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Reduced Order Finite Time Observers
for Time-Varying Nonlinear Systems

Frederic Mazenc

Abstract— We build reduced order finite time observers
for a large class of nonlinear time-varying continuous-time
systems. We illustrate our results using a tracking problem
for nonholonomic systems in chained form.

Index Terms— Observer, stability, time-varying

I. INTRODUCTION

The problem of estimating the values of solutions of
systems when some variables cannot be measured is of great
relevance from the theoretical and applied points of view.
Asymptotic observers, such as the celebrated Luenberger ob-
server from [5] and [6], are very popular and many observers
for families of nonlinear systems have been constructed.
However, they usually only provide a useful estimate after a
transient period during which they cannot be used, which can
be a disadvantage in applications like fault detection where
a finite time state estimation is desirable [12].

To obtain an exact estimate of the solutions of a system
in an arbitrarily short amount of time, finite time observers
have been proposed. Some use nonsmooth functions; see
for instance [4] and [11]. Their designs are often based
on homogeneous properties that preclude the possibility of
deriving smooth observers from this technique. Another type
of finite time observers has been developed. They are smooth
and use past values of the output or dynamic extensions.
They have been proposed a few decades ago for linear
systems; see in particular [2] and [13]. More recently, finite
time observers were designed for nonlinear systems, e.g., in
[9], [10], and [15]. They apply to systems whose vector field
is time-invariant when the output is set to zero and provide
estimates of all of the state variables.

Since systems are frequently time-varying, and since track-
ing problems can be recast into stabilization problems for
equilibria of time-varying systems, and since the measured
components of the state do not need to be estimated, this
paper adapts the main results of [9] and [15] to construct
finite time reduced order observers for a family of nonlinear
time-varying systems. The observers we will build only give
estimates of the unmeasured variables, as do the asymptotic
observers proposed for instance in [3] and [1, Chapt. 4,
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Sec. 4.4.3]. This provides a technical advantage over other
observers that would require fundamental solutions of time-
varying linear systems whose dimensions are equal to those
of the original systems. This is because we only need for-
mulas for fundamental solutions of lower order time-varying
systems, and because of the difficulty of finding formulas for
fundamental solutions of higher dimensional time-varying
linear systems. To the best of our knowledge, finite time
reduced order observers for nonlinear time-varying systems
are proposed for the first time in the present paper.

After providing an introductory result in Section II, we
state and prove a reduced order finite time observer theorem
for time-varying nonlinear systems in Section III. Section
IV illustrates our approach, in a tracking problem for a
nonholonomic system in chained form, and we conclude with
ideas for future research in Section V.

We use standard notation, which is simplified whenever
no confusion can arise, and the dimensions of our Euclidean
spaces are arbitrary, unless otherwise noted. The Euclidean
norm, and the induced norm of matrices, are denoted by
| -], | - |oo is the essential supremum, and I is the identity
matrix. For each constant 7 > 0, continuous function ¢ :
[T, +00) — R™, and t > 0, we define ¢ by ¢r(m) =
(t +m) for all m € [—,0]. For any continuous function
Q:[—7,400) = R™™" we let g denote the function such
that

%9 (t,tg) = —Pa(t, t)A(t) (1)

and ®g(tg,tp) = I for all ¢t € R and tg € R. Then
M(t,s) = ®5'(t,s) is the fundamental solution associated
to Q for the system & = Q(t)x; see [16, Lemma C.4.1].

II. INTRODUCTORY RESULT

Before providing our general theorem for time-varying
systems with nonlinearities in Section III, we first present
an introductory result that builds finite time reduced order
observers for a simpler family of systems, to present basic
ideas from our method. Consider the system

(t) = Ax(t) + 8(t) 2)

having x valued in R", in which A is a constant matrix
and the piecewise continuous function ¢ : [0, +00) — R™ is
locally bounded. We assume that the output

y(t) = Cu(t) 3)

is valued in R? and that C is of full rank, where p < n is
arbitrary, and that (A, C) is an observable pair. Since C is
of full rank, we can construct matrices Cr and A; and A,
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that provide a linear change of coordinates

:cT:Osz{ y} “)
Ty

and functions §; for ¢ = 1,2 that are piecewise continuous
with respect to their first argument and linear with respect
to y for which the xr system can be rewritten as

{ g(t) = Avx,(t) +01(t, y(t))
Tp(t) = Asz,(t) + da(t,y(t)) .
Then the pair (A2, A1) is observable, because (A, C') is ob-
servable; see [6, pp. 304-306]. Since (Aa, A;) is observable,
it follows from [9, Lemma 1] that there exist a constant
7 > 0 and a constant matrix L € R(™~P)*P guch that with
the choice H = Ay + LA;, the matrix

