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a b s t r a c t 

Recent developments in pattern analysis have motivated many researchers to focus on developing deep 

learning based solutions in various image processing applications. Fusing multi-modal images has been 

one such application area where the interest is combining different information coming from different 

modalities in a more visually meaningful and informative way. For that purpose, it is important to first 

extract salient features from each modality and then fuse them as efficiently and informatively as pos- 

sible. Recent literature on fusing multi-modal images reports multiple deep solutions that combine both 

visible (RGB) and infra-red (IR) images. In this paper, we study the performance of various deep solutions 

available in the literature while seeking an answer to the question: “Do we really need deeper networks 

to fuse multi-modal images?” To have an answer for that question, we introduce a novel architecture 

based on Siamese networks to fuse RGB (visible) images with infrared (IR) images and report the state- 

of-the-art results. We present an extensive analysis on increasing the layer numbers in the architecture 

with the above-mentioned question in mind to see if using deeper networks (or adding additional layers) 

adds significant performance in our proposed solution. We report the state-of-the-art results on visually 

fusing given visible and IR image pairs in multiple performance metrics, while requiring the least num- 

ber of trainable parameters. Our experimental results suggest that shallow networks (as in our proposed 

solutions in this paper) can fuse both visible and IR images as well as the deep networks that were pre- 

viously proposed in the literature (we were able to reduce the total number of trainable parameters up 

to 96.5%, compare 2,625 trainable parameters to the 74,193 trainable parameters). 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

With the ever-growing capabilities of deep networks as in 

abaee et al. [1] , Valiente et al. [2] , Collobert and Weston [3] ,

any industries around the world are now prioritizing deep learn- 

ng in their solutions to keep up with the relevant state-of-the-art 

esearch. As a particular example, consider security and defence 

elds in which various surveillance applications require more so- 

histicated visual representations that will reveal the most infor- 

ation out of a given scene. A particular modality that is widely 

sed in such pattern analysis applications is infrared (IR) imaging. 

n infrared camera operating at the thermal spectrum captures the 

hermal radiation emitted by the objects in the scene and an in- 

rared image represents that information in a visual form. On the 

ther hand, visible (VIS) image is taken in the visible domain of 
∗ Corresponding author. 

E-mail address: sedat.ozer@ozyegin.edu.tr (S. Özer) . 
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he spectrum (which is typically saved in RGB or in grayscale for- 

at) and it captures the information of the visible light bouncing 

rom the materials or object surfaces in the scene. It carries more 

f the surface texture and shape information. Consequently, visi- 

le and IR images carry different properties of a scene. A recent 

rend in pattern recognition is efficiently fusing those two imaging 

odalities into a single and high quality visual summary (i.e., into 

 single “fused” image) that contains the important and descriptive 

nformation coming from both of those modalities. 

Multi-modal image fusion has been studied in various fields in- 

luding pattern recognition, image processing, computer vision and 

emote sensing. Sample works can be found in Sellami and Tab- 

one [4] , Li et al. [5] , Chen et al. [6] . For example, in Yang et al.

7] a 6-layer network was proposed where the first 3 layers were 

onvolutional and the last 3 layers were fully connected layers to 

use hyperspectral image with the multispectral image. As another 

xample, in Shao and Cai [8] a two-branch network was proposed 

o fuse two modalities (multispectral image and panchromatic im- 

ge). The authors of Shao and Cai [8] proposed using different 

https://doi.org/10.1016/j.patcog.2022.108712
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2022.108712&domain=pdf
mailto:sedat.ozer@ozyegin.edu.tr
https://doi.org/10.1016/j.patcog.2022.108712


S. Özer, M. Ege and M.A. Özkanoglu Pattern Recognition 129 (2022) 108712 

n

p

8

o

o

d

f

c

c

j

t

e  

i

w

t

g

i

t

s

t

n

a

m

u

d

p

a

m

l

i

k

(

[

o

a

e

n

i

b

h

o

i

t

l

r

t

h

p

i

n

p

u

l

o

i

t

m

c

s

i

t

m

r

f

t

t

l

f

i

i

a

m

i  

S

u

l

a

t

a  

e

e

c

p

i

T

a

s

s

c

o

c

j

i

a

i

i

m

a

n  

e

n

l

s

m

a

l

o

m

c

i  

i

r

t

s

p

n

(

umbers of layers in different branches. In one branch, they pro- 

osed 2 (and 4) layers while in the other one, they proposed using 

 layers. At this point, it is important to note that the research 

n developing data fusion algorithms covers a broader spectrum 

f applications and there are significant differences between many 

ifferent types of applications. For example, in fusion applications 

or object detection, it is important for such algorithms to focus on 

ertain features of the objects of interests in images, as opposed to 

onsidering any and every detail in a given entire image. Such ob- 

ect detection algorithms typically require annotations in addition 

o multi-modal input image sets. Examples can be found in Chen 

t al. [9] , Zhou et al. [10] . Typically, the goal in such applications

s obtaining a more reliable bounding box information as output 

hen the multi-modal image set is given as input. Consequently, 

hey focus on learning the edge and texture information in those 

iven bounding boxes. Another important application area is fus- 

ng different modalities into a single and informative image con- 

aining salient information from each modality. The difference in 

uch applications from the object detection based applications is 

hat salient image-fusion applications typically do not utilize an- 

otations and therefore they consider all the pixels in given im- 

ges as opposed to focusing only on the objects of interests. While 

ulti-model techniques can be useful in many applications, the 

sed modality and its properties can also be important, especially 

uring the training stage of learning-based algorithms. For exam- 

le, while structural similarity may be a good measure to fuse IR 

nd visible images, it may not be a good one to combine other 

odalities. Therefore, in this paper, we limit our work with the 

ine of works that combine particularly the IR images with the vis- 

ble ones. 

As the need for fusion algorithms increases in various mar- 

ets, the trend in designing algorithms leans towards using deep 

or even deeper) networks for increased accuracy, as in Li et al. 

5] , Shao and Cai [8] . However, another important aspect in vari- 

us fields to fuse images is the computational complexity and the 

rchitecture’s simplicity (referencing Occam’s Razor as in Blumer 

t al. [11] ). Computational complexity is directly related to the total 

umber of trainable parameters in a neural network. The complex- 

ty becomes even more important when the algorithm runs on mo- 

ile and autonomous vehicles (drones, cars, etc.) due to the limited 

ardware and power constraints. Unfortunately, there is a trade- 

ff between computational efficiency and accuracy and that aspect 

s yet to be studied in detail in the literature for networks fusing 

hose two imaging modalities. Most relevant literature using deep 

earning predominantly focuses on how to get higher (better) accu- 

acy in different metrics in terms of the output quality by ignoring 

he added computational burden. In many of those lines of work, 

owever, it remains unclear how much they truly add to the com- 

utational performance by using deeper and deeper networks, i.e., 

t remains unclear if using additional layers would make any sig- 

ificant difference in accuracy, while certainly increasing the com- 

utational cost. 

