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ABSTRACT

EXTENSION OF SOME RESULTS FROM

NETWORKS TO COVERS

PER, Emre

M.A., Department of Economics

Supervisor: Prof. Semih Koray

January 2008

In this thesis, we use covers as an extension of networks. The cover notion

is almost the same as the conference structure that is proposed by Myer-

son. However, we extend several notions pertaining to networks to covers in

different ways, reflecting the differences in our points of departure. In this

framework, we extend the result of Jackson and Wollinsky(1996) to covers

which provides a characterization of the Shapley-Myerson allocation rule in

terms of component balancedness and equal bargaining power in networks.

Keywords: Networks, Covers, Component Balancedness, Equal Bargaining

Power, Shapley-Myerson Allocation Rule.
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ÖZET

AĞLARDAKİ BAZI SONUÇLARIN ÖRTÜLERE

GENİŞLETİLMESİ

PER, Emre

Yüksek Lisans, Ekonomi Bölümü

Tez Yöneticisi: Prof. Semih Koray

Ocak 2008

Bu tezde, örtüleri ağların genelleştirmesi olarak kullandık. Örtü kavramı,

Myerson’ın tanımladığı konferans yapısı ile büyük oranda aynı şeyi ifade et-

mektedir. Fakat, ağlar için varolan bazı kavramları örtüler için genelleştirirken

daha önce Myerson’in konferans yapılarında takip ettiği yaklaşımdan daha

farklı bir bakış açısı izledik. Bu çerçevede, Jackson ve Wollinsky’nin bileşen-

dengelilik ve eşit pazarlık gücü açısından Shapley-Myerson dağıtım kuralı için

elde ettikleri tanımlandırma sonucunu örtüler için genelleştirdik.

Anahtar Kelimeler: Ağlar, Örtüler, Bileşen-dengelilik, Eşit Pazarlık Gücü,

Shapley-Myerson Dağıtım Kuralı.
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CHAPTER 1

INTRODUCTION

Founders of modern game theory John von Neumann and Oskar Morgernstern

stated that their objective is to find ”a mathematically complete principle to

explain the rational behaviour of participants in a social economy and analyze

the characteristics of that behaviour.” Their seminal book (Von Neumann and

Morgernstern 1944) laid the foundations of cooperative game theory. After

von Neumann-Morgernstern solution concept, Shapley constructed a new so-

lution concept in his Ph.D. dissertation (Shapley 1953). This solution requires

that each player receive a weighted average of his marginal contribution to

various coalitions. In cooperative game theory, the notion of coalition is a

central one. However, only ”coalitions” with one player are allowed in non-

cooperative game theory. Indeed, noncooperative games can be thought as a

special form of cooperative games. When one deals with coalitions, the main

questions are how the societal value is distributed among coalitions and how

the players of the same coalition share their coalition’s total payoff among

themselves. Modern graph theory provides useful tools that allow to model

and analyze cooperation structures in an attempt to answer these questions.

A graph can be thought of as a subset of the power set of vertices consist-

ing of singleton and doubleton sets only whose union is equal to the entire

vertex set such that no singleton is a subset of a doubleton. With such a
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representation of a graph, the notion of ”cover” arises as a very natural gen-

eralization of a graph: namely, as any subcollection of the power set the union

of whose members covers the vertex set provided that no set in the collection

is a proper subset of another. Thus, this extension allows hyperedges of dif-

ferent orders in contrast to edges in a graph regarded as doubleton sets. On

the other hand, there are many different scenarios in economic and social life,

which seem to be compatible with covers. One possible scenario would be to

consider a situation where a country may decide to join different international

unions simultaneously which may have different sizes. The notion of a cover

allows to capture the size differences as well as possible overlappings between

different unions in a more adequate way than the notion of a network. But

what we do in this study mainly consists of testing the robustness of certain

results in network theory when these are extended to their counterparts in

terms of covers.

The results we obtain seem to be promising in the sense that they provide

hints for the nonvacousness of the extension in question. There is another

companion strand of literature about conference structures1 introduced by

Myerson. Although the two notions are very similar, the differences in the

points of departure that have separately and independently led to these no-

tions are also reflected in the different ways used to extend certain other no-

tions from networks to covers and conference structures, respectively. Thus,

the two approaches give rise to different results.

We generalize some results concerning networks to covers, that is, to gen-

eralized networks where agents can form hyperlinks that can contain more

than two players. However, covers and Myerson’s conference structures are

coincident in this context. But the fairness concepts and the restrictions of

value functions that we use in defining the Shapley-Myerson allocation rule

differ from those utilised by Myerson.

1We are grateful to Prof. Ferhad Hüseyin for having brought this literature to our
awareness.
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When the results we obtain for covers are restricted to cooperation struc-

ture with at most two vertices for each hyperlink, these results get reduced

to familiar results in network theory. We define efficiency and stability for

covers and investigate the tension between these two notions. Furthermore,

we express the fairness condition for covers in such a way that the Shap-

ley Myerson allocation rule becomes the unique allocation rule that satisfies

component balancedness and ”equal threat power” representing our fairness

notion.

Finally, we modify network formation games for covers by defining hyper-

link formation games in which every player submits the set of hyperedges that

they want to get constructed, and a hyperedge is formed by the unanimous

consent of all members in this hyperedge.
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CHAPTER 2

LITERATURE SURVEY

Game theory studies strategic interactions between agents and provides a for-

mal modelling approach to social situations in which decision makers interact

with other agents. There are two main branches of game theory: cooperative

and noncooperative. Noncooperative game theory deals with how rational

individuals interact with one another in an effort to achieve their own goals,

leading to what one calls ”strategic games”. On the other hand, a cooperative

game is a game where groups of players can form coalitions, whose members

cooperate by coordinating their actions. Hence a cooperative game captures

competition between coalitions of players, rather than between individual

players.

In cooperative games with transferable utility, a ”characteristic function”

specifies the maximal total payoff that each coalition can guarantee for it-

self instead of assigning individual payoffs to each agent. The notion of a

characteristic form game can be traced back to von Neumann and Morgen-

stern(1944), where it is assumed that a coalition C plays against its com-

plementary coalition N/C, inducing a ”two-person game”. Now there are

different models to derive coalitional values from normal form games, but not

all games in characteristic function form can be derived from normal form

games. Formally, a characteristic function form game with side payments
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(also known as a TU-game) is given as a pair (N, v), where N denotes a set

of players and v : 2N → R is a characteristic function. The characteristic

function form has also been extended so as to include cases where utility is

not transferable.

The characteristic function form focuses on the worth of each coalition

separately, ignoring externalities possibly caused by how agents outside the

coalition are coalesced. In the partition function form, on the other hand the

payoff of a coalition depends not only on its members, but also on how the

rest of the players are partitioned (Thrall and Lucas 1963).

Of the two types of games, noncooperative games enable us to model

situations in a more detailed way, thus also leading to possibly more exact

results. Cooperative games, on the other hand, are informationwise coarser.

Most research in game theory, in general, focuses on how groups of people

interact.

Myerson (1977) defines cooperation structures to talk about who is co-

operating with whom among the players and used graph theoretic ideas in

order to analyze cooperation structures in games. He adapted the Shapley

formula for graphs as an allocation rule which is now known as the Shapley-

Myerson allocaton rule in the literature. Myerson uses graphs as cooperation

structures in studying the games in characteristic function form. Games in

more general graph function form are defined for the first time in this paper.