M, =e 7 — 7 H7 (6)

(&)

is invertible.
In terms of the variable

Ts =T, + Ly @)
we easily obtain the system
is(t)= (A2 + LA1)a,(t) + 62(t,y(t)) + Lov(t, y(t).  (8)
Then the definition of H gives
(1) = Has(t) + Ky(t) + 03(t, y(t)) ©)

where K = —(As + LA;)L and 83 = d3 + Lo;. We now
integrate the second equation in (5) and (9) to obtain

Tt —7) = e 2T, (t)

—f:ﬁT eA2t=m=7)5,(m,y(m))dm and (10)
rs(t—7) = e BT (t)
L M Ky m) 4 Sy(my(m)ldm
for all ¢t > 7. The definition (7) then gives
2, (t—7)=e "2, (t)+ e H"Ly(t) — Ly(t — 1) (12)

— i MK y(m) + 63(m, y(m)))dm

for all ¢ > 7. By subtracting (12) from (10) and using the
definition of M. in (6), it follows that

My, (t) = e~ "7 Ly(t) — Ly(t — 7)
— Ji_, e IOKy(m) + d5(myy(m)ldm (13)
[ e 8y (m, y(m))dm
for all ¢ > 7. Using the invertibility of M, we conclude that
2 (t) = & (t) (14)
holds for all ¢ > 7, where
& (t) = M [e7HTLy(t) — Ly(t — 7)]
M ftt—q— eHU=m=T) [y (m) + 65(m, y(m)) (15)

—|—L51(m y(m))]dm
P [E gy o, y(m))dm

Hence, when d; and 2 are known, (15) provides the exact

value of z,.(t) for all ¢t > 7.

III. MAIN RESULT FOR TIME-VARYING SYSTEMS
A. Statement of Main Result and Remarks

This section shows how the finite time observer method
from the previous section generalizes to time-varying non-
linear systems of the form

{ 2(t) = A(t)ze(t) +01(t, 2(t))
in(t) = Ag(t)z,(t) + da(t, 2(t))

where x,. is valued in R®7P, 2 is valued in RP, the output is
y(t) = 2(t) +€(t) (17)

where the functions A; for ¢ = 1 and 2 are piecewise
continuous and bounded, €(¢) is piecewise continuous and
bounded by a constant € > 0, and the functions ¢; and J, are
piecewise continuous with respect to ¢ and globally Lipschitz
with respect to z and such that there is a nonnegative valued
continuous function ¢ for which

101(£, 2)| + 162(t, 2)] <

holds for all t > 0 and z € RP.

Remark 1: The particular structure of (16) does not overly
restrict the class of linear systems to which our methods
apply because, as noted in the previous section, any dynamics
of the form

(16)

o(]2]) (18)

X = A)X + F(t,Y) (19)

having an output Y = C'X with C' of full rank can be trans-
formed (using a linear time-invariant change of coordinates)
into a new system having the form (16). The €(t) term in (17)
represents a measurement disturbance, which is of interest
because in practice, measurements are frequently affected
by perturbations. (|

We assume:

Assumption 1: There are a constant 7 > 0 and a bounded
matrix valued function L of class C' with a bounded
first derivative such that with the choice H(t) = As(t) +
L(t)A1(t), the matrix

A(t) =

is invertible for all ¢ € R. ]
See below for methods to check Assumption 1. We next
define

@AQ(t,t—T)—(I)H(t,t—T) (20)

) = L(t)61(t, z) + 2(t, 2) and
[D( )z + d5(t, z)], where
— H(t)L(t).

=2
w
—~
w“w
I\
~

2L

We also set
() =
T [@ay(mt = m)da(m, y(m) — e(m))
+P@y(m,t — 7)04(m,y(m) — e(m))]dm
AT [@a(t,t — T) L) (y(t) — €(t))
—L(t = 7)(y(t —7) —e(t — 7))

(22)

]
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for all ¢ > 0, where A(t)~! denotes the inverse of A(t) for
each ¢ and similarly for other inverses. We prove:
Theorem 1: If (16) satisfies Assumption 1, then

o (t) = @, (t) (23)

holds for all t > 7.

