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Abstract. We give the residue class, modulo a certain power of p, for the
dimension of a primitive interior G-algebra in terms of the dimension of the source
algebra. To illustrate, we improve a theorem of Brauer on the dimension of a block
algebra.

Almost always, the G-algebras arising in group representation theory have been
interior. Both in applications and in the general theory, it often suffices to consider
primitive interior G-algebras. One of the themes of the theory is the characterisation
of a primitive interior G-algebra in terms of its source algebra S. Stories revolving
around this theme are told in the two books devoted to G-algebra theory, namely
Kiilshammer [8], Thévenaz [15] and in the papers listed in their bibliographies. We
mention particularly Puig [11], [12]. These stories focus on rich algebraic relation-
ships between 4 and S; for a start, [11, 3.5] tells us that 4 and S are Morita
equivalent. However, many outstanding conjectures, some old and some new, hark
back to Brauer’s more arithmetical approach to group representation theory. See,
for instance, conjectures in Alperin [1], Dade [4], Feit [6, Section 4.6] and Robinson
[13]. In this note, we point out an arithmetical relationship between 4 and S. As an
illustration, we shall discuss a theorem of Knérr on the dimension of a simply
defective module, and shall improve a theorem of Brauer on the dimension of a
block algebra. See also Ellers [5].

Our notation is as in Thévenaz [15]; we repeat a little of it to set the scene, and
extend it slightly. Let O be a complete local noetherian ring with an algebraically
closed residue field k of prime characteristic p. Let G be a finite group, and let 4 be
an interior G-algebra; as usual, we assume that A is finitely generated over O, and
either free over O or annihilated by J(O). Given a pointed group Hg on A4, we
choose an element j € B, and define 44 := jAj as an interior H-algebra. Now let X be
an A-module; again we assume that X is finitely generated over O, and either free
over O or annihilated by J(O). We define Xz := jX as an Ag-module. It is easy to
extend the use of embeddings in Puig [12, 2.13.1] to show that Xz is unique up to a
natural isomorphism of 4 g-modules.

Henceforth, let us assume that A is primitive. Let P, be a defect pointed group
on A. The source algebra 4 associated with P, is an interior P-algebra. The multi-
plicity module V(y) associated with P, is a projective indecomposable k,N(P,)-
module. By the construction of V(y), if 14 =Y, ;¢ as a sum of mutually orthogo-
nal primitive idempotents of A7, then dim; V(y) = |y NT].

When V(y) is simple, we say that A is simply defective. This notion has its ori-
gins in Knorr [7], and was introduced explicitly in Picaronny-Puig [10]. Necessary
and sufficient conditions for 4 to be simply defective are to be found in [2, 1.3], [10,
Proposition 1], and Thévenaz [14, 15, 9.3]. We recall that any block algebra of G
over O or over k is simply defective. Also, the linear endomorphism algebras of
certain OG-modules are simply defective (see below). Whenever A4 is simply defec-
tive, the p-part of the dimension of the multiplicity module is
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(dimy V(y)), = [NG(Py) : Pl,.

We shall give a formula for the residue class, modulo a certain power of p, for
the O-rank rkpA (interpreted as the k-dimension dim;A4 when J(O) annihilates A4).
The terms of the formula are dim, V(y), some group-theoretic invariants of 4, and a
residue class of rkpA4,. Information about dim;}(y) and the group-theoretic invar-
iants is usually much easier to obtain than information about rkp4,, so the formula
may be seen as a congruence relation between rkp4 and rkpA4,. Since 4, and V(y)
are uniquely determined up to a G-conjugacy condition, dim;¥(y) and rkpA4, are
isomorphism invariants of A. Similarly, given an A-module X, then rkpX, is an
isomorphism invariant of X.

For a p-subgroup P < G, we define the spire of P in G by the formulae

min{|P: PN P|} if PG,
sprg(P) ::{ ! 0 ! if PG,

We interpret congruences modulo zero as equalities; this convention will apply to
our results when P2 G.

PROPOSITION 1. Let A be a primitive interior G-algebra, let Py be a defect pointed
group on A, and let X be an A-module. Then

tkoX = |G : Ng(P))|. dimy V(y).tko X, modulo |G : P|,sprs(P).

In particular, if A is simply defective, then

(tkoX), = (1G : Pl.tkoX,),. modulo |G : P|,sprq(P).

Proof. If P2 G, then the points of P on A4 are precisely the G-conjugates of y.
Writing 14 = ), t as above, we have

tkoX =Y |T N%ylrkoXg,) = |G : No(Py)|. dimy V(y).rkoX,.
gNG(Py)SG

Now suppose that PAG. Let H := Ng(P). By the Green Correspondence The-
orem in Thévenaz [15, 20.1], there exists a unique point 8 of H on A4 such that
P, < Hg. Furthermore, 8 has multiplicity unity; that is to say, if 1, =) _¢sasa
sum of mutually orthogonal primitive idempotents of 47, then precisely one element
of § belongs to B.