Indeed, the passage from coalitions to cooperation structures via graphs is

accomplished by the partition function form: A graph partitions the set of

players into communicating groups through its component structure. Graph

function form games are TU games in which the value of each coalition is

defined as the sum of the values of its connected subcoalitions induced by

the given graph with respect to the given cooperative game v. Myerson con-

tends that the distribution of value should be based on the connectedness

structure of the underlying graph. However, the particular architecture of
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the coalition dos not matter. In order to overcome this shortcoming, explicit

value functions on the set of all networks are introduced by Jackson and

Wollinsky(1996), whereby they modify Myerson’s cooperation structures by

using networks. They start with a value function rather than a characteristic

function. We follow a similar approach as Jackson and Wollinsky(1996) in

the context of covers. Thus, the value function is defined on the set of all

covers at the outset. This allows us to investigate several aspects pertaining

to covers in a more comprehensive way than Myerson’s conference structures.

Jackson and Wollinsky(1996) study the tension between the stability and ef-

ficency in networks. Jackson and Wollinsky also introduced the notion of

pairwise stability which may not be so meaningful in the setting of coverings.

A network is pairwise stable if no player would be better off if he severed one

of his links, and no pair of players would both benefit with at least one of

them in the strictly sense from adding a new link among themselves. This

may be regarded as a rather weak stability notion for networks as well since

it does not allow deviations where a player deletes more than one link at a

time or add new links with others simultaneously.

Some stronger forms of stability were also defined following this notion.

Especially, strong stability defined by Dutta and Mutuswami(1997) is a sta-

bility notion which takes into account the deviations of groups of players of

any size.

Aumann and Myerson(1988) modeled network formation as an extensive

form game. They defined a two stage game in which, according to an exo-

geneously given ranking of pairs of players, the pairs in turn decide whether

or not to form a link knowing the decisions of all the pairs before them and

forecasting the decisions of pairs following them. However, this extensive

form is necessarily ad hoc and makes the game difficult to analyze beyond

very simple examples. Morover, the ordering of links can have a non-trivial

impact on which networks emerge. These problems prompted some other ap-
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proaches on network formation. Myerson(1991) modeled network formation

as a normal formal game where the players simultaneously propose the links

that they want to form, and the links are formed under consent of the both

sides. This game is simple and captures the idea of link formation, but it

generally has a large multiplicity of Nash equilibria. So, some refinements of

the Nash equilibrium concept such as pairwise Nash equilibrium, strong Nash

equilibrium and coalition proof Nash equilibrium were introduced in order to

overcome this multiplicity problem.

Furthermore, Myerson (1980) defined conference structures to describe

how the outcome of a cooperative game might depend on which groups of

players hold cooperative planning conferences. The results of this paper gen-

eralize Myerson(1977)’s results by dropping the side payments assumption

and by allowing for conferences of more than two players.

In the next chapter, we firstly present formal definitions and some results

from the network literature. Then, we summarize the formal model concern-

ing graph function forms defined by Myerson. Finally we describe conference

structures and related notions introduced by Myerson along with the relevant

results. In Chapter 4, we define the notion of a cover and present our findings.

Chapter 5 concludes the study.
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CHAPTER 3

NETWORKS AS COOPERATION

STRUCTURES AND CONFERENCE

STRUCTURES

3.1 Networks

Let N be a nonempty and finite set. A graph on N is a set of unordered pairs

of distinct members of N . We refer to these pairs as links or edges of g. We

set N = {1, 2, ..., n} and interpret it as the set of individuals in the society

who form bilateral relations among themselves represented by the edges of a

graph. To reflect this interpretation, we will henceforth refer to a graph on

N as a network on N . Thus, in a network g, {i, j} ∈ g where i, j ∈ N with

i 6= j means that i and j are linked in the network g. We will simply write

ij for the link {i, j}.

The network gN = {ij | i, j ∈ N, i 6= j} is the complete network on N. We

write G = {g | g ⊆ gN} and refer to G as the set of all networks on N .

The network obtained by adding link ij to a network g is denoted by g+ij,

and the network obtained by deleting link ij from a network g is denoted by

g − ij. Let N(g) be the set of players who have at least one link in g, i.e.,

N(g) = {i ∈ N | ∃j ∈ N such that ij ∈ g}.

Definition. A path in a network g ∈ G between i, j ∈ N is a sequence of
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players i1, i2, ..., im such that ikik+1 ∈ g for each k ∈ {1, 2, ...,m − 1} with

i1 = i and im = j.

A network g ∈ G is said to be connected if, for any i, j ∈ N , there exists

a path between i and j that starts at i and ends at j and it also stays in g.

Definition. g′ ⊂ g is a component of a network g if

1. For any i, j ∈ N(g′) where i 6= j there exists a path in g′ between i and

j, and

2. For any i ∈ N(g′), j ∈ N , if ij ∈ g, then ij ∈ g′.

Indeed, components are the maximal connected subgraphs. The set of

components of g is denoted by C(g).

A function v : G → R is called a value function on G .

A value function represents the total value that is generated by a given

network. Note that a value function is more informative than a cooperative

TU game since the total payoff assigned to a coalition T not only depends

upon the members of T, but also the architecture joining them if a coalition

in a network is regarded as the set of vertices in a component.

Definition. A value function v is component additive if

v(g) =
∑

g′∈C(g)

v(g′)

for any g ∈ G , where C(g) stands for the set of all components of g.

We denote the set of all value functions on G by VG and suppress the

subscript G whenever it is self-understood.

An allocation rule specifies how the total value generated by a network is

distributed among the members in the society.
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Definition. An allocation rule is a function Y : G × V → Rn, for any value

function v ∈ VG and for any g ∈ G ,
∑

i∈N Yi(g, v) = v(g) and Yi(g, v) = 0

whenever i /∈ N(g).

Definition. An allocation rule Y is component balanced if, for any component

additive value function v on G , g ∈ G and g′ ∈ C(g),

∑
i∈N(g′)

Yi(g, v) = v(g′)

Whenever v ∈ V is unambigiuous, we will write simply Yi(g) instead of

Yi(g, v)

Note that component balancedness requires that under a component ad-

ditive value function, the value generated by any component be distributed

to the players within that component.

Definition. An allocation rule Y satisfies equal bargaining power if, for any

component additive value function v ∈ VG , g ∈ G and i, j ∈ N with i 6= j,

Yi(g)− Yi(g − ij) = Yj(g)− Yj(g − ij)

Note that equal bargaining power does not require that players split the

marginal value of a link. Equal bargaining power provides that players equally

benefit or suffer from the addition of the link between themselves.

3.2 Networks as Cooperation Structures

Myerson(1977) defines partition function form games since the characteristic

function form games ignore the link architecture between the players outside

a given coalition in determining its value.

We refer to a nonempty subset of N as a coalition in N.

Let S ∈ 2N/{∅}, g ∈ G and i, j ∈ S be given
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Then i and j are connected in S by g if and only if there is a path in g

connecting i to j via vertices in S.

Given g ∈ G and S ∈ 2N/{∅}, there exists unique partition of S which

groups players together if and only if they are connected in S by g.

We will denote this partition by S/g. Formally,

S/g = {{i ∈ S | i and j are connected in S by g} | j ∈ S}

Example 1. N = {1, 2, 3, 4, 5} and g = {12, 13, 23, 35, 15} then for S1 =

{1, 2, 3}, S2 = {1, 4, 5} and S3 = {1, 2, 4, 5}

S1/g = {1, 2, 3}/g = {{1, 2, 3}}, S2/g = {1, 4, 5}/g = {{1, 5},{4}},

S3/g = {1, 2, 4, 5}/g = {{1, 2, 5},{4}} and N/g = {1, 2, 3, 4, 5}/g =

{{1, 2, 3, 5},{4}}

The idea behind this notion is the understanding that even if two play-

ers do not have a direct link between themselves, they may still effectively

cooperate if they are connected by the graph g.