Remark 2: One can more easily check Assumption 1
when n —p = 1 because in that case, ® 4, and &y take
the one dimensional forms

By (trt0) = € Fio 2200V ang By (1, 1) = ¢ o HmAm

If n —p > 1, then checking Assumption 1 may be more
difficult because then the formulas for ® 4, and @z would
be harder to compute. On the other hand, it is easier to find
explicit formulas for ® 4, and @y than for ® 4 where A is
the function in (19) because the dimension of A is larger
than the dimensions of A, and H. This is an advantage of
the reduced order approach over full order observers. (]
Remark 3: If there exist two constants 7 > 0 and w €
(0,1) and a function L such that |® 4, (t,t — 7)1 &y (¢, t —
7)| < w for all t > 0, then Assumption 1 will hold and AL
is bounded. To see why, note that in this case, I —® 4, (¢, —
7)"t® g (t,t — 7) is invertible for all ¢+ > 0 and

[[—®a,(t,t—7) 1 Dy(t,t—7)] " =

oo k 24
> (@, (bt —7) Pyt t—T)] 24
k=0
holds for all ¢ > 0. Therefore,
- 1
’[I—@Az(t,t—r)*(bH(t,t—T)] 1’ <1 25)
— W

holds for all ¢ > 0, by the geometric sum formula. It follows
that A(¢)~! exists for all + > 0 and

A0~ =

(1= @ttt = 1) @p(t,t = 7)) Byt t =)
. |4, (tt—7) "1

1-w ’

which is bounded because ®4,(t,t — 7)~! is bounded

(because A, is bounded and because @Zi is the fundamental
solution associated with A5). Moreover A~! will be bounded
(when the inverse exists for all ¢) if the system is periodic
because then A~! is continuous and periodic. (]

Remark 4: If € is unknown, then the exact estimate (23)
cannot be used because (22) contains ¢. However, we can
use (23) to build the approximate observer

ay(t) =

A7, [@ay (myt = 7)32(m, y(m))

@y (m, t = 7)é4(m,y(m))] dm

AT @ (8t — T)L(y () — L(t — T)y(t — 7)].

Since A, and H are bounded, it follows from Gron-
wall’s inequality that sup,,ci—rq |®u(m,t — 7)| and
SUPefi—r. [®a,(m,t — 7)| are bounded functions of t.
Hence, if A(t)~! is also bounded, then we can find a constant
lo > 0 such that |27 (t) — 2, (t)] < l,|€|oo holds for all ¢ > 7.

(26)

O

B. Proof of Theorem 1
For each ¢ > 0, the variable z,(t) = ®,(¢,0)z,(¢)
satisfies
iy(t) = —Pa,(t0)A2(t)z, (1)
+® 4, (t,0)[Az(t)x(t) + 2(t, 2(1))]
= Dy, (t,0)0(t, 2(¢)) .

We now integrate (27) between ¢t — 7 and ¢ > 7 to obtain

xAﬂ=Lﬁ—ﬂ+At

-7

27)

D 4, (m,0)02(m, z(m))dm . (28)

We can easily use the definition of z, to obtain

D, (t—7,0)"1D4, (t,0)2,(t) = - (t — 7)

F L By (t— 7, 0) " Dy (m, 0)8s(m, 2(m))dm. 2

For each continuous function © : R — R®*¢ the function
Wa(t tg) = Palt,ty) " satisfies
o¥q

T2 (t,t0) = ~1)  Walt, to)

Using the semigroup property of flow maps, we conclude
that U (¢,0) = Yqo(t,t — 7)Tq(t — 7,0) holds for all t >
7. Hence, Uq(t,0)7T = Uq(t — 7,0) " Uq(t,t —7)7, and
Pao(m,0) = Uo(m,t — 7)Pq(t — 7,0), which implies that
Vo (m,0)" =Uqo(t—7,0)"Vo(m,t—7)T, forallm > t—7
and ¢ > 7. The preceding equalities give P (t,0) = P (t —
7,0)®q(t,t—7) and Po(m,0) = Po(t—7,0)Pq(m,t—7),
so we can deduce from (29) that

(30)

Du,(t,t— 1) (t) =20t —T)

I ®a(myt - T)oa(m, z(m))dm . O

Moreover, the choice xs(t) = x,.(t) + L(t)z(t) satisfies

Bo(t) = As(t)a,(t) + 0ot 2(t)) + L(t)=(t)
FL)[A1 ()2 (t) + 81(, 2(1))]
H(t)z,(t) + L(t)z(t) + 05(t, 2(t))  (32)
H(t)as(t) + [L(t) — H(t)L(t)]=(t)
+83(t, 2(t)) .
By viewing @ as the inverse of the fundamental matrix for
¢ = H(t)q, we can then use variation of parameters to obtain

Dyt t—7)ws(t) = zs(t —7)+
[ @ (m,t —7)[D(m)z(m) + d3(m, 2(m))]dm

from (32), where D was defined in (21), for all ¢ > 7. We
deduce from the definition of z, that