Consider the induced interior G-algebra A’ :=1Ind%(4z). Recall that
A" = O0G Qovn Ap ®on OG as OG—OG-bimodules, and 4’ = Matg.5(4p) as alge-
bras. Let X' := OG ®opn X as an A-module. Let " and 8’ be the points of P and H
on A’ corresponding to y and B, respectively. Since P, is a defect pointed subgroup
of Hg, the Green Correspondence Theorem implies that there exists a unique point
o' of G on 4 satisfying P,, < G, . Furthermore, ' has multiplicity unity. By Puig [11,
3.6], A, = A as interior G-algebras, and via this isomorphism, X, = X as 4-mod-
ules. A routine application of Mackey Decomposition and Rosenberg’s Lemma
shows that if Qg is a local pointed group on A" not G-conjugate to P, then Q is



PRIMITIVE INTERIOR G-ALGEBRA 153

contained in the intersection of two distinct G-conjugates of P. Therefore,
every point of G on A’ distinct from ¢ has a defect group contained in P N ¢P for
some geG—H. By Green’s Indecomposibility Criterion, |G : P|,sprg(P) divides
rkoX —rkpX. We also have rkp X" = |G : H|rko X and, by the first paragraph of the
argument,

I‘k@Xﬁ = |HZ Ng(PV)|d1mk V()/).l"koXy. O

To illustrate Proposition 1, let us consider an indecomposable OG-module M
(finitely generated over O, and either free over O or annihilated by J(O)). Let P be a
vertex of M, let U be a source OP-module of M, let F be the inertia group of U in
Ng(P), and let m be the multiplicity of U as a direct factor of the restricted OP-
module of M. The linear endomorphism algebra Endp(M) (interpreted as End,(M)
when J(O) annihilates M) is a primitive interior G-algebra with a defect pointed
group P, such that M, = U. Also, Ng(P,) = F, and dimy(V(y)) = m. By [2, 1.4],
Endp(M) is simply defective if and only if m is the multiplicity of M in the induced
OG-module of U. When these equivalent conditions hold, we say that M is simply
defective. If M satisfies the hypothesis of Knorr [7, 4.5] (in particular, if M is an
irreducible OG-module or a simple kG-module), then by Picaronny-Puig [10, Pro-
position 1] M is simply defective. Proposition 1 implies the following result.

COROLLARY 2. Let M be an indecomposable OG-module. With the notation
above, we have

tkoM = |G : Fl.m.rkoU modulo |G : P|,sprg(P).

In particular, if M is simply defective, then

(tkoM), = (IG : Pl.ikoU),. modulo |G : P|,sprg(P).

The rider to Corollary 2 relates to [7, 4.5] and [10, Proposition 3], but has slightly
weaker hypothesis and conclusion.

LeMMA 3. Let G and H be finite groups. Let P, and Qs be defect pointed groups
on, respectively, a primitive G-algebra A and a primitive H-algebra B. Then y ® § is
contained in a local point & of PxQ on AQnB, and (PxQ), is a defect pointed group
on the primitive Gx H-algebra A ® B.

Proof. 1t is easy to check that 4 ® B is primitive, and that y ® § is contained in a
point ¢ of Px Q. By considering the evident isomorphism of Brauer quotients

A(P)® B(Q)~ A® B(P x Q)
we see that ¢ is local. On the other hand,

Lags € Trgip(4" @ B?.e.4” @ BO)

so that (Px Q). is a defect pointed group. O
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THEOREM 4. Given a defect pointed group P, on a primitive interior G-algebra A,
then

rkoA = (|G : Ng(Py)|. dimy V(y))’rkoA, modulo |G : Pl sprg(P).

In particular, if A is simply defective, then

(tkpA), = (|G : P|*.tkpA,), modulo |G : P|*sprs(P).
P v/p P G

Proof. This follows from Proposition 1 and Lemma 3 upon considering 4 as an
AR®nA°P-module by left-right translation. O

Let us consider a block idempotent b of OG with defect group P. Brauer [3,
Theorem 1] used character theory to prove that the block algebra OGb satisfies

(tkoOGb), = (IGI|G : PI),.

A module-theoretic demonstration was later given by Michler [9, 2.1], and the result
is generalised in Picaronny-Puig [10, Proposition 3]. Since OGb is simply defective,
Theorem 4 gives, more precisely, the following result.

COROLLARY 5. Let b be a block idempotent of OG. Let (P, e) be a maximal
Brauer pair associated with b, let T denote the inertia group of e in Ng(P), and let W
be a copy of the isomorphically unique simple kCg( P )e-module. Then

rkoOGb = (|G| dimy W)*|Z(P)|/|TI|Cc(P)lmodulo(|G||G : P|),spre(P).

Proof. By an easy adaptation of part of the argument in Michler [9, 2.1], we may
and shall assume that P2 G. Thévenaz [15, 40.13] describes a defect pointed group
P, on OGb associated with (P, e), and also informs us that 7= Ng(P,) and
dimy; W = dimy V(y). By Puig [12, 6.6, 14.6], we have

tko(OGb), = [NG(Py) : PCo(P)||P| = |T|IZ(P)|/|Ca(P). O
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