Definition. A Transferable Utility game is defined as an ordered pair (N, v)

where N = {1, 2, ..., n} is the set of players and v : 2N → R is a function such

that v(∅) = 0. We refer to v as a characteristic function and interpret v(S)

as the worth of coalition S ∈ 2N which the members of S are yet to divide

among themselves. Given a game (N, v) and a subset of players S, (S, v) is

the subgame obtained by restricting v to subsets of S only.

Set of all relationships are cooperation structures and non-directed graphs

are used for the cooperation structures.

In partition form games, Myerson(1977) defines the fair allocation rule

Y : G → Rn such that for any g ∈ G and ij ∈ g,

Yi(g)− Yi(g − ij) = Yj(g)− Yj(g − ij).

11



Indeed, the fair allocation for the characteristic function form game and

the equal bargaining power for the network games coincide. Because the

games are identical and definitions of these fairness conditions are the same

although they have different names. The only difference is that second one

uses the value functions defined over the set of all networks rather than using

the characteristic function.

If we require that players can only communicate along links in g, then

for any characteristic function game v and a graph g, define v/g to be a

characteristic function game so that for any coalition S ∈ 2N/{∅},

(v/g)(S) =
∑
T∈S/g

v(T ).

Note that v/gN = v.

Shapley value is one of the most popular solution concepts in cooperative

game theory. While allocating the payoffs, it considers every player’s marginal

contributions to possible coalitions.

Definition. The Shapley value operator is defined as

ϕi(v/g) =
∑

S⊂N/{i}

[v/g|S∪{i} − v/g|S].
|S|!(n− |S| − 1)!

n!

for any g ∈ G and i ∈ N .

Thus, each player gets the weighted sum of his/her contributions to every

possible coalition. In the literature of network games, this formula for the

networks is named as Shapley-Myerson allocation rule.

Myerson (1977) proved that for any characteristic function game v, there

is a unique fair allocation rule Y : G → Rn satisfying component balanced-

ness(he defined this as an efficiency notion) and fair allocation rule. This
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allocation rule also satisfies

Y (g) = ϕ(v/g)

where ϕ(.) is the Shapley value operator.

Jackson and Wollinsky (1996) extends this result to component additive

value functions for the networks by showing that the unique allocation rule

which satisfies component balancedness and equal bargaining power is the

Shapley Myerson allocation rule.

Myerson(1977) extends his ideas to non-transferable utility games and

partition function form games. Moreover, in order to show the full generality

of his ideas, he introduces the games in graph function form.

3.3 Games in Graph Function Form

An embedded subgraph is a pair (S, g) such that g is a graph and S is a

connected component of g in N .

ESG = {(S, g) | g ∈ G , S ∈ N/g} where ESG represents the set of all

embedded subgraphs.

A set W ⊆ RS is comprehensive if and only if for any a ∈ W and b ∈ RS

if an ≥ bn ∀n ∈ N, then b ∈ W.

W is a proper subset of RS if and only if W ∈ RS and ∅ 6= W 6= RS.

Let ∂ denote the boundary operator, so that if W ∈ RS then ∂W is the

boundary of W in RS.

A graph function form game is a set valued function w(.) with domain

ESG, such that for any (S, g) ∈ ESG, w(S, g) is a closed and comprehensive

proper subset of RS. The set of utility allocations which are feasible for

the players in S when g is the set of bilateral cooperation links is denoted

13



by w(S, g). If cooperation structure g is given, then ∂w(S, g) is the Pareto

optimal frontier for the members of S.

A characteristic function form game v can be identified with a graph

function form game w(.) if and only if w(S, g) = {r ∈ RS |
∑

n∈S rn ≤ vS}

for all (S, g) ∈ ESG.

3.4 Conference Structures

Myerson (1980) introduced the conference structures in order to describe how

the outcome of cooperative game might depend on which groups of players

conduct cooperative planning conferences. Similar to the networks, allocation

rules assign each conference structure to an allocation. Although Myerson did

not describe the internal structure of these conferences, he generalized his

1977 paper’s results by dropping side payments assumption and by allowing

conference consisting of more than two players.

We will formally give the definitions of Myerson(1980) and summarize his

results.

Let V be a characteristic function game without side payments and as

usual N represents the nonempty and finite set of players in V where N =

{1, 2, ..., n}. V maps each set of players S ∈ 2N/{∅} to a subset of RN where

for any S ∈ 2N/{∅},

i. V (S) is a closed proper subset of RN

ii. For any x ∈ V (S), y ∈ Rn if for any i ∈ S, yi ≤ xi then y ∈ V (S)

This is somewhat weaker than the usual definition of a characteristic func-

tion game without side payments. We shall not need convexity of V (S).

However, we require V (S) to be a comprehensive subset of Rn.

For any set S ∈ 2N/{∅}, let ∂V (S) be the weakly Pareto efficient frontier

of V (S), that is ∂V (S) = {x ∈ V (S)| if yi > xi ∀i ∈ S, then y /∈ V (S)}
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Myerson aimed to describe the cooperation of players who will come to-

gether in a committee meeting or a conference in order to discuss their co-

operative plans so that according to Myerson(1980), a conference represents

any set of two or more players who might meet together to discuss their

cooperative plans and a conference structure is defined as any collection of

conferences.

Let CS denote the set of all possible conference structures. That is given

formally as: CS = {Q ⊂ 2N/{∅} | ∀S ∈ Q, S ⊆ N and |S| ≥ 2}.

Players i and j can cooperate even if they do not attend the same confer-

ence but it is the case only if there is a sequence of conferences (S1, ..., Sm)

such that i ∈ S1, j ∈ Sm and Sk ∩ Sk+1 6= ∅ for each k ∈ {1, 2, ...,m− 1}.

If the above condition is satisfied then i and j are connected. Thus, they

can be coordinated either by meeting together in some conference (This is

the case when m = 1) or by attending distinct conferences that have some

common members (This is the case when m = 2) or by some longer sequence

of overlapping conferences (This is the case when m > 3).

Similar to the network structures, a component is defined as a maximal

connected subset of the given conference structure. These maximal connected

subsets represent the coalitions that can cooperate. Myerson did not name

these as components but we use the term component for simplicity.

The components are refered as the set of maximal connected coalitions

of conference structure Q and denoted by N/Q or it can be thought as the

partitions of N defined by the connectedness relation in Q. Formally, N/Q

can be written formally as:

N/Q = {{j ∈ N | i and j are connected by Q} | i ∈ N}

For any given conference structure Q ∈ CS, any conference S ⊆ N and

any individual i ∈ N , Q−S is the conference structure differing from Q since
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S is deleted from the list of conferences. Q− S is formally defined as:

Q− S = {T | T ∈ Q and T 6= S}

Q ∩∗ S contains the conferences that can involve members only from S.

Thus, any conference that contains players outside S is deleted from the list

of conferences Q. Q ∩∗ S is formally defined as:

Q ∩∗ S = {T | T ∈ Q and T ⊆ S}

Q−∗ i is the conference structure differing from Q in that all conferences

that involve the player i are deleted. Q−∗ i is formally defined as:

Q−∗ i = {T | T ∈ Q and i /∈ T}

The outcome of the game V is expected to depend on how the play-

ers organize their conferences. Thus, each player’s payoff can be given as a

function of the conference structures. Allocation rules formally express this

situation by assigning each conference structure to an allocation X(Q) where

X(Q) = (X1(Q), ..., Xn(Q)). An allocation rule is formally defined for the

game V as, X : CS → Rn such that for any conference structure Q ∈ CS,

and for any conference S ∈ N/Q,

X(Q) ∈ ∂V (S)

where ∂ denotes the Pareto optimal frontier of V .

