ratio prosup(p)/sup(p) (see Definition 3.2 in
Section 3.1 for prosup) with the weight function given above. For instance, in figure 10, the
weight of p = {a, b, c} becomes 0.5 × prosup(p)/sup(p).

Appendix B: Finding proper support values

Given a dataset D and a set of patterns P , we are to find the proper support value of
each p ∈ P . At first thought, it might seem that this can be accomplished by applying
Sylvester’s principle of inclusion and exclusion on the support values of the given patterns.
Unfortunately, such a simple scheme is not guaranteed to work due to the possibility of
absence of some patterns in P . For instance, if P = {{a}, {a, b}, {a, c}}, it is not possible to
compute the proper support of {a} using only the support values of these patterns, because
the support of {a, b, c} is not given. So it is required to make a pass over the data and count
the proper occurrences of given patterns.
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Figure 12. Algorithm to increment the counts of patterns properly contained in a transaction.

For this aim, we represent the pattern setP by a trie structure similar to the one used in the
DIC algorithm (Brin et al., 1997). Here, a node with depth d is created corresponding to each
pattern with d items. The items in the patterns are assumed to be sorted according to some
specific order. The root node in the trie represents the empty pattern, and each remaining
node u represents a pattern p ∈ P . The label of node u is the last item in the corresponding
pattern p, and the labels of the nodes from root to u give the remaining items in p. Such a data
structure corresponding to the pattern set P = {{a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}
is given in figure 11(a). The modification we have made to this structure can be seen in
figure 11(b). Here, each node u in the tree has pointers to the nodes corresponding to the
subsets of u that are exactly one level above of u.

After constructing this data structure, a pass over the entire dataset is made and for each
transaction ti , function INCREMENT-COUNTERS (figure 12) is called with the parameters:
u = root, t = ti and index = 1. Note that this function is based on the corresponding
Increment function in the DIC algorithm. The only difference is the for loop at the beginning.
During the traversal of the nodes for a transaction t , if the node corresponding to a pattern
(e.g. {a, b, c}) is reached, this means that the nodes corresponding to its subsets either have
been reached (e.g. {a, b}) or will be reached later (e.g. {b, c}). So, the count values of such
subsets should be decremented to compensate the increment performed when these nodes
are reached. The lastsub field assures that the count of a node is decremented at most once
for a transaction.

Compared to DIC, it seems that time and space complexity of this algorithm is higher.
However, observe that this is only a postprocessing step, and the data structure used consists
of only the already discovered patterns instead of all the candidate itemsets.
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Notes

1. A cluster is said to be good if most of the vertices in that cluster are from only one natural cluster and poor if
no such generalization can be made.

2. see http://fuzzy.cs.uni-magdeburg.de/ borgelt.
3. see http://www.ics.uci.edu/mlearn/MLRepository.html.
4. see http://www.research.att.com/ lewis/reuters21578.html.
5. Of course, the assumption that a transaction belongs to only one cluster is still unrealistic (i.e. a customer might

buy sets of items from more than one cluster), however we will discuss this issue in the next subsection.
6. We have also performed some parameter analysis on Dataset 4 (i.e. the most challenging dataset). We have

observed that independently varying the first support value between 0.001–0.004, the second between 0.0001–
0.0006, and the third between 0.003–0.006 had almost no effect on the results obtained. However, decreasing
the support values further led to exponential blow-up in number of patterns, and the programs terminated due
to insufficient memory. On the other hand, increasing them beyond these values resulted in not discovering
most of the patterns, and the number of transactions properly clustered was decreased.
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