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Abstract. We give the residue class, modulo a certain power of p, for the
dimension of a primitive interior G-algebra in terms of the dimension of the source
algebra. To illustrate, we improve a theorem of Brauer on the dimension of a block
algebra.

Almost always, the G-algebras arising in group representation theory have been
interior. Both in applications and in the general theory, it often su�ces to consider
primitive interior G-algebras. One of the themes of the theory is the characterisation
of a primitive interior G-algebra in terms of its source algebra S. Stories revolving
around this theme are told in the two books devoted to G-algebra theory, namely
KuÈ lshammer [8], TheÂ venaz [15] and in the papers listed in their bibliographies. We
mention particularly Puig [11], [12]. These stories focus on rich algebraic relation-
ships between A and S; for a start, [11, 3.5] tells us that A and S are Morita
equivalent. However, many outstanding conjectures, some old and some new, hark
back to Brauer's more arithmetical approach to group representation theory. See,
for instance, conjectures in Alperin [1], Dade [4], Feit [6, Section 4.6] and Robinson
[13]. In this note, we point out an arithmetical relationship between A and S. As an
illustration, we shall discuss a theorem of KnoÈ rr on the dimension of a simply
defective module, and shall improve a theorem of Brauer on the dimension of a
block algebra. See also Ellers [5].

Our notation is as in TheÂ venaz [15]; we repeat a little of it to set the scene, and
extend it slightly. Let O be a complete local noetherian ring with an algebraically
closed residue ®eld k of prime characteristic p. Let G be a ®nite group, and let A be
an interior G-algebra; as usual, we assume that A is ®nitely generated over O, and
either free over O or annihilated by J(O). Given a pointed group H� on A, we
choose an element j 2 �, and de®ne A� :� jAj as an interior H-algebra. Now let X be
an A-module; again we assume that X is ®nitely generated over O, and either free
over O or annihilated by J(O). We de®ne X� :� jX as an A�-module. It is easy to
extend the use of embeddings in Puig [12, 2.13.1] to show that X� is unique up to a
natural isomorphism of A�-modules.

Henceforth, let us assume that A is primitive. Let Pg be a defect pointed group
on A. The source algebra A associated with Pg is an interior P-algebra. The multi-
plicity module V() associated with Pg is a projective indecomposable k� �̂N�P�-
module. By the construction of V(), if 1A �

P
t2T t as a sum of mutually orthogo-

nal primitive idempotents of AP, then dimk V�� � j \ T j:
When V() is simple, we say that A is simply defective. This notion has its ori-

gins in KnoÈ rr [7], and was introduced explicitly in Picaronny-Puig [10]. Necessary
and su�cient conditions for A to be simply defective are to be found in [2, 1.3], [10,
Proposition 1], and TheÂ venaz [14, 15, 9.3]. We recall that any block algebra of G
over O or over k is simply defective. Also, the linear endomorphism algebras of
certain OG-modules are simply defective (see below). Whenever A is simply defec-
tive, the p-part of the dimension of the multiplicity module is
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�dimk V���p � jNG�P� : Pjp:

We shall give a formula for the residue class, modulo a certain power of p, for
the O-rank rkOA (interpreted as the k-dimension dimkA when J(O) annihilates A).
The terms of the formula are dimkV(), some group-theoretic invariants of A, and a
residue class of rkOAg. Information about dimkV() and the group-theoretic invar-
iants is usually much easier to obtain than information about rkOAg, so the formula
may be seen as a congruence relation between rkOA and rkOAg. Since Ag and V()
are uniquely determined up to a G-conjugacy condition, dimkV() and rkOAg are
isomorphism invariants of A. Similarly, given an A-module X, then rkOXg is an
isomorphism invariant of X.

For a p-subgroup P � G, we de®ne the spire of P in G by the formulae

sprG�P� :� minfjP : P \g Pjg if P /--=G;
0 if P /--G:

�
We interpret congruences modulo zero as equalities; this convention will apply to
our results when P /--G.

Proposition 1. Let A be a primitive interior G-algebra, let P be a defect pointed
group on A, and let X be an A-module. Then

rkOX � jG : NG�P�j: dimk V��:rkOX modulo jG : PjpsprG�P�:

In particular, if A is simply defective, then

�rkOX�p � �jG : Pj:rkOX�p: modulo jG : PjpsprG�P�:

Proof. If P /--G, then the points of P on A are precisely the G-conjugates of .
Writing 1A �

P
t2T t as above, we have

rkOX �
X

gNG�P ��G
jT \g j:rkOX�g � � jG : NG�P�j: dimk V��:rkOX :

Now suppose that P /--=G. Let H :� NG(P). By the Green Correspondence The-
orem in TheÂ venaz [15, 20.1], there exists a unique point � of H on A such that
P � H�. Furthermore, � has multiplicity unity; that is to say, if 1A �

P
s2S s as a

sum of mutually orthogonal primitive idempotents of AH, then precisely one element
of S belongs to �.