The above definition asserts that, if S is the maximal connected coalition

for the conference structure Q, then the members of S cooperate in order

to achieve a Pareto efficient allocation among those allocations available to

them.
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There are infinitely many points in ∂V (S) and any of them can be chosen

for the allocation. To obtain narrower range of interesting allocation rules,

some additional restrictions can be set on the allocation rule.

While people cooperate with each other, they wish to obtain same addi-

tional benefit from their cooperation. This idea is the intuition behind the

equal gains principle of Myerson(1980). This notion was named as equal

bargaining power in network context (Jackson and Wollinsky, 1996). The

counterpart of equal gains principle for the allocation rules in conference

structures is defined as fair allocation rules (Myerson 1980).

Definition. An allocation rule X : CS → RN is fair if and only if for any

conference structure Q ∈ CS, any conference S ∈ Q and i, j ∈ S

Xi(Q)−Xi(Q− S) = Xj(Q)−Xj(Q− S)

Indeed, fair allocation rule provides that each conference gives equal bene-

fits to its members. If the members of the conference S decides not to organize

this meeting then conference structure would be Q−S and under the fairness

condition each member of the conference S should enjoy the same gain or

same loss from this change.

Organization of each conference depends on the consent of its each mem-

bers so any member of this conference can cause the cancellation of this

conference by withdrawing his support. This idea can be criticized because

most of the conferences can be conducted without some of the members. My-

erson(1980) named this notion as balanced contributions and if any allocation

rule satisfies balanced contributions then player j’s contribution to i is always

equal to player i’s contribution to j in any conference structure.

Definition. An allocation rule X : CS → RN has balanced contributions if

and only if for any conference structure Q ∈ CS and i, j ∈ N ,
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Xi(Q)−Xi(Q−∗ j) = Xj(Q)−Xj(Q−∗ i)

As we discussed before, Shapley value considers the marginal contribution

of each player to every possible coalition while allocating the total value. This

rule was originally defined for games with side payments. Myerson(1980)

extends this notion as an allocation rule for conference structures.

Definition. An allocation rule X : CS → RN satisfies the Shapley formula

if and only if for any conference structure Q ∈ CS and i ∈ N

Xi(Q)−Xi(∅) =
∑
i∈S⊆N

(|S| − 1)!(n− |S|)!
n!

[Z(Q ∩∗ S)− Z(Q ∩∗ S −∗ i)]

where Z(Q) =
∑

j∈N Xj(Q) for any Q ∈ CS.

According to this formula, the payoff that the allocation rule assigns to

each player is the weighted average of his/her contributions to the players in

smaller conference structures.

The main purpose of Myerson(1980) is to describe the fair allocation rule

and characterize this rule for the conference structures. His main result that

characterizes the fair allocation is the following theorem:

Theorem 1 (Myerson (1980)). There exists a unique fair allocation rule for

the game V. This allocation rule also has balanced contributions and satisfies

the Shapley formula, and no other allocation rule for V satisfies either of

these properties.
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CHAPTER 4

COVERS

The notion of a ”cover” arises as a very natural generalization of a graph,

since we define a cover as a subcollection of the power set of N such that the

union of the members in this subcollection covers the vertex set provided that

no set in the collection is a proper subset of another. Thus, this extension

allows hyperedges of different orders in contrast to edges in a graph regarded

as doubleton sets.

4.1 Definitions and Notation

Let N be a finite, nonempty set. We set N = {1, 2, ..., n} and interpret it as

the set of players.

We will define cover in a formal way and give some definitions, each of

which will be a counterpart of an existing definition in network literature.

Definition. A subset of 2N , C is said to be a cover for N if it satisfies the

following two conditions:

i.
⋃
S∈C S = N .

ii. @S, S ′ ∈ C : S 6= S ′ and S ⊆ S ′
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We will denote the set of all covers for N by C N .

Definition. Given a cover C ∈ C N , a member S ∈ C is said to be a hyperedge

of order t (written as ordS = t) if |S| = t+ 1.

Definition. A cover C ∈ C N is said to be connected if for any a, b ∈ N ,

there exist E1, E2, ..., Ek ∈ C such that a ∈ E1, b ∈ Ek and for any i ∈

{1, 2, ..., k − 1} Ei ∩ Ei+1 6= ∅.

Proposition 1. For any C ∈ C N , if C is connected, then n ≤ (
∑

S∈C(ordS))+

1.

Proof. Let us take an arbitrary connected cover C ∈ C N . So for any a, b ∈ N ,

there exist E1, E2, ..., Ek ∈ C such that a ∈ E1, b ∈ Ek and Ei ∩ Ei+1 6= ∅ for

all i ∈ {1, 2, ..., k − 1}.

Define C
′
as the minimal connected cover obtainable from C such that for

any a, b ∈ N , there exist E
′
1 ⊂ E1, E

′
2 ⊂ E2, ..., E

′

k ⊂ Ek and E
′
1, E

′
2, ..., E

′

k ∈

C
′

such that a ∈ E
′
1, b ∈ E

′

k and E
′
i ∩ E

′
i+1 = {j} for some j ∈ N for all

i ∈ {1, 2, ..., k − 1}.

Take all hyperedges of C
′
, namely they are E

′
1, E

′
2, ..., E

′
m.

Set E
′
1 ∩ E

′
2 = {j1}, E

′
2 ∩ E

′
3 = {j2}, ..., E

′
m−1 ∩ E

′
m = {jm−1} where

j1, ..., jm−1 ∈ N .

Assume that |E ′
1| = t1 + 1, |E ′

2| = t2 + 1, ..., |E ′
m| = tm + 1 for some

t1, t2, ..., tm ∈ N/{0}.

Consider E
′
i/{ji} for i ∈ {1, 2, ...,m− 1}.

Note that (E
′
i/{ji}) ∩ E

′
i+1/{ji+1} = ∅ for i ∈ {1, 2, ...,m− 2}.

Notice that C
′′

= {E ′
1/{j1}, E

′
2/{j2}, ..., E

′
m−1/{jm−1}, E

′
m} be a cover for

N so that n ≤ |E ′
m|+

∑m−1
i=1 |E

′
i/{ji}|.

Indeed, |E ′
m|+

∑m−1
i=1 |E

′
i/{ji}| = tm + 1 + (t1 + t2 + ...+ tm−1)

= 1 +
∑m

i=1 ti

= 1 +
∑m

i=1(|E ′
i | − 1)

= 1 +
∑m

i=1(ordE
′
i)
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Recall that E
′
1, E

′
2, ..., E

′
m are all hyperedges of the minimal connected

cover C
′

obtainable from C so
∑m

i=1(ordE
′
i) ≤ (

∑
S∈C(ordS)).

Thus, 1 +
∑m

i=1(ordE
′
i) ≤ 1 + (

∑
S∈C(ordS)).

Hence n ≤ 1 + (
∑

S∈C(ordS)).

There can be different ways to prove this inequality. For instance, one can

prove it easily by induction on n.

The value of a cover is assigned by the value functions which can be any

function that maps each cover to a real number. The value is the aggregation

of individual payoffs. An allocation rule is defined with respect to the given

value function in order to describe how the value associated with each cover

is allocated among the individual players.

Definition. A function v : C N → R is called a value function for C N if

v(C) = 0 whenever ordS = 0 for all S ∈ C.