Our main goal in this paper, unlike the mainstream trend of 

sing deeper and more complex networks to fuse modalities, is to 

ook for how shallow we can go in a network to get comparable 

r even better accuracy while having less computational complex- 

ty when compared to the existing relevant (and possibly deeper) 

echniques in the literature. As also mentioned above, since multi- 

odal image fusion is a broad field used in many applications in- 

luding object segmentation, tracking and detection, we limit our- 

elves with the literature that focuses on using two modalities (vis- 

ble and IR) to combine salient features of each modality to ob- 

ain a new fused image in this paper. The task of fusing different 

odalities into a single and representative image that somehow 

epresents both input images is a challenging task and it differs 

rom other common vision-based tasks such as object segmenta- 
2

ion and detection. However, the idea and the results presented in 

his paper may also help other vision tasks since our proposed so- 

ution, with its fused output image, can form the first block (in the 

orm of a backbone network) in training of other networks for var- 

ous other vision tasks such as segmentation, detection and track- 

ng. 

In general, when the goal is fusing multiple modalities, there 

re several concerns and challenges. Among those, some of the 

ost important ones are: 

1. what architecture to use to obtain a fused image as output with 

the state-of-the-art fusion performance; 

2. what metrics to be used to check a given architecture’s perfor- 

mance; 

3. how to fuse those modalities in a more computationally effi- 

cient and in an end-to-end way; 

4. how to compute (or what to use as) the ground truth for the 

fusion of two modalities. 

Neural network based solutions have been proposed concern- 

ng the first question in literature as in Li et al. [5] , Yang et al. [7] ,

hao and Cai [8] , however it remains unclear what approach to 

se when considering the architecture: a deep network or a shal- 

ow network. Regarding the second question, multiple metrics such 

s SSIM, Entropy and many others have been used in the litera- 

ure and a list of commonly used metrics in the relevant literature 

long with their definitions can be found in Li and Wu [12] , Ma

t al. [ 13,14 ], (also see Section 4.1 in this paper). 

The third question relates to obtaining more computationally 

fficient ways to fuse the given input modalities. However, the 

omputational side of the fusion problem has not been addressed 

roperly before in most of the relevant papers. We address that 

ssue in this paper from the perspective of trainable parameters. 

he fourth question is related to the labeling problem. In a VIS 

nd IR image pair, in general, we obtain different features for the 

ame object from each modality. Since the output (fused) image 

hould summarize all the content of both images, it should not fo- 

us on particular objects in the image (such as only cars, humans 

r buildings) and consequently, creating a ground truth itself be- 

omes problematic issue for this task as it is not clear whether ob- 

ects should be identified in advance in each modality or the whole 

mages should be used as the ground truth somehow. However, in 

 more general sense, it probably is safe to state that the similar- 

ty (in a certain form) between both input images and the output 

mage should be high. To avoid any bounding box information, the 

ain trend in the previous work was using the entire image from 

 single modality to train the network first and then duplicate that 

etwork to apply it on each modality as in Li and Wu [12] . How-

ver, we believe that both modalities should be introduced to the 

etwork during the training stage. While one current issue is the 

ack of large IR image equivalents of existing large data sets con- 

isting of visible images (such as ImageNet), there are recent do- 

ain transfer based works such as Özkano ̆glu and Ozer [15] that 

ttempt to provide solutions to that problem. 

In this paper, we mainly tackle above-mentioned four prob- 

ems and propose a novel Siamese architecture, which uses a form 

f auto-encoder based CNN architecture, to fuse the given multi- 

odal images including both thermal (IR) and visible images. We 

all our proposed solution: SiameseFuse. The input to our network 

s a pair of IR and VIS images and the output is a single fused

mage. We use different numbers of layers in our architecture and 

eport their performance in our experiments for comparison. Fur- 

hermore, as opposed to using a single loss term based on only 

tructural similarity, we consider multiple loss terms and study the 

erformance of using various combinations of those loss terms. Fi- 

ally, we report the state-of-the-art results on various data-sets 

including FLIR, Vedai and TNO Human Factors datasets) when 
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ompared to the previous work with extensive analysis. Our main 

ontributions include: 

• introduction of a novel Siamese-based network which yields 

competitive results when compared to the deeper solu- 

tions from the existing literature in multiple metrics (see 

Section 4.1 for metric definitions and Experiments section for 

our results); 
• introduction of a shallow end-to-end network which reduces 

the required trainable parameters up to 96.5% , while providing 

competitive results; 
• the study of using various loss functions for fusion and provid- 

ing an analysis on their effect on the final result; 
• use of multiple datasets to demonstrate our network’s perfor- 

mance to the previously proposed deep models; 
• reporting an extensive analysis on comparing various loss func- 

tions and their performances in our network. 

The rest of this paper is organized as follows. In Section 2 , re-

ated work from the relevant literature is summarized. In Section 3 , 

ur approach is explained in detail. All of our experiments and re- 

ults are presented in Section 4 . Finally, we conclude this paper in 

ection 5 . 

. Related work 

Over the past few years, there is constant growth in developing 

lgorithms utilizing data that comes from different sensors, as it 

ets cheaper and more effective to use multiple sensors in many 

omains as in Sellami and Tabbone [4] , Amin-Naji et al. [16] . There

re many applications of fusing infrared and visible images includ- 

ng object tracking [17] , autonomous systems [18] , object detection 

19] , surveillance [20] and remote sensing [21] . Each of those appli- 

ation areas includes its own dataset(s) and different ground truth 

ypes (such as bounding boxes, pixel IDs, object IDs or time steps) 

ith the particular type of loss functions. In this paper, our goal 

s to find an end-to-end fusion method that takes two images ob- 

ained by two different imaging modalities as input and produces a 

ingle fused image as output as a combination of both modalities, 

hile being computationally efficient. Therefore, we summarize 

he most relevant literature mainly from that perspective next. The 

ost relevant work can be summarized under two categories: (i) 

on-deep learning based techniques and (ii) deep learning based 

echniques. 

.1. Non-deep learning based techniques 

Non-deep learning (or non-neural networks) based techniques 

ave been extensively studied in the literature. Those techniques 

an be classified under six main categories including: (i) multi- 

cale transform based, (ii) sparse representation based; (iii) sub- 

pace based; (iv) saliency based; (v) hybrid and (vi) other tech- 

iques. A detailed description on each of those categories (with 

any sample works from the literature) can be found in recent 

apers as in Ma et al. [14] , Smith and Singh [17] , Xing et al. [22] ,

a et al. [23] , Chen et al. [24] . 

.2. Deep learning based techniques 

While the relevant fusion literature has studied deep architec- 

ures heavily, as in Zhang et al. [25] , the inputs and the output 

ormat in each application differs. For example, the work in Zhang 

t al. [25] focused on fusing different features (image intensity and 

egree of linear polarization are used as inputs to obtain a fused 

mage). They introduced a deep network with 12 layers to obtain 

he fused image. However, our main focus in this paper is fus- 

ng visible and infrared modalities to obtain a visually meaningful 
3 
nd representative image containing information from both input 

odalities. Therefore, in this section, we only provide the relevant 

iterature with applications on that particular application. 