Dy (t,t — 1) (t) + L(t)2(1)]

(33)

= x;(t —7)+ Lt —7)z(t—71) (34)
—|—ft7T Oy (m,t—7)[D(m)z(m)+03(m, z(m))]dm,
which we can reorganize to obtain
Sy(t,t— 7)o (t) =z (t — 7)
—®y(t,t —7)L(t)z(t) + Lt —7)z(t — 7) (395)

+ [L®p(m, t—7)[D(m)z(m)+383(m, z(m))]dm.
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We now subtract (35) from (31) to obtain
A)a, (t) = [ ®a,(m,t — 7)d2(m, 2(m))dm

_ ftt_T D (m,t—7)[D(m)z(m)+3d3(m, z(m))]dm
+@g(t,t — T)L(t)2(t) — L(t — 7)2(t — 7)

(36)

for all ¢ > 7. Since Assumption 2 ensures that A(t) is
invertible for all choices of ¢, the theorem follows.

IV. ILLUSTRATION
A. The studied problem

To illustrate Theorem 1, let us consider the following

variant of a system from [7, p. 143]:
5:4 = &u
€3 = & 37)
§2 = U2
& = n

with (&1, €2, &3, €4) valued in R? and the input (vy, v2) valued
in R2. Then (37) is a nonholonomic system in chained form.

We assume that the variables &4, &3 and &; are measured,
but that &5 is not measured. Also, we assume that there is
no disturbance in the measurement of £3. Let us consider the
problem of making the system (37) track

(517‘(t)’ 527'(t)’ 537'(7“)7 §47' (t)) = (2 Sil’l(t), 0,0, O) :

We can recast this as a problem of stabilizing the origin
of a time-varying system using the classical time-varying
change of variables

(38)

z1 =& —&ir(t) (39)
and by selecting the feedback
v1(t, 1) = —2sign(z1)\/|z1| + 2 cos(t) (40)

where sign : R — R is the function defined by sign(m) =
-2 when m # 0 and sign(0) = 0. They result in

[m|
& = & [—2sign(m1)\/m+ 2603(15)}
& = & {—QSign(xl)\/W-i- 2COS(t)} (41)
52 = vy(t)
1 = —2sign(er)y/Ja] -

We require vs to be bounded by 1, i.e., that |ve(t)] < 1 for
all £ > 0. As an immediate consequence, it follows that the
finite escape time phenomenon does not occur and &3(¢) is
bounded by an affine function of ¢. By integrating the last
equation of (41), we deduce that \/|z1(t)| = v/|z1(0)] — ¢
when ¢ € [0, /|z1(0)|] and z1(¢) = 0 for all ¢ > /|z1(0)].
Hence, for all ¢t > /|z1(0)], we have & (t)z1(t) = 0.

B. Observer Design

Since &2(t)x1(¢) = 0 holds for all t > /|z1(0)|, and since
only & is not measured, our next objective is to construct
an observer for the two dimensional system

{5:3 = 2cos(t)&s
& = wvt)

(42)

for all ¢t > /|z1(0)]. With the notation of the previous
section, this system can be rewritten as

{ 2(t) = Ai(t)z.(t) 4 61(t, 2(t))
(1) Ga(t, 2(t))

with z,.(t) = &(t), the output z(t) = &(t), Ai(t) =
2cos(t), Aa(t) =0, €(t) = 0, 01(t,2) = 0, and d2(¢t, 2) =
va(t). We next check that Theorem 1 applies, with 7 = 27
and y = &3. Choosing L(t) = —2cos(t), we obtain H(t) =
Ay (t) + L(t) A1 (t) = —4cos?(t). Hence, since

(43)

By (t, S) _ 64 St cos?(e)de (44)

and ®4,(t,s) =1 for all s > 0 and t > s, the function A
from (20) in Assumption 1 is A(t) = 1 — e*™ for all ¢t € R.
We conclude that Assumption 1 is satisfied. Thus Theorem
1 applies, and provides the estimate from (22), namely,

Bo(t) = 2250 7y (1) + E5(t — 2m)]
—i—ﬁ ftt_% (1 A cos® (z)de) vo(m)dm
2w [ g2 T O d cos® () —sin(m) )& (m) dm.
We conclude that
Eo(t) = 225 [_eAmea(t) + £5(t — 2m)]
"‘ﬁ ftt—27r 1— et [ cos®(£)de vz(m)dm
12 f) g € O (d.cos (m)

—sin(m))&s(m)dm

for all ¢ > max{27r, |x1(0)|}

(45)

C. Output feedback tracking

In this section, we illustrate how (45) can be used to solve
a tracking problem that we described in Section IV-A. We
design a state feedback for

§f4 = 2cos(t)&s
5_3 = 2cos(t)&s (46)
2 = wat).
Let us define
G = & —2sin(t)E3 — cos(2t)&2
Cg = 53 - Qsin(t)fg (47)
G = &.
Using the double angle formula for the sine function, we get
G = —cos(2t)va(t)
(o = —2sin(t)us(t) (48)
G = vt).