Definition. Given a value function v : C N → R, a function Y : C N → RN

is called an allocation rule associated with v if, for any C ∈ C N , one has

v(C) =
∑

i∈N(Yi(C)).

4.2 Stability and Efficiency

Let v : C N → R be a value function and Y an allocation rule associated with

v.

Definition. For any C ∈ C N , we say that C is efficient relative to v if

v(C) = max
C′∈C N

v(C ′)

Moreover, C is said to be Pareto efficient relative to (v, Y ) if there is no

C ′ ∈ C N such that for any i ∈ N : Yi(C
′) ≥ Yi(C) and there is j ∈ N :

Yj(C
′) > Yj(C).
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Efficiency indicates the maximal total value. Efficiency and Pareto effi-

ciency are equivalent if the value is transferable across players. However, we

are not dealing with transferable payoff games. In our case, the following

result states the connection between these two efficiency conditions.

Proposition 2. Let v : C N → R be a value function and C ∈ C N . C is

efficient relative to v if and only if C is Pareto efficient relative to (v, Y ) for

any allocation rule Y associated with v.

Proof. First assume that C is efficient relative to v. Take any allocation

rule Y associated with v. Suppose that C is not Pareto efficient relative

to v and Y . Then ∃C ′ ∈ C N such that ∀i ∈ N : Yi(C
′) ≥ Yi(C) and

∃j ∈ N : Yj(C
′) > Yj(C).

But then v(C ′) =
∑

i∈N Yi(C
′) >

∑
i∈N Yi(C) = v(C) contradicts that C

was efficient relative to v.

Conversely assume that C is Pareto efficient relative to v and Y for any

allocation rule Y associated with v. Consider the egalitarian allocation rule

Y e
v (associated with v) where Y e

v,i(C) = v(C)
|N | for all i ∈ N

In particular, C ∈ PE(v, Y e
v )

Take any cover C ′ ∈ C N .

Suppose that v(C ′) > v(C). But then ∀i ∈ N : Y e
v,i(C

′) = v(C′)
|N | >

v(C)
|N | =

Y e
v,i(C) contradicts that C ∈ PE(v, Y e

v ).

So, ∀C ′ ∈ C N : v(C) ≥ v(C ′).

Thus, C ∈ E(v).

The result that we establish here is the counterpart of the one found for

the networks which is shown almost in the same manner.

We want to define stability notions for covers. In order to do this, we

should describe how coalitions of players behave and change their strategies.

Namely, collection of T-function associated with a coalition T represents the

ability of that coalition to change the cover.
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Definition. Let C ∈ C N and T ∈ 2N/{∅}. A function f : C → 2N/{∅} is

called a T-function on C if ∀S ∈ C : f(S) ⊂ S with S/f(S) ⊂ T . A cover

C ′ ∈ C N is said to be obtainable from C via T if C ′ ⊂ {f(S)|S ∈ C}∪ 2T for

some T-function f on C.

Definition. Let C ∈ C N and k ∈ {1, 2, ..., n}. We say that C is k-stable

relative to (v, Y ) if there is no T ∈ 2N/{∅} with |T | ≤ k such that ∃C ′ ∈ C N

obtainable from C via T with ∀i ∈ T : Yi(C
′) ≥ Yi(C) ∃j ∈ T : Yj(C

′) >

Yj(C). C is said to be strongly stable relative to (v,Y) if C is k-stable relative

to (v, Y ) for all k ∈ {1, 2, ..., n}.

4.3 Shapley Myerson Allocation Rule

Definition. For any C ∈ C N and T ∈ 2N/{∅}, we define the restriction of

C to T , denoted as C|T , by

C|T = {S∩T |S ∈ C, S∩T 6= ∅ and @S ′ ∈ C : S∩T ⊂ S ′∩T}∪{{i}|i ∈ N/T}

(Note that C|T ∈ C N).

This restriction notion is necessary for us to define the Shapley-Myerson

allocation rule. While characterizing the conference structures, Myerson fol-

lowed a different way in defining the restriction and so in defining the Shapley

Myerson allocation rule. He used Q ∩∗ S as the restriction of the conference

structure over the coalition S. The conference structure Q ∩∗ S differs from

the conference structure Q in that all conferences containing players outside

S are eliminated. However, we define the restriction of cover C to coalition

T by taking the nonempty intersections of coalition T with each hyperedge

S. In our case, coalitions can continue to exist the hyeperedges without the

players outside that coalition. On the other hand, in Myerson’s definition if

any conference involves players from that coalition, then that conference is
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canceled in the restriction.

Definition. The Shapley-Myerson allocation rule Y SM associated with v is

defined for any C ∈ C N and i ∈ N as

Y SM
i (C) =

∑
T⊂N/{i}

[v(C|T∪{i})− v(C|T )].
|T |!(n− |T | − 1)!

n!

We are looking for the existence of k-stable and strongly stable covers. For

any given value funtion v, does there exist a k-stable cover C ∈ C N relative to

(v, Y SM)? We can answer this question for k = 2 by giving a counterexample

in which we define a value funtion such that there does not exist a 2-stable

cover.

There exists value functions under which there is no cover that is 2-stable

with respect to Shapley-Myerson allocation rule. Following example shows

this fact.

Example 2. N = {1, 2, 3}, v(1, 2, 3) = 0, v(12, 3) = v(13, 2) = v(1, 23) = 10,

v(12, 23) = v(13, 23) = v(12, 13) = 11, v(12, 23, 13) = 12, v(123) = 13.

Apply Shapley-Myerson allocation rule to allocate the total value.

Y SM(1, 2, 3) = (0, 0, 0)

Y SM(12, 3) = (5, 5, 0), Y SM(13, 2) = (5, 0, 5), Y SM(1, 23) = (0, 5, 5).

Y SM(12, 23) = (2, 7, 2), Y SM(13, 23) = (2, 2, 7), Y SM(12, 13) = (7, 2, 2).

Y SM(12, 23, 13) = (4, 4, 4).

Y SM(123) = (13
3
, 13

3
, 13

3
).

In this example, all covers except C1 = (1, 2, 3) are Pareto efficient relative

to (v, Y SM) and the unique efficient cover is C9 = (123).

Moreover, there are no 2-stable cover. Because for C1 = (1, 2, 3), any

coalition with two players would lead to better payoffs for both of them. For

C2 = (12, 3) Shapley Myerson give (5, 5, 0); first and third players can co-

operate and C
′
2 = (13, 2) is obtainable from C2 and in this time first player
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gets again 5 but third one gets also 5. So, C2 is not 2-stable. By symmetry,

C3 = (13, 2) and C4 = (1, 23) are not 2-stable. For C5 = (12, 23), Shapley My-

erson give (2, 7, 2); first and third players can cooperate and C
′
5 = (12, 23, 13)

is obtainable from C5 and in this time first player and third player both get 4

(4 > 2). So, C5 is not 2-stable. By symmetry C6 = (13, 23) and C7 = (12, 13)

are not 2-stable. For C8 = (12, 23, 13), Shapley Myerson give (4, 4, 4); first

and third players can cooperate and C
′
8 = (13, 2) is obtainable from C8 and

in this time first player and third player both get 5 (5 > 4). So, C8 is not

2-stable. Similarly for C9 = (123) Shapley Myerson give (13
3
, 13

3
, 13

3
); again

first and third players can cooperate and C
′
9 = (13, 2) is obtainable from C9

and in this time first player and third player both get 5 (5 > 13
3

). So, C9 is

not 2-stable. Thus, none of them is 2-stable.

For networks one can find for any given value function v : G → R, there

exists a network g ∈ G such that g is pairwise stable with respect to (v, Y SM)

(Jackson 2003a). However, we can not obtain a similar existence result for 2-

stable covers. Even if we require the value function to be component additive

and anonymous, the above counter example evaporates our hope to achieve

such an existence result.