The early neural networks based solutions include the pulse- 

oupled neural network (PCNN) architecture in the relevant liter- 

ture as in Zhao et al. [26] , Lu et al. [27] . Deep learning based

echniques are more recent techniques that can provide end-to- 

nd solutions in many applications. The success of deep learning in 

ther fields has recently attracted the attention of the researchers 

orking on image fusion problems as well. Since the deep learn- 

ng field is a relatively new field in fusion applications, there is a 

imited amount of work available introducing deep learning based 

usion techniques, therefore the most optimal solutions fusing IR 

nd visible images are probably yet to be proposed. Convolutional 

eural Network (CNN) based techniques have been recently intro- 

uced for fusion tasks. For example, as an early work, in Liu et al. 

28] , Liu et al. proposed a CNN-based network for fusion. In their 

roposed architecture, they used three convolutional layers for fea- 

ure extraction and two fully connected (FC) layers where the last 

ayer was a softmax layer. The model was trained only on visible 

mages, however the main goal of that work was not to obtain a 

used image as output. A common problem in many deep learning 

ased methods is that as the network gets deeper, the detail infor- 

ation gained in each layer gradually gets lost. Li et al. proposed a 

NN-based method to solve that problem of information loss in Li 

t al. [5] . They decomposed the image into two parts: the base part 

 the detail content. They used weighted-averaging strategy to ob- 

ain the fused base part. To extract the detail content, they used a 

NN to extract multi-layer features to preserve as much of the in- 

ormation as possible. Then a soft-max operator in each layer was 

pplied to obtain weight maps in order to get multiple candidates 

or the detailed content of the fused image. Finally, they obtained 

he final fused image by fusing those two parts. Their proposed so- 

ution uses the VGG-19 model [29] to extract deep features. Conse- 

uently, their model ends up being a very deep network (see our 

xperiments section to compare its number of trainable parame- 

ers to others) and relies on extraction features that are trained on 

isible images. 

Recently, a (relatively) smaller network was proposed by Li 

t al. [12] . They call their network as DenseFuse network to fuse 

nfrared and visible images. DenseFuse’s architecture consists of an 

ncoder network and a decoder network. The encoder part con- 

ains one convolutional layer and three fully connected layers. The 

ecoder part contains four convolutional layers. However that pro- 

osed solution (DenseFuse) contains slightly different architectures 

or training and for testing. Fig. 1 and Table 1 provides the details 

f those training and testing architectures of DenseFuse. During 

he training step, the fusion layer is eliminated and the network 

s trained on only the RGB images (on the MS-COCO dataset [30] ). 

n the other hand, during the testing step, the same encoder part 

f the DenseFuse architecture is applied on both thermal and vis- 

ble image pairs as a separate branch. The output of those two 

ranches is then combined through a fusion layer and then fed into 

he decoder network. DenseFuse algorithm was originally tested on 

0 image pairs (additionally the trained model was also tested on 

he dataset from [31] ). In their fusion layer, two strategies were 

ntroduced: (i) adding the pixels directly and (ii) using the � 1 - 

orm strategy. In total, the DenseFuse architecture contains 74,193 

rainable parameters and includes 5 convolutional layers and 3 

ully connected layers with skip connections (see Fig. 1 for the 

rchitecture and Table 1 for the details of each used layer in the 

enseFuse architecture). In its loss function, DenseFuse uses the 

um of weighted pixel loss and structural similarity based loss 

erms [12] . Another recent work introduced a Generative Adver- 

arial Network (GAN) architecture (called DDcGAN) in [13] to con- 

ider fusing IR and visible images where each image has a different 
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Fig. 1. The architecture of the previous work: the DenseFuse network, Li and Wu [12] . The different architectures of training and testing steps are shown individually. 

Table 1 

Details of each layer and the total number of trainable parameters for the DenseFuse algorithm [12] (see Fig. 1 ). 

Process Layer Size Stride Channel (Input) Channel (Output) Activation Parameters 

Input – 256 × 256 – – 1 –

Encoder Conv Layer 1 3 × 3 1 1 16 ReLU 160 

Encoder Dense Layer 1 3 × 3 1 16 16 ReLU 2320 

Encoder Dense Layer 2 3 × 3 1 32 16 ReLU 4624 

Encoder Dense Layer 3 3 × 3 1 48 16 ReLU 6928 

Decoder Conv Layer 2 3 × 3 1 64 64 ReLU 36,928 

Decoder Conv Layer 3 3 × 3 1 64 32 ReLU 18,464 

Decoder Conv Layer 4 3 × 3 1 32 16 ReLU 4624 

Decoder Conv Layer 5 3 × 3 1 16 1 ReLU 145 

Output – 256 × 256 – 1 – –

Param. #: – – – - – – 74,193 
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a

esolution. Their architecture uses one generator network and two 

iscriminator networks. In their generator network, they use 10 

onvolutional layers and in both of their discriminator networks, 

hey use 3 convolutional layers followed by a fully connected layer. 

hey tested their network on 36 pairs of IR and visible images 

rom the TNO Human Factors dataset 1 and created smaller patches 

rom those 36 image pairs. The mode collapse problem of GAN- 

ased architectures [32] remains unexplored in that work. A more 

ecent and relevant work was introduced in Fang et al. [33] which 

lso depends on a deep network architecture using VGG19, and 

queezeNet networks as well as channel attention and channel 

huffle modules (making the network a very large and a very deep 

etwork). 

As it can be seen in the recent works [5,12,34] and in Fang 

t al. [33] , the trend in fusing IR and visible images is going

owards utilizing more and more layers or using more compli- 

ated and pretrained architectures and possibly with skip connec- 

ions. While such architectures can yield slightly higher perfor- 

ance, it remains unclear whether the added computational com- 

lexity (by using deeper and deeper networks) can justify the in- 

rease in performance. Different deep architectures may introduce 

ifferent complexities to their approach. For example, mode col- 

apse [32] is a well-known problem in GAN-based architectures 
1 https://figshare.com/articles/TNO _ Image _ Fusion _ Dataset/1008029 . 

w

(

a

4 
nd that may yield convergence to focus on particular shapes or 

extures in fusion. Similarly, in general, including fully connected 

ayers with skip connections increases the total number of train- 

ble parameters and introduces additional implementation based 

omplexities. Consequently, at this point, the question: “Do we 

eed deeper networks to fuse IR and visible images?” should also be 

sked. Our main goal in this paper, is looking for an answer to 

hat question. We argue that we can get closer to those deeper 

etworks’ performance (or can get even better performance) by 

sing not-so-deep networks and by utilizing only convolutional 

ayers. 