Then the derivative of the positive definite quadratic function
v(C1,¢2,G3) = 5 [¢ + ¢ + (3] along all trajectories of (48)
is U(t) = [— cos(2t)(1 — 2sin(t)(2 + (3] v2(t). Thus with

va(t) = —o ([~ cos(2t)¢1 — 2sin(t) (e + (3]) (49)
where o(s) = 75> We obtain
v(t) = — [— cos(2t)(1 —2sin(t) ¢ + (3] (50)
xo ([— cos(2t)¢1 — 2sin(t) 2 + (3)) -
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We now use the LaSalle Invariance Principle to check that
(48) in closed loop with (49) is globally asymptotically stable
to 0, as follows. Consider any solution (¢ (¢), (2(t), ¢5(¢)) of
(48)-(49) such that — cos(2t)¢: (t) —2sin(t)¢a(t) +(3(t) =0
for all ¢ > 0, Then v(¢) = 0 and so also ¢;(¢t) = 0 for all
t > 0and 7 =1 to 3. Consequently,

—cos(2t)¢1(0) — 2sin(¢)2(0) + &3(0) =0 (51)

for all ¢ > 0. We deduce that (;(0) = 0 for i = 1 to 3 (by

differentiating through (51) with respect to ¢ and then setting

t = 0 in the result). Consequently ((q(¢),¢2(t),¢s3(t)) =

(0,0,0) for all ¢ > 0. Then, we deduce from the periodic

LaSalle Invariance Principle from [14, Theorem 5.26] that

(49) renders the origin of (48) globally asymptotically stable.
It follows that the bounded feedback

va(t, 2,3, &) = 0 (cos(2t) (&4 — 2sin(t)€s — cos(2t)E2)
+2sin(t) (&5 — 2sin(t)&2) — &)

renders the origin of (46) globally asymptotically stable. By
grouping terms, we obtain

va(t, &2, 83, §4) =0 (cos(2t)€a+2[1—cos(2t)] sin()€s
—[cos?(2t) + 4sin®(t) + 1]&)

which we can combine with (45) to obtain the globally
asymptotically stabilizing output feedback

valt) = o (cos(zt)g4 +2[1 — cos(2t)] sin(t)€;
—L(t) j::% (1 — 0™ vy (m)dm

—2L(t) ftt_zﬂ e€(m:1) (4 cos®(m) —sin(m))&s(m)dm
2eos(BLE) [~ E() + Ealt — 2m))

where £(m,t) = 2(m — t + 2m) + sin(2m) — sin(2t) and

L(t) =

Notice that v, is a solution of an implicit equation.

We performed simulations, which show the efficiency of
our approach. Fig. 1 shows the simulation of the closed loop
nonlinear time varying system (41) with v, defined in (52).
Since our simulation shows good stabilization and tracking,
it helps illustrate our general theory, in the special case of the
system (37). We choose x1(0) = —0.5 which implies that
V0zi(t)] =1/v/2—t when t € [0,1/+/2] and x;(t) = 0 for

allt >1/ \/2. This is evident from the simulation as well.

(52)

cos?(2t)+4sin?(t)+1
1—edm :

(53)

V. CONCLUSIONS

We proposed a new type of reduced order finite time
observers. The observers apply to time-varying systems.
We conjecture that it can be used to solve a problem of
constructing interval observers that is similar to those in
[9]. We plan to apply our observer to solve a dynamic
output feedback stabilization problem for a MIMO nonlinear
system. We will study other extensions. In particular, we
hope to combine the main result of the present paper with
the result of [8] and to the case where there are a delay and
a disturbance in the input and where the outputs are only
available on some finite time intervals.

0.5 T T T
—(t)
a —&(t)
—&l(t)
0 &(t)
ol \ S
-0.5 L L L
0 5 10 15 20
t (seconds)
2 T T T T T T T
1 - -
0 E
At 4
—&(1)
—&i(t)
_2 L L L L 'l 'l
0 1 2 3 4 5 6 7 8
t (seconds)
Fig. 1. Simulation results.
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