However, there always exists a 1-stable cover, because the cover in which

all the players stay isolated give zero payoff to each player and no player

can gain by deleting a link, because there is no link. So, this cover would

automatically be 1-stable. In the following example, there is no 1-stable cover

except the one in which all players are isolated.

Example 3. N = {1, 2, 3}, v(1, 2, 3) = 0, v(12, 3) = v(13, 2) = v(1, 23) = −6,

v(12, 23) = v(13, 23) = v(12, 13) = 0, v(12, 23, 13) = 6, v(123) = −6.

Apply Shapley-Myerson allocation rule to allocate the total value.

Y SM(1, 2, 3) = (0, 0, 0), Y SM(12, 3) = (−3,−3, 0), Y SM(13, 2) = (−3, 0,−3),

Y SM(1, 23) = (0,−3,−3), Y SM(12, 23) = (3,−6, 3), Y SM(13, 23) = (3, 3,−6),
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Y SM(12, 13) = (−6, 3, 3), Y SM(12, 23, 13) = (2, 2, 2), Y SM(123) = (−2,−2,−2).

Covers with one hyperedge are not 1-stable because players can delete the

hyperedge and get zero rather than −3. Covers with two hyperedges are also

not 1-stable since the player who has two hyperedges delete one of them so

he gets −3 rather than −6. (12, 23, 13) is not 1-stable since any of the player

can delete one of its hyperedge and gets 3 rather than 2. (123) is not 1-stable

because any player can choose being isolated and get 0 rather than −2.

Jackson and Wollinsky(1996) introduced the tension between stability and

efficiency in networks and the literature grew after their work. This tension

can also be investigated for covers. Following example is due to this problem.

Example 4. Let v be a component additive value function and we are given

the Shapley Myerson allocation rule. N = {1, 2, 3}, v(1, 2, 3) = 0, v(12, 3) =

7
8
, v(13, 2) = 3

8
, v(1, 23) = 3

8
, v(12, 23) = 5

8
, v(13, 23) = 1, v(12, 13) = 5

8
, v(12, 23, 13) =

1, v(123) = 1.

Y SM(1, 2, 3) = (0, 0, 0), Y SM(12, 3) = ( 7
16
, 7

16
, 0), Y SM(13, 2) = ( 3

16
, 0, 3

16
),

Y SM(1, 23) = (0, 3
8
, 3

8
), Y SM(12, 23) = (1

4
, 3

8
, 0), Y SM(13, 23) = (1

4
, 1

4
, 1

2
),

Y SM(12, 13) = (3
8
, 1

4
, 0), Y SM(12, 23, 13) = (3

8
, 3

8
, 1

4
), Y SM(123) = (1

3
, 1

3
, 1

3
).

As we consider this example, (12, 3) is the unique strongly stable cover

which is Pareto efficient but not efficent. Morover, (13, 23), (12, 23, 13) and

(123) are the efficient covers but none of them is strongly stable, also none of

them is 2− stable however all of them are 1-stable.

In partition function form, connectedness relation determines the coali-

tion. Similar to the graph structures, we use connectedness relation in covers

by taking components which are the maximal connected subcovers, the formal

definition of a component of a cover is as follows:

Definition. A component of a cover C is a nonempty subcover T ⊂ C such

that
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i. ∀i, j ∈ N(T ) : i 6= j, ∃{E1, ..., Ek} ⊂ T : i ∈ E1, j ∈ Ek and ∀t ∈

{1, ..., k − 1}, Et ∩ Et+1 6= ∅ (i.e. i and j are connected).

ii. ∀i ∈ N(T ),∀S ∈ C : i ∈ S, we have S ∈ T holds.

Definition. A value function v is component additive if and only if for any

cover C ∈ C N ,

v(C) =
∑

T∈Cp(C) v(C|T )

where Cp(C) denotes the set of all components of a cover C.

Definition. An allocation rule Y is component balanced if for any component

additive value function v, any cover C ∈ C N and T ∈ Cp(C)

∑
i∈T

Yi(C, v) = v(C|T )

Component balancedness requires that the allocation rule distributes the

resources generated by any component only to the members of that compo-

nent.

Definition. A cover C is said to be constrained efficient relative to v if there

is no cover C ′ ∈ C N and a component balanced and anonymous allocation

rule Y such that

∀i ∈ N : Yi(C
′) ≥ Yi(C) and ∃j ∈ N : Yj(C

′) > Yj(C)

Definition. A value function v is anonymous if v(Cπ) = v(C) for any cover

C ∈ C N and permutation π

Definition. An allocation rule Y is anonymous if for any value function v,

C ∈ C N and permutation of agents, π, Yπ(i)(C
π, vπ) = Yi(C, v)

The anonymity of an allocation rule means that the information used to

decide on allocations is obtained from the value function and the particular

cover and not from the labelling individuals. We use anonymity to give the
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relationship between the three efficiency notion that we defined. Let E(v)

and CE(v) denote the efficient and constraint efficient covers with respect to

the value function v, respectively and PE(v, Y ) denotes the Pareto efficient

covers with respect to the value function v and allocation rule Y . The next

result that we present is the counterpart of the one given in Jackson(2003a).

Proposition 3. Let v be a component additive and anonymous value func-

tion. We have, E(v) ⊂ CE(v) ⊂ PE(v, Y ) for any component balanced and

anonymous allocation rule Y associated with v.

We will consider Equal Bargaining Power which is defined firstly by My-

erson(1977) as a fairness condition for allocation rules in undirected graphs.

Firstly, let us define the severing one hyperegde from the original cover for

any cover C ∈ C N and hyperedge S ∈ C as:

C − S = C \ S ∪ {{i}|i ∈ S and @S ′ ∈ C \ S : i ∈ S ′}

Definition. An allocation rule Y satisfies Equal Bargaining Power if for any

component additive value function v, for any cover C ∈ C N , S ∈ C, and

i, j ∈ S,

Yi(C, v)− Yi(C − S, v) = Yj(C, v)− Yj(C − S, v)

Indeed, we want to generalize one of the theorem of Myerson [which is

firstly proven in his 1977 paper and extended in Jackson and Wolinsky(1996)]

for covers. This theorem asserts that if v is component additive, then the

unique allocation rule Y which satisfies component balancedness and equal

bargaining power is the Shapley-Myerson allocation rule. However, this the-

orem is valid for networks. Firstly, we defined component balancedness and

equal bargaining power and Shapley-Myerson allocation rule for covers. How-

ever, this theorem does not work for covers with its original form. We are

going to show this with the following counter example.

Example 5. N = {1, 2, 3, 4}, anonymous value function v is defined as
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v({1, 2, 3}, {1, 4}) = 15, v({1, 2, 3}, {4}) = 10, v({1, 2}, {3}, {4}) = 5,

v({1, 2}, {1, 4}, {3}) = 10 and the value function maps every other covers

to zero. We are given the allocation rule as Shapley-Myerson allocation rule.

If we calculate the payoffs of each player under Shapley-Myerson allocation

rule for each cover, we obtain:

Y SM({1, 2, 3}, {4}) = (10
3
, 10

3
, 10

3
, 0)

Y SM({1, 2}, {3}, {4}) = (5
2
, 5

2
, 0, 0)

Y SM({1, 2}, {1, 4}, {3}) = (5, 5
2
, 0, 5

2
)

Y SM({1, 2, 3}, {1, 4}) = (35
6
, 35

12
, 35

12
, 10

3
)

Note that for every other cover (which does not have the same shape of

one of these four covers) each player gets zero payoff.