Our work differs from the previous work in multiple ways: (i) 

e focus on developing a network that is truly trained on two im- 

ge modalities, while many earlier papers focused on training from 

 single modality (or using pretrained models that were trained 

nly on visible images); (ii) we focus on developing a computa- 

ionally efficient and fully convolutional network to fuse VIS and IR 

mages while the most relevant works utilize networks containing 

oth convolutional any fully connected layers as in Li et al. [5] , Li

nd Wu [12] ; (iii) we include multiple loss functions and evaluate 

heir performances on extensive experiments; and (iv) the previous 

orks were mainly tested on small numbers of image pairs (for ex- 

mple DenseFuse uses only 20 image pairs for testing). However, 

e utilize significantly larger datasets to perform our experiments 

For example, in FLIR dataset, we use 9609 image pairs for training 

nd 839 image pairs for testing). 

https://figshare.com/articles/TNO_Image_Fusion_Dataset/1008029
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Fig. 2. An overview of our proposed SiameseFuse architecture including the loss unit. The details of each layer is given in Table 3 . This figure shows all three of our proposed 

models together including: 1-layer, 2-layer and 3-layer SiameseFuse architectures. 

Table 2 

List of total number of trainable parameters is given for three dif- 

ferent configurations of our proposed SiameseFuse. 

Proposed models Total number of trainable parameters 

1-Layer Architecture 2625 

2-Layer Architecture 18,817 

3-Layer Architecture 83,457 
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. Proposed method 

In this paper, we propose a fully-convolutional Siamese network 

ased solution whose input is an image pair (VIS and IR) obtained 

ia two different imaging modalities and the output is a fused 

mage. Our proposed architecture is given in Fig. 2 , which con- 

ains only convolutional layers. Unlike the previous work (such as 

enseFuse), we do not use any fully connected layer or skip con- 

ections in our proposed architecture to keep our model simple. 

e call our proposed architecture SiameseFuse. 

Our proposed SiameseFuse architecture consists of three main 

locks: (1) the Extraction block which extracts the salient features 

rom each modality and it acts as an encoder network; (2) the fu- 

ion block in which the extracted salient features are element-wise 

dded; and (3) the Reduction block which acts similar to a decoder 

etwork to map high dimensional salient features back to two di- 

ensional and single channel image space. Our SiameseFuse archi- 

ecture extracts the salient features from each modality through a 

eries of convolutional layers (where the number of convolutional 

ayers varies between 1 and 3 in this work) in the extraction block. 

fter the extraction block, the image feature maps are fused in a 

inear fashion which is indicated as Tensor Addition in Fig. 2 . In the

nal (third) section, we use another Siamese architecture: Reduc- 

ion block to revert the initial encoding process. After the reduc- 

ion block, both thermal and grayscale loss functions are calculated 

eparately during the training of the network by using Eqs. (1) and 

2) , respectively. Finally, those two loss functions are combined by 

aking their weighted average with Eq. (3) (see next subsection for 

ore information about the loss function). 

In this paper, we define three different models (variants) for our 

iameseFuse architecture, and between each of those models, only 

he total number of used-layers changes. Fig. 2 shows those three 

eparate architectures (varying in layer numbers), namely: (1) 1- 

ayer architecture, (2) 2-layer architecture, and (3) 3-layer architec- 

ure all-together. The 3-layer architecture uses all the shown layers 

n both extraction and reduction blocks in the figure. The 2-layer 

rchitecture uses the first two layers of the extraction block and 

he last two layers of the reduction block. Finally, the 1-layer ar- 

hitecture uses only the first layer of the extraction block and only 

he last layer of the reduction layer in the figure. Table 3 also in-

ludes further details for each layer shown in the figure. Further- 
5

ore, Table 2 also compares the total number of trainable param- 

ters for each one of our three proposed models. 

Our loss unit is shown at the end of the Fig. 2 . One problem in

upervised learning is what kind of labels (ground truth) to use in 

he loss function and that is also a problem in our application area. 

ome applications use bounding box information while others may 

se segmentation masks to focus on certain shapes and textures. 

owever, in our application we do not have any annotation infor- 

ation. In this paper, our solution to the lack of annotations (or 

ack of available ground truth) problem is briefly explained as fol- 

ows: we do not look for particular objects in images and we do 

ot look for any bounding box in the images as our goal is com- 

ining the salient information from both images. Consequently, in- 

tead of looking for labelled data, we use each input image as the 

utput for the other image (i.e., use each input modality as output 

or the other modality) within our Siamese architecture. That way, 

e can train our Siamese architecture to learn both modalities at 

he same time and to learn how to combine local structure & tex- 

ure information from both input modalities by correlating one im- 

ge modality to the other one. I.e., during the training step, for a 

iven VIS and IR image pair, we use the VIS image as the output 

or the upper network (which uses the IR image as input) and we 

se the IR image as the output for the lower network (which uses 

he VIS image as input) in Fig. 2 . Therefore, each channel learns to 

ransform one modality to another one while they both share the 

ame weights. Since they learn how to combine both images in the 

eduction block (and since both channels yield the same output) 

uring the testing stage, we consider only one output of those two 

hannels of the reduction block. 

 (I 1 , O ) = λ1 (1 − SSIM (I 1 , O )) + λ2 ‖ ( I 1 − O ) ‖ + λ3 (1 − ρ(I 1 , O ))

+ λ4 (1 − MS _ SSIM (I 1 , O )) (1)

 (I 2 , O ) = λ1 (1 − SSIM (I 2 , O )) + λ2 ‖ ( I 2 − O ) ‖ + λ3 (1 − ρ(I 2 , O ))

+ λ4 (1 − MS _ SSIM (I 2 , O )) (2)

 = α1 L (I 1 , O ) + α2 L (I 2 , O ) (3)

.1. Loss function 

In our loss block (see the “loss unit” in Fig. 2 ), there are two 

eparate loss computations to be made. The first loss function uses 

isible and fused images as input, while the second loss func- 

ion uses the thermal and fused images as input. Eq. (3) shows 

hose two loss functions, where I 1 is the grayscale (VIS) image, 

 2 is the thermal (IR) image, and O is the fused output image. 

n Eqs. (1) and (2) , the parameters λ1 , λ2 , λ3 , λ4 represent the 

eights for each used loss term. In Eq. (3) , α and α represent 
1 2 
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Table 3 

Details of each layer in our proposed SiameseFuse architecture is given for the extraction and for the reduction 

layers individually. 

Process Layer (Filter) Size Stride Channel (Input) Channel (Output) Activation 

Input – 256 × 256 – – 1 –

Extraction Conv Layer 1 3 × 3 1 1 16 ReLU 

Extraction Conv Layer 2 3 × 3 1 16 32 ReLU 

Extraction Conv Layer 3 3 × 3 1 32 64 ReLU 

Reduction Conv Layer 3 3 × 3 1 64 32 ReLU 

Reduction Conv Layer 2 3 × 3 1 32 16 ReLU 

Reduction Conv Layer 1 3 × 3 1 16 1 ReLU 

Output – 256 × 256 – 1 – –
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2 We also tested some deep solutions for image registration as a preprocessing 

step, however, since we did not find their registration performance satisfactory, we 

decided to use manual solution which was more accurate. 
he linear weights for the thermal and the grayscale losses. The fi- 

al loss function is a weighted linear combination of both thermal 

nd visible loss functions as defined in Eq. (3) . 