Consider the induced interior G-algebra A0 :� IndG
H�A��. Recall that

A0 � OG
OH A� 
OH OG as OGÐOG-bimodules, and A0 �MatjG:Hj�A�� as alge-
bras. Let X0 :� OG
OH X� as an A0-module. Let  0 and �0 be the points of P and H
on A0 corresponding to  and �, respectively. Since Pg0 is a defect pointed subgroup
of H�0, the Green Correspondence Theorem implies that there exists a unique point
�0 of G on A satisfying Pg0 � G�0. Furthermore, �0 has multiplicity unity. By Puig [11,
3.6], A0�0 � A as interior G-algebras, and via this isomorphism, X0�0 � X as A-mod-
ules. A routine application of Mackey Decomposition and Rosenberg's Lemma
shows that if Q�0 is a local pointed group on A0 not G-conjugate to Pg0 then Q is
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contained in the intersection of two distinct G-conjugates of P. Therefore,
every point of G on A0 distinct from �0 has a defect group contained in P \ gP for
some g2GÿH. By Green's Indecomposibility Criterion, jG : PjpsprG�P� divides
rkOX0ÿrkOX. We also have rkOX0 � jG : HjrkOX� and, by the ®rst paragraph of the
argument,

rkOX� � jH : NG�P�j: dimk V��:rkOX : &

To illustrate Proposition 1, let us consider an indecomposable OG-module M
(®nitely generated over O, and either free over O or annihilated by J(O)). Let P be a
vertex of M, let U be a source OP-module of M, let F be the inertia group of U in
NG(P), and let m be the multiplicity of U as a direct factor of the restricted OP-
module of M. The linear endomorphism algebra EndO(M) (interpreted as Endk(M)
when J(O) annihilates M) is a primitive interior G-algebra with a defect pointed
group Pg such that Mg � U. Also, NG�P� � F, and dimk�V��� � m. By [2, 1.4],
EndO(M) is simply defective if and only if m is the multiplicity of M in the induced
OG-module of U. When these equivalent conditions hold, we say that M is simply
defective. If M satis®es the hypothesis of KnoÈ rr [7, 4.5] (in particular, if M is an
irreducible OG-module or a simple kG-module), then by Picaronny-Puig [10, Pro-
position 1] M is simply defective. Proposition 1 implies the following result.

Corollary 2. Let M be an indecomposable OG-module. With the notation
above, we have

rkOM � jG : Fj:m:rkOU modulo jG : PjpsprG�P�:

In particular, if M is simply defective, then

�rkOM�p � �jG : Pj:rkOU�p: modulo jG : PjpsprG�P�:

The rider to Corollary 2 relates to [7, 4.5] and [10, Proposition 3], but has slightly
weaker hypothesis and conclusion.

Lemma 3. Let G and H be ®nite groups. Let P and Qd be defect pointed groups
on, respectively, a primitive G-algebra A and a primitive H-algebra B. Then  
 � is
contained in a local point " of P�Q on A
OB, and (P�Q)" is a defect pointed group
on the primitive G�H-algebra A
B.

Proof. lt is easy to check that A
B is primitive, and that  
 � is contained in a
point " of P�Q. By considering the evident isomorphism of Brauer quotients

A�P� 
 B�Q� � A
 B�P�Q�

we see that " is local. On the other hand,

1A
B 2 TrG�HP�Q �AP 
 BQ:":AP 
 BQ�

so that (P�Q)" is a defect pointed group. &
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Theorem 4. Given a defect pointed group P on a primitive interior G-algebra A,
then

rkOA � �jG : NG�P�j: dimk V���2rkOA modulo jG : Pj2psprG�P�:

In particular, if A is simply defective, then

�rkOA�p � �jG : Pj2:rkOA�p modulo jG : Pj2psprG�P�:

Proof. This follows from Proposition 1 and Lemma 3 upon considering A as an
A
OAop-module by left-right translation. &

Let us consider a block idempotent b of OG with defect group P. Brauer [3,
Theorem 1] used character theory to prove that the block algebra OGb satis®es

�rkOOGb�p � �jGjjG : Pj�p:

A module-theoretic demonstration was later given by Michler [9, 2.1], and the result
is generalised in Picaronny-Puig [10, Proposition 3]. Since OGb is simply defective,
Theorem 4 gives, more precisely, the following result.

Corollary 5. Let b be a block idempotent of OG. Let (P, e) be a maximal
Brauer pair associated with b, let T denote the inertia group of e in NG(P), and let W
be a copy of the isomorphically unique simple kCG(P)e-module. Then

rkOOGb � �jGj dimk W�2jZ�P�j=jTjjCG�P�jmodulo�jGjjG : Pj�psprG�P�:

Proof. By an easy adaptation of part of the argument in Michler [9, 2.1], we may
and shall assume that P /--G. TheÂ venaz [15, 40.13] describes a defect pointed group
Pg on OGb associated with (P, e), and also informs us that T � NG�P� and
dimk W � dimk V��. By Puig [12, 6.6, 14.6], we have

rkO�OGb� � jNG�P� : PCG�P�jjPj � jTjjZ�P�j=jCG�P�j: &
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