Consider the cover C as C = ({1, 2, 3}, {1, 4}) and consider C − {1, 4}

So, Y SM(C) = (35
6
, 35

12
, 35

12
, 10

3
) and Y SM(C − {1, 4}) = (5

2
, 5

2
, 0, 0)

Then, Y SM
1 (C)− Y SM

1 (C − {1, 4}) 6= Y SM
4 (C)− Y SM

4 (C − {1, 4}) since

Y SM
1 (C)−Y SM

1 (C−{1, 4}) = 35
6
− 10

3
= 15

6
and Y SM

4 (C)−Y SM
4 (C−{1, 4} =

10
3
− 0 = 10

3
.

Thus, we can not directly generalize the existence and uniqueness theorem

for covers. So, we would define a new fairness condition which is called

Equal Threat Power. In this case, we change the players’ possible threats

among themselves. If any player does not want to attend any hyperedge

(or conference as Myerson named) then this hyperedge is preserved without

this player (in conference notation, the conference is not canceled and done

without this player). In balanced contribution approach, any player has a

right to cancel any conference of which he is a member. Our approach and

Myerson’s balanced contribution approach can be compared and discussed

according to the situation that is desired to be modeled.

We define Ci,j as the cover that is constructed as the threat of the player

i for the player j.

Definition. For any i, j ∈ N such that i 6= j, the threat of the player i for
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the player j, Ci,j is given as

Ci,j =

 C if @S ∈ C s.t. i, j ∈ S

{S ∈ C : i /∈ S} ∪ {S ′ ∈ 2N/{∅} : S ′ ∪ {i} ∈ C} otherwise

Definition. An allocation rule Y satisfies Equal Threat Power if for any

component additive value function v, for any cover C ∈ C N , S ∈ C, and

i, j ∈ S,

Yv,i(C)− Yv,i(Cj,i) = Yv,j(C)− Yv,j(Ci,j)

Theorem 2. For any component additive value function v, the unique allo-

cation rule Y which satisfies component balancedness and equal threat power

is the Shapley-Myerson allocation rule.

Proof. Firstly we show that there can be at most one allocation rule for a

given game v that satisfies equal threat power and component balancedness.

Indeed, suppose Y 1 : C N → RN and Y 2 : C N → RN both satisfy the

component balancedness and equal threat power and Y 1 6= Y 2.

Let C be a cover with a minimum number of hyperedges such that Y 1 6=

Y 2, set y1 = Y 1(C) and y2 = Y 2(C) so that y1 6= y2.

By the minimality of C, if Ci,j is the new cover in which some players

leave their hyperedges, then Y 1(Ci,j) = Y 2(Ci,j).

Thus, ∀i, j ∈ S : Y 1
i (Cj,i) = Y 2

i (Cj,i) and Y 1
j (Ci,j) = Y 2

j (Ci,j)

If we substract the last two equalities from each other, we obtain

Y 1
i (Cj,i)− Y 1

j (Ci,j) = Y 2
i (Cj,i)− Y 2

j (Ci,j) (1)

If we consider the equal threat power:

Yi(C)−Yi(Cj,i) = Yj(C)−Yj(Ci,j)⇒ Yi(C)−Yj(C) = Yi(Cj,i)−Yj(Ci,j) (2)

Write the equality (2) for both Y 1 and Y 2

Y 1
i (C)− Y 1

j (C) = Y 1
i (Cj,i)− Y 1

j (Ci,j)

Y 2
i (C)− Y 2

j (C) = Y 2
i (Cj,i)− Y 2

j (Ci,j)

By equation (1), we know that the right hand side of the last two equations
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are equal.

So, Y 1
i (C)− Y 1

j (C) = Y 2
i (C)− Y 2

j (C)

⇒ y1
i − y1

j = y2
i − y2

j

⇒ y1
i − y2

i = y1
j − y2

j

So, y1
i − y2

i = y1
j − y2

j whenever i and j are in the same hyperedge. This

means that y1
i −y2

i = y1
j−y2

j for each i and j which are in the same component.

By component balancedness of y1 and y2, we have
∑

n∈T y
1
n =

∑
n∈T y

2
n

where T is any component of C.

But then
∑

n∈T (y1
n − y2

n) = 0.

We showed that y1
i − y2

i = y1
j − y2

j whenever i and j are in the same

component. Set y1
n − y2

n = dT (C) for any n ∈ T.

Then 0 =
∑

n∈T (y1
n − y2

n) = |T |. dT (C)

Since T > 0, dT (C) = 0. Thus y1
n − y2

n = 0 for any n ∈ T.

Hence y1 = y2, a contradiction.

That is, there can be at most one allocation rule for any given game v

that satisfies component balancedness and equal threat power.

Claim. I Y SM satisfies component balancedness.

Proof. Take any component T ⊂ C.

We want to show that for all T ⊂ C,
∑

i∈N(T )(Y
SM
i (C|T )) = v(C|T ).

For simplicity, take v(C|T ) = v(T )

N(T ) = {i ∈ N : i ∈ S for some hyperedge S and S ⊂ T}

Consider any j ∈ N/N(T ) where N(T ) denotes the set of players in the

componenet T. Compute Y SM
v,j (T ).

Y SM
v,j (T ) =

∑
S⊂N/{j}[v(T |S∪{j})− v(T |S)]. |S|!(n−|S|−1)!

n!

v(T |S∪{j})− v(T |S) = 0 since j is singleton in T .

So, v(T ) =
∑

i∈N Y
SM
v,i (T ) =

∑
i∈N(T ) Y

SM
v,i (T ) for all components T of C.

Hence, Y SM satisfies component balancedness.

Claim. II Y SM satisfies equal threat power.
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Proof. Take any C ∈ C N and any i, j ∈ N such that i 6= j.

We want to show that

Y SM
v,j (C)− Y SM

v,j (Ci,j) = Y SM
v,i (C)− Y SM

v,i (Cj,i)

Firstly, consider the case that i and j have no common hyperedge.

Then Ci,j = C and Cj,i = C.

So, Y SM
v,j (C)− Y SM

v,j (Ci,j) = Y SM
v,i (C)− Y SM

v,i (Cj,i).

Suppose that i and j are found in the same hyperedge.

So, Y SM
v,i (C) − Y SM

v,i (Cj,i) =
∑

S⊂N/{i}[v(C|S∪{i}) − v(C|S)]. |S|!(n−|S|−1)!
n!

−∑
S⊂N/{i}[v(Cj,i|S∪{i})− v(Cj,i|S)]. |S|!(n−|S|−1)!

n!

=
∑

S⊂N/{i}[v(C|S∪{i})− v(Cj,i|S∪{i})− v(C|S) + v(Cj,i|S)]. |S|!(n−|S|−1)!
n!

If j /∈ S then v(C|S∪{i}) = v(Cj,i|S∪{i}) and v(C|S) = v(Cj,i|S

Then Y SM
v,i (C)−Y SM

v,i (Cj,i) =
∑

j∈S⊂N/{i}[v(C|S∪{i})−v(Cj,i|S∪{i})−v(C|S)+

v(Cj,i|S)]. |S|!(n−|S|−1)!
n!