In our total loss function ( Eq. (3) ), instead of using only the

tructural similarity (SSIM) function as the loss function, we used 

 combination of multiple meaningful terms including l 2 norm 

also known as the pixel loss), SSIM, multiscale structural simi- 

arity (MS-SSIM) and cross-correlation to study the effect of their 

erformance on the fusion task. In our equations, the function: ‖ . ‖ 
epresents the l 2 norm and the function: ρ(. ) represents the cross- 

orrelation. The definitions of the other two used functions: SSIM 

nd MS_SSIM are given below. 

.1.1. SSIM 

The structural similarity is a measurement of the perceived 

uality of images, based on the extraction of structural informa- 

ion from an input. This metric starts by defining x & y as two dis-

rete non-negative signals (where x is the input image and y is the 

used image), calculates their mean μ and variance σ , then obtains 

uminance l, contrast c, and structure comparison s as follows: 

 (x,y) = 

2 μx μy + C 1 

μ2 
x + μ2 

y + C 1 
(4) 

 (x,y) = 

2 σx σy + C 2 

σ 2 
x + σ 2 

y + C 2 
(5) 

 (x,y) = 

σxy + C 3 
σx σy + C 3 

(6) 

here C 1 , C 2 , C 3 are the softening constants, given by 

 1 = (K 1 L ) 
2 , C 2 = (K 2 L ) 

2 and C 3 = C 2 / 2 (7)

here K 1 & K 2 are constants � 1 and L is the dynamic range of

he pixel values. Structural Similarity (SSIM) [35] between the in- 

ut image and the fused image is then defined as follows: 

SIM(x,y) = [ l(x, y )] α · [ c(x, y )] β · [ s (x, y )] γ (8)

he parameters: α, β , and γ are used to adjust the importance 

f each component. Typically, those parameters are all set to 1, as 

n Ma et al. [35] . This way, the equation can be reorganized as, 

SIM(x,y) = 

(2 μx μy + C 1 )(2 σxy + C 2 )(σxy + C 3 ) 

(μ2 
x + μ2 

y + C 1 )(σ 2 
x + σ 2 

y + C 2 )(σx σy + C 3 ) 
(9) 

Consequently, the final SSIM value between the given two input 

mages x 1 , x 2 and the fused image y is defined as follows: 

SIM = SSIM(x 1 , y ) + SSIM(x 2 , y ) (10) 

 

6 
.1.2. MS_SSIM 

The multi-scale SSIM [35] method involves the input image be- 

ng down-scaled by a factor of 2 while also having applied a low- 

ass filter. The original image is indexed as 1 and the max down- 

ample iteration is indexed as M. 

S _ SSIM(x , y) = [ l M 

(x, y )] αM ·
M ∏ 

j=1 

[ c j (x, y )] β j [ s (x, y )] γ j (11)

. Experiments 

In our experiments, first bicubic interpolation is used to re- 

uce the image dimensions to 256 × 256 and RGB images are con- 

erted into grayscale images as we use one channel inputs for each 

ranch in our Siamese architecture. We assume that both VIS and 

R images given in the input image pair are already registered. For 

hat reason, we manually (externally) computed the parameters 

etween the image pairs first and then registered all the image 

airs by using those parameters before training the network. 2 Both 

f the α1 and α2 values of Eq. (3) are set to 0.5 to consider each 

odality equally in all of our experiments (except the experiments 

ummarized in Table 8 ). 

We use multiple datasets to compare our results to the existing 

ork in the relevant literature and we evaluate the performance 

y using seven different metrics. Next, we define those metrics. 

.1. Metrics 

In this paper, one of the algorithms that we compare our re- 

ults to is DenseFuse algorithm [12] and since seven different met- 

ics were used in that work, for comparison reasons, we use those 

ame seven metrics in this work as well. The metrics used in this 

aper are briefly explained below. 

.1.1. SCD 

The sum of the correlations of differences (SCD) metric is de- 

ned (in Aslantas and Bendes [36] ) as follows: 

CD = Corr (F − A, B ) + Corr (F − B, A ) (12) 

here A and B are the input images and F is the output. 

.1.2. Q 

AB/F 

Q 

AB/F [37] is a metric that computes the weighted average of 

 

A/F and Q 

B/F . It is a measure of the perceptual loss of informa- 

ion in terms of orientation and strength. It involves computing the 

elation of edge information, obtained by a sobel edge detection al- 

orithm, of the two source images: A and B, and the fused output 

mage: F. 
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Fig. 3. Loss Function vs. Epochs. 

Fig. 4. SSIM a vs. Epochs. 

Fig. 5. MS SSIM vs. Epochs. 

Fig. 6. MS_SSIM vs. Total number of Trainable Parameters. 

Fig. 7. SSIM vs. Total number of Trainable Parameters. 
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.1.3. FMI 

Feature Mutual Information (FMI) is a metric proposed to mea- 

ure how consistent the measured input with subjective measure- 

ents or human observations. It extends the concept of mutual 

nformation by extracting features of the image before the calcula- 

ion [38] . Therefore, the computation of this metric is more com- 

lex and memory intensive. In our experiments, we use the Fast- 

MI implementation from [39] . In our experiments as the features, 

e used two feature types: discrete cosine transform ( F MI dct ) and 

avelet transform ( F MI w 

) individually for this metric. 

.1.4. Entropy 

Entropy is defined to be: 

n = −
n −1 ∑ 

i =0 

p i log 2 p i (13) 

here parameters n and p denote the parameters that arise from 

he histogram created from the image. n is the number of gray 

evels, while p i is the probability of a pixel having the i ’th gray

evel. In our experiments, entropy is calculated using only the out- 

ut image, which should have high entropy due to increased detail 

esulting from the merging of two sources. 

For the remaining two metrics: SSIM and MS _ SSIM, please refer 

o Sections 3.1.1 and 3.1.2 for the detailed definition, respectively. 

.2. Datasets 

We have included three different datasets in this paper; namely 

i) FLIR dataset 3 (contains VIS and IR image pairs), (ii) TNO-Human 

actors (TNO-HF) datasets 4 , and (iii) VEDAI dataset [40] . Our used 

aseline networks are trained on their individual datasets. For ex- 

mple, pretrained DenseFuse was trained on a single modality (on 

9,0 0 0 MS-COCO [30] visible images), The pretrained version of 

he model from [5] is trained on ImageNet dataset [41] using 1.2 

illion grayscale images (single modality), the pretrained DDc- 

AN [13] was trained on the TNO-HF dataset and the pretrained 

2Fusion model was trained on the FLIR dataset. Our networks are 

rained on the FLIR dataset for both training and testing (the im- 

ge pairs in the FLIR dataset do not come as registered. To avoid 

onfusion and errors caused by the misalignment of the FLIR im- 

ge pairs, we included a registration process on those image pairs 

s a pre-processing step in our experiments). In the training step, 

e used 9609 image pairs and we used an additional 839 image 

airs for the testing. 