By symmetry

Y SM
v,j (C)− Y SM

v,j (Ci,j) =
∑

i∈S̄⊂N/{j}[v(C|S̄∪{j})− v(Ci,j|S̄∪{j})− v(C|S̄) +

v(Ci,j|S̄)]. |S̄|!(n−|S̄|−1)!
n!∑

j∈S⊂N/{i} v(C|S∪{i}) =
∑

i∈S̄⊂N/{j} v(C|S̄∪{j})∑
j∈S⊂N/{i} v(Cj,i|S∪{i}) =

∑
i∈S̄⊂N/{j} v(C|S̄)∑

j∈S⊂N/{i} v(C|S) =
∑

i∈S̄⊂N/{j} v(Ci,j|S̄∪{j})∑
j∈S⊂N/{i} v(Cj,i|S) =

∑
i∈S̄⊂N/{j} v(Ci,j|S̄)

Thanks to these four equalities we obtain ∀C ∈ C N ,∀S ∈ C, ∀i, j ∈ S :

Y SM
v,i (C)− Y SM

v,i (Cj,i) = Y SM
v,j (C)− Y SM

v,j (Ci,j)

Hence, Y SM satisfies equal threat power.

So, the proof is complete and we obtain that the unique allocation rule

that satisfies componenet balancedness and equal threat power is the Shapley-

Myerson allocation rule.
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4.4 Hyperlink Formation Game

One branch of the economics literature that has recently emerged is the study

of the endogeneous formation of social networks by self interested agents.

Different versions of link formation in societies where agents are fully aware of

the shape of the social network they belong to and the impact of the network

on their well-being are modeled. Myerson (1991) suggests a noncooperative

link formation game in which agents independently announce which links

they would like to see in the network. In this framework, some of the popular

game theoretic equilibrium concepts can be used to model which networks

will form. After Myerson, other economic designers defined different link

formation games. We want to generalize the usual link formation game of

Myerson to the covers. Namely, we will define the hyperlink formation game

and use some game theoretic solution concepts to make predictions about

which covers will form. Similar to the network formation game, the decisions

of the players about whether they want to form a hyperlink or not can be

modeled as a strategic form game. The value function and the allocation rule

would constitute the payoff function of the strategic form game.

Let N be the set of players, set N = {1, 2, ..., n} and v : C N → R be

a value function and allocation rule Y associated with v be given. Also

2N/∅ = {{1}, {2}, ..., {n}, ..., {1, 2, ..., n}} is labeled uniquely, thus 2N/∅ is

uniquely ordered that 1th element of 2N/∅ is {1}, 2nd element of 2N/∅ is {2},

(n + 1)th element of 2N/∅ is {1, 2} etc. and (2N − 1)th element of 2N/∅ is

{1, 2, ..., n}. We call Tj as the jth element of 2N/∅.

For each i ∈ N , the strategy set is an (2N − 1)-tuple of 0 and 1,

Si = {0, 1}2N−1 = {(si1, si2, ...si2N−1) | sij ∈ {0, 1}} for all i ∈ N and sij

denotes the jth coordinate of si. If sij = 1, player i wants to form the jth

hyperlink which means the jth element of 2N/∅.

Write S =
∏

i∈N Si.

Given the strategy profile S, the function c : S → C N is defined as
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∀s ∈ S : c(s) such that

E(c(s)) = {Tj ∈ 2N/∅ |
∏

i∈N(T ) sij = 1} where E(c(s)) is the set of all

hyperlinks of c(s).

For each i ∈ N and s ∈ S, define ui(s) = Yi(c(s)). The normal form game

H = (N,S, u) is called the Hyperlink Formation Game for N associated with

(v, Y ).

Definition. A strategy profile s ∈ S is called a Nash Equilibrium of H if for

any i ∈ N and s
′
i ∈ Si, ui(s) ≥ ui(s

′
i, s−i)

Now a cover C ∈ C N is called Nash Stable relative to (v, Y ) if there exists

s ∈ S such that s is a Nash equilibrium of H and c(s) = C.

The idea of Nash equilibrium is that no single player can benefit from

unilaterally changing his or her move - a non-cooperative best-response equi-

librium.

Definition. A strategy profile s ∈ S is said to be a Strong Nash Equilibrium

of H if there is no coalition Cl ∈ 2N −{∅} such that there exists s
′

Cl ∈ SCl =∏
j∈Cl Sj: for any i ∈ Cl,

ui(s
′

Cl, sN/Cl) ≥ ui(s)

with at least one of the inequalities being strict.

Moreover, a cover C ∈ C N is called Strongly Nash Stable relative to

(v, Y ) if there exists s ∈ S such that s is a strong Nash equilibrium of H and

c(s) = C.

Considering bilateral link formation, one can define the weaker version of

Strong Nash equilibrium, which is immune to deviations of coalitions involv-

ing at most 2 member:
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Definition. A strategy profile s ∈ S is said to be a 2-stable Nash Equilibrium

of H if there is no coalition with |Cl| ≤ 2 such that there exists s
′

Cl ∈ SCl =∏
j∈Cl Sj such that for any i ∈ Cl,

ui(s
′

Cl, sN/Cl) ≥ ui(s)

with at least one of the inequalities being strict.

Moreover, a cover C ∈ C N is called 2-stable Nash Stable relative to (v, Y )

if there exists s ∈ S such that s is a 2-stable Nash equilibrium of H and

c(s) = C.

This notion was previously defined and used in some papers focusing on

link formation game. Francis Bloch and Matthew O. Jackson(2005) named

this notion as Strong Nash equilibrium of order 2. Indeed, this notion is

firstly mentioned by Jackson and Wollinsky(1996) as a potential refinement

of pairwise stability. In addition to this, Goyal and Vega-Redondo(2005)

prefered to use bilateral equilibria and Slikker and van den Nouweland(2005)

prefered to use pair stability rather than 2-stability. However, previously we

defined k-stable covers for each k ∈ {1, 2, ..., n} so we prefer to call it 2-stable

Nash equilibrium.

Definition. Let v : C N → R be a value function and allocation rule Y

associated with v be given. A cover C ∈ C N is said to be Pairwise Stable

relative to (v, Y ) if

1. ∀S ∈ C, ∀i ∈ C : Yi(C) ≥ Yi(C − S)

2. ∀S /∈ C, if Yi(C + S) > Yi(C) for some i ∈ S, then ∃j ∈ S :

Yj(C + S) < Yj(C)

Definition. Let v : C N → R be a value function and allocation rule Y asso-

ciated with v be given. Writing H(v, Y ) = (N,S, u) for hyperlink formation

game as usual, we define C ∈ C N to be Pairwise Nash Stable relative to
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(v, Y ) if there exists some Nash equilibrium s of H(v, Y ) with c(s) = C and

there does not exist any S /∈ C such that

Yi(C + S) ≥ Yi(C) ∀i ∈ S and Yi(C + S) > Yi(C) for at least one j ∈ S
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CHAPTER 5

CONCLUSION

In this work, we used the notion of a cover as a generalization of network

structure. In a cover, a hyperedge can consist of more than two players,

whereas in networks an edge is formed only by two players.

The cover notion that we use turned out to be almost the same as the

concept of a conference structure introduced by Myerson (1980). However,

the counterparts of several network notions extended to covers in the present

study do reflect the philosophical difference of our point of departure from

that of Myerson’s. The Shapley-Myerson allocation rule that we define in our

framework is thus different, and it is characterized uniquely by component

balancedness conjoined with ”equal threat power”. Moreover, we showed that

in general there does not exist a 2-stable covering with respect to Shapley-

Myerson allocation rule, where the 2-stability notion is a stability notion that

can be thought of to be closest to that of pairwise stability for networks in

our setting.

There are various instances where coverings can be used as appropriate

tools for modeling purposes. For example, trade agreements between different

groups of countries where overlappings are allowed can be modeled using

covers. This study leads to more open problems than those already dealt with

here. Almost every problem in network theory, including network formation
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games, is yet to be extended to covers.
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