.3. Results 

In terms of performance evaluation, we have conducted various 

ests with different configurations of our architecture and studied 

he different aspects of our proposed network. We compared our 

lgorithm’s performance to DenseFuse, DDcGAN, U2Fusion, ResNet- 

usion and to the work from [5] which we call DeepLearningFrame- 

ork in our tables. The ResNetFusion algorithm does not come 

ith a pretrained model and therefore, we trained it on the same 

LIR data as we trained our SiameseFuse algorithm. 

.3.1. Training process 

During the training of SiameseFuse, we used Adam opti- 

izer [42] and the learning rate was set to 0.001. We trained 

iameseFuse with random initialization and noticed that our net- 

ork converges rapidly after a few iterations. Figs. 3–5 demon- 

trate the fast convergence during the training process on FLIR 

ataset. In each figure, the x -axis shows the epoch number. 
3 https://www.flir.in/oem/adas/adas- dataset- form . 
4 https://figshare.com/articles/TNO _ Image _ Fusion _ Dataset/1008029 . 

p

N

T

b

7 
.3.2. Comparison of the total number of trainable parameters 

Figs. 7 and 6 compare the total number of trainable parameters 

equired by each of our proposed models (with different numbers 

f layers) and compare those models to multiple recent works. 

n the figures, the total number of trainable parameters for each 

etwork is shown in logarithmic scale . We compared the perfor- 

ance of our proposed Siamese Network under different configu- 

ations (we used different filter numbers for our 2-layer model and 

ach of those filter numbers for each layer is given in the paren- 

hesis). As the figure shows, there is only a slight difference in 

erformance between 1-layer and 2-layer SiameseFuse networks. 

ote that in the figures, the x -axis is shown in logarithmic scale. 

he model from [5] is the largest model having the highest num- 

er of trainable parameters as it includes a (pre)trained VGG-19 

https://www.flir.in/oem/adas/adas-dataset-form
https://figshare.com/articles/TNO_Image_Fusion_Dataset/1008029


S. Özer, M. Ege and M.A. Özkanoglu Pattern Recognition 129 (2022) 108712 

Table 4 

This table shows how changing the filter dimensions in 2-Layer SiameseFuse network affects 

its performance. 

Filter dimensions En Q AB/F SCD F MI w F MI dct SSIM a MS SSIM 

3 × 3 - 3 × 3 7.304 0.439 1.436 0.428 0.395 0.704 0.894 

5 × 5 - 3 × 3 7.298 0.437 1.428 0.424 0.392 0.705 0.895 

5 × 5 - 5 × 5 7.298 0.442 1.426 0.423 0.393 0.702 0.895 

3 × 3 - 5 × 5 7.290 0.433 1.420 0.419 0.389 0.703 0.892 

DenseF use − pretrained 7.124 0.417 1.207 0.422 0.392 0.681 0.846 

Table 5 

This table shows how changing the total number of filters in 2-Layer SiameseFuse affects its 

performance. 

Filter numbers En Q AB/F SCD F MI w F MI dct SSIM a MS SSIM 

8 - 16 7.298 0.438 1.430 0.423 0.392 0.703 0.894 

16 - 32 7.304 0.439 1.436 0.428 0.395 0.704 0.894 

32 - 64 7.303 0.440 1.435 0.427 0.395 0.705 0.895 

DenseF use − pretrained 7.124 0.417 1.207 0.422 0.392 0.681 0.846 
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odel [29] on ImageNet dataset as a backbone in its architecture. 

s Fig. 6 shows, our models yield the least trainable numbers with 

he highest SSIM performance. 

.3.3. The effect of changing the filter dimensions 

We studied how changing the filter dimensions in our archi- 

ecture affects the performance. For this, we first fixed the total 

umber of layers in our network and used the 2-layer SiameseFuse 

rchitecture. As for the filter dimensions, we used different com- 

inations of 3 × 3 and 5 × 5 filters in each layer of our 2-layer

iameseFuse architecture. The obtained results are computed for 

even metrics and summarized in Table 4 . In the table, the first fil-

er dimension represents the filter dimension that is used in the 

rst layer in the “extraction” block and its equivalent layer in the 

reduction” block, and the second number represents the filter di- 

ension that is used in the second layer of the “extraction” block 

nd its equivalent layer in the “reduction” block in our 2-Layer ar- 

hitecture. There is only a slight difference between the maximum 

btained values in both the first and second rows, consequently, 

e kept using the 3 × 3 filter size. As the table shows, all the com-

inations yielded better SSIM and MS_SSIM results than the previ- 

us work: DenseFuse. 

.3.4. The effect of changing total number of used filters 

Next, we studied how the total number of filters used in each 

ayer affects the performance while the filter dimensions are fixed. 

or that purpose, we first kept the filter dimensions as 3 × 3 for 

ach filter (in each layer). Then we changed the total number of 

sed filters in our 2-layer architecture. We used the following com- 

inations of filter numbers: (8–16), (16–32) and (32–64) where the 

rst number represents the filter number used in the first layer 

nd the second number represents the filter number used in the 

econd layer. Table 5 compares the results obtained from our 2- 

ayer architecture for 6 different metrics. While we obtain slight 

ncrease in performance by changing the filter numbers, we think 

hat increase is not significantly important to use more filters. We 

lso compared SiameseFuse results to the DenseFuse result in the 

able. All the tested combinations yielded higher (better) SSIM and 

S_SSIM results than the previous work: DenseFuse. 

.3.5. Comparison of two fusion layer strategies 

Fusing the information coming from each branch in the Siamese 

rchitecture can be done by using two main strategies: (i) through 

n element-wise addition process, and (ii) through a concatena- 

ion process. Table 6 shows how varying the total number of layers 

sed in both “extraction” and “reduction” blocks affects the per- 

ormance. In our experiments with this part, we also studied the 
8 
erformance of using element-wise summation and concatenation 

perations in the middle fusion block of our DenseFuse architec- 

ure. As the table shows, since there is no significant difference 

s obtained between those two operations, in our final architec- 

ure, we used the summation operation. The table shows the re- 

ults of using 1 layer only, 2 layers and 3 layers in each “extrac- 

ion” and “reduction” blocks in seven different metrics. While all 

he combinations showed significant improvement from the pre- 

ious work: DenseFuse, we did not observe significant difference 

etween using higher numbers of layers. The last column in the ta- 

le shows the total number of trainable parameters in each model. 

ince the 1-layer architecture has significantly less number of pa- 

ameters than all other architectures while yielding similar or bet- 

er results than our other models, we decided to propose that one 

or applications where efficient computation is a constraint. 

.3.6. The effect of λ values of Eq. (3) in results 

In order to test the contribution of each term used in Eq. (3) in

iameseFuse, we use different values for different weights: λ. The 

esults are presented in Table 7 . In this experiment, we kept the 

ayer numbers fixed (2 Layer architecture is used) and the filter 

imensions kept at (3,3) and (3,3). As expected, at different weight 

ombinations, different results were obtained. For comparison (as 

 baseline) we also included the results obtained by the pretrained 

enseFuse algorithm. 

.3.7. Qualitative results 

Figs. A1 –A4 show qualitative results obtained from our network 

o the previous work: DenseFuse. The image pairs are from the 

LIR dataset. Column (d) shows the results obtained with addition 

trategy in the fusion layer and column (e) is obtained by using the 

oncatenation strategy in the fusion layer. All the SiameseFuse re- 

ults are obtained from 2-layer model. In all SiameseFuse models, 

e set λ1 = 0 , λ2 = 1 , λ3 = 1 and λ4 = 1 . 

.3.8. The effect of changing α1 and α2 values in Eq. (3) 

In order to test the contribution of each modality in our results 

in terms of each metric), we study the effect of changing α1 and 

2 values in Eq. (3) . The results are presented in Table 8 . In this

xperiment, we kept the layer numbers fixed (2 Layer architecture 

s used) and the filter dimensions kept at (3,3) and (3,3) and used 

LIR dataset. As expected, at different weight combinations, differ- 

nt results were obtained. For comparison (as a baseline) we also 

ncluded the results obtained by the pretrained DenseFuse algo- 

ithm. 
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Table 6 

This table shows the performance of using different layers in our proposed network: SiameseFuse. At the fusing step, we 

tested the performance of both element-wise addition and concatenation of the feature-maps obtained from each modality. 

DeeplearningFramework was pretrained on ImageNet dataset. DenseFuse was pretrained on MS-COCO. DDCGAN was pretrained 

on TNO-HF and U2Fusion was pretrained on FLIR. All the newly trained versions of DDcGAN, U2Fusion and ResNetFusion used 

FLIR dataset. All of the listed architectures were tested on the same 839 image pairs. The last column lists the total number 

of trainable parameters needed during the training for each algorithm. 

FLIR-train En Q AB/F SCD F MI w F MI dct SSIM a MS SSIM #ofParams 

SiameseF use 1 layer−sum 7.31 0.44 1.42 0.43 0.40 0.69 0.89 2627 

SiameseF use 2 layers −sum 7.30 0.44 1.44 0.43 0.40 0.70 0.90 18,817 

SiameseF use 3 layers −sum 7.32 0.44 1.43 0.43 0.40 0.69 0.90 83,457 

SiameseF use 1 layer−concat 7.25 0.43 1.43 0.42 0.39 0.71 0.89 14,177 

SiameseF use 2 layers −concat 7.27 0.43 1.44 0.42 0.39 0.71 0.90 46,529 

SiameseF use 3 layers −concat 7.23 0.42 1.41 0.42 0.39 0.71 0.89 64,961 

DenseF use − pretrained [12] 7.12 0.42 1.21 0.42 0.39 0.68 0.85 74,193 

DeepLear ningF ramewor k − pretrained [5] 7.03 0.45 1.29 0.43 0.39 0.70 0.88 143,667,240 

DDcGAN − pretrained [13] 7,52 0,35 1,35 0,38 0,40 0,55 0,69 1,275,716 

DDcGAN − trained [13] 7,69 0,28 1,09 0,35 0,34 0,45 0,53 1,275,716 

U2 F usion − pretrained [43] 7,08 0,49 1,26 0,36 0,34 0,68 0,90 659,217 

U2 F usion − trained [43] 7,21 0,48 1,44 0,42 0,38 0,69 0,90 659,217 

ResNetF usion − trained [34] 7,81 0,49 0,97 0,44 0,33 0,60 0,80 5,108,105 

Table 7 

This table shows the effect of using different weights in our used loss function in seven different metrics. 

In the early rows, a different hyperparameter were set to 0 to see the significance of using that loss term 

in our results with each metric. In this paper, we use SSIM as our main performance metric. DenseFuse 

results are also included for comparison. 

HyperParameters En Q AB/F SCD F MI w F MI dct SSIM a MS SSIM 

λ1 = 1 , λ2 = 1 , λ3 = 1 , λ4 = 1 7.30 0.44 1.43 0.42 0.40 0.70 0.89 

λ1 = 0 , λ2 = 1 , λ3 = 1 , λ4 = 1 7.30 0.44 1.44 0.43 0.40 0.70 0.90 

λ1 = 0 , λ2 = 1 , λ3 = 1 , λ4 = 3 7.31 0.44 1.44 0.43 0.39 0.71 0.89 

λ1 = 0 , λ2 = 1 , λ3 = 1 , λ4 = 5 7.30 0.44 1.43 0.43 0.40 0.71 0.89 

λ1 = 0 , λ2 = 1 , λ3 = 1 , λ4 = 10 7.31 0.44 1.44 0.43 0.40 0.70 0.89 

λ1 = 1 , λ2 = 0 , λ3 = 1 , λ4 = 1 7.27 0.43 1.40 0.42 0.40 0.71 0.89 

λ1 = 1 , λ2 = 1 , λ3 = 0 , λ4 = 1 7.29 0.44 1.44 0.42 0.39 0.69 0.90 

λ1 = 1 , λ2 = 1 , λ3 = 1 , λ4 = 0 7.27 0.44 1.43 0.42 0.39 0.71 0.90 

λ1 = 10 0 0 , λ2 = 1 , λ3 = 1 , λ4 = 10 0 0 7.21 0.45 1.39 0.42 0.39 0.70 0.91 

λ1 = 10 0 0 , λ2 = 1 , λ3 = 0 . 1 , λ4 = 10 0 0 7.18 0.43 1.34 0.41 0.38 0.71 0.90 

λ1 = 10 0 0 , λ2 = 0 . 1 , λ3 = 1 , λ4 = 10 0 0 7.18 0.40 1.36 0.41 0.38 0.71 0.89 

λ1 = 10 , λ2 = 10 , λ3 = 0 . 1 , λ4 = 10 7.27 0.44 1.44 0.42 0.39 0.71 0.90 

λ1 = 10 , λ2 = 1 , λ3 = 0 . 1 , λ4 = 10 7.26 0.44 1.42 0.43 0.39 0.71 0.90 

λ1 = 100 , λ2 = 1 , λ3 = 0 . 1 , λ4 = 100 7.25 0.44 1.39 0.42 0.39 0.71 0.89 

λ1 = 100 , λ2 = 10 , λ3 = 0 . 1 , λ4 = 100 7.27 0.44 1.43 0.42 0.39 0.71 0.90 

λ1 = 100 , λ2 = 100 , λ3 = 0 . 1 , λ4 = 100 7.27 0.44 1.44 0.42 0.39 0.71 0.90 

DenseF use − pretrained 7.12 0.42 1.21 0.42 0.39 0.68 0.85 

Table 8 

This table shows the effect of using different α1 and α2 values of Eq. (3) in SiameseFuse (using 

FLIR data). DenseFuse results are also included for comparison. 

α1 (Vis) - α2 (IR) values En Q AB/F SCD F MI w F MI dct SSIM a MS SSIM 

Vis:0.3 - IR:0.7 7.472 0.443 1.324 0.393 0.369 0.660 0.835 

Vis:0.4 - IR:0.6 7.355 0.441 1.354 0.408 0.380 0.678 0.863 

Vis:0.5 - IR:0.5 7.013 0.393 1.281 0.431 0.397 0.702 0.870 

Vis:0.6 - IR:0.4 6.886 0.306 1.140 0.378 0.361 0.670 0.767 

Vis:0.7 - IR:0.3 6.852 0.282 0.911 0.329 0.327 0.637 0.699 

DenseF use − pretrained 7.124 0.417 1.207 0.422 0.392 0.681 0.846 

Table 9 

Comparing the results of SiameseFuse to various algorithms on two additional datasets: VEDAI and TNO Hu- 

man Factors datasets. 

VEDAI dataset En Q AB/F SCD F MI w F MI dct SSIM a MS SSIM 

SiameseFuse 6,53 0,71 0,86 0,73 0,77 0,89 0,94 

DenseFuse - pretrained 6,68 0,72 1,25 0,74 0,78 0,89 0,96 

DDcGAN - pretrained 7,54 0,47 0,92 0,59 0,58 0,66 0,76 

U2Fusion - pretrained 6,66 0,64 0,82 0,58 0,64 0,82 0,93 

DeepLear ningF ramewor k − pretrained [5] 6.54 0,72 0.89 0.73 0,78 0.89 0.95 

TNO-HF dataset En Q AB/F SCD F MI w F MI dct SSIM a MS SSIM 

SiameseFuse 6,17 0,36 1,63 0,42 0,40 0,72 0,84 

DenseFuse - pretrained 6,73 0,43 1,84 0,37 0,34 0,66 0,91 

DDcGAN - pretrained 7,41 0,37 1,58 0,41 0,39 0,54 0,73 

U2Fusion - pretrained 6,27 0,44 1,64 0,35 0,34 0,70 0,87 

DeepLear ningF ramewor k − pretrained [5] 6.20 0.42 1.65 0.42 0,40 0,72 0.85 

9 
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.3.9. Experimental results on additional datasets 

In order to check our results further, we experimented on two 

dditional datasets including VEDAI [40] and TNO Human Factors 

TNO-HF) datasets. In these experiments, we compared our Siame- 

eFuse to multiple recent algorithms and reported the results in 

even different metrics. In the experiment using VEDAI dataset, 

xcept the metric: En , in all other metrics, pretrained DenseFuse 

ielded higher results. We think that the main reason for that is 

he thermal images of the Vedai dataset [40] being short-wave in- 

rared. However, we trained our model with long-wave infrared 

ataset (using FLIR dataset) and the pretrained model of DenseFuse 

s trained with MS-COCO. Consequently, the used data in training 

enseFuse is more similar to the VEDAI dataset. See Table 9 for the 

esults. 

VEDAI dataset includes 302 short-wave infrared and visible im- 

ge pairs. The resolution of these images is 256 × 256 . All of the

mages are used for testing that SiameseFuse is trained with FLIR 

ataset (with 9609 training image pairs) and DenseFuse is trained 

ith MS-COCO as previously stated. 

TNO-HF dataset contains 20 thermal and visible image pairs. 

herefore it is a small dataset. As the results demonstrate, our 

shallow) model gives similar results to the results of the deeper 

odels, while SiameseFuse uses only two convolutional layers in 

ach encoder and decoder part of its architecture. In some metrics, 

iameseFuse still provides the best results, while in others, it still 

rovides a close performance to the other algorithms’ results (see 

able). In particular, SiameseFuse yielded the best results in F MI w 

, 

 MI dct and SSIM a metrics, (see Table 9 ). 

. Conclusion 

In this paper, we propose a novel and end-to-end architecture 

with its three variant models) based on Siamese networks to fuse 

nfrared (IR) and visible (VIS) image pairs into a single output im- 

ge and compare its performance to two most relevant deep ar- 

hitectures (DenseFuse [12] and DeepLearningFramework [5] ) from 

he literature. Our proposed solution is a fully convolutional net- 

ork (that does not use any dense or fully connected layers) and 

t yields comparable or better results by requiring significantly 

ewer trainable parameters. Fewer trainable parameters means less 

omputational requirements and less power consumption in mo- 

ile platforms. In our experiments, we showed that using multi- 

le structural terms in the loss function can be beneficial. Further- 

ore, as we also demonstrated in our experiments, our proposed 

olution can yield a superior performance when compared to the 

ultiple algorithms from the relevant recent literature in different 

etrics. 

As the mainstream trend is using and designing deeper and 

eeper architectures for many pattern recognition applications, a 

ain and fundamental aspect of pattern analysis should also be 
10 
ept considering: simplicity in model design . In this paper, we show 

hat we can use as little as two layers to fuse visible and IR images

n our architecture. To achieve success with such a shallow net- 

ork, we carefully design the network and choose the appropriate 

oss functions. Such simplicity in modeling introduces mobility to 

e used in other pattern recognition applications. For example, in 

any fusion applications a not-so-shallow network can be used as 

 backbone to fuse the images coming from different sensors to 

btain a single output image, which can, then, be used as input 

or other applications such as object detection or tracking. Further- 

ore, in many pattern analysis applications and in many mobile 

obot systems, it is important to use computationally efficient net- 

orks that are as compact as possible due to the limited memory 

nd limited computing power. 

In this work, we show that SiameseFuse can provide better 

r similar performance when compared to the related work us- 

ng deeper networks such as DenseFuse, while significantly reduc- 

ng the network size by using % 96,5 less trainable parameters , 

hen our 1-layer SiameseFuse network is used (compare the 2625 

rainable parameters of our 1-layer SiameseFuse vs. the 74,193 

rainable parameters of DenseFuse). Therefore, our 1-layer Siame- 

eFuse solution remains a good choice that can be used not only 

n strong computers, but also on various mobile platforms with its 

ignificantly smaller number of trainable parameters, while yield- 

ng comparable fusing results to that of existing very deep archi- 

ectures. Future work may include using SiameseFuse in different 

omputer vision applications as a backbone fusing both modalities 

VIS and IR). 
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Fig. A1. A car was heated under the sun and, therefore, it emits infrared radiation while under the bridge. 

Fig. A2. The text on the awning and the man in dark can be seen clearly in the fused image. 

Fig. A3. In the fused image, the shine of the headlines can be seen applied onto the infrared heat glow of the man. 

Fig. A4. Notice that, in this sample image, the blurry effect of the thermal camera is fixed in the fused images